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ABSTRACT

Satellites with synthetic aperture radar (SAR) payloads are growing in popularity, with a number of new
institutional missions and commercial constellations launched or in planning. As an active instrument
operating in the microwave region of the electromagnetic spectrum, SAR provides a number of unique
advantages over passive optical instruments, in that it can image in all weather conditions and at night.
This allows dense time-series to be built up over areas of interest, that are useful in a variety of Earth
observation applications. The polarisation and phase information that can be captured also allows for
unique applications not possible in optical frequencies.

The data volume of SAR captures is growing due to developments in modern high-resolution multi-modal
SAR. Instruments with higher spatial resolution, wider swaths, multiple beams, multiple frequencies and
more polarization channels are being launched. Miniaturization and the deployment of SAR constellations
is bringing improved revisit times. All of these developments drive an increase in the operational cost due
to the increase in data downlink required. These factors will make on-board data compression more crucial
to overall system performance, especially in large scale constellations.

The current deployed state-of-the-art of on-board compression in SAR space-borne payloads is Block
Adaptive Quantization (BAQ) and variations such as Flexible BAQ, Entropy Constrained BAQ and Flexible
Dynamic BAQ. Craft Prospect is working on an evolution of these techniques where machine learning will
be used to identify signals based on dynamics and features of the received signal, with this edge processing
allowing the tagging of raw data. These tags can then be used to better adjust the compression parameters
to fit the local optimum in the acquired data.

We present the results of a survey of available raw SAR data which was used to inform a selection of
applications and frequencies for further study. Following this, we present a comparison of a number of
SAR compression algorithms downselected using trade-off metrics such as the bands/applications they can
be applied to and various complexity measures. We then show an assessment of AI/ML feasibility and
capabilities, with the improvements assessed on mission examples characterised by the SAR modes and
architecture for specific SAR applications. Finally, future hardware feasibility and capability is assessed,
targeting a Smallsat SAR mission, with a high level roadmap developed to progress the concept toward this
goal.

INTRODUCTION

Synthetic aperture radar (SAR) is a sensing
modality that is of growing interest in the Smallsat
domain. From the first civil mission, Seasat1 in 1979,
until recently, SAR has been the preserve of large in-
stitutional or government backed missions. In the re-

cent class of ESA Copernicus scientific missions, the
pair of Sentinel-1 satellites has made C-band SAR
with consistent global coverage freely available for
all, spurring innovation in downstream applications
of SAR data.

On the platform side, new developments in semi-
conductor materials (e.g. Gallium Nitride) have
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made compact high-power RF amplifiers possible
and allowed the miniaturization of instrument tech-
nology. This has enabled a multitude of com-
mercial companies (e.g. SSTL, ICEYE, Synspec-
tive, Capella, Umbra) to enter the SAR observa-
tion market, offering more frequent coverage, task-
ing capabilities and high resolution spotlight imag-
ing of regions-of-interest. Not only are these Small-
sat operators augmenting existing services, but also
providing new capabilities. For example, ICEYE
“Dwell Mode” long staring spotlight2 mode, or a
consortium led by Umbra looking at bistatic appli-
cations under the DARPA funded Distributed Radar
Image Formation Technology (DRIFT) program.3

The attraction of SAR in comparison to electro-
optical imaging technologies is the ability to image
in all-weather and all-lighting conditions which al-
lows customers to build dense time series over ar-
eas of interest. The deployment of constellations of
spaceborne SAR platforms enhances this capability.
SAR also offers some unique applications based on
the physics of the received signal. Due to the abil-
ity to measure both magnitude and phase of sig-
nals at microwave frequencies of the EM spectrum,
processing techniques can be applied to make mea-
surements that are not possible with the radiomet-
ric measurements of electro-optical devices. Space-
based SAR interferometry is an application that has
seen widespread use in fields like seismology, disaster
management and topographic measurement. The
active nature of the SAR instrument also allows con-
trol of the polarization of emitted signals, allowing
the recording of the polarization behaviour of scat-
terers on the ground. From these measurements we
can extract information such as land-use classifica-
tion, agricultural monitoring and forest biomass es-
timation.

