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ABSTRACT 

The future of remote sensing is imaging smallsats; however, assuring their data utility requires atmospheric 

correction (AC). Current methods are difficult to apply and often fail to provide accurate surface reflectance 

retrieval even for the most common levels of atmospheric aerosol loading; this impediment is increasing annually 

due to wildfires induced by climate change. Closed-form Method for Atmospheric Correction (CMAC), developed 

for smallsats using Sentinel-2 data, is applicable to all imaging satellites. CMAC uses only scene statistics for 

automated near real-time AC while bypassing ancillary data that delays existing methods by days. In this paper, data 

from two research-grade satellite systems, Landsat-8/9 and Sentinel-2, were test corrected by CMAC for 323 

individual image/area-of-interest combinations and compared to two bespoke industry-accepted software packages, 

LaSRC and Sen2Cor. The CMAC Sentinel-2 calibration was adjusted to Landsat-8/9 spectral responses using single 

points per band as a test for rapid calibration of smallsats. The results verified CMAC accurately retrieved the same 

surface reflectance distribution as LaSRC, but without limitations imposed through radiative transfer. CMAC-

corrected data were more accurate than both Sen2Cor and LaSRC over a much wider range of atmospheric effect. 

These results are verifiable through cloud-based test-corrections and publicly available data-analysis spreadsheets.     

1. INTRODUCTION 

All atmospheric correction (AC) methods currently in 

use are based upon radiative transfer (RadTran) [1]. 

Though a logical theoretic approach, RadTran is an 

impediment for smallsats because the radiance 

responses of the sensors must first be known for 

application. These responses are well known to change 

after launch and during orbit [2], hence requiring 

periodic recalibration to assure accurate output of top-

of-atmosphere reflectance (TOAR). Closed-form 

Method for Atmospheric Correction  (CMAC) was 

developed specifically to overcome such RadTran 

limitations in service  to the smallsat industry.  

Large research-grade imaging systems such as Landsat 

8/9 OLI (L8/9) and Sentinel 2A and 2B MSI (S2) are 

outfitted with on-board equipment to measure each 

band’s radiance response so that adjustments can be 

calculated to deliver accurate TOAR. Reflectance, not 

radiance, is the metric of interest for virtually all optical 

Earth observation. The challenge for smallsat image 

utility is that the size and weight restrictions for 

economical launch force the omission of onboard 

calibration equipment to adjust for the variable and 

gradually changing sensor radiance responses.  

The limitations imposed from unknown sensor radiance 

prompted development of a workaround that applies 

“harmonized” data [3], whereby each smallsat is 

periodically cross-calibrated to a satellite with known 

bandwise radiance such as L8/9 and S2. This process is 

problematic for several reasons: (1) inconvenience, 

since such cross calibration must be repeated 

periodically; (2) limited, because the availability of 

simultaneous overpasses is often problematic; and (3) 

contributing uncertainty due to differing relative 

spectral responses of the L8/9 and S2 sensors (Figure 

1). However, a more severe problem is induced by 

atmospheric changes that occur during the period 

between overpasses, even across relatively short 

timespans (Figure 2). This timing problem can be 

regarded as a serious impediment for smallsats whose 

sun-synchronous overpasses occur well before or after 

the late morning overpasses by L8/9 and S2. This limits 

an application of primary interest for smallsat 

intelligence, surveillance, and reconnaissance (ISR) 

missions: keeping eyes on hotspots throughout the day, 

limited only by thick cloud cover.  

CMAC was developed to offer atmospheric correction 

(AC) without the inherent problems of RadTran. A first 

goal was to make CMAC work in near real-time upon 

image download rather than waiting for a day or more 

to retrieve the additional data from a satellite (such as 

MODIS) [4] required to run RadTran [5]. CMAC uses 

only scene statistics, so it can function immediately 

upon download, or potentially reside onboard the 

smallsat. and with a lag of only seconds, correct each 

line of the image data as it is acquired. This 

hypothetical zero latency CMAC edge application is 
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afforded by push broom scanner operations that scroll 

the images during acquisition.  

 

Figure 1. Relative spectral responses for Sentinel 2 (solid) and 

Landsat 8/9 (dashed). 

 

Figure 2. Cirrus can be seen in an  RGB Sentinel 2 image. Inexact 

synchronicity is an error source in ancillary data; for example, 

the two cirrus band images were taken 18 minutes apart over 

central Minnesota. CMAC corrects cirrus band effects. 

Real-time edge AC is made possible by CMAC because 

it is comparatively simple and applies closed-form 

mathematics that can correct an image to then be 

transmitted with only several seconds delay in critical 

path ISR, for example supporting active warfighting. 

Presently, the only option may be to accept uncorrected 

data with features variably obscured by haze rather than 

wait the extra time to receive and process an image. 

Delayed intelligence quickly loses value and with so 

many images being generated daily by smallsats 

(expected to soon be hundreds of thousands) will 

completely overwhelm the pool of human analysts. 

Automated AC that prepares images for AI workflows 

is the clear path forward for smallsat ISR.   

