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 Figure 5.1 Schema for the Fabrication of SERS Probe Nanoparticles. SERS probe 
 nanoparticles were first constructed without antibody conjugation (Route 1). After the 
 successful production of unconjugated nanoparticles, antibody conjugation and testing 
 of SERS probes was successfully conducted (Route 2). 
 

 The particle aggregation state is of particular importance for SERS nanoparticles because 

it will have a significant effect on the optical response of the probes. The particle's LSPR peak 

position is directly related to nanoparticle size and electromagnetic properties [162]. Depending 

on the LSPR peak position, aggregation can cause either a decrease in the SERS intensity [163] or 

an increase in the SERS intensity [164]. This phenomenon can be explained by considering the 

trade-off between increased SERS intensity caused by plasmon resonance enhancement and hot 

spot formation [165] verses the decreased SERS intensity caused by the excitation of non-

radiative modes in large nanoparticle aggregates [166]. In the case of SERS probes development 

for biomarker targeting, aggregation was avoided, as it interfered with antibody binding. 
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 Figure 5.2 Aggregation of Gold Nanoparticles. These images show the change in 
 nanoparticle color upon addition of a 0.15M solution of sodium chloride. The 
 progressive change in color can be directly correlated to the formation of nanoparticle 
 aggregates. 
 

 To avoid aggregation, it is important to use ultra pure water (18 MΩ-cm resistivity) 

when working with gold nanoparticles. Using ultra pure water minimizes the potential for 

aggregation and promotes consistent and repeatable results. However, the use of ultra pure 

water can have an adverse effect on the structural and functional properties of antibodies 

during conjugation. Ultra pure water will induce protein conformational changes and insolubility 

[167, 168]. Because of this tendency, the conjugation of proteins to the nanoparticle surface 

becomes a balancing act between aggregation potential and protein stability. The ionic strength 

of the gold nanoparticle solution during conjugation must remain high enough to promote 

protein stability without causing nanoparticle aggregation. Step-by-step characterization of the 

gold nanoparticles during fabrication was used to ensure that this balance between aggregation 

potential and protein stability was maintained.  

5.1.2 Characterization Methods 

 Characterization methods during each synthesis step were critical for the development 

of effective and repeatable SERS probes. To develop reproducible SERS probes, the following 

characterization techniques were used: Raman spectroscopy (633 nm and 785 nm), dynamic 
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light scattering (DLS), UV/Vis spectroscopy, zeta potential, atomic force microscopy (AFM), 

scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and gel 

electrophoresis. The following characterization techniques were used to provide information 

about the particle size and the particle’s optical response: UV/Vis spectroscopy, DLS, and Raman 

spectroscopy. 

 UV/Vis spectroscopy is a technique that detects absorption of ultraviolet and visible 

light by molecules or nanoparticles. The absorption profile can be used to detect many 

molecular characteristics, including the presence of double bonds. UV/Vis spectroscopy is 

particularly useful for quantification of plasmonic nanoparticles because it can be used to detect 

their LSPR response. UV/Vis spectroscopy was used to assess the magnitude of the LSPR 

response and aggregation state of the gold nanoparticles after each step in the fabrication 

process. The LSPR response is characterized by a maximum absorption point (or LSPR peak) 

found in the range of 520 – 560 nm. The position of the LSPR peak can be used to estimate the 

relative size of the nanoparticles as well as their surface state. Additionally, the width, height, 

and position of the LSPR peak can be used to estimate the aggregation state of the 

nanoparticles. In Figure 5.3, the LSPR peak shape of 60nm gold nanoparticle is shown.  