In summary, spaceborne SAR system architec-
tures are undergoing a step change in that it is
becoming possible to deploy large constellations of
satellites as opposed to a single instrument or pair of
satellites. On larger SAR missions, the trend is to-
ward electronically steerable active phased array an-
tenna and multi-beam/multi-frequency instruments.
The sheer amount of data generated by these instru-
ments presents a systems-level challenge for space-
ground downlink that requires novel approaches to
overcome. It likely will not be possible to simply
increase downlink capacity due to satellite power
and bandwidth constraints and the limited spectrum
available due to radio license constraints. It is from
these system-level motivations that the desire for
more effective on-board compression stem.

SYSTEM ARCHITECTURES

This work on more intelligent on-board data
compression is planned to be one of the first steps
in a program of work to enable more efficient use of
SAR space assets.

Changing SAR satellite system architectures are
moving from single and/or pairs of satellite sys-
tems to the deployment of large constellations. This
brings improvements in constellation robustness, re-
liability and resilience as well as performance im-
provements such as greater tasking and a reduction
of latency from initial tasking by customer to deliv-
ery of data product.

For example, an architecture using six polar
orbital planes, each containing six satellites equal
phases apart, provides something approaching global
coverage, means that there is a pass approximately
every fifteen minutes over an area. With timely anal-
ysis of the data collected by a single satellite obser-
vation, this provides time for subsequent satellites
to image the same area with varying parameters.
The simplest example of constellation tasking in this
manner would be to command the subsequent satel-
lite to acquire another image of the same region.

SAR platforms are typically heavily duty cycled,
this is especially apparent on Smallsat platforms,
with technical details provided by Synspective at
past Smallsat conferences4 quoting typical figures of
5% or 10% per orbit, or 25% in their case. Adding
more satellites to a constellation can mitigate this
issue, though only up to a point because as well as
providing new capabilities, these multi-satellite sys-
tems also impose greater costs on supporting infras-
tructure such as ground station facilities which have
finite capacity.

The hard duty cycling imposed on each individ-
ual platform is due to the active nature of the radar
imaging sensor. To get the required range return
from the side-looking instrument, 1-2kW power is
transmitted. With power amplifiers of around 50%
efficiency generating these high-power RF signals,
this means 3-4kW of heat being generated on-board.
On these small, simple platforms with no active cool-
ing mechanisms and small power budgets (on the
order of 500W solar cell capacity) this is both a
challenge in platform power generation and a ther-
modynamic problem in heat dissipation. Thermal
deformations, especially in antenna, can prevent ac-
curate images from being acquired, so it is a sensitive
thermal environment.

With instruments acquiring data at rates of Gbps
when observing, dealing with this amount of data
and downlinking it through the space-ground link is
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also a challenge. Any effort to reduce this on-board
will provide increases in system capacity. The mo-
tivations for better on-board compression are there-
fore:

• The low duty cycle of SAR instruments

• Lowering on-board storage requirements or in-
creasing amount that can be stored on-board

• Lowering the amount of data that needs to be
downlinked

Further higher-level operations that on-board
processing can enable are:

• Prioritising data for downlink

• Tasking satellites with extracted information

• Change detection based on compression per-
formance

MACHINE LEARNING FOR
COMPRESSION

Artificial intelligence (AI) and machine learning
(ML) solutions have been successfully harnessed to
enable on-board processing of optical satellite data
in applications such as on-board cloud detection.5

These solutions reduce data bottlenecks that result
from the rapidly growing amount of data collected
on-board satellites and the limited downlink band-
widths available.6 Where high value and time criti-
cal data can be prioritised by real-time intelligent de-
cision making, the bottleneck problem is overcome.

The operational concept of AI enabled onboard
data processing can be harnessed for various Earth
observation applications including event detection,
prediction and monitoring; persistent monitoring;
damage assessment; global and localised mapping;
object detection and tracking, and scientific mea-
surement.7 Whilst in these applications trained
models are deployed and used for information ex-
traction there is much literature to suggest that
trained models are also effective lossy compressors,8

which is the task required in on-board processing of
raw SAR data.