Application of artificial intelligence for feature 

extraction (e.g., troop concentrations, artillery, tanks,  

etc.) is best applied with atmospheric noise removed 

from the data. Beyond national security, such cleaned 

data serves virtually all image applications, including 

precision agriculture, hence is highly desired by users. 

This is especially important now, when climate change 

induced wildfires are severely decreasing the 

percentage of clear days. The imaging smallsat industry 

is growing and while image supply may currently 

exceed demand, the time is at hand when image quality 

and timeliness will become the deciding factors to 

choose one image vendor over another. 

Application of AC requires some degree of calibration, 

an example being data harmonization. CMAC also 

requires calibration for each sensor; however, this 

application is simpler and relatively easily applied 

because it uses reflectance to bypass sensor radiometry. 

By assuming pre-launch radiance calibration, the 

assumed TOAR can be calculated following the well-

known convention for  image processing workflow [6]. 

The step of calibrating the smallsat for the CMAC 

algorithm adjusts two parameters for conversion from 

the assumed TOAR to surface reflectance, as explained 

in the Methods section. The calibration procedure 

automatically accommodates differences from actual 

TOAR versus the assumed TOAR for retrieval of 

surface reflectance. Once these two parameters are 

calibrated for a smallsat, its data can be converted to 

surface reflectance for any location from then on, 

though subject to periodic recalibration to account for 

changes in sensor output. The calibration  procedure is 

rapid and will be automated for each smallsat using 

data acquired through a purpose-built, monitored 

calibration target. 

This paper presents a short recap of CMAC specific to 

smallsat applications; the interested reader can 

download a more detailed open source description and 

access live spreadsheets of statistical analyses, generic 

Python CMAC code, and a link for a cloud-based 

application to make test corrections of S2 data with 

features to browse and select images [7]. S2 data have 

served as the chosen testbed for CMAC development  

because: (1) they are supplied free of charge; (2) have  

relatively rapid cadence (> 1 every 5 days); (3) are of 

excellent quality; and (4) have optimal resolution for 
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R&D. Translation of CMAC from S2 to smallsats or 

other sensors can be readily made; however, it should 

be noted that higher resolution enhances the granularity 

for assessing atmospheric effects while reducing the 

confounding influence of spectral mixing. With the 

evolutionary trend for increasing smallsat resolution, 

CMAC’s AC performance will be enhanced.  

2. METHODS 

CMAC corrects imagery for a calibrated sensor in two 

processing steps. The first step maps atmospheric 

effects across the image as a grayscale. The second step 

then uses this map as the sole input to adjust the 

magnitude of the correction in each band, reversing the 

atmospheric effects to retrieve rasters of surface 

reflectance. As indicated earlier, each band requires 

calibration in a process that is rapid and precise. The 

description of CMAC development and operation 

provided in Groeneveld et al. [7] provides more detail.  

2.1 Scaling Images for Atmospheric Correction 

The first CMAC R&D effort was undertaken to develop 

a lumped-sum index of atmospheric effects directly 

from TOAR images. This workflow focused on the 

spectra of continuous healthy plant canopies that are 

described in the literature as dense dark vegetation 

(DDV) [8]. Using an ASD field spectrometer, potential 

target reflectances typical of DDV canopies were 

identified as a reference for assessing atmospherically 

induced changes from surface reflectance. DDV spectra 

are remarkably similar and stable in blue wavelengths. 

Healthy plants growing exposed to the open sky absorb 

nearly all blue light for photosynthesis to enable growth 

in partial shade. These plants deal with the  solar energy 

in clear midday conditions by dissipating it as heat [9]. 

This process is mediated by carotenoid pigments [10] 

that reflect in the yellow-orange spectrum and absorb 

the blue light residual from photosynthesis. Because of 

this stability, the S2 blue band (B02) was, chosen as the 

basis for an atmospheric index. 

To test the concept to use DDV surface reflectance, the 

lowest non-water blue band values discriminated in 

non-overlapping grid cells arrayed across images 

dominated by DDV were examine in images of the 

Amazon Basin and intensive mechanized farming of the 

American Midwest. This step confirmed that a 

workflow employing vegetation as a surface reflectance 

reference can produce highly sensitive grayscale maps 

that emulate visible haze. However, this application 

alone would be limited only to areas with sufficient 

DDV. This was solved using the blue band response for 

DDV of crops commonly grown under both irrigated 

and rainfed conditions to model atmospheric effects 

from nearby sampled areas supporting no vegetation 

cover in deserts to the cropped fields of the Midwest. 

The blue reflectance of DDV was measured on this 

crop cover and used as the dependent variable that was 

statistically modeled using the spectral responses from 

a wide range of adjacent vegetation under clear to 

highly wildfire-smoke-affected skies. The resulting 

model enables use of band statistics to estimate an 

atmospheric index, Atm-I, from scene statistics alone, 

providing for CMAC correction scaled by grayscale 

brightness (Figure 3). The Atm-I index is calibrated to 

vegetation reflectance measured as TOAR x 10,000. 

