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ABSTRACT

Classification of Five-Dimensional Lie Algebras with
One-Dimensional Subalgebras Acting as

Subalgebras of the Lorentz Algebra

by

Jordan Rozum, Master of Science

Utah State University, 2015

Major Professor: Dr. Ian Anderson
Department: Mathematics and Statistics

Motivated by A. Z. Petrov’s classification of four-dimensional Lorentzian metrics, we provide an
algebraic classification of the isometry-isotropy pairs of four-dimensional pseudo-Riemannian metrics
admitting local slices with five-dimensional isometries contained in the Lorentz algebra. A purely
Lie algebraic approach is applied with emphasis on the use of Lie theoretic invariants to distinguish
invariant algebra-subalgebra pairs. This method yields an algorithm for identifying isometry-isotropy
pairs subject to the aforementioned constraints.

(186 pages)
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CHAPTER 1

INTRODUCTION AND SUMMARY OF RESULTS

1.1. Introduction

A pseudo-Riemannian manifold (M, g) is an n-dimensional manifold equipped with a metric
of signature (p,q). The isometry group G of (M,g) is the group of diffeomorphisms on M that
preserve g with functional composition as the group operation. In the book Einstein Spaces [10], A.
Z. Petrov gives a local classification of four-dimensional Lorentzian metrics according to the algebraic
structure of the isometry algebra and the signature of the metric on the orbits. As such, Petrov’s
results provide a systematic approach to finding exact solutions in general relativity as well as to
the equivalence problem of four-dimensional Lorentzian metrics with symmetry. However, there is
reason to believe that small gaps exist in Petrov’s classification (see for example [4]) and therefore,
an independent verification of these results is desirable. This thesis provides that verification for a
significant portion (to be made precise shortly) of the metrics classified in [10]. Whereas Petrov’s
approach is a combination of geometric, algebraic, and inductive arguments, the approach taken

here is purely algebraic.

From the perspective of the study of group actions on manifolds, the local classification of
isometries and metrics can be subdivided into two branches according to whether or not the group
action admits a local slice. The notion of a slice characterizes in a precise sense when the group
orbits at each point are equivalent as homogeneous spaces (see Chapter 2, Definition 21). If the
group action admits a local slice, the problem of classifying isometries and metrics can be reduced to
the case of transitive isometry, i.e., the study of homogeneous spaces admitting pseudo-Riemannian
metrics in dimensions two, three, and four. The homogeneous case further splits into the cases of
reductive and non-reductive isotropy (see Chapter 2, Definition 40). See Figure 1.1 We pause here
to remark that in the Riemannian case, local slices and reductive complements always exist, so the
complexity of the classification problem is greatly reduced (for a more complete treatment of slices,

see [8]).



1.1. INTRODUCTION 2

Four-Dimensional
Pseudo-Riemannian

Manifolds
Isometry does not admits Isometry admits local
local slice slice

R

Non- .
Reductive isotropy in OH(I;E(:u[gil\ffsrliz‘:Opy
50(3,1)

homogeneous case)

There exists a

Isometry groups of five-dimensional group Tsometry is dimension less
dimension greater than of isometries; this is than five (see [2] and [6])
five the case we consider
here

F1GURE 1.1. Summary of pseudo-Riemannian manifolds considered in this thesis.

The case of non-reductive isotropy has been studied in [3], which gives an algebraic classification
of non-reductive homogeneous pseudo-Riemannian spaces of dimension four. The reductive case has
been done in dimensions two and three in [2] and [6]. We extend this latter study by considering
four-dimensional homogeneous space-times admitting five-dimensional isometry groups. For com-
pleteness, we also examine the case of five-dimensional isometry on three-dimensional homogeneous
spaces and find one case that seems to have been overlooked in [2]. Also of note is that a similar
algebraic approach to the one undertaken here was applied to the classification of homogeneous

Einstein-Maxwell spaces in [5].

In summary, this thesis examines those space-times for which there is a five-dimensional group
of isometries admitting a local slice and having reductive isotropy. In these cases, there is a direct

correspondence between metrics on the orbit manifold and metrics on the reductive complement
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to the isotropy subalgebra that are isotropy invariant (see Theorem 67). In this way, our problem

reduces to an algebraic classification of Lie algebra-subalgebra pairs (g, ) where

(1) g is five-dimensional
(2) b C g is reductive

(3) the adjoint representation of h on a reductive complement m is a subalgebra of so (3, 1).

Two pairs (g1, h1) and (gs, h2) are considered equivalent if there is a Lie algebra isomorphism ¢ :
g1 — g2 such that ¢ (h1) = bo.

This algebraic classification is achieved by applying the “Schmidt method” outlined in [11]. The
key idea behind this method is to fix the adjoint action of the isotropy to act as a subalgebra of
50 (3,1). The next step of the Schmidt method is to enforce the Jacobi identities and normalize
the structure constants to identify all Lie algebras of this form up to real change of basis using a
standard classification, e.g. [12], as is used here. Finally, the isotropy is placed in some convenient

form via automorphism.

After the imposition of the Jacobi identities, the structure constants may still contain several
parameters and the Lie algebraic classification may depend on these parameters non-trivially. Thus
the straightforward approach of simply trying to find appropriate changes of basis by inspection
becomes unmanageable and cases are easily missed. Therefore, at each stage in the classification,
we determine a Lie theoretic invariant with which to split cases. Not only does this help ensure
the integrity of the classification by providing a robust organizational structure, it also yields an
algorithmic approach for determining to which standard pair an algebra-subalgebra pair belongs.
We believe that the use of Lie theoretic invariants to enhance the Schmidt method is the primary

technical contribution of this thesis.

After performing the Schmidt method to generate the algebra-subalgebra pairs corresponding
to space-times for which there is a group of isometries that admits a local slice, is five-dimensional,
and has reductive isotropy, we compare our results to those obtained by Petrov. All of the reductive,
five-dimensional algebras of Killing fields given by Petrov for Lorentzian metrics are found among

the list we generate. Special care must be taken in determining which isometry-isotropy pairs can
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be realized as the complete isometry-isotropy pair of some Lorentzian metric. While we find many
algebra-subalgebra pairs that are not among the isometry-isotropy pairs in [10] of the appropriate
dimension, all such “missing” isometry algebras in fact correspond to metrics that admit more than

five isometries (see Chapter 8).

Together with [2], the algebraic results presented here make significant progress toward a clas-
sification of isometry-isotropy pairs on homogeneous Lorentzian manifolds of dimension four or less
To complete the classification of homogeneous space-times of dimension four or less, isometries of
dimension greater than five must be considered. The methods used in this thesis are easily applied
to such cases The more difficult problem lies in the case of space-times which do not admit local
slices as these do not lend themselves to purely algebraic considerations. Examples of such spaces

are known to exist in Petrov’s classification ([10]), see for instance Example 34.

1.2. Summary of Results

When the isotropy is of dimension two or greater, the classification is straightforward and these
cases are briefly discussed in Chapter 3. The bulk of this thesis is the classification of five-dimensional
Lie algebras with reductive one-dimensional subalgebras, as pairs. Each isotropy subalgebra is chosen
with a particular adjoint action as a starting point. These are labeled “F'8” for the two-dimensional
isotropy or “F'10” through “F14” for the one-dimensional isotropy; this is reflected in the names
chosen for the pair designations. The algebra-subalgebra pairs found are summarized in Tables 1.1
through 1.4. The invariants distinguishing each pair are summarized in the diagrams in Figures 1.2
through 1.6, which provide a complete algorithm for determining the pair designation of a given
algebra-subalgebra pair of the type considered in this thesis. The algebras given in the tables below
are Lie algebras from the classification given by Snobl and Winternitz in [12], from which the algebra

naming conventions also derive. The structure equations for these algebras can be found in Appendix

A.
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TABLE 1.1. Summary of classified algebra-subalgebra pairs in the F'11 (loxodrome)
case and the cases of two-dimensional isotropy (spanned by a null rotation and a
boost).