A traditional compression algorithm will be de-
signed to remove duplicate or redundant information
before encoding in the fewest possible bits, with the
algorithm designer exploiting prior knowledge about
the source to be encoded during the design process.
In machine learning, as a data driven discipline, the
model is shown input and output data and through
a process of iterative optimisation will converge on
a model that minimizes some designed loss function

used in training. For this process to be successful,
sufficient amounts of data are required to train.

AVAILABLE DATA

To study the possible improvements in machine
learning driven compression, datasets are required
for training and testing the machine learning mod-
els and for comparisons with traditional algorithms.
A dataset survey was conducted in the initial stages
of the work.

When surveying datasets it is important to make
the distinction between Data, Dataset and Machine
Learning Ready Dataset. “Data” requires no defi-
nition. A “Dataset” is a bounded, finite collection
of data that has some rationale behind it for be-
ing grouped together, a curated collection of data.
A “Machine Learning Ready Dataset” is a Dataset
that contains everything required to begin train-
ing a machine learning algorithm in some chosen
task. This requires a Dataset to have additional
properties such as being formatted for easy inges-
tion into machine learning training pipelines, possi-
bly with labelled or derived features for supervised
learning techniques to be applied. There should
also be enough data to allow the partitioning of the
dataset into training/test/validation sets, and the
data should have enough diversity that it adequately
covers the problem space.

The availability of such ML-ready datasets vastly
reduces the effort required to get up and run-
ning with machine learning experimentation and re-
search, and likely spurs innovation in the applica-
tion area covered by the dataset (see ImageNet9 for
an example of this). Specifically constructed bench-
mark datasets can serve a purpose in allowing fair
comparisons in compression performance between
different works using the same dataset, see for ex-
ample the CCSDS Reference Image Set.10

The conclusions of the survey found that al-
though there is some raw SAR data available, there
are no publicly available raw SAR datasets, and no
ML-ready datasets. This situation with the lack of
raw SAR datasets can be contrasted to the availabil-
ity of SAR Single Look Complex (SLC) and Ground
Range Detected (GRD) products, where datasets are
available, and even in a ML-ready dataset format
for certain applications. These existing datasets are
mainly targeted at downstream applications such as:

• Object detection such as ship detection, clas-
sification and identification

• Fusion of SAR and optical imagery for cloud
in-painting
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• Speckle filtering using deep learning

To do any higher-level processing on-board, such as
object detection, significant processing is required
initially to get from raw SAR data to a Level-1 GRD
product, which has been detected, multi-looked and
projected to ground range using an Earth ellipsoid
model. This appears to be a challenge for the current
state-of-the-art in avionics and an area of current re-
search.11

After conducting a survey on available sources of
raw SAR data, Sentinel-1 was chosen as the source.
Raw Sentinel-1 data is freely available on Coperni-
cus Open Access Hub.12 It should be noted that,
as a C-band satellite, this has been chosen for data
availability reasons. X-band is also of interest as it is
common in Smallsat applications, but the raw data
availability is not there. Selected raw SAR data in
C-band is also freely available from ESA for older
SAR missions like ERS-1, ERS-2 and ENVISAT.

Sentinel-1 raw data has already been prepro-
cessed with a lossy compression applied on-board,
the FD-BAQ algorithm. The ideal for compression
experiments is “BAQ bypassed” data, that is typ-
ically only downlinked for commissioning and cal-
ibration reasons as it has no compression applied
so is downlinked at the full instrument ADC sam-
ple depth (e.g. 8-bits per sample). For ML-driven
compression work, a dataset of {image content la-
bel, raw data, focused image} triples would be ideal
for exploring opportunities in ML-assisted SAR data
compression.

METHODOLOGY

A methodology has been adapted to assess the
benefits of further on-board data compression. This
is shown in Figure 1.

From the decision to use Sentinel-1 data exclu-
sively, a pipeline then has been developed to ingest
raw data from Copernicus Open Access Hub. The
pipeline first processes the raw data to a machine-
learning ready format, trains machine learning algo-
rithms, compresses/decompresses using these algo-
rithms or traditional compression algorithms, then
quantitatively compares results using a series of data
metrics in the raw data domain, and image metrics
after the results have been focused into SAR images.
The focusing is based on the sentinel1decoder13

library.