Figure 3. An example 100 m resolution (10 × 10 pixel grid cell) 

Atm-I grayscale for the 8-22-21 S2 tile over Lake Tahoe, CA, 

USA. At least some ground signal must remain for correction 

(exceeded in portions of this image). 

2.2 Reversing TOAR to Surface Reflectance 

CMAC mathematics applies observations of reflectance 

behavior that greatly simplify AC in comparison to 

RadTran. This approach began with observation of 

reflectance changes that occur due to atmospheric 

effects in every band: dark reflectance is brightened by 

backscatter while bright reflectance is darkened by 

attenuation. This response forms a continuum, hence, 

between positive (dark reflectance) and negative (bright 

reflectance) responses there exists a reflectance level 

where TOAR equals surface reflectance. This 

observation was translated into a graphic conceptual 

model (Figure 4) that inverts and adjusts the well-

known empirical line method [11], resulting in a linear 

representation of the effect upon any pixel value from 

the overlying atmosphere at the time of image capture. 

This TOAR deviation line is uniquely defined by its 

slope and offset, which are the two parameters required 

for CMAC processing.  

Precedence for the conceptual model and its linearity 

can be found in the literature reproduced as Figure 5 

[12]. As Atm-I increases, both backscatter (defined by 

offset) increases, and attenuation (defined by both slope 

and offset) decreases the reflectance.  
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Figure 4. CMAC conceptual model expressing the effect upon 

dark to bright pixel values from any set level of atmospheric 

aerosol content. Slope and offset define the TOAR deviation line 

that crosses the x-axis at the axis point. SR is surface reflectance. 

Each TOAR deviation line is defined by a slope and an offset. 

Figure 5. Figure 2 reproduced from Fraser and Kaufmann [12].  

The conceptual model was further translated into the 

closed-form CMAC Equation allowing rapid correction 

of all pixels in an image guided only by the Atm-I 

grayscale. The mathematical relationships translating  

grayscale brightness into slope (m) and offset (b) 

parameters are developed through calibration. 

CMAC Equation: SR = (TOAR − b)/(m + 1) 

Though appropriate for initial visualization, the 

conceptual model and equation are not the complete 

solution for AC. An additional complexity arises from 

forward scatter effects that increase as the reflectance 

from the Earth’s surface increases, thereby backlighting 

suspended particulates. Greater energy from brighter 

targets increases the degree of forward scatter. This 

does not affect the offset but does impact the slope by 

raising the bright point reflectance and migrating the 

axis point rightward as Atm-I increases (Figure 4). The 

effect upon smallsat calibration is to add an additional 

level of complexity for the use of calibration targets 

(Figure 6). As a promotional aspect, the combination of 

the effect of forward scatter through the Atm-I model 

provides a provisional method to remove spectral 

reflectance from water (Figure 7) requiring additional 

R&D to expand CMAC for reliable AC over oceans. 

RadTran cannot perform reliable AC over water despite 

keen interest for ISR application.  

 

 

Figure 6. Salon de Provence, France region: a 

calibration target (arrows) in S2 TOAR 

regional images: 6-1-2021 under light haze (a, 

d) and 3-08-2021 under moderate haze from 

wildfire smoke (b, e). A Google Earth image 

(c) of the target shows the 30-m × 30-m black 

and white panels. Forward scatter is 

hypothesized to smear the bright targets 

while contracting the apparent dark targets. 

This effect may not be due solely to 

modulation transfer function issues. 

 

 

Figure 7. S2 image of 

Veracruz Harbor affected 

by smoke evenly mixed 

across the view: TOAR 

(a); Atm-I grayscale (b); 

and CMAC corrected (c). 

Atm-I over water is 

brighter due to specular  

reflectance. Cleared of 

this forward scatter, the 

CMAC view exposes 

benthic features (c). 
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2.3 Calibration for Translating the Atm-I Grayscale 

Calibration for smallsats is best accomplished using 

calibration targets. However, as shown in Figure 6, the 

potential exists for degradation in the utility of a typical 

checkerboard target at higher Atm-I levels due to 

forward scatter. Such targets can best be reengineered 

by separating dark and bright panels, expanding the size 

of the dark panel, and addressing other concerns for 

drainage, security, cleaning accreted dust and achieving 

as Lambertian a surface as possible. In the interim, a 

combination of field measurements, image to image 

comparisons and reference to low Atm-I corrections by 

Sen2Cor created the present CMAC S2 calibration that 

delivered accurate surface reflectance estimation over a 

far wider window of atmospheric effects [7]. 

Calibration can apply areas of interest with invariant 

reflectance using images affected by varying degrees of 

Atm-I expression. Such quasi invariant areas (QIAs) are 

useful both for calibration and checking the statistics of 

AC output. QIAs used in these evaluations were 

warehouse-industrial districts for an area in Southern 

California (SoCal) east of Los Angeles (Figure 8). 

Figure 8. Eight QIAs supported CMAC testing that are named 

for their municipalities,: Chino (a); Fontana (b); Rochester (c); 

Ontario 1 (d); Redlands (e); Highgrove (f); Ontario 2 (g); and 

Ontario 3 (h).  