Pair Designation Algebra Parameters Isotropy
(F'8,0) $535 a= -1 e4,e5
(F8,1) s5[(2,R) & 2ny 4 e3 + eq, 2 — 2e5
(F11,0) 55,11 a=tanf,y=0, e5
B8 =—tanf

TABLE 1.2. Summary of F'12 (rotation) algebra-subalgebra pairs.

Pair Designation Algebra Parameters Isotropy
(F12, 0) 533 D 52,1 a=0 es

(F12, 1) sl (2, F) D so1 e1 — e3
(F12,2) 50 (3,R) ® 521 el
(F12,3) sl (Q,IF) @2111’1 €1 —e3
(F12, 4) sl (2, F) 5] 2111,1 €] —e3 — 264
<F12, 5) 50 (S,R) D 21‘11,1 e1

(F12, 6) 50 (3,R) D 211171 e1 — eyq
(F12, 7) 533 @ 2nq 1 a=0 €3
(F12,8) S47®Ny €4
(F12,9) §5,45 es
(F12,10) S4,12 DNy 1 e4

(F12, 11) 55,43 a=20 €5

TABLE 1.3. Summary of F'13 (boost) algebra-subalgebra pairs.

Pair Designation Algebra Parameters Isotropy
(F13,0) 531 D 621 a=—1 es
(FlS,l) sl (2,]F) D21 €9

(Fl?), 2) 531 D 211171 a=-—1 €3
(F13,3) 546 DM €4
(F13,4) 5[(2,F) @2111,1 €9
(F'13,5) s[(2,F) @ 2nqy 4 es — 2e4
(F13,6) 65,44 es

(Fl?), 7) 252,1 S5 ni1 €9 — €4
(F13,38) 55,41 a=b €4 — €5

TABLE 1.4. Summary of F'14 (null rotation) algebra-subalgebra pairs.

Pair Designation Algebra Parameters Isotropy
(F14, 0) 55,37 €4




Pair Designation
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Algebra Parameters

55,38

sl (2,F> b 2‘(‘11)1

54,11 DNy

N54

541D N1

N5 2

55,20

N5.6

55,14

55,14

55,30 a#1
$5.30 a#1
55,32

55,31

55,29

55,30 a=1
546D MN11

S46 D MN11

547 ONy

547 Oy

55,16

55,16

55,15

55,15

54,10 D N11

54,10 D N1y

S48 BN

S48 DNy

54,9 DNy

5409 ®OMN1

55,19 a#1
55,19 a#l
$5.17 a#1
$5.17 a#1
5517 a=1
55,18

55,25 B # 2
5525 B # 2

5,22 b#1,b#a+1
$5,22 b#L,b#a+1
55,24 a#1l,a#2
5,24 a#l,a#2

55,23
§5,22 b=1
55,21
55,24 a=1
55,26
55,26
55,28
55,28

Isotropy

€4

es + ey

€5

€9 =+ €3

€5

€5

€1 — €2 — €3
€4

ez +e3+ey
€1 — €3

ex +e3 + ey
ey + e3

ey + es3

es + e3

€2 =+ €3

() =+ €3

€y — 263

ey — 2e3 + 2es
€3

€3 — €5

€3

e3 + eyq

€2 — €3

ez —e3tey
€3

€3 -+ €5

ez —e3+es
€2 — €3

€2

es + e5

€3

€3 — €4

€2 — €3

€2 —€3 — €4
€3 — €3

ez — €3 — 3eq
es + ey

€2

es +e3 + ey
ey + es3

es + ey

€2

€9 =+ €3

() + €3

ey —e3+ey
€2 — €3
ex+e3+eyq
€9 + €3

€3 — €4

€3
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Pair Designation Algebra Parameters Isotropy

(F14, 51) 5597 ey +e3+ ey
( ) 55,27 es +e3

( ) 55,22 b=a+1 ea+e3+ey
( ) 55,22 b=a+1 ey +e3
(F14, 55) 55,25 ﬁ =2« €3 — €4

( ) $5,25 B =2« e3

( ) 55,24 a=2 e +e3+ ey
( ) 55,24 a=2 es + e3
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Killing form has
signature (3,1, 1):
(F12,0)

Killing form has
Center is trivial —  signature (1,1, 3):

\ (F12,1)
Killing form has
signature (1, 3,1):
(F12,2) Isotropy in derived
algebra: (F'12,3)

Di . fii Killing form has
imension of i is two signature (3,1, 1)

Isotropy not in
derived algebra:
(F12,4)
Isotropy in derived
algebra: (F12,5)
c . ivial —» Killing form has
enter is not trivia signature (1,3, 1)
Isotropy not in
derived algebra:
(F12,6)
F12

\

/

\

/

Derived algebra is
two-dimensional:
(F12,7)

Second derived /

algebra is Killing form has
one-dimensional: signature (1,1, 3)
(F12,9)

Derived algebra is not
two-dimensional:
(F12,8)

Dimension of i is not

two
Derived algebra is
two-dimensional:
(F12,10)

/
Second derived
\

/

algebra is trivial

Derived algebra is
three-dimensional:
(F12,11)

FIGURE 1.2. Summary of F12 (rotation) invariants and case-splitting.
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Derived algebra is
three-dimensional:
(F13,0)

\

Center is trivial

Derived algebra is
four-dimensional:
(F13,1)

Dimension of i is two

Derived algebra is

two-dimensional:
(F13,2)

Algebra is solvable

Derived algebra is

three-dimensional:
(F13,3)

Center is not trivial
Isotropy in derived
algebra: (F'13,4)
F13 Algebra is not

/

/N

solvable

Isotropy not in
derived algebra:
(F13,5)

Second derived
algebra is
one-dimensional:

(F13,6)

Dimension of i is not

two
Derived algebra is
two-dimensional:
(F13,7)

/
Second derived
\

algebra is trivial

Derived algebra is
three-dimensional:
(F13,8)

FI1GURE 1.3. Summary of F13 (boost) invariants and case-splitting.



Centralizer of
isotropy is nonabelian

F1

Centralizer of
isotropy is abelian

Derived algebra is
four-dimensional

N

Center is trivial:
(F14,37) - (F14, 58)
Accoring to complent

to nilradical and

isotropy structure.
See Section 7.2.3.2

FIGURE 1.4.

N
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There is a
diagonalizable
compliment to

nilradical within the
centralizer of the
isotropy: (F'14,0)

_

Algebra is not
nilpotent: (F14,3)
There is no
diagonalizable
compliment to
nilradical within the
centralizer of the
isotropy: (F'14,1)

Center is
one-dimensional

\

(F14, 4)
Derived algebra is
two-dimensional

/

Center is
two-dimensional:
(F14,5)

Decomposes with
two-dimensional
abelian part: (F14,2)

_

Derived algebra is
abelian: See Figure
1.5

\

Derived algebra is
three-dimensional

/

Derived algebra is
nonabelian: See

Center is Figure 1.6

one-dimensional:
(F14,31) - (F14, 36)
Accoring to
complement to
nilradical and
isotropy structure.
See Table 7.2

Summary of F14 (null rotation) invariants and case-splitting.

Algebra is nilpotent:

10
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Center is
two-dimensional:
(F14,6)

Second lower central
algebra does not
commute with
isotropy: (F'14,7)
Isotropy in terminal
algebra of upper

Derived algebra is central series:
three-dimensional Center is (F14,10)

abelian (continued one-dimensional
from Figure 1.4)
Fourth lower central
algebra is
one-dimensional
Isotropy not in
terminal algebra of

upper central series:
Second lower central (F14,9)

algebra commutes
with isotropy

N

Fourth lower central
algebra is trivial:
Center is trivial: (F14,8)
(F14,11) - (F14,16)
according to
properties of
compliments to
nilradical. See Table
7.1

FI1GURE 1.5. Summary of F14 (null rotation) invariants and case-splitting. Con-
tinued from Figure 1.4.