Areas acquired in Stripmap Mode (SM) will be
preferred, as the focusing and image interpretation
is a simpler task in this mode when working with the
raw data file format. Sentinel-1 usually only acquires

Stripmap over small island targets, where the wider
swath of Interferometric Wave (IW) mode is not re-
quired. There are some other scenes where Stripmap
Mode is regularly available, which are likely test
sites.

The sentinel1decoder library examples, and
previous work on raw SAR data compression,14

use Sao Paolo, Brazil as the Stripmap Mode tar-
get which looks to provide a good mixture of busy
shipping port, coastal area, urban areas and forest
canopy. This early work also used only 5 Sentinel-
1 scenes for training of variational autoencoders for
compression. If there is a need identified that can
only be satisfied by scenes acquired in IW mode,
the swath number metadata will be used to select
and focus the subswaths separately, which will then
be chipped into small blocks for training. This will
avoid having to merge subswaths, which would add
to the complexity. Scenes are very large, contain-
ing many cells (e.g. 29934 x 19950) that are often
chipped into smaller images to create very long se-
quences of smaller images for training. Raw data
will be downloaded and decoded offline with sen-
tinel1decoder, with the IQ data decoded and
stored in .npy files for easier manipulation into ma-
chine learning ready formats, and the metadata
stored in .csv or equivalent.

The statistical analyses and image domain met-
rics will be calculated offline for the scenes, and the
results stored. This work presents computational
challenges due to the large amounts of raw data (gi-
gabytes per scene), high computational effort for fo-
cusing, and the data processing chain needed to turn
data into machine-learning ready dataset. Working
on a very small subset of Sentinel-1 scenes (5 to 10)
will ease this.

This software pipeline can be adapted to X-band
data in future by modifying the “Read uncompressed
raw data” and “SAR focusing” blocks, to better tar-
get data sources and frequency that is heavily used
in Smallsat commercial SAR.

Standard statistical measures will be calculated
in the data domain.15 These are simple to calcu-
late and provide some measure of how the data has
changed before and after compression. Although the
compression is lossy, there should be no significant
change in the overall statistics of the data after the
compression algorithm has been applied. There are
well-known statistical models of SAR radar echoes
in the data domain.16 The model consists of:

• Complex data, sampled at 8-bits/sample

• Zero-mean, circular Gaussian distribution of
complex samples
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Read uncompressed
raw data

Compress data

Decompress data

SAR focusingSAR focusing

Calculate image
domain metrics

Calculate image
domain metrics

Determine signal statistics

Determine signal statistics
Evaluate data domain
statistical metrics

Evaluate image
domain metrics

Figure 1: Algorithm assessment methodology (image domain in blue, data domain in green)

• Small amount of saturation in analog-to-
digital converter (ADC)

• Low correlation between I and Q channels

• Low intersample correlation in range and az-
imuth

• Slowly changing variance in slant range and
azimuth

The I and Q signals in rectangular form follow
Gaussian distributions with mean zero and variance
dependent on the data. The I and Q signals are
uncorrelated. This holds particularly well for ho-
mogeneous scattering regions. IQ signals are com-
plex valued measurements so some measures need
to be assessed for I and Q separately. The rectangu-
lar form can be converted to polar form to achieve
magnitude/phase representation of the signal. This
changes the statistics from Gaussian to a Rayleigh
distribution for the magnitude and a uniform distri-
bution for the phase.

The metrics used to monitor compression perfor-
mance in the data domain will be:

• Dynamic range

• Mean (magnitude and phase)

• Standard deviation (magnitude and phase)

• Skewness (magnitude and phase)

• Kurtosis (magnitude and phase)

• Entropy (magnitude and phase)

Further details on metrics can be found in this sur-
vey.15

These measures in the data domain only check
whether the compression algorithm has drastically
changed the data or not, which is not sufficient for
actual performance analysis. The perils of relying
on only summary statistics are shown in Anscombe’s
Quartet,17 which has examples of four constructed
datasets with clearly very different underlying trends
when visualized, but with the same summary statis-
tics. Visualization of data in the image domain is
important. Raw SAR data is especially difficult to
visualize due to the data properties quoted in the
above model. Therefore, part of the assessment must
include focusing the raw data into SAR images.