2.4 Testing CMAC Against RadTran Methods 

Testing for this paper included three treatments of 

reflectance – TOAR, CMAC and RadTran for the data 

of the four VNIR bands of S2 and L8/9 extracted from 

within the QIA boundaries. The images selected for 

analysis were restricted to the period from June 1 

through August 15 to minimize solar zenith angle 

(SZA) variation from summer solstice. This restriction 

was made to control synergistic effects upon reflectance 

from variation in atmospheric pathlength through 

aerosol loading that increases with SZA. The cosine 

angle correction typically applied for S2 and L8/9 

TOAR data is insufficient to account for the added 

effect from pathlength, hence, a  bivariate correction is 

currently in preparation for CMAC.  

Analysis A, Sentinel 2: Data  were extracted from 28 

images for the Chino, Fontana, Rochester, Ontario 1, 

Redlands and Highgrove QIAs. Prior to processing, 

images were vetted by visual inspection and discarded 

if clouds, including cirrus were present or if patchy not 

uniformly mixed haze existed for one or more QIAs. 

Atm-I was evaluated with a grid size of 60 by 60 pixels 

(i.e., 600 x 600 m) so that samples of dark reflectance 

from shadows, dark roofing, and vegetation were well 

represented in the sampled Atm-I.  

Analysis B. Landsat 8/9: Data were extracted from 31 

images of six of the eight QIAs (excluding Highgrove 

and Redlands) to concentrate analysis within the sidelap 

from adjacent tiles of L8/9: Chino, Fontana, Rochester, 

Ontario 1, Ontario 2, and Ontario 3. To accommodate 

the 30-m spatial resolution of L8/9, the applied Atm-I 

grid was adjusted to 20 x 20 pixels to scale the sampled 

areas as for Analysis A: 600 x 600 m. 

The images chosen for these analyses capture the range 

of Atm-I most commonly encountered for routine 

image correction, from 800 to 1150. Ontario 1 data 

were not used in statistical analyses but were employed  

  

 

 

 

 

 

 

to test concepts for a rapid calibration procedure under 

development for smallsat application. This calibration 

was then applied to process the L8/9 data examined in 

this paper. This test calibration was generated from 

single points within each of the 4 VNIR bands, an effort 

requiring 6 person-hours to process, extract data and 

adjust the slopes and offsets of CMAC to match low 

Atm- LaSRC surface reflectance retrievals.  

Prior CMAC R&D revealed that the value from 

individual estimates of surface reflectance is limited 

because mathematical context is lacking. The choice of 

QIAs with a range of reflectance values, low to high, 

provides reflectance distributions that convey a great 

deal more information than monotypic plots. For 

example, a single measured reflectance could be correct 

while the remaining distribution is wrong but not vice- 

versa. For developing an understanding of statistical 

distributions, CDFs were generated from reflectance 
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values measured at 22 percentile levels: increments of 

0.1, 1, 3, 5 and 5 percentile to 95% were used for 

Analysis A. Analysis B omitted the 0.1% increment 

because the 30-m L8/9 spatial resolution limited 

statistical robustness for the lowest reflectance values.  

Test-corrected images were compared as a qualitative 

indicator of the performance of the AC methods. 

Statistical testing for both analyses included average, 

standard deviation and coefficient of variation (CoV%) 

across the suite of images employed for each QIA. A 

logical, measurable fact for AC is that the clearest 

images (lowest Atm-I) provide “best available” 

estimates of true surface reflectance. Such best 

estimates were developed for each QIA of Analysis A 

and B: three of the 28 S2 images and five of the 31 

L8/9 images were selected and averaged for each QIA. 

Multiple samples and averaging were made to control 

uncertainty. Best available estimates of surface 

reflectance were treated as the standard for percent 

error calculation of each percentile step of each image: 

% error = (value – standard)/standard x 100).  

All numerical reflectance values in this paper were 

extracted from images and scaled by 10,000 following 

the convention adopted by the Sentinel 2 program. In 

the figures that follow, data are treated as DN (digital 

numbers) denoting that values were scaled to 16-bit 

unsigned integers. Spreadsheets supporting the 

statistical analysis reported here are available upon 

request. 

3. RESULTS   

As mentioned earlier, CMAC can be applied to any 

optical satellite imaging system, whether a smallsat 

such as the many hundreds now in orbit, or a research 

grade system such as S2 or L8/9. Testing of the CMAC 

technology here employed S2 and L8/9 for four 

important benefits beyond the fact that these data are 

public domain and offer a cost savings: (1) S2 quality, 

cadence and resolution were promotional for CMAC 

R&D; (2) Sen2Cor and LaSRC serve as  industry-

accepted milestones to compare to CMAC 

performance; (3) L8/9 data permitted test migration of 

CMAC to a new satellite and characterization of the 

effects from downscaling 10-m to 30-m pixels; and 

especially; (4) L8/9 served as a testbed for a rapid 

calibration concepts for planned application to smallsats 

that will be guided by the S2 master calibration. 