 DLS was used to determine the size and monodispersity of gold nanoparticle solutions 

during the fabrication process. DLS characterizes a solution of particles based on light scattering 

variation caused by nanoparticle Brownian motion [169]. Due to Brownian motion, the 

scattering photons interact through constructive and destructive light interference [170]. These 

interference patterns can be correlated to the average hydrodynamic radius and particle size 

distribution [170]. DLS measurements were used for the characterization of particle size 

throughout the fabrication process. Particle size was also measured using AFM and SEM/STEM. 
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 Figure 5.3 UV/Vis Characterization of Gold Nanoparticle LSPR Peak. The localized 
 surface plasmon resonance (LSPR) peak response can be used to determine multiple 
 characteristics of gold nanoparticles including their aggregation state. 
 

 Raman spectroscopy was used throughout the fabrication process to determine the 

optical response of the nanoparticles. Step-by-step characterization of the optical response was 

important for the development of a fabrication process that would prevent Raman reporter 

displacement or inactivation. Additionally, Raman spectroscopy was used for the selection of an 

appropriate Raman reporter molecule with reduced fluorescence, a strong Raman signal, and 

Raman peak positions unique from Raman peaks seen in polystyrene. Unique and non-
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overlapping peaks were important because polystyrene substrates were used for protein 

binding and SERS immunoassay development.  

5.2 Design and Characterization of SERS Probes without Antibody Conjugation 

 Before attempting to conjugate antibodies to the surface of SERS probe nanoparticles, 

the optical response of unconjugated SERS probes was assessed (see Route 1). Unconjugated 

SERS probes have been used for a variety of labeling, and multiplexing applications [80, 171, 

172]. The development of unconjugated SERS probes was critical for future SERS probe antibody 

conjugation but also has potential for unique, label free biosensing.  

5.2.1 Materials and Methods 

 In the preparation of unconjugated SERS probes the follow materials were obtained: 

citrate capped, 60nm gold nanoparticles (Ted Pella), 5000MW thiol polyethylene glycol (PEG) 

(from Laysan Bioscience), 4-aminothiolphenol (4-ATP), 4-mercabtobensoic acid (4-MBA), crystal 

violet, malachite green, (3,3′)-diethylthiatricarbocyanine iodide (DTTC iodide), quartz 

microscope slides (Ted Pella). 

 To fabricate unconjugated SERS probes, the aggregation potential of each reporter 

molecule was first determined. Raman reporters such as 4-ATP and 4-MBA bind to the particle 

surface through the gold thiolate bond and stabilize the particle surface. Crystal violet, 

malachite green, and DTTC iodide bind to the surface through ionic interactions so reporter 

aggregation is more likely with these reporters. For each Raman reporter, a stable reporter-to-

colloid ratio was determined and was used in subsequent experiments. For reproducible 

production of SERS probe nanoparticles, 60nm gold nanoparticles, at a concentration of 2.6x1010 

nanoparticles per milliliter, were added to a clean glass vial and were rapidly stirred with a 
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magnetic stir bar. The reporter molecule was added dropwise to the stirring colloid solution at 

1:6 volumetric ratio. This reporter addition procedure helped to create a uniform reporter 

distribution across the nanoparticle surface and reduced batch-to-batch variability. The reporter 

solution incubated with gold nanoparticles for 1 hour to promote surface binding. After 

incubation, a 10μM solution of 5000 molecular weight thiol polyethylene glycol (SH-PEG) was 

added to the solution and incubated for an additional hour. Finally, the particles were 

centrifuged at 1200xg for 30 minutes and the supernatant was removed. The particles were 

suspended in ultra pure water and stored at 4˚C until optical testing.       

5.2.2 Raman Reporters and Aggregation Characteristics 

 The Raman spectrum of each reporter molecule was analyzed using either 633nm or 

785nm excitation. The normalized reporter spectra are presented in Figure 5.4 with a spectral 

range of 400 – 1200 cm-1. To determine the best reporter molecule for immunoassay 

development, the Raman spectrum of each reporter molecule was compared to the spectrum of 

polystyrene. Spectra with high SERS intensity and little or no polystyrene peak overlap were 

considered good candidates for the development of a SERS based immunoassay.  

 The aggregation potential of each reporter molecule was determined by adding the 

reporter to a solution of gold nanoparticles in varying concentrations ranging from 0 to 5000nM. 