As well as conducting visual inspections of fo-
cused images, a set of image metrics have been em-
ployed to assess compression performance. To cap-
ture the ability to preserve point targets in the im-
age, Peak to Sidelobe Ratio (PSLR) measurements
have been employed as a worst-case measure of SAR

Hay 5 37th Annual Small Satellite Conference



ability for identifying a weak target from a nearby
strong target. To conduct this analysis, the ideal for
this is corner reflectors or transponders in the im-
ages, but as this study is using real data we have
only real targets to choose from. To capture overall
error in the amplitude image, mean squared error
(MSE) will be used. The dynamic range of the im-
age will also be assessed in the image domain.

The preservation of phase will be particularly im-
portant as accurate phase preservation is a require-
ment for interferometric SAR. In future works, the
data produced by any developed compression algo-
rithm will require testing in these derived applica-
tions of SAR data such as interferometry, where
phase preservation is important and phase error
leads to distance measurement error).

STANDARD ALGORITHMS

The standard methods of on-board SAR data
compression rely upon the Gaussian nature of the
signal. These assumptions mean a simple algorithm
can be developed for compression, Block Adaptive
Quantization (BAQ). The BAQ algorithm was first
presented for implementation on NASA’s Magellan
probe18 which began design in the late 1970s and
was finally launched on its mission to radar image
Venus in 1989. The simplicity of the algorithm for
hardware implementation was paramount, though as
it has proven to be quite effective at compressing this
type of data it has been extended and improved upon
in the years since. The BAQ algorithm is detailed
in Figure 2.

BAQ aims to reduce the data volume while pre-
serving important information within acceptable tol-
erances. The BAQ algorithm makes several assump-
tions during the compression process:

Statistical Independence BAQ assumes that
the real (I) and imaginary (Q) components of the
complex SAR data are statistically independent.
This assumption allows for separate quantization
and compression of the I and Q components.

Dynamic Range BAQ assumes that the dy-
namic range of the SAR data is approximately uni-
form across a block. It assumes that the backscatter-
ing characteristics and clutter statistics remain rela-
tively consistent. This assumption allows for a uni-
form allocation of quantization bits across the entire
data, ensuring that no specific regions are favored or
compromised during compression.

Limited Visual Impact BAQ aims to reduce
the data size while maintaining a visually acceptable
image quality. The algorithm assumes that certain
compression artifacts and information loss can be

tolerated without significantly degrading the inter-
pretability of the SAR image. The specific tolerances
for compression-induced artifacts may vary depend-
ing on the application and end-user requirements.

BAQ operates by calculating the variance of a
block and using this summary statistic to place the
thresholds of the quantizer optimally (4 thresholds
for 2-bit BAQ, 8 for 3-bit and so on). The opti-
mal placement for different numbers of threshold in
uniform quantizers given the signal variance were
proven and calculated in Max’s seminal paper19 in
1960. Using these values in both encoder and de-
coder, and transmitting block variance as side infor-
mation, the decoding process is simply the reverse
of the encoding. Even with this specification there
are a number of trade-offs required in the design of
a BAQ implementation. The sizing of blocks is im-
portant, too large and the assumption of stationary
variance across the block breaks. Too small and the
amount of side information (block standard devia-
tions, typically encoded in 8-bits) becomes too much
of an overhead.

As the BAQ method uses a fixed codeword
length, for instruments with multiple modes a flexi-
ble variant named Flexible BAQ16 (FBAQ) was de-
veloped, which allowed ground selection of the bi-
trate (e.g. 8 to 4, 8 to 3 or 8 to 2-bit). This was
flown on ENVISAT. This added flexibility was im-
portant for a (relatively) modern SAR sensor such
as ASAR on ENVISAT, as the different operating
modes of the sensor and applications of the SAR im-
ages have different image quality and data volume
requirements.

It is known from image compression work that
applying transform techniques before coding can re-
sult in improvements in compression performance.
In images this is because the spatially correlated
information in the image domain is transformed
to the frequency domain with Fast Fourier Trans-
form (FFT) or Discrete Cosine Transform (DCT),
or wavelet domain with different wavelet transforms.
These encode the data as a series of coefficients in
the new basis, these coefficients can be quantized
separately or zeroed entirely in the coding step (e.g.
removing very high frequency information that is an
acceptable loss when transformed back into the im-
age domain). This technique has been applied to
BAQ with the FFT-BAQ algorithm which performs
the transform to the frequency domain before en-
coding using standard BAQ.