Analysis A applied the CMAC v1.1 calibration for 

correction of S2 images throughout. Results in [7] 

demonstrated that image appearance is a competent 

indicator of true surface reflectance if the AC result is 

clear of haze and has correct color balance. That finding 

has been promotional for CMAC R&D because visual 

inspection provides rapid feedback with specificity as 

to which bands are exhibiting problematic correction. 

Although the relative spectral responses of S2 and L8/9 

VNIR bands are similar, they are not equivalent (Figure 

1). Once generated, the provisional calibration of 

CMAC L8/9 developed from a single points per band 

provided a reasonable match with groundtruth data, and 

provided visible confirmation that the calibration would 

deliver estimates close to true surface reflectance 

(Figure 9). CMAC v1.1 for L8/9, designated v1.1-L, 

was used for Analysis B surface reflectance retrieval. 

Appendix A presents images corrected by the four 

software packages, Sen2Cor, CMAC v1.1 (for S2), 

LaSRC,  and CMAC v1.1-L for comparison. 

Figure 9. A view of the 8-11-18 L8 tile near Sioux Falls, SD 

affected by Canada wildfire smoke: (a) TOAR (b) corrected by 

CMAC; and (c) LaSRC with color balance issues. 

3.1 Analysis A Results – Sentinel 2 

The six Analysis A SoCal QIAs were evaluated by the 

same workflow. Table 1 provides a  statistical summary 

for the grand averages of the 28 images across the QIAs 

for the three treatments: TOAR, CMAC and Sen2Cor. 

CV% is a measure of statistical dispersion: the greater 

the CV% magnitude, the more dispersed is the 

collection of values; hence, denoting lower precision.  

A quick check through the CV% values confirms that 

CMAC performs well at the lower (dark) end of 

reflectance by having CV% values only slightly above 

those of TOAR. CMAC results in Table 1 show greater 

precision than Sen2Cor, especially for surface 

reflectance less than 2000 DN. This lower range of 

visible band reflectance carries the information sought 

by most remote sensing analyses; ready examples being 

the contrast/detail needed for AI feature extraction, 

measuring photosynthesis and biomass, assessing 

vegetation growth and yield, assessing productivity and 

ecologic health of water bodies, and especially as 

applied in CMAC, assessing Atm-I to scale AC. Other 

than from dry lake playas, salars, white sand beaches or 

ice/snow, high reflectance is generated primarily from 

artificial sources, e.g., from bright roofing. High surface 

reflectances are often masked from consideration 

during analyses and if otherwise of interest, can be 

readily identified using thresholds. The target of interest 

for AC of visible bands is reflectance less than about 

2000 DN.  
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The Chino QIA is representative of the trends of the 

other five Analysis A QIAs. Average CDFs are 

presented in Figure 10 for the three treatments of the 

four bands of S2 data. CMAC and Sen2Cor show close 

agreement for reflectance below about 2000 DN. 

Discrepancies exist between CMAC and Sen2Cor 

output at higher reflectances; however, the 95% 

confidence interval for CMAC and Sen2Cor 

distributions overlapped through the entire range (data 

not shown). The question of which correction provided 

better accuracy is revisited in the Discussion section. 

 

Figure 10. Average CDFs (n=28) of three treatments.  

The grand-average CV% in Table 1 were calculated for 

each percentile across all six QIAs. Note that CV% and 

error from the QIAs can be pooled because they are 

derived values, while reflectance cannot since its 

distribution is dependent upon the collection of targets 

enclosed within each QIA boundary. The CV% for 

CMAC and Sen2Cor are close to the TOAR values but 

increase toward the high and low ends of the 

distributions. Of note are the more elevated values for 

darker Sen2Cor reflectance. Averaging the values from 

28 images has masked the extreme values for the low 

end of the reflectance distribution, particularly for the 

blue band that requires the greatest degree of correction 

to retrieve surface reflectance. 

Table 1. Grand average CV% for the distributions of the three 

treatments (6 SoCal QIAS; each point is 168 values). To save 

space, columns were shortened by eliminating even distribution 

steps, 50% or greater.  

The lower the Atm-I, the less correction is needed for 

the TOAR data; hence, as indicated earlier, corrected 

images affected by low Atm-I can be assumed to 

provide closer estimates of surface reflectance. 

Following this rationale and given that the reflectance 

distributions of the QIA’s are stable, the reflectance 

data from CMAC and Sen2Cor distributions for the 

three lowest Atm-I images were averaged and used as 

the standard for calculation of an assumed percent 

error. The error estimates for the six QIAs were pooled, 

ranked and plotted for the four bands (Figure 11).  

The striking high-magnitude, positive Sen2Cor errors in 

Figure 11 resulted from over estimation of surface 

reflectance near the dark ends of the reflectance 

distributions. These errors increase inversely with 

wavelength and contrast with CMAC error that shows 

little difference among bands (Figure 12). The ranked 
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error for CMAC is nearly equivalent for S2 correction 

(Figure 11) and L8/9 (provided later in Figure 14).  

 

Figure 11. Error distributions for n = 3696 individual values (6 

QIAs x 28 images x 22 percentiles)  plotted for CMAC and 

Sen2Cor 

Both CMAC and Sen2Cor distributions skewed several 

percent higher than expected – given the experimental 

design, the curves would be expected to cross the x-axis 

at the 50th percentile. A bias toward higher positive 

error is likely the result of systematic but slight under-

correction as Atm-I increases. This small bias will be 

corrected in next-generation R&D that will finalize all 

CMAC relationships. 