11



1.3. ORGANIZATION OVERVIEW 12

Isotropy in derived
algebra: (F'14,17)

__—

Killing form is
positive semidefinite

T~

Isotropy not in
derived algebra:

\

(F14,18)
Center is
two-dimensional:
(F14,6)
Isotropy in derived
algebra: (F'14,19)
Killing form is
negative semidefinite
Isotropy not in
Derived algebra is derived algebra:
three-dimensional (F'14, 20) . .
. Isotropy in derived
nonabelian algebra: (F14,21)
(continued from - . — g : ’
. Killing form is
Figure 1.4) o . .
positive semidefinite .
— Isotropy not in
/ derived algebra:
. (F14,22)
Second center is
two-dimensional
Isotropy in derived
N algebra: (F14,23)
Killing form is
negative semidefinite .
— Isotropy not in
derived algebra:
Center is (F14,24)
one-dimensional:
(F14,6)

Isotropy in derived
algebra: (F14,21)
Killing form is

positive semidefinite Isotropy not in

derived algebra:
(F14,22)

/

Second center is
two-dimensional
Isotropy in derived
algebra: (F14,23)

Killing form is -
negative semidefinite .
— Isotropy not in
derived algebra:
(F14,24)

FIGURE 1.6. Summary of F14 (null rotation) invariants and case-splitting. Con-
tinued from Figure 1.4.

1.3. Organization Overview

Chapter two outlines the fundamental principles of pertinence to the work with an emphasis
on group actions and isometry in Lorentzian space-times. In addition to the introductory prin-
ciples, it contains an overview of the applicability of the results and a summary of the so-called
Schmidt method used to generate them. The Lie algebra classification system used throughout is

also discussed.
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The classification begins in the third chapter with the case of five-dimensional isometry with
isotropy that is not one-dimensional; with the exception of trivial isotropy, only two such cases
exist. The next four chapters are organized according to which subalgebra of the Lorentz algebra
the isotropy belongs. Chapter four gives the classification of type F'11 isotropies, or loxodromes.
Chapter five classifies rotational isotropy, type F'12. In chapter six, type F'13 isotropies, or boosts

are classified. Finally, in chapter seven, type F'14 isotropies, or null rotations, are classified.

Following the classification, the application this work to the study of homogeneous space-times
is explored. Specifically, the relationship between this work and the classification of homogeneous
Lorentzian space-times in [10] is shown explicitly. At the algebraic level, we find exact agreement

between Petrov’s approach and the approach used here.

The appendices include Lie multiplication tables for the algebras generated, Maple worksheets
that follow the classification and basis alignment given in this work, and Maple source for a database

of the algebra-subalgebra pairs generated.
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CHAPTER 2

PRELIMINARIES

In this preliminary chapter, we give definitions and theorems that are of pertinence to the work.
This chapter gives an introduction to the foundational concepts of manifolds and group actions, Lie
algebras, and pseudo-Riemannian manifolds. These topics are covered at an introductory level and
a more detailed exposition can be found in any introductory differential geometry text, such as [1].
Snobl and Winternitz also provide introduction to many Lie theoretic concepts in [12]. The Schmidt
method, first outlined in [11], and is introduced in this chapter and is used later in this thesis to

classify algebra-subalgebra pairs.

2.1. Manifolds

We begin with a brief overview of manifolds such as can be found in any introductory text on
differential geometry. Of particular importance to this thesis are vector fields and their flows, so we

define these and some related concepts now.

DEFINITION 1. A wector at a point p in an n-dimensional manifold M is a derivation on smooth
real-valued functions on M. The set of all such vectors at p forms 7, the tangent space at p. A
vector field is a smooth section of the tangent bundle, denoted T'M. Let X (M) denote the space of
all vector fields on M. The Lie bracket of two vector fields X and Y is written [X,Y] and given by

(X, Y](f) =X (Y (f) =Y (X (f)) for all feC>(M).

DEFINITION 2. Let ¢ : M — A be a smooth map. The pushforward of ¢ at g is the map

Gu : TpgM = Ty()N given by ¢, (X) (f) = X (f o ¢) for all f € C> (N).

DEFINITION 3. An integral curve of the vector field X on a manifold M is a smooth map
a:J — M, where J is an open interval of R, such that o' (t) = X, for all t € J. The integral

curve may be specified uniquely via the initial condition « (0) = p.
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DEFINITION 4. The flow of a vector field X on a manifold M is the one-parameter family of
diffeomorphisms ¢; : M — M with t € (—¢,¢€) such that ¢} (p) = Xg,(p) for any p € M and

b1 0 s = Pyis for t,s,t + s € (—¢,¢).

DEFINITION 5. The Lie derivative of a tensor field T along a vector field X (denoted LxT) is
defined via (LxT), = 4| 1o (#iT),, where ¢ is the flow of X. The Lie derivative measures the rate
of change of T" along the integral curve of X. It follows from the definition that the Lie derivative

Lx ...

(1) of a real scalar function f is X (f).
(2) commutes with the exterior derivative (i.e., LxdT = d (LxT)).
(3) is Leibniz with respect to contraction and tensor product.

(4) of a vector field Y is [X,Y].

2.2. Group Actions on Manifolds

Since the focus of this thesis is on isometry and isotropy, an overview of group actions is appro-

priate. We begin with the definition of a group action.

DEFINITION 6. A (left) group action of a group G on a manifold M is amap pu: G x M — M
such that p (g, p(h,x)) = p(gh,z) and u (e, z) = x where e is the identity element of G. The map
fg : M — M is given by ug () = (g, ). Given a group action p: G x M — M, we say G acts

on M by pu, written G O M.
Orbits, isotropy, and transitive group actions are of particular interest in this work.

DEFINITION 7. Let G act on M by p. The orbit of a point © € M is the image of p restricted

to z, i.e, Og (z) ={p(g,z) : g € G}.

DEFINITION 8. Let G act on M by p. The isotropy G, of a point x € M is the subgroup of G

that fixes « under y, i.e., G, = {9 € G: u(g,x) = z}.
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DEFINITION 9. Let G act on M by u. The linear isotropy representation of G, at x € M is the
group homomorphism Is, : G, — GL (T, M) given by Is, (g) (X) = pg« (X). The representation is

call faithful if Is, (g) (X) = X implies g is the identity in G.

ExaMPLE 10. Consider the orthogonal group SO (n + 1) acting on the n-sphere in R"*!, The
isotropy at a point p is the set of all rotations about the ray from the origin through p and thus
is diffeomorphic to SO (n). If n = 2 and p is on the z-axis, then this isotropy at p is SO (3)p =
10 0 10 0 .
{ (8 2?5’3 ;cs)isnef) ) } The linear isotropy representation is thus given by I's, (8 g?r?g ;cs)isnge ) = ( gfﬁg _0215“99 ),
which acts on vectors in the plane tangent to the north pole of the sphere. Since the linear isotropy

representation takes the same form as the group transformation, it is easy to see that the represen-

tation is faithful.

DEFINITION 11. Let G act on M by pu. If for any =,y € M, there is g € G such that u(g,z) =y
(or, equivalently, O¢ () = M), the p is called transitive and M is homogeneous under the action

of G by p.

EXAMPLE 12. A manifold M may be homogeneous under the action of more than one group.
Consider the 3-sphere, S3. If S? is though of as a subset of R*, then under the usual action of the
orthogonal group O (4), S? is homogeneous. If S? is thought of as a subset of C?, then under the

usual action of the unitary group, U (2), S? is homogeneous.

We now discuss Lie groups and their actions on manifolds. We first define Lie groups, then cite

a well-known and important theorem regarding the geometric structure of Lie subgroups.