Entropy coding is another technique from data
compression that has been applied to BAQ, with En-
tropy Constrained BAQ (EC-BAQ). Entropy coding
is a technique where the source probabilities of the
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Figure 2: BAQ algorithm

alphabet of data to be encoded is considered in the
design of the code. The more probable symbols in
the alphabet are allocated shorter codewords and
the less probable symbols longer codewords. There
are two possible approaches to variable length cod-
ing of quantizer outputs. Either keep the design
of the quantizer the same and simply entropy code
the output of the quantizer, or move quantizer de-
cision boundaries (introducing non-uniform decision
boundaries) by taking into account how the selection
of these will affect rate. In EC-BAQ the probabil-
ities of the data in a block are used to design the
steps of the quantizer that are used per block. The
sizes of the decision boundaries are adjusted so that
they are non-uniform. This allows the encoding of
non-integer numbers of bits per block, as opposed
to standard BAQ where each block will be a multi-
ple of 2, 3 or 4 bits in size depending on the chosen
codeword length.

A current state-of-the-art algorithm is Flexible
Dynamic BAQ (FDBAQ), as flown on Sentinel-1.
In a purely homogeneous scene FDBAQ performs
similarly to fixed-rate BAQ.20 The quantizer thresh-
olds are set by taking into consideration the thermal
noise measurements made by the system in flight.
This measurement is used to choose a quantizer out
of a set of quantizers based on the local signal-to-
thermal-noise ratio, which is estimated blockwise on
the data.

MACHINE LEARNING FEASIBILITY

To explore the feasibility of machine learning ap-
proaches, two paradigms were explored. One pure
learning approach, and another enhancing aspects
of existing algorithms by building on their design
with a machine learning element.

Autoencoders are deep artificial neural networks

that aim to reproduce their input at their output
layer. When trained successfully, they are more ef-
fective than traditional compression techniques such
as Principal Component Analysis for dimensionality
reduction.21

Variational Autoencoders show great promise in
image data compression in unsupervised learning
regimes. Variational inference is an essential statis-
tical learning technique where a distribution (such
as Gaussian) is selected and its parameters adjusted
to best match a target distribution, even when the
target distribution is not exactly known. Autoen-
coders consist of an encoder and decoder as artifi-
cial neural networks, which are trained to learn the
best encoding and decoding scheme by performing
iterative optimisation. The output of the autoen-
coder network is compared with the input data to
measure the error, which is then back propagated
through the model to update the network weights in
a way that best reduces the error. Variational au-
toencoders are those which have an encoding distri-
bution that is regularised during training. Regulari-
sation is achieved by a modification of the encoding
and decoding process where the input is not encoded
as a single point of data, but rather as a distribution
over the latent (target) space.

An approach explored for the raw SAR data
compression application is using Vector Quantized
Variational Autoencoders (VQ-VAE), where discrete
(rather than continuous) latent variables are used
and distributions are categorical.22 It is impor-
tant to note that the raw SAR data collected on-
board is not a suitable end product for users on
the ground. Typically, analysis of SAR products
downstream follows necessary radiometric calibra-
tion and focusing of the data. Successful on-board
compression of SAR data means enabling efficient
downlink of complex data with phase and amplitude
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preserved. A high compression ratio of the raw data
must be achieved, while still attaining a high-quality
end product in the image domain.14

In our first approach we explore various VQ-VAE
based model architectures, parameters and perfor-
mance metrics to reach these goals. We benchmark
the performance against the state-of-the-art stan-
dard algorithms and evaluate the feasibility of AI
as a solution to on-board SAR data compression.
Within the model learning and evaluation process,
the input is raw SAR data and we aim for the highest
quality approximation, with maximum compression
ratio, as output. Outside of this process, the model
output is further evaluated and verified against Sin-
gle Look Complex (SLC) data to assess the qual-
ity of the end product. As part of the feasibility
evaluation, we also consider the assurance of the au-
tonomous on-board compression component to pro-
mote trust. This is done through applying the As-
surance of Machine Learning in Autonomous Sys-
tems23 (AMLAS) approach throughout development
of the VQ-VAE solutions.