 

Figure 12. Sentinel 2 ranked % error plotted for CMAC. 

To understand the range of Atm-I that can be corrected 

accurately by both methods, the low, dark end of 

reflectance was explored further since it is both highly 

important for data applications and where most of the 

estimation error was generated in these datasets. The 

absolute values of percent error were averaged across 

the 0.1, 1, 3, 5, 10, 15 and 20th percentiles of 

reflectance to form an error index, one value per image, 

that was plotted according to the recorded median 

image Atm-I. For all six QIAs, the % error values were 

combined, ranked and plotted (Figure 13). The 

reflectance range corresponding to the 20th percentile of 

the CDF encompasses up to 2000 DN for NIR 8a and 

about 1000 to 1200 DN for the visible bands in the 

Chino QIA example (Figure 10). 

Regression lines are shown for the extracted data in the 

low reflectance scatter plots of Figure 13. These results 

show that Sen2Cor surface reflectance estimation for 

visible bands is accurate only at the lowest levels of 

atmospheric effect and accuracy decreases as Atm-I 

increases. The error for CMAC surface reflectance 

retrieval increases comparatively gradually with Atm-I 

and at a much lower rate than Sen2Cor. The trend that 

gave rise to the skewing in Figure 11 can be countered 

through further calibration work. Plots of error for low 

reflectance, as shown in Figure 13, provide the detail to 

better understand and counter overestimation error.  
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Figure 13. Estimated % error of low reflectance for the S2 SoCal data  

plotted according to the Atm-I level of the image (m=168; 6 QIAs x 22 

percentiles). The Sen2Cor NIR regression line is hidden behind the  

CMAC regression line.  

 

3.2 Analysis B Results – Landsat 8/9 

Of the 31 images used for Analysis B, 24 are L8 images 

selected from 2019 through 2022 augmented by 7 

images from L9 during 2022. The L8 and L9 images 

showed no discernable differences, thus their data were 

pooled for the analysis. Table 2 provides grand 

averages of the CV% for LaSRC AC across the five 

QIAs that resemble the same patterns seen for S2: 

greater dispersion for the lower limb of reflectance, 

especially in the blue band. Otherwise, there is 

relatively close agreement of CV% for the three 

treatments. Recall that the calibration producing the 

CMAC values is the result of using a single points per 

band that required six hours of effort. If atmospheric 

correction of L8/9 is of future interest, additional focus 

on calibration is expected to enhance CMAC 

correction, accuracy and precision. 

Table 2. Average CV% as grand averages (n = 155) across the 

five QIAs. Even percentiles, 50-90%, were removed to save space.  

Percent error was evaluated for L8/9 using the same 

methods as for S2: averages were applied as the closest-

to-surface-reflectance standards for both CMAC and 

LaSRC determined from the five lowest Atm-I images 

in each band. The percent error calculated from the 31 

images were combined, ranked from low to high, and 

plotted on Figure 14 that shows only minor 

discrepancies between the two methods. CMAC percent 

error distributions were lower for the S2 corrections in 

Figures 11 and 14.  

Comparison of the overall error curves of Figures 11 

with 14 discloses that LaSRC performs much better 

than Sen2Cor for surface reflectance retrieval. CMAC 

performed better than both these accepted methods, as 

indicated by its ranked error curves closer to the x axis 

which, in Cartesian space, represents zero error. CMAC 

also performed better than Sen2Cor and LaSRC for the 

low reflectance error plots in Figures 13 and 15. 
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Figure 14. Error distribution for the four bands of CMAC and 

LaSRC are closer compared  to CMAC and Sen2Cor (Figure 11). 

As in the comparison of Sen2Cor and CMAC data in 

Section 3.1, the low surface reflectance estimates of 

L8/9 were subjected to error analysis calculated in the 

same manner: absolute values of percent error were 

averaged for the 1, 3, 5, 10, 15 and 20th percentiles to 

form a relative error index, one point per image. These 

index values were pooled and plotted according to the 

associated median Atm-I from the images. These data 

were pooled for the five Analysis B QIAs and plotted in 

Figure 15 according to Atm-I.  

 

Figure 15. Average % error for low reflectance L8/9 data (n = 

155) 
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As in Figure 13, regression lines were fitted for the low 

reflectance error indices of each band in Figure 15 and 

in all bands, the slopes of LaSRC exceeded CMAC 

results. The comparatively greater error in LaSRC 

agrees with results from the grand averages of CV% in 

Table 2, although the LaSRC errors were much lower in 

magnitude than for the Sen2Cor output of Figure 11. 

The CMAC visible-band error remained relatively 

constant across the 5-QIA dataset while error for 

LaSRC, slightly higher than CMAC for the red band, 

increased in the green band, and markedly increased in 

the blue band, similar to the results for Sen2Cor but to a 

lesser degree. For both Sen2Cor and LaSRC, increasing 

error toward the dark end of the visible-band 

reflectance distributions is problematic since this low 

end of reflectance conveys responses of greatest interest 

for virtually all uses as explained earlier. 