DEFINITION 13. A Lie group G is a group that is also a differentiable manifold on which group
multiplication and multiplication composed with inversion are smooth functions from the product
manifold G x G to G. The left invariant vector fields on G are the vector fields X € X (G) such
that for any g, h € G, 14X}, = X, where [, is the map given by left multiplication by g. Note that
the left-invariant vector fields are uniquely specified by their value at the identity element e of G:

X, = lge Xe.
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DEFINITION 14. A Quotient G/H of a Lie group G by a Lie subgroup H is the set of cosets

G/H = {gH : g € G} where two cosets g1 H and g2 H are equal if there is h € H such that g1h = go.

THEOREM 15. (Closed Subgroup Theorem): Let G be a Lie group and H be subgroup of G closed

under the subspace topology. Then H is an embedded Lie subgroup of G.

COROLLARY 16. Let G be a Lie group with H a topologically closed subgroup of G. Then the
natural projection map 7 : G — G/H induces a manifold structure on G/H and is smooth. For each
gH € G/H there is a neighborhood U of gH and a smooth local cross section o : U — G exists such
that m o o is the identity on G/H. Furthermore, G/H is homogeneous under the natural action of

G.
We now give a simple application of this corollary as an example.

ExaMPLE 17. The Grassmannian manifold Gr (n,r) is by definition the manifold of r-subspaces
of an n-dimensional vector space. Since any r-plane can be rotated into any other, O (n) acts
transitively on Gr (n,r). The isotropy of the plane spanned by the first r coordinate vectors is
given by O (r) acting in the plane and O (n —r) acting in the complement space. Therefore the
Grassmannian can be written Gr (n,7) = O (n) /(O (r) x O (n —r)). Since O (r) and O (n — ) are
topologically closed, Corollary 16 ensures that Gr (n,r) is indeed a homogeneous space under the

action of O (n).

Of particular pertinence to this thesis is the structure of G/H when G is a Lie group acting
on a manifold and H is the isotropy at a point. To aid in the study of G/H, we give the following

theorem.

THEOREM 18. If G is a Lie group acting smoothly on a manifold M via u, then the isotropy

Gy, at an arbitrary and fized xo € M is topologically closed in G.

Proor. For arbitrary and fixed z¢p € M, consider the smooth (in particular, continuous) map
Hao : G — M given by iz, (9) = (g, o). The isotropy group G, is given by #;01 (x0). Since Gy,

is the inverse image of a point, it is topologically closed. O
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We now define equivariance then cite the Fundamental Theorem of Homogeneous Spaces.

DEFINITION 19. If G acts on manifolds M and N by p and v respectively, a map ¢ : M — N

is G-equivariant if ¢ (1 (g,2)) = v (g, ¢ (x)).

THEOREM 20. (The Fundamental Theorem of Homogeneous Spaces): Let the Lie group G act
smoothly on M by a transitive group action p and let G act on G/G, by group multiplication where

x € M. Then there exists a G-equivariant diffeomorphism between M and G/G,.

The Fundamental Theorem of Homogeneous Spaces is given with proof in introductory texts
(e.g., Theorem 9.3 of Section IV in [1]), but may be extended when the isotropy structure is in some
sense independent of which point in the manifold is taken as reference. To make this precise, we

define a slice of the manifold at a point.

DEFINITION 21. Let G be a group acting smoothly on a manifold M via u. A local cross-section,
S, is a sub-manifold of M such that for all z € S the equality T,O0¢ (z) ® TS = T, M holds. If
for any fixed zp € S there is a smooth function v : & — G such that u(y(zg),z0) = xo and
Gry =7 (y) Gy (7 (y)) " for all y € S, then S is called a local slice and M is called a simple G space.

If the image of 7y is a subset of G, (i.e., Gz, = Gy), then S is called isotropy preserving.

REMARK 22. If a group G acting smoothly on a manifold M via p admits a local slice, S, then

M admits a local isotropy preserving slice 8’ through an arbitrary point zg € S.

PRrROOF. Fix zg € S and let v : S — G be as given in Definition 21. The isotropy at any y € S
is of the form G, = (v ()" Gy (y). Since p and v are smooth, 8" = {u (v (s),s):s € S} is a

local slice with isotropy at each point given by G, . O

We now give an example of a slice in the familiar case of rotations in R3.

EXAMPLE 23. Let G = SO (3) act on M = R3\ {0} in the standard way via matrix multiplica-
tion. The isotropy at a point z is given by G,, = {4 € G : Azg = zo}. Multiplying by a scalar A,

we see that the isotropy at Az is also G,. Furthermore, at any point xg, the orbit under G is the
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sphere of radius ||zg|| which has its normal direction aligned with the ray given by Azg. Therefore

S ={Azg: A€ (0,00)} is an isotropy-preserving slice through .
The following example demonstrates that not all group actions yield local slices.

ExaMPLE 24. Let G be the matrix group given by {(ég(?) ta,b e R} and let it act on
the z = 1 plane by matrix multiplication. At a point (z,y,1), the isotropy is given by G, ) =
{(é g 7§y) € G}. Note that Gy, 4,) # G(as,y,) Whenever y; # y2 (ie., when the orbits are not
equal). Thus there is no isotropy preserving local slice at any point in the z = 1 plane and by Remark

22, there is no local slice anywhere. This can also be shown by explicitly calculating gG ;) g~ ! for

arbitrary g.

THEOREM 25. (The Fundamental Theorem of Simple G Spaces): Let the Lie group G act
smoothly on a manifold M. Suppose there is a local slice S such that the isotropy at each point
in S is given by the subgroup H. For any fized x¢ € S, there exists a local G-equivariant diffeomor-

phism between a neighborhood U of M containing xo and (SNU) x G/H.

PROOF. Since zy € S, the isotropy group at xg is G, = H. Define ¢ : S x G/H — M by
¢ (s,gH) = gs. Since the isotropies at all points s € S are equal to H, the map ¢ is well-defined.
By Corollary 16, for each g there is a neighborhood V of g and smooth local cross sectiono : V — G
such that ¢ (s,gH) = o (gH)s. Thus, because the group action is assumed smooth, ¢ is smooth.
Note that for any h € G, h¢ (s,gH) = hgs = ¢ (s,hgH), so ¢ is G-equivariant when G acts on
S x V in the natural way (by group multiplication in V C G/H). It suffices to use the fact that
T.,0¢ () N T,,S is trivial for g € S and apply the inverse function theorem to show that the

restriction of ¢ to(SNU) x G/H is a local G-equivariant diffeomorphism. O

This theorem leads to an important result regarding the point-independence of isotropy in

manifolds with group actions admitting slices.

COROLLARY 26. If a manifold M admit a local slice S through xq € M under the smooth action
of the group G, and the isotropy at each point in S is given by the subgroup H. Then there is a

neighborhood U of xo such that the isotropy at any point in U is conjugate to H.



2.3. INFINITESIMAL GROUP ACTIONS 20

PrOOF. Choose v € U and recall ¢ : (SNU) x G/H — U from the previous theorem. Since u
is in the image of ¢ and ¢ is invertible, there is (s,gH) € (SNU) x G/H such that u = gs and thus

G.=gHg™ ' O

2.3. Infinitesimal Group Actions

Following the preceding section, we now treat infinitesimal group actions, beginning with a few

fundamental definitions.

DEFINITION 27. An infinitesimal group action I on a manifold M is a real finite-dimensional

vector space of vector fields on M that is closed under the Lie bracket.

DEFINITION 28. Let I' be an infinitesimal group action on M. The isotropy of I' at a point

x € M is the subalgebra I',, of " that vanishes at =x.

DEFINITION 29. Let I' be an infinitesimal group action on M. The linear isotropy representation
of I'; at x € M is the map Is, : I'y — gl (T, M) given by Is, (X) (Y) = [X,Y],. Note that because
X vanishes at x, the derivatives of Y at x need not be known. The representation is called faithful

if Is, (X) (Y) =0 implies X is the zero vector field.