As the second approach, we revisit the standard
BAQ approach and develop an ML model adaptor to
improve the overall performance of the method us-
ing the underlying structure of training data corpus.
This approach is important due to providing statisti-
cal adaptivity to the standard methods, using more
complex data structure/statistics. The ML based
approach can challenge the current performance due
to exploiting the dependency of data samples, which
is not currently exploited when an i.i.d. distribution
is assumed to derive the optimal setting for the BAQ
method. Such a data inter-dependency has enabled
high imagery data compression using deep neural
networks,24 i.e. a special and hugely successful form
of ML models, see this25 for a relevant approach and
this survey8 on the state of the art methods.

HARDWARE CONSIDERATIONS

Finally, future hardware feasibility and capabil-
ity is assessed, targeting a Smallsat SAR mission,
with a high level roadmap developed to progress the
concept toward this goal.

The hardware considerations must be examined
from a number of angles. Space environmental fac-
tors play a large part in device selection, as do device
size, weight and power (SWaP) requirements and
how they fit at the system level, and also the ability
of the device to execute the data processing at the
required throughput. Space environment considera-
tions can dictate the choice of radiation-hardened by
design (RHBD), radiation tolerant (RT) or commer-

cial off-the-shelf (COTS) devices for integration in
space platform architecture.26 This choice will also
be influenced by data processing throughput require-
ments, platform power budget and total mission cost
and attitude to risk. RT or COTS devices typically
offer superior performance per Watt when compared
against their RHBD counterparts. There is a typ-
ical radiation hardness vs capability trade-off due
to the lessened physical effects of Single Event Up-
set (SEU) from radiation on devices manufactured
with larger process nodes (e.g. 250nm vs 8nm).
Newer COTS devices on smaller process nodes typ-
ically come with physical size, silicon architectural
improvements, and most importantly performance
per Watt increase.

The latest COTS technologies adapted for the
space environment provide the ability to hardware
accelerate machine learning workloads on edge de-
vices. Devices like the Xilinx Ultrascale+ MPSoC
and Intel Myriad X provide these capabilities in
packages of low SWaP suitable for Smallsat power
budgets. Just as importantly, device specific tools
are available for on-boarding trained models such as
Intel OpenVINO and Xilinx Vitis AI. The tools for
developing on COTS are typically more mature and
have seen greater investment due to their large user
base. A consideration of the tools and their capa-
bilities will feed into algorithm development, as this
work is being done whilst looking ahead to future
hardware deployment of the developed algorithm.

The selection of specific devices for a future
demonstrator will be impacted by the processing
system architecture when configured from the refer-
ence data processing architecture. Where a selected
device has native fault-tolerance (i.e. is RHBD
and has integrated error-checking), less system-level
fault tolerance is required. Where a less mature de-
vice, such as the Myriad X VPU, is selected, in-
creased system-level fault tolerance and mitigation
is required, such as more capable fault detection, iso-
lation and recovery (FDIR) and possibly component
duplication or triplication.

In general, for missions where ML-based onboard
processing is used for information extraction it can
be seen as an enhancement to functionality rather
than critical to the system. When used for data
compression, the functionality is likely to be a criti-
cal system requirement. Computing devices used in
institutional missions have tight radiation require-
ments, usually fulfilled by RT/RHBD devices and
are space qualified through a high level of product
assurance, such as the QML Standard. In “news-
pace” missions, radiation requirements are looser
due to a higher risk acceptance for the mission and
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usually shorter mission lifetime. This means COTS
devices are often used to exploit their advancements
in compute power, ease of use and lower cost that
they offer over RT/RHBD devices. By defining mis-
sion and subsystem attitude to risk, we can then
differentiate among devices and make device choices
based on the criticality of the functions. Reliability,
robustness and resilience can then be achieved in the
most effective way either through RHBD devices, or
device-level redundancy, or satellite (system) level
redundancy in the case of a many satellite constel-
lation, as part of a mission at scale.
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