UV/Vis spectroscopy was used to analysis the LSPR peak for each nanoparticle solution. An 

example of the LSPR peak profile of gold nanoparticles with the reporter molecule DTTC iodide 

is presented in Figure 5.5. In this figure, the increasing LSPR peak width and decreasing LSPR 

peak intensity indicated that particle aggregation had occurred. The cluster size of nanoparticle 

aggregates was estimated using DLS; DLS data is presented in the top right corner of Figure 5.5. 
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 Figure 5.4 Raman Reporter Spectra. Five commonly used Raman reporters were tested 
 to determine their Raman intensity and their aggregation potential. 

 

 The Raman intensity of each reporter is dependent on the reporter density, the SERS 

enhancement, the Raman instrument throughput, and the aggregation state of the 

nanoparticles. After experimenting with the five Raman reporter molecules, it was determined 

that DTTC iodide produced the strongest Raman enhancement with the shortest required 

acquisition time. A strong optical response with a short required acquisition time was an 

important factor for the eventual development of a SERS immunoassay. Reporter molecules that 

require a short acquisition time were beneficial because they resulted in reduced interference 

caused by the polystyrene substrate. The strong optical response of DTTC iodide can be 

explained when considering its maximum absorption point. DTTC iodide is a NIR dye with an 

absorption maximum at 765nm. Because DTTC iodide has a maximum absorption point near the 

laser excitation wavelength, Resonance Raman Enhancement will occur in addition to SERS. The 

Resonance Raman Effect results in increased Raman enhancement and reduced acquisition 

time.  

Polystyrene

DTTC Iodide

4-ATP

4-MBA

Crystal Violet

Malachite 
Green

Relative Wavenumber [cm-1]

R
am

an
 In

te
n

si
ty

 [
a.

u
]

400 500 600 700 800 900 1000 1100 1200 1300



78 
 

 

 Figure 5.5 Aggregation of Gold Nanoparticles (AuNP) After the Addition of DTTC 
 Iodide. The aggregation potential of 60nm gold nanoparticles was determined by adding 
 DTTC iodide to the gold nanoparticle solution and observing the LSPR peak profile of the 
 particles. DLS data shows that the particle size and percentage monodispersity 
 increased as greater concentrations of DTTC iodide were added to the gold nanoparticle 
 solution.  
 

5.2.3 Thiol PEG Binding Density 

 After binding the Raman reporter to the gold nanoparticle surface, a 5000 molecular 

weight SH-PEG layer was added to surface. To test the gold nanoparticles ability to resist 

aggregation, a solution of 0.15 M sodium chloride was added to the SH-PEG nanoparticle 

mixture to promote aggregation of unprotected particles. The LSPR peak intensity was 

measured before and after addition of the sodium chloride. The resulting difference in the 

absorption at the LSPR peak position was measured to determine the SH-PEG concentration 
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required to stabilize the particles. A large difference in the LSPR peak intensity indicates that 

aggregation of the particles occurred. Figure 5.6 shows that the amount of SH-PEG required to 

effectively stabilize the particle surface is approximately 2uM. The PEG binding density was 

calculated using the concentration of gold nanoparticles in the solution and the concentration of 

SH-PEG required to stabilize the particles. The number of SH-PEG molecules required to stabilize 

the particle surface was approximately 20,000 SH-PEG molecules per nanoparticle. This value 

corresponds to a SH-PEG footprint (area occupied by the SH-PEG molecule on the nanoparticles 

surface) of 0.244 nm2 which is consistent with the footprint value of 0.214 nm2 reporter for thiol 

monolayer's on a gold surface [173, 174].  

 

 Figure 5.6 SH-PEG Nanoparticle Stabilization. The amount of SH-PEG required to 
 stabilize the gold nanoparticle surface was measured by comparing the difference in 
 absorption at the LSPR peak for PEG stabilized gold nanoparticles before and after the 
 addition of 0.15 M sodium chloride. 