ExaMPLE 30. The conformal algebra for R?® with the Minkowski metric is spanned by the
following [7]:
Oz, Oy, O,
Toy = —Y0z + 0y, ot = 10, + 104 Ty = t0y + yO;

Ou, Ad=1a0;+y0y +10;, vo=ca(z,y,t)0,

i, = (332 — y2 + t2) Oy + 22y0y + 2xt0; — 2U0,
iy = 2xyd, + (y° — 2 + %) 9y + 2ytd; — yud,
i = 2wtd, +2ytdy + (2 +y® +2) 0 — tud,

where « (z,y,t) is an arbitrary solution to the wave equation in two spatial and one time dimen-

sion. Since the algebra includes all four translations, it is transitive with isotropy spanned by
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{ray, Tot, Tyt, bz, Ty, 1, d}. These inversions ¢, for p € {z,y,t} are quadratic in all components.
Therefore, at the origin &, their Lie brackets with any other vectors evaluate to zero and thus
Ise (3,) = O is identically zero. Therefore, the linear isotropy representation is not faithful for this

infinitesimal group action.

DEFINITION 31. Let I" be an infinitesimal group action on M. If at each point x € M, I" evalu-
ated at x spans T, M, then the infinitesimal group action is transitive and M is called homogeneous

under the infinitesimal action of T'.

There is close correspondence between group actions and their infinitesimal counterparts. The

following result summarizes this correspondence.

REMARK 32. Every smooth group action of a Lie group G by p on a manifold M generates an
infinitesimal group action as follows. Let X be a left-invariant vector field on G. Then X has an
integral curve ¢ : (—¢, €) — G with ¢ (0) equal to the identity in G. The curve i (¢, o) has a tangent
vector at xp, Yy,. Varying xp now produces a vector field Y on M. This procedure generates a map
v:T.G — X (M) whose image is an infinitesimal group action I'. If G, is the isotropy subgroup
of G at g and X, € T.G,,, then the image of ¢ is a subset of G,,. Thus u (¢, z9) = ¢ and the

tangent vector here is the zero vector. Therefore v (T.G,,) = [y, .

ExAMPLE 33. Consider the Special Euclidean group SE (2) acting on the plane with coordinates

s0 sin
(w,y,1). The group action is given by matrix multiplication by t 45,6y = <—C(;§n9 2:%9 (1171> Then the
560 sin6 0
pushforward of left multiplication by (a,b,0) is given by (a,b,8), = (—ngne 3059 (1)) Thus the left-

invariant vector fields are spanned by X; = cos 00, — sin 00, X5 = sin 09, + cos 00, and X3 = 0y.

We now find the integral curves with initial position at the identity. For X;, we have the initial

value problem

cosf(t) = d(t)
—sinf(t) = V(¢
0 = 0

(a,b,0)(0) = (0,0,0),
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which has solution (a,b,0) (t) = (¢,0,0). For X5, we have the initial value problem

sinf (t) = d ()

cosf(t) = b (1)

0 = 6@
(a,b,0)(0) = (0,0,0),

which has solution (a,b, ) (t) = (0,¢,0). For X3, we have the initial value problem

0 = d(t)

0 = V()

1 = 0@
(a,b,0)(0) = (0,0,0),

which has solution(a,b,8) (t) = (0,0,t). Applying these three curves to a point (zg,yo) in the
plane via the group action gives curves (z,y), (t) = (¢,0), (z,y),(t) = (0,t), and (z,y);(t) =
(xgcost + yosint, —zgsint + yo cost). The tangent vectors at (zg,yo) are given by (1,0), (0,1), and
(yo, —x0). Thus the translations are infinitesimally generated by the vector fields J, and 9,, while

the rotation is generated by y9, — x0,.

In light of this correspondence, local isotropy preserving slices may be studied in infinitesimal

terms, as in the following example.

ExaMPLE 34. Consider the special case of the metric in (32.26) in [10] , which has Killing
vectors (i.e., infinitesimal group action; see Definition 56) given by
X =0, (i=1,2,3) X4=220 +w (m4) Ogz + A (x4) Ogs
with w and A not identically zero. The only non-zero Lie bracket is [X2, X4] = X;, and the
isotropy at (ag, bo, co, dp) is spanned by h = by X; + w (dp) X2 + A (dp) X3 — X4. The adjoint of a

generic vector x with X5 component o and Xy component 3 is

0 -8 0 «

0 0
0 0
0 0
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and its exponential is

1 =8 0 a
0 1 0 0
AdX)=1 9 o 1 0o
0 0 0 1

Thus Ad(x) (h) differs from h only in the X; component. Therefore, there is no change of basis
such that & is independent of z*. This implies that the action of isometries does not admit a local

slice. !

2.4. Lie Algebras

In this section, we give a review of Lie algebras. For a more in-depth exposition, see [12]. We

begin with the definitions of Lie groups and Lie algebras and the relationship between them.

DEFINITION 35. A (real) Lie algebra g is a (real) vector space endowed with an anti-symmetric
bilinear product [-,-] : g X g — g that obeys the Jacobi identity: [z, [y, z]] + [z, [z, y]] + [¥, [z, 2]] = 0
for all z,y,z € g. The product [-,-] is the Lie bracket and the structure constants C’Z-jk for a basis

{ei} are given by [e;,e;] = C; ey

REMARK 36. As a vector space, a Lie algebra admits a canonical dual space. If, in a given
basis {e;}, the Lie algebra has structure constants C’ijk, then the dual basis, {wz} (subject to

wh (e;) = 6;), obeys dw* = —3C; Fw’ Aw’ and the Jacobi identity becomes d* = 0, where d is the

exterior derivative.

REMARK 37. Every finite-dimensional Lie group G has a corresponding Lie algebra g given
by the left-invariant vector fields on G together with vector field commutation as the Lie bracket.
Similarly, every finite dimensional Lie algebra g has a corresponding simply-connected Lie group G

whose left-invariant vector fields give g.

Now we give some elementary definitions from the study of Lie algebras. Many, but not all, will
find application in the algebra-subalgebra classification given in this thesis. Those that are not used

are included here for the sake of completeness.

LOther such examples of isometry groups in [10] that do not admit slices include equations (30.8), (33.1), and (33.54).
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DEFINITION 38. The adjoint ad (x) of a vector x in a Lie algebra g is the linear map ad () : g — g

given by ad (z) (y) = [z, y]-

DEFINITION 39. The Killing form K on a Lie algebra g is the symmetric bilinear form given by

K (z,y) = tr (ad () ad (y)).

DEFINITION 40. A Lie subalgebra b of a Lie algebra g is a vector subspace of g such that the
Lie bracket on b is the restriction of the Lie bracket on g to h. A Lie algebra-subalgebra pair is an

ordered pair (g, h) such that b is a subalgebra of g. The subalgebra § is called . . .

(1) reductive if there is a vector space complement m to h such that g = m @ bh, where @ is the
vector space direct sum, and [m, ] C m. In this case, m is called a reductive complement.
(2) symmetric if there is a reductive complement m to h such that [m,m] € h. In this case, m

is called a symmetric complement.

DEFINITION 41. An ideal i in a Lie algebra g is a subalgebra such that [i,g] Ci. A Lie algebra

with only the trivial ideals {0} and the algebra itself is called simple.