CMAC error in the NIR band for both S2 (Figure 13) 

and L8/9 (Figure 15) data was well constrained across 

all levels of brightness as can be seen in the lower 

degree of scatter. 

A final test for the L8/9 comparison was to examine the 

curves of bandwise TOAR and retrieved surface 

reflectance from CMAC and LaSRC. The data for each 

band and percentile step were averaged across the 31-

image datasets for each QIA. The Chino QIA data, is 

presented in Figure 16. Comparison of the TOAR to the 

AC values shows a  progressive decrease in the 

magnitude of the correction with increasing 

wavelength. 

The Chino QIA results are roughly representative of the 

other four SoCal QIAs (data available upon request), 

showing virtually complete agreement for three bands, 

a result that held in most of the comparisons; for the 

Rochester QIA, all four bands were in similar 

agreement. The descrepancy between CMAC and 

LaSRC was greatest for all bands of all QIAs for the 

Chino blue band (Figure 16). For three of the five 

comparisons, the blue band showed very close 

agreement with the results from two of the QIAs, 

Ontario 3 and Rochester, showing nearly complete 

agreement.  

The comparisons in Figure 16 are a check for whether 

the distribution shape and magnitude of the two 

methods agreed. Averaging across the large datasets of 

31 images reduced uncertainty to enable accurate 

comparison of the two methods without allowing image 

by image variation to mask the result. The degree of 

such variation is also captured through the calculation 

of CV% displayed in Table 2. As mentioned in Section 

2.4, the CMAC L8/9 calibration was modeled from the 

Ontario 1 low-Atm-I surface reflectance retrievals of 

LaSRC. Therefore, CMAC surface reflectance retrieval 

with high fidelity to LaSRC demonstrates that the 

CMAC conceptual model and its mathematical 

representation are a stable, reproducible and correct 

representation of atmospheric effcts upon transmitted 

light. 

 

Figure 16. CMAC and LaSRC surface reflectance estimates 

compared to TOAR for the Chino QIA. 
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4. DISCUSSION 

As previously mentioned, CMAC was created to serve 

the smallsat industry but is also appropriate for any 

imaging optical satellite. In extensive tests presented  in 

this paper using S2 and L8/9 data, CMAC surface 

reflectance retrievals were compared with results from 

Sen2Cor and LaSRC software. Extensive examination 

of the appearance of corrected images and of the QIA 

statistics for surface reflectance retrievals confirmed 

that CMAC performed better than goth of these 

industry-accepted software packages. CMAC delivered 

accuracy and precision that surpassed Sen2Cor for all 

bands and for LaSRC at least in the blue band.  Image 

processing for these analyses applied compiled C++ 

versions of CMAC that estimated surface reflectance 

using only scene statistics. Full tiles of S2 from this 

CMAC processing required, on average, 91 seconds 

and for full tiles of L8/9 about 60 seconds. This 

performance is near real-time in comparison to 

Sen2Cor and LaSRC, and without the further delay 

waiting for required ancillary data. Though  CMAC 

performed well in these tests, it will be improved 

through ongoing R&D.  

A particularly important finding was that the L8/9 

CMAC version, initially calibrated by adjusting slope 

and offset parameters to match LaSRC response for the 

Ontario 1 QIA, retrieved surface reflectance of five 

other QIAs that closely match the average LaSRC 

surface reflectance retrievals with only one discrepancy 

in the blue band (Figure 16). The LaSRC blue band 

surface reflectance retrieval is less stable than the other 

three VNIR bands as shown through CV% (Table 2) 

and low reflectance error analysis (Figure 15). These 

results provide statistical verification that the CMAC 

conceptual model (Figure 4) and the CMAC equation 

translated from it, provided competent retrieval of 

surface reflectance that aligned nearly exactly with 

LaSRC’s RadTran output while suffering none of its 

limitations. These and other conclusions can be 

confirmed through examination of spreadsheets that are 

available upon request. 

The CMAC v1.1-L calibration was transferred from the 

S2 calibration version and used for AC of L8/9 data in 

this paper. The higher accuracy achieved here by 

CMAC supports provisional concepts for automated 

single-overpass calibration of unlimited numbers of 

smallsats.  

A calibration target is required for complete automation 

of the calibration process for new smallsats. A target 

will provide highly precise inputs that will translate into 

greater accuracy and precision for smallsat surface 

reflectance retrieval. Except for employing a target, the 

same calibration concepts will follow the provisional 

workflow that established the L8 calibration for any 

new “proxy” smallsats by extrapolation of calibrated 

slope and offset relationships from a “master” sensor. 

For master-proxy calibration (MPC) presently, S2 

serves as the master because of its higher spatial 

resolution, cadence and quality; however, any high 

quality satellite output could similarly be employed. 

MPC is a robust concept: hypothetically, all visible 

bands in the VNIR spectrum can be calibrated using 

MPC, even if no such band is measured by the master. 