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-2.5 2.5 7.5 12.5

D
if

fe
re

n
ce

 in
 a

b
so

rp
ti

o
n

 a
t 

th
e

 
LS

P
R

 P
ea

k 
 (

53
6 

n
m

)

Concentration of SH-PEG (uM)

Concentration of 
SH-PEG required to 

prevent 
aggregation



80 
 
 As an additional confirmation of the successful addition of SH-PEG to the nanoparticle 

surface, the average hydrodynamic radius of the particles was measured before and after 

addition of SH-PEG using DLS and STEM. For STEM analysis, the PEG-coated gold nanoparticles 

were centrifuged at a speed of 1200xg for 30 minutes. After centrifugation, the supernatant was 

removed and the particles were redispersed in 100% ethanol. The resulting nanoparticle 

suspension was dried on a lacey carbon grid (Ted Pella), and imaged with the SEM microscope in 

transmission mode. Figure 5.7A is a STEM image showing a nanoparticle corona, suggesting a 

PEG layer has assembled around the particle. Due to concerns with SEM carbon contamination, 

which can also produce a corona like layer around conductive structures, DLS was used for the 

determination of PEG layer thickness (Figure 5.7B). Using DLS, the hydrodynamic radius of gold 

nanoparticles was measured before and after PEGylation. An average increase in the 

hydrodynamic radius of 16nm was observed resulting in a final radius of approximately 50nm. 

 

 Figure 5.7 PEG Layer Thickness Determined by STEM and DLS. Both STEM and DLS were 
 used to determine the thickness of the PEG layer on the gold nanoparticles surface. An 
 average increase in the hydrodynamic radius of 13nm was observed after the addition 
 of SH-PEG to the particles.  
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5.2.4 SERS Probe Stability and Signal Robustness 

 One issue that must be addressed during the fabrication of SERS probes is the possibility 

of Raman reporter displacement, as illustrated in Figure 5.8. Excess SH-PEG added to the particle 

surface could cause reporter displacement and a decrease in the SERS signal. Reporter 

displacement could also be mediated by a change in solvents, which could alter the PEG 

conformation and enable leaching of the reporter. To address these concerns, five replicates of 

DTTC iodide SERS probes were fabricated, excess SH-PEG was removed by centrifugation, and 

probes were stored at 4˚C for two weeks. Raman testing of these probes before and after 

addition of SH-PEG was conducted to determine if a decrease in the SERS signal would result. 

The resulting spectra, shown in Figure 5.9, have nearly identical peak heights suggesting that 

very little reporter displacement occurred due to the addition of SH-PEG and to SERS probe 

storage. 

 

 

 Figure 5.8 Raman Reporter Displacement. Raman reporter molecules can be 
 competitively displaced during SERS probe synthesis. SERS probe stability testing is 
 critical in the development of a fabrication protocol that avoids reporter displacement. 
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 Figure 5.9 SERS Probe Raman Reporter Displacement. After DTTC Iodide SERS probe 
 fabrication and storage, very little reporter displacement was observed. These results 
 suggest that the protocol for SERS probe fabrication is effective at preserving the 
 bound reporter molecule and stabilizing the reporter on the particle surface.  
  

 Similar results were obtained when probes were resuspended in a variety of different 

solvents commonly used with proteins, including; phosphate buffer saline (PBS), tris buffered 

saline (TBS), and tris buffer saline with 0.05% tween 20 (TBST). To test the ability of SERS probes 

to give a noticeable signal in extreme conditions, the probes were resuspended in solutions 

ranging from pH 1-14. The resulting spectra had similar spectral profiles and all gave a strong 

and noticeable signal.  