EXAMPLE 42. Consider the example of the two-dimensional nonabelian Lie algebra with [eq, ea] =
es. Let h be spanned by e;. Then let m; be spanned by es and ms be spanned by e; + e5. Both my
and my are vector space complements to , but only my is a reductive complement. Furthermore,
since m; is abelian, it is also a symmetric complement. Therefore  is a symmetric subalgebra (this
implies also that b is a reductive subalgebra). Note also that m; is an ideal, though in general, the

complement to h need not even be a subalgebra.
DEFINITION 43. The centralizer centgy (h) of a Lie subalgebra b of g is given by
centy (h) ={r €g:Vyeh,[z,y] =0}.
DEFINITION 44. The normalizer normg () of a Lie subalgebra § of g is given by
normg (h) ={z € g: vy €b,[z,y] €b}.
DEFINITION 45. The generalized center GCy () of a Lie subalgebra b of g is given by

GCy(h) ={re€g:Vyeg[r,y €bh}.
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DEFINITION 46. The upper central series of a Lie algebra is the series of ideals 31 (g) C 32 (g) C
-Csk(g) €... C g where
31(9) = C(g) = GGy (0)
is the center of g and for k£ > 1, the ideal 341 (g) is defined via 3x41(g) = GCy (5% (g)). A Lie

algebra g is called abelian if C'(g) = g.

DEFINITION 47. The derived series of a Lie algebra is the series of ideals g = g(® D g > ... D

g*) O ... defined recursively via g*+1) = [g(k),g(k)]. The Lie algebra g(!) is called the derived

algebra of g. A Lie algebra g is called solvable if there is k € N such that g*) = 0.

DEFINITION 48. The lower central series of a Lie algebra is the series of ideals g = g° 2 g D
... 2 gk D ... defined recursively via g"*t! = [g¥, g]. A Lie algebra g is called nilpotent if there is

k € N such that g* = 0.

ExXAMPLE 49. Consider again the simple example of the two-dimensional nonabelian Lie algebra
with [e1,ea] = ea. The upper central series is given by 35 (g) = span {e;} for all k. The derived
series is given by g(") = span {es} and g*) trivial for all k£ > 1. The lower central series is given by

g* = span {e,} for all k > 1.
DEFINITION 50. The radical R (g) of a Lie algebra g is the maximal solvable ideal in g.

REMARK 51. The radical for a given Lie algebra is unique because the sum of solvable ideals is

a solvable ideal.
DEFINITION 52. The nilradical NR (g) of a Lie algebra g is the maximal nilpotent ideal in g.

REMARK 53. The nilradical for a given Lie algebra is unique because the sum of nilpotent ideals
is a nilpotent ideal.
2.5. Space-Times, Isometry, and Killing Vectors

The following definitions are fundamental to the study of manifolds with metrics and serve to

connect the algebraic and group nature of this work to larger geometric concerns. In particular, we
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consider the action of an isometry group (defined below) on a manifold together with its isotropy at

a point.

DEFINITION 54. A metric g on an n-dimensional manifold M is a real, non-degenerate, sym-
metric, type (0,2) tensor. A metric has signature (p,q) if at each point x € M, there are vector
subspaces P and @ of T, M, of dimension p and g respectively, such that T,M = P & @, the metric
is positive-definite on P, and the metric is negative-definite on Q. A metric is Riemannian if the
metric is positive-definite. A metric is Lorentzian if the metric has signature (1,n — 1) or (n — 1,1).
A pseudo-Riemannian manifold (M, g) is an n-dimensional manifold equipped with a metric of sig-
nature (p, q). A space-time (M, g) is a manifold M equipped with a Lorentzian metric g. (Typically,

the dimension of M is four, but this need not always be the case.)

DEFINITION 55. The isometry group G of a space-time (M, g) is the set of all diffeomorphisms

on M which preserve g, i.e., G={p: M > M:g(X,)Y) =g (¢:X,0.Y)}.

DEFINITION 56. The isometry algebra T' of a pseudo-Riemannian manifold (M, g) is the set
of all vector fields on M such that the Lie derivative of ¢ vanishes along the vector field, i.e.,

P={XeTM:Lxg=0} If X €T, then X is called a Killing vector.

THEOREM 57. The isometry group of any n-dimensional space-time is a Lie group of dimension

at most % and the corresponding Lie algebra is isomorphic to the isometry algebra.

EXAMPLE 58. In two dimensions, the maximal dimension of the isometry group is three. In
the plane, this is realized as two translations and a rotation. On the n-sphere, the isometry group
is O (n+ 1), which is also of maximal dimension. In four-dimensions, the maximal dimension is
realized (not uniquely) by the Minkowski metric and its isometry group, the Poincaré group, which

consists of three rotations, three boosts, and four translations.

DEFINITION 59. The isotropy algebra T';, of at a point xg in pseudo-Riemannian manifold(M, g)

is the subalgebra of the isometry algebra formed by the vector fields that vanish at .

THEOREM 60. If G is the isometry group of a pseudo-Riemannian manifold, then the isotropy

algebra is the Lie algebra of the isotropy group G, at xo.
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THEOREM 61. The linear isotropy representations for the isotropy subgroup of the isometry group

and the isotropy subalgebra of the isometry algebra for a pseudo-Riemannian manifold are faithful.

THEOREM 62. The isotropy group at xy for a pseudo-Riemannian manifold (M, g) with metric

of signature (p,q) is isomorphic to a subgroup of SO (p,q).

Proor. Let I';, be the isotropy algebra at zo and let G, be the isotropy group. Then any
¢ € G, has the property that gy o) (0xXwo, PxYzo) = oo (Xao, Ya,) for any pair X, , Y, € Ty M,
i.e., the metric is preserved by ¢. Since g4(»,) = gz, for any ¢ € G, the isotropy group preserves

Jzo, @ quadratic form of signature (p,q). Therefore, G, is a subgroup of SO (p, q). |

In a space-time, the orbits through a point under the action of the isometry group can be placed
in three broad types according to the signature of the metric on the orbit. This finds application
in, for example, Petrov’s classification of space-times [10]. The following definition describes these

three types.

DEFINITION 63. Let V be a p-dimensional subspace of an n-dimensional space-time such that

the metric on V' has constant signature. The subspace type of V is given by the following;:

(1) The subspace type is space-like if the signature of the metric on the subspace is (p, 0).
(2) The subspace type is time-like if the signature of the metric on the subspace is (p — 1,1).

(3) The subspace type is null if the metric on the subspace is degenerate.

Given a group acting on a manifold, the orbit type of an orbit through a point is the subspace type

of the orbit.

EXAMPLE 64. In Minkowski space with Cartesian coordinates (z,y, z,t), the surface defined by
t = 0 is R? and is space-like. The surface defined by z = 0 is the Minkowski plane and is time-like.

The light cone at the origin, defined by t? = 2% 4+ y? + 22 is null.

We now consider sufficient conditions under which a pseudo-Riemannian manifold (M, g) admits

a local slice.
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> H :=DGzip(Iso, V, "plus");
H:=[e4] (4.2)
> DGsetup([x1,x2,x3,x4],P);
Manifold: P (4.3)
> KV:=DGzip([[O0, 1, O, 0], [0, O, 1, O], [-1, x3, O, O], [-x3, 1/2*x3~2-1/2*x1"2, x1, 0], [0, O, O, 1]1,
DGinformation("FrameBaseVectors"));
KV:=10 ,0 0 +x30 30 (x—y+x—12)a +xI10 ,0 (4.4)
- x2’x3’_x1xx2’_x xl__z 2 x2xx3'x4 ’
> LDK:=LieAlgebraData(KV,algK);
LDK :=[el,e2] =0, [el,e3]=0,[el,e4] =0, [el,e5] =0, [e2,e3] = el, [e2,e4] = e3, (4.5)
[e2,e5]1=0,[e3,e4] = —e2, [e3,e5]=0,[e4,e5]=0
> DGsetup(LDK,[X],[0]);
Lie algebra: algk (4.6)
> IsoK:=IsotropySubalgebra(KV,[x1=0,x2=0,x3=0,x4=0],output=[algK]);
IsoK = [ X4] 4.7)

> Mat:=Matrix([[-1, O, O, O, 0], [O, 1, O, O, O], [O, O, -1, O, O], [O, O, O, -1, O], [O, O, O, O, 1]]):
> COB:=evalDG(convert(Mat.Matrix([[X1],[X2],[X3],[X4],[X5]]).list));
COB:=[ —X1,X2, — X3, — X4, X5] (4.8)