Work is proceeding to confirm MPC for global 

application to all bands. If it works as hypothesized, it 

can be used to calibrate any VNIR band that is 

unaffected by variable atmospheric absorption, e.g., 

water vapor in portions of the NIR spectrum. 

Application of MPC to hyperspectral data may be a 

particularly fruitful application.  

Next-generation R&D will upgrade the CMAC 

calibration program using nearly unlimited amounts of 

“groundtruth” gathered in a system employing non-

imaging spectral acquisition through low-altitude 

hyperspectral flightlines (LHF) and accompanying GPS 

positioning and videography for each data point. Such 

systems take snapshots along the flightline that can then 

be paired with satellite data to enable calibration and 

development of mathematical relationships. This 

includes enhancing the precision of the CMAC 

realtionships and completion of a bivariate model to 

correct for the synergistic effect of SZA upon surface 

reflectance retrieval under varying levels of Atm-I. 

Another problem of particular interest is to develop 

methods for accurate verified retrieval of upwelling 

reflectance over water bodies including the ocean that 

factors in the role of specular reflectance from the water 

surface. Massive amounts of “groundtruth” will be 

necessary and can be generated rapidly through LHF. A 

piloted aircraft is better suited for this mission than 

drones that severely limit to/from travel for data 

collection, range and operation time, and flexibility for 

rapid adjustment  for conditions. 

An LHF system engineered to fly aboard a light aircraft 

can include 2 spectrometers, one uplooking to provide 

solar irradance to normalze the data to surface 

reflectance. An ideal system can be operated by a single 

pilot using an on-off switch. Such an LHF system 

proved valuable to support development of a satellite-

based monitoring system in use now for a decade and a 

half [14, 15]. By selecting special conditions under 

which to gather  groundtruth paired with TOAR 

satellite data, solutions can be developed for variable 

atmospheric conditions and ground targets. In 

combination, LHF and calibration targets are expected 

to produce rapid breakthroughs and finalize CMAC to 
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expand smallsat surface reflectance retrieval for all 

times of the day, for any environment and for any  

view, nadir to oblique at any azimuth.   

CMAC technology is patented in the United States and 

patent pending in the United States and internationally.  
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APPENDIX A. 

Statistics provided an opportunity to evaluate the 

performance of the software packages CMAC, Sen2Cor 

and LaSRC for surface reflectance retrievals. However, 

they represent a limited abstraction of the information 

from the image corrections. Appendix A provides 

representative scenes from S2 and L8 images as a 

synoptic view of the surface reflectance retrievals. 

Earlier efforts verified that atmospherically corrected 

images that display correct color balance with haze 

removed provide close approximations of surface 

reflectance [7].  

The following pages present S2 and L8/9 images in 

four versions that are  presented from top to bottom: 

TOAR, Atm-I grayscale, CMAC and the corrected 

images from the Sen2Cor and LaSRC packages, 

respectively, Sen2Cor for Sentinel 2 data and LaSRC 

for Landsat 8/9.  

The views produced for Appendix A are the output 

from CMAC, Sen2Cor and LaSRC with no additional 

processing except for minor adjustments of image 

stretch by one or two percent to brighten their 

appearance. As a reference for understanding Atm-I, 

images taken through unusually clean atmospheres have 

Atm-I generally below ~825.  

In all such image-to-image visual comparisons to 

LaSRC and Sen2Cor including those presented here, 

CMAC images are generally clearer and exhibit better 

overall color balance. 
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S2, Coast north of Veracruz, MX        5-03-2021 

1200 to 1300  Atm-I 

  

  

 

S2, Gillette, WY and regional coal mines    7-25-2021 

1125 to 1225 Atm-I 
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S2, Slave Lake, Alberta, CA     5-14-2023 

880 to 1490 Atm-I 

  

 

 

S2, near Alexandria, Minnesota, US      5-16-2023 

1140 to 1250 Atm-I 
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S2, near Athabasca, Alberta, CA, 5-16-23 

850 to 1700 Atm-I 

 

 

 
 

S2, Chiang Mai, Thailand, 2-13-21 

790 to 1100 Atm-I 
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L8, Kamloops, British Columbia, CA      8-3-2021 

885 to 1430 Atm-I 

 

 

 
 

L8, Near Lethbridge, Alberta, CA        7-31-2021 

1275 to 1540 Atm-I 
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L8, Kindersley, Saskatchewan, CA           8-03-2021 

885-1430 Atm-I 

 

 

 
 

 

L8, Near Alexandria, Minnesota, US              7-11-2021 

1150 to 1335 Atm-I 
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L8, Halifax, Nova Scotia, CA              7-11-2021 

1150-1335 Atm-I 

 

 

 
 

 

 

L8, Cape Hatteras, North Carolina, US         7-25-2021 

820 to 1300 Atm-I 
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Preliminary (proof of concept) master-proxy calibrated 

test corrections of Planet Dove cubesat images of North 

and South Dakota and Northern California Coast. Atm-I 

levels varied from about 900 to 1050. Other than the 

calibration, no other adjustment is needed for smallsats. 

 

 
 

 

 

 
 

 

 