5.2.5 Summary and Findings from the Fabrication of Unconjugated SERS Probes 

 Unconjugated SERS probes were fabricated as indicated in Route 1, Figure 5.1. These 

probes were tested to determine the optimal Raman reporter molecule and reporter 

concentration. Additionally, unconjugated SERS probes were evaluated to determine the 

optimal SH-PEG binding density. Unconjugated SERS probes fabricated using this method are 

robust and produce a consistent SERS response during probe development and over time. The 

The Raman spectra of SERS probes shows minimal reporter displacement
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initial development and characterization of unconjugated SERS probes was an important step in 

the development of a SERS-based immunoassay for biomarker targeting and detection.  

5.3 Design and Characterization of SERS probes with Antibody Conjugation 

 Antibody-conjugated SERS probes were created as illustrated in Route 2, Figure 5.1. To 

develop SERS probes for specific targeting and detection, antibodies were conjugated to active 

PEG molecules. Antibody-PEG conjugation was followed by the addition of the antibody to the 

gold nanoparticle at concentrations that result in stability of the antibody and reduced 

aggregation potential for the gold nanoparticles. Successful antibody conjugation was 

determined using a 96-well immunoassay format for detection of light scattering from gold 

nanoparticles bound to the plate through immunochemistry.  

5.3.1 Materials and Methods  

 All reagents mentioned in section 5.2.1 were used during the fabrication of conjugated 

SERS probe nanoparticles. In addition, the following items were obtained for this portion of the 

project: An activated PEG-NHS-ester molecule referred to as Orthopyridyl-Disulfide-PEG-

Succinimidyl Valerate (OPSS-PEG-SVA) [Laysan Bioscience], anti-human and anti-mouse IgG 

polyclonal antibodies (Pierce), human and mouse IgG control antibodies (Pierce), human serum 

albumin (Sigma Aldrich) , medium and high protein binding polystyrene microplates (Corning), 

AAA SuperblockTM immunoassay blocking solution (ScyTek), 10K MWCO Zeba Spin buffer 

exchange columns (Pierce), sodium bicarbonate, barium chloride dihydrate, and 1 N 

iodine/iodide solution.  

 Before conjugation of OPSS-PEG to the antibody, the protein was first transferred to a 

buffer solution of 100mM sodium bicarbonate. After buffer exchange, OPSS-PEG-SVA was added 
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to the protein solution and the reaction proceeded overnight at 4˚C. Further information about 

the conjugation reaction can be found in Section 5.3.2. The conjugation effectiveness was 

determined by SDS-PAGE gel electrophoresis. Two separate stains were used to visualize the 

PEGylated proteins. The first stain used was a Coomassie blue protein stain to visualize the 

protein bands in the SDS-page gel. The second stain was a barium chloride-iodine stain, which 

selectively stains for the PEG molecules bound to the protein surface. See Section 5.3.3 for 

further information and results for SDS-PAGE of PEGylated proteins. Following protein PEG 

conjugation, the PEGylated antibodies were bound to the Raman reporter labeled gold 

nanoparticles. SH-PEG was used to stabilize the particle surface and the antibody-conjugated 

SERS probes were stored at 4˚C until use in the immunoassay. Section 5.3.4 covers the methods 

and results for the development of antibody-conjugated SERS probes used for a light scattering 

immunoassay.   

5.3.2 NHS-Ester Chemistry for PEG Antibody Binding 

 The first step in the fabrication of conjugated SERS probe nanoparticles was the binding 

of PEG to a polyclonal antibody using an activated NHS-ester PEG molecule. This chemical 

reaction occurs spontaneously upon the addition of PEG-NHS to the protein solution. At the 

same time, the PEG-NHS molecule can be hydrolyzed which reduces conjugation efficiency 

(Figure 5.10). To reduce NHS-ester hydrolysis the PEG-NHS reagent should be immediately 

added to the protein solution after resuspension. During the conjugation reaction, the protein 

concentration should be greater than 1mg/ml to promote conjugation rather than hydrolysis. 