> DGequal(LieAlgebraData(COB),LD);

true (4.9)
> List:=op(GetComponents(H,DGinformation(alg,"FrameBaseVectors")));
List:==1[0,0,0,1,0] (4.10)
> evalDG(add(List[i]*COBJi],i=1..5)*(-1)-op(IsoK));
0 X1 (4.11)

(F12, 9) = (33.22)

> C := DGTable[Indx5D[4]][" StructureConstants"]:

> LD :=_DG([["LieAlgebra", alg, [5, table()]], C1);

LD:=[el, e2]=0,[el,e3] =0, el e4] = —2el, [el,e5] =0, [e2 e3] = el, [e2, e4] = (5.1)
—e2, [e2,e5] = —e3,[e3,ed] = —e3, [e3,e5] =e2, [e4,e5] =0

> DGsetup(LD):

> |so := DGTable[Indx5D[4]]["Isotropy"]:

> V := DGinformation("FrameBaseVectors"):

> H := DGzip(Iso, V, "plus");

H:=[e5] (5.2)

=> DGsetup([x1,x2,x3,x4],P);
Manifold: P (5.3)

> KV:=DGzip([[O, 1, 0, 0], [O, O, 1, O], [-1, x3, O, O], [-x3, 1/2*x3"2-1/2*x1"2, x1, 0], [x1, 2*x2,
x3, 1]],DGinformation("FrameBaseVectors"));

x32  xI?
KV:= |0 - +— |0 +xI0
x2 X

—axl—i—XSaXZ,—xSaxl—(— 5 5

LW g X1 +2x20 +x30 (5.4)

+o

| x4

> LDK:=LieAlgebraData(KV,algK);

LDK:= [el, e2] = 0,[el,e3] =0, [el,e4] = 0, [el,e5] = 2 el, [e2,e3] = el, [e2,e4] = e3,  (5.5)
[e2,e5] =e2 [e3,ed4] = —e2, [e3,e5] =e3, [e4,e5]=0

> DGsetup(LDK,[X],[0]);

= AN
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Lie algebra: algk (5.6)
> IsoK:=IsotropySubalgebra(KV,[x1=0,x2=0,x3=0,x4=0],output=[algK]);
IsoK = [ X4] (5.7

:> Mat:=Matrix([[1, O, O, O, O], [O, 1, O, O, O], [O, O, 1, O, O], [O, O, O, O, -1], [O, O, O, -1, 0]]):
> COB:=evalDG(convert(Mat.Matrix([[X1],[X2],[X3],[X4],[X5]]).list));
COB = [ X1, X2, X3, — X5, — X4] (5.8)

> DGequal(LieAlgebraData(COB),LD);

true (5.9)
=> List:=op(GetComponents(H,DGinformation(alg,"FrameBaseVectors")));
List:==[0,0,0,0,1] (5.10)
> evalDG(add(List[i]*COBI[i],i=1..5)*(-1)-op(IsoK));
0 X1 (5.11)

£F12 11) = (33.31)

> C := DGTable[Indx5D[5]][" StructureConstants"]:
> LD :=_DG([["LieAlgebra", alg, [5, table()]], C1);
LD:=[el, e2]=0,[el,e3] =0, [el, e4] =Pel, [el, e5]=0,[e2 e3] =0, [e2 ed] = —e2, (6.1)
[e2,e5] =e3,[e3,ed] = —e3,[e3,e5] = —e2, [e4,e5]=0

;> DGsetup(LD):
| > Iso := DGTable[Indx5D[5]]["Isotropy"]:
| > V := DGinformation("FrameBaseVectors"):
> H :=DGzip(Iso, V, "plus");
H:= [e5] (6.2)
> DGsetup([x1,x2,x3,x4],P);
Manifold: P (6.3)

> KV:=DGzip([[0, 1, 0, 0], [0, O, 1, O], [-1, O, O, O], [O, -x3, x2, O], [x1*_I, _k*x2, x3*_k, 1]],
DGinformation("FrameBaseVectors"));

KV:= [a 8, —0,—x30 _+x20 ,xI_10 +_kx20 +x3_kd _+0 (6.4)
| xZ x3 x1 x2 x3 x1 x2 x3 x4
> LDK:=LieAlgebraData(KV,algK);
LDK = [el,e2] =0, [el,e3] =0, [el, e4] = e2, [ el,e5] = _kel, [e2,e3] =0, [e2, e4] = (6.5)

—el, [e2 e5] = _ke2 [e3,e4] = 0,[e3,e5] = _1e3, [e4, e5] =
> DGsetup(LDK,[X],[0]):

Lie algebra: algk (6.6)
> IsoK:=IsotropySubalgebra(KV,[x1=0,x2=0,x3=0,x4=0],output=[algK]);
IsoK = [ X4] (6.7)

:> Mat:=Matrix([[O, O, 1, O, O], [O, -1, O, O, O], [-1, O, O, O, O], [O, O, O, O, -1/_K], [O, O, 0, -1, 0]]):
> COB:=evalDG(convert(Mat.Matrix([[X1],[X2],[X3],[X4],[X5]]).list));
COB = [XS, -X2, — X1, — = X5 —X4] (6.8)
=> DGequal(eval(LieAlgebraData(COB),-_I/_k=beta),LD);
true (6.9)
> List:=op(GetComponents(H,DGinformation(alg,"FrameBaseVectors")));
List-=10,0,0,0,1] (6.10)

> evalDG(add(List[i]*COBIi],i=1..5)*(-1)-op(IsoK));

0 X1 (6.11)
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Y (F13, 3) = (33.21) with c = 0

| > C := DGTable[Indx5D[6]][" StructureConstants"]:

> LD :=_DG([["LieAlgebra", alg, [5, table()]], C]);
LD:=[el,e2] =0,[el,e3]=0,[el,e4d] =0, [el, e5]=0,[e2,e3] = —el, [e2,ed] = —e2, (7.1)

[e2,e5]1=0,[e3,ed] =e3,[e3,e5]=0,[ed,e5]=0
> DGsetup(LD):
> |so := DGTable[Indx5D[6]]["Isotropy"]:
> V := DGinformation("FrameBaseVectors"):
> H :=DGzip(Iso, V, "plus");

H:= [e4] (7.2)

=> DGsetup([x1,x2,x3,x4],P);
Manifold: P (7.3)

[ > KV:=DGzip([[O0, 1, O, 0], [O, O, 1, O], [-1, x3, O, O], [-x1, O, x3, 0], [0, O, 0, 1]],DGinformation
("FrameBaseVectors"));

] KVi=[d 48, —0 +x30 , ~x1d +x30 ,0 (7.4)
> LDK:=LieAlgebraData(KV,algK);
LDK:=[el,e2] =0, [el,e3] =0, [el,e4] =0, [el,e5] = 0, [e2, e3] = el, [e2, e4] = e2, (7.5)
[e2,e5]=0,[e3,ed] = —e3,[e3,e5]=0,[e4,e5] =0

> DGsetup(LDK,[X],[0]):

Lie algebra: algk (7.6)
> IsoK:=IsotropySubalgebra(KV,[x1=0,x2=0,x3=0,x4=0],output=[algK]);

Is0K := [ X4] (7.7)

[> Mat:=Matrix([[-1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, O, -1, 0], [0, O, 0, O, 1]]):
>

COB:=evalDG(convert(Mat.Matrix([[X1],[X2],[X3],[X4],[X5]]),list));
COB:= [ — X1, X2, X3, — X4, X5] (7.8)

> DGequal(LieAlgebraData(COB),LD);

true (7.9)
=> List:=op(GetComponents(H,DGinformation(alg,"FrameBaseVectors")));
List:==[0,0,0,1,0] (7.10)
=> evalDG(add(List[i]*COBJi],i=1..5)*(-1)-op(IsoK));
0 X1 (7.11)