The conjugation reaction produces a covalent amide bond between the PEG molecule and 

primary amines on the protein surface. The reaction has a higher yield at a pH of approximately 

8 – 9, so for most protein solutions the pH must be adjusted for optimal conjugation efficiency.  
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 Figure 5.10 PEG-NHS Chemical Reaction. The addition of PEG-NHS to a highly 
 concentrated protein solution results in the covalent binding of the PEG molecule to 
 primary amines in the protein. Hydrolysis of the activated NHS-ester is a competing 
 reaction that reduces the conjugation efficiency. 
 

 

 
 Figure 5.11 Hydrolysis Half-Life of OPSS-PEG-SVA. The hydrolysis half-life of OPSS-PEG-
 SVA was determined by measuring the absorbance at 260nm for a 2.5-hour period. A 
 hydrolysis half-life of approximately 20 minutes was determined, which corresponds to 
 the manufacturer's specifications. 
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 Another important consideration for the antibody PEG conjugation reaction is the 

hydrolysis half-life of the activated PEG molecules. The hydrolysis half-life was measured by 

recording the absorbance of the NHS leaving group at 260nm. By measuring the hydrolysis half-

life, the amount of time required for a complete reaction was determined. In Figure 5.11, the 

absorbance of the NHS leaving group at 260nm was measured to determine the hydrolysis half-

life of OPSS-PEG-SVA. The resulting hydrolysis half-life was determined to be approximately 20 

minutes, which corresponds to the manufacturer's specifications.  

5.3.3 SDS-PAGE Gel Electrophoresis of PEGylated Proteins 

 SDS-PAGE gel electrophoresis separates proteins based on their molecular weight. 

When an electrical current is applied to the gel, proteins will migrate through the gel towards 

the electrode on the opposite side. Proteins with a larger molecular weight migrate a short 

distance while proteins with a smaller molecular weight travel a longer distance. PEGylation of 

the proteins produces a protein conjugate with a larger molecular weight, which can be 

observed in the migration pattern of the protein when run on a SDS-PAG gel.   

 To determine the conjugation efficiency, OPSS-PEG-SVA at a concentration of 10 mg/ml 

was added to a 2 mg/ml anti-Human IgG protein solution in molar conjugation ratios of 1:1, 2:1, 

4:1, 6:1, 8:1, 10:1, and 15:1. The conjugation reaction proceeded overnight at 4˚C after which 

the PEGylated proteins were evaluated using SDS-PAGE gel electrophoresis. First, a 7.5% 

polyacrylamide gel was prepared using a BioRad TGX Fast CastTM gel casing kit. The PEGylated 

proteins were prepared with non-reducing lithium dodecyl sulfate sample buffer (Pierce) and 

placed in a water bath at 100˚C. After cooling, the PEGylated proteins were loaded into the wells 

of the gel and the gel was run for 75 minutes at 150V using Tris-HEPES-SDS Running Buffer. After 
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shown. This assay used two control conditions. The first control was SERS probes with a 

conjugated mouse IgG isotype antigen and the second was SERS probe conjugated to human 

serum albumin. Both control conditions showed negligible light scattering while the anti-mouse 

SERS probes showed noticeable absorption at the LSPR peak wavelength. Light scattering and 

absorption from the SERS probes proved to be a valuable technique for the detection of direct 

immunochemical binding and has applications for direct cell labeling applications. 

 

  
 Figure 5.15 Anti-Mouse SERS Probe Immunoassay. The LSPR peak intensities of anti-
 mouse SERS probes were plotted over a large concentration range. The SERS probe 
 concentration can be related to the absorbance at the LSPR peak position (536nm). Both 
 mouse IgG and human serum albumin SERS probes were used as a control condition. 
 Both controls showed negligible light scattering across the entire concentration range. 
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 To detect the inelastic light scattering from gold nanoparticle immunoassay, Raman 

spectra were collected using a 3-second acquisition time and 40mW incident laser power. The 

resulting Raman spectra in Figure 5.16 show peaks that correspond to vibrational modes of both 

DTTC iodide and polystyrene. The height and spectral area of the DTTC peaks at 493 cm-1 and 

508 cm-1 can be correlated to the concentration of SERS probe added to the solution, see Figure 

5.17. On the other hand, the height of the polystyrene peaks at 1002 cm-1 and 1032 cm-1 are 

constant for all Raman spectra.  

 

 Figure 5.16 SERS Probe Immunoassay Measured Using Raman Spectroscopy. The 
 spectral area of the peaks at 493 cm-1 and 508 cm-1 can be correlated to the amount 
 of SERS probe nanoparticle added to each well of the immunoassay, while the 
 polystyrene peaks at 1002 cm-1 and 1032 cm-1 are constant for all immunoassay wells. 
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 Figure 5.17 Calibration plot of a SERS Probe Immunoassay Measured With Raman. 
 There is a non-linear relationship between the concentration of SERS probe antibody 
 added to the assay and the resulting spectral area of the DTTC peak. This relationship is 
 consistent with binding site limited antibody adhesion seen with high concentrations of 
 secondary antibody.  
 

 This assay demonstrates the multiplexing capabilities of SERS-based techniques, since 

the DTTC iodide SERS probes and the polystyrene plate surface were both detected 

simultaneously. With future development, this assay could be used to quantify multiple uniquely 

labeled SERS probes that are each designed to target a specific biomarker. This method for 

multiplex biomarker quantification can be used for sensitive and specific molecular detection 

within a very narrow spectral range and has applications for the sensitive detection of B-cell 

surface markers. 
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5.4 Conclusion 

 The successful development and testing of SERS probe nanoparticles for the detection 

of molecular biomarkers has been demonstrated. These probes were fabricated using step-by-

step characterization methods to ensure that a balance was maintained between protein 

stability and nanoparticle aggregation state. A NIR Raman reporter (DTTC) was bound to the 

SERS probe nanoparticle surface for specific and sensitive recognition. These probes were 

stabilized with a PEG surface layer and were tested for robustness. Once fabricated and tested, 

these SERS probes were used in the development of a SERS-based immunoassay. This assay was 

used for the direct detection of molecular biomarkers bound to the surface of a polystyrene 

microplate. The SERS probe signals were detected using both UV/Vis spectroscopy and Raman 

spectroscopy. Using both methods, the SERS probe signal was correlated to the concentration of 

SERS probe added to the immunoassay. This method is a novel technique for the testing of SERS 

probe nanoparticles and shows sensitive results for specific biomarker detection.  More 

information about the experiments and concepts discussed in Chapter 5 can be found in a 

journal article that is currently under review by the Journal of Biological Engineering.  
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

 Surface-enhanced Raman spectroscopy (SERS) is a valuable analytical technique for the 

simultaneous detection of multiple biomarkers. The detection of multiple biomarkers is 

specifically important for treatment of B-cell malignancies such as leukemia, myeloma, and 

lymphoma. The effective treatment of these lymphoproliferative disorders requires targeted 

immunophenotyping. Successful immunophenotyping can require the simultaneous detection of 

up to 20 different cell surface markers (CSM). Traditional methods for biomarker detection are 

not capable of the simultaneous detection of such large numbers of CSMs. This thesis explored 

methods for the development of SERS probe nanoparticles for the detection of biomarkers, as a 

potential solution for increased multiplex biomarker detection.  

 Before the development of these SERS probe nanoparticles, an appropriate Raman 

system was required. Several commercial Raman instruments were evaluated based on the 

factors of excitation wavelength, spectral resolution, spectral range, and system sensitivity. In 

the process of evaluating these systems, a sensitive SERS substrate was developed based on the 

galvanic displacement of sliver nitrate onto a copper surface. In addition, a demonstration of the 

multiplexing capabilities of Raman spectroscopy was performed using mixtures of different 

solvents. After system evaluation two Raman systems were selected, a Renishaw InVia Raman 

microscope with a 633nm excitation source, and a custom Raman microscope system with a 

785nm excitation source. 
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 To complete the custom Raman microscope system a Nikon TE2000 inverted 

microscope was modified for Raman based detection. As part of this modification, a 785nm 

single mode laser was coupled to the microscope through a laser entry port. Laser light was 

scattered off the sample in a backscattering configuration. Removal of the Rayleigh scattering 

occurred using a series of long-pass filters that effectively reduced the laser scattering signal so 

that weak Raman scattering could be observed. The Raman scattered light was dispersed and 

imaged using a Princeton Instruments Isoplane 160 spectrometer and PIXIS 400 Detector. This 

Raman microscope was successfully used for sensitive Raman and SERS measurements. 

Subsequent experiments with SERS probe nanoparticle were performed with this system. 

 Using the custom 785nm Raman microscope and other characterization methods, SERS 

probe nanoparticles were fabricated and tested. Initial characterization of unconjugated SERS 

probes was used to develop a protocol to produce SERS probes that are robust and produce a 

strong and consistent signal. Conjugation of polyclonal antibodies to the probe surface enabled 

the specific detection of IgG biomarkers bound to the surface of a polystyrene microplate. This 

detection schema shows promise for multiplex biomarker analysis.  It also illustrates a 

fabrication method that could be employed for the targeted detection of multiple CSMs 

commonly found in B-cell malignancies. 

6.2 Engineering Significance 

 The development of a SERS-based immunoassay using a polystyrene microplate 

substrate is a novel technique with process engineering applications. Polystyrene microplates 

are commonly used in traditional immunoassays, but are rarely used with Raman spectroscopy 

because polystyrene produces strong Raman peaks. This thesis demonstrates that by optimizing 

the Raman reporter molecule, a sensitive SERS-based immunoassay can be developed using a 
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polystyrene substrate. Significant infrastructure has been developed in the immunoassay 

industry for 96-well and 384-well polystyrene microplates including machinery to automate the 

immunoassay process. The use of polystyrene plates for SERS-based biomarker detection can 

enable the simultaneous detection of multiple proteins while using the existing infrastructure 

that has been developed for traditional immunoassays.  

6.3 Future Work 

 The development of this SERS-based immunoassay provides a platform for testing and 

optimization of SERS probe nanoparticles and targeting of more unique antigens. Possible future 

experiments may demonstrate the actual targeting of a B-cell biomarker. An approach to the 

experimental plan for this assay uses the CD20 antigen, a B-cell biomarker. The CD20 antigen 

with a Glutathione S-transferases (GST) protein tag could be bound to an immunoassay plate 

that has been coated with glutathione. The GST-glutathione interaction is an incomplete 

enzymatic reaction that causes binding of the CD20 protein to the immunoassay plate without 

disrupting the CD20 antibody-binding site. After CD20 antigen binding, a mouse monoclonal 

anti-CD20 antibody could be added to the immunoassay for specific targeting of the CD20 

antigen. Following anti-CD20 binding, anti-mouse SERS probes could be added for SERS-based 

detection of CD20. Figure 6.1, illustrates the proposed experimental design for this assay.  
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 Figure 6.1 CD20 SERS Immunoassay. Proposed SERS immunoassays design for the 
 detection of CD20 a B-cell biomarker. The CD20 antigen is bound to the polystyrene 
 plate surface through an incomplete enzymatic reaction of the GST enzyme with 
 immobilized gluthathione. Detection of the CD20 antigen may be achieved through 
 binding of an anti-CD20 antibody followed by an anti-mouse SERS probe secondary 
 antibody. 
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APPENDIX A 
 

SUPPLEMENTARY FIGURES 
 

 

 Figure A1: Princeton Instruments Grating Profile. The quantum efficiency of the grating 
 used in the Raman microscope design is presented for several grating blaze angles; a 
 750 nm blaze grating was used in the custom Raman microscope design. Grating 
 efficiency data was obtained using the Princeton Instruments grating dispersion 
 calculator [179]. 
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