¥V (F13, 5) = (33.17) with epsilon =1
;> C := DGTable[Indx5D[7]][" StructureConstants"]:
> LD :=_DG([["LieAlgebra", alg, [5, table()]], C1);
LD:=[el,e2] =2el, [el,e3] = e2 [el, e4] = 0,[el,e5] =0, [e2,e3] =2 e3,[e2,e4] =0, (8.1)
[e2,e51=0,[e3,e4]=0,[e3,e5]=0,[e4,e5]=0

;> DGsetup(LD):
| > Iso := DGTable[Indx5D[7]]["Isotropy"]:
| > V := DGinformation("FrameBaseVectors"):
> H:=DGzip(Iso, V, "plus");
H:=[e2—2 e4] (8.2)
> DGsetup([x1,x2,x3,x4],P);
Manifold: P (8.3)

> KV:=DGzip([[O0, 1, 0, 0], [0, x2, 1, 0], [-exp(x3), exp(2*x3)+x2"2, 2*x2, 0], [1, O, O, O], [O, O, O,
1]],.DGinformation("FrameBaseVectors"));
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KV:= [a LX20 40
X x2 X

74 3

> LDK:=LieAlgebraData(KV,algK);

LDK = [el,e2] = el, [el,e3] =2 e2,[el,e4] = 0, [el, e5] = 0, [e2,e3] = e3,[e2,e4] =0, (8.5)
[e2,e5]1=0,[e3,e4] =0,[e3,e5]=0,[e4,e5]=0

> DGsetup(LDK,[X],[0]);

—eX39 +(e2"3+x22)6 +2x20 ,0 ,9
x1 x2 x3 xI x

; (8.4)

4

Lie algebra: algK (8.6)
> IsoK:=IsotropySubalgebra(KV,[x1=0,x2=0,x3=0,x4=0],output=[algK]);
IsoK := [ X1 — X3 — X4] (8.7)

> Mat:=Matrix([[1/2, -1, 1/2, 0, 0], [1, O, -1, 0, 0], [1/2, 1, 1/2, 0, 0], [0, 0, 0, 1/2, 0], [0, 0, 0, O,
1]]):

> COB:=evalDG(convert(Mat.Matrix([[X1],[X2],[X3],[X4],[X5]]).list));

1 1 1 1 1
COB = > X1 —-X2+ > X3, X1 — X3, 5 X1 +X2+ > X3, 5 X4, X5 (8.8)
=> DGequal(LieAlgebraData(COB),LD);
true (8.9)
> List:=op(GetComponents(H,DGinformation(alg,”"FrameBaseVectors")));
List:==[0,1,0, —=2,0] (8.10)
> evalDG(add(List[i]*COBJi],i=1..5)*(1)-op(IsoK));
0 X1 (8.11)

(F13, 6) =(33.21) with c nonzero

;> C := DGTable[Indx5D[8]][" StructureConstants"]:
> LD :=_DG([["LieAlgebra", alg, [5, table()]], C1);

LD:=[el,e2]=0,[el,e3] =0, [el,ed] = —el,[el,e5] =0, [e2,e3] =el, [e2 e4] =0, (9.1)
[e2, e5] =e2, [e3,ed] = —e3,[e3,e5] = —e3,[e4,e5]=0
[> DGsetup(LD):
| > Iso := DGTable[Indx5D[8]]["Isotropy"]:
| > V := DGinformation("FrameBaseVectors"):
> H:=DGzip(Iso, V, "plus");
H:=[e5] (9.2)
> DGsetup([x1,x2,x3,x4],P);
Manifold: P (9.3)

> KV:=DGzip([[0, 1, 0, 0], [O, O, 1, O], [-1, X3, O, 0], [-x1, O, x3, 0], [_c*x1, _c*x2, 0, 1]],
DGinformation("FrameBaseVectors"));

KV:= axz‘ax3' —6X1+x36x2, —x1 ax1+x36x

=> LDK:=LieAlgebraData(KV,algK);

LDK:= [el, e2] =0, [el,e3] =0, [el,e4] = 0, [el,e5] = _cel, [e2,e3] = el, [e2,e4] = e2, (9.5)
[e2,e5]=0,[e3 e4d] = —e3 [e3 e5] = _ce3 [e4d e5]=0

> DGsetup(LDK,[X],[0]);

g-cxld +oex29 49 (9.4)

Lie algebra: algK (9.6)
> IsoK:=IsotropySubalgebra(KV,[x1=0,x2=0,x3=0,x4=0],output=[algK]);
IsoK := [ X4] (9.7)

> Mat:=Matrix([[1, 0, 0, 0, 0], [0, O, -1, 0, 0], [0, 1, 0, 0, 0], [0, 0, 0, -1, -1/_c], [0, 0, 0, -1, O]]):
> COB:=evalDG(convert(Mat.Matrix([[X1],[X2],[X3],[X4],[X5]]).list));

(9.8)
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1
COB:= | X1, — X3, X2, — X4 — 7 X5, — X4 (9.8)
=> DGequal(LieAlgebraData(COB),LD);
true (9.9
E List:=op(GetComponents(H,DGinformation(alg,"FrameBaseVectors")));
List:==[0,0,0,0,1] (9.10)
> evalDG(add(List[i]*COBJi],i=1..5)*(-1)-op(IsoK));
0 X1 (9.11)

(F13, 8) =(33.28) with kappa = k + epsilon nonzero

| > C := DGTable[Indx5D[9]][" StructureConstants"]:

> LD :=_DG([["LieAlgebra", alg, [5, table()]], C1);
LD:=[el,e2] =0, [el,e3] =0, [el,e4] =0, [el,e5] = —el, [e2,e3] =0, [e2,e4] = —e2, (10.1)

[e2,e5]1=0,[e3 e4] = —ae3 [e3, e5]=—ae3 [e4,e5]=0
> DGsetup(LD):
> |so := DGTable[Indx5D[9]]["Isotropy"]:

> V := DGinformation("FrameBaseVectors"):
> H:=DGzip(Iso, V, "plus");

H:=[e4— e5] (10.2)

> DGsetup([x1,x2,x3,x4],P);

Manifold: P (10.3)

[> # We will recalculate the Killing vectors, since there seems to be

| #an error in Petrov's vector fields.

> g:=convert(Matrix([[_k1l1l*exp(-2*_I*x4), 0, 0, 0], [0, O, _k23*exp(-(_k+_epsilon)*x4), 0], [0,
_k23*exp(-(_k+_epsilon)*x4), 0, 0], [0, O, O, _k44]]),DGtensor,[["cov_bas","cov_bas"],[1]);

g=_klle2-1x dx1®dxl + _k23 e (-kT-0x4 dx2® dx3 + _k23 e~ (-k+-0 x4 dx3® dx2 (10.4)

+ _k44 dx4 ® dx4

=> KVG:=KillingVectors(g);
KVG = KillingVectors( _k11 e-2-1x4 dx] ®@ dx1 + _k23 e~ (-k+-9 x4 x2 ® dx3 (10.5)

+ _k23e-(k+_0x4 dx3@dx2 + _k44 dx4 ® dx4)

> # By scaling, rearranging, and setting _kappa = _k + _epsilon, we obtain
# the following. We write this manually so that the ordering of vector
| #fields is always the same, regardless of Maple version, etc.
> KV:=DGzip([[0, 1, O, O], [0, O, 1, O], [-1, O, O, 0], [0, x2, -x3, 0], [_I*x1, 0, _kappa*x3, 1]],
DGinformation("FrameBaseVectors"));
= — 20 —x30
kv [axj ax3’ axl'x x2 x3 X
> LDK:=LieAlgebraData(KV,algK);
LDK:=[el,e2] =0, [el,e3] =0, [el,ed] =el, [el,e5]=0,[e2,e3]=0,[e2 ed] = —e2, (10.7)

[e2,e5] = ke2 [e3,e4]1 =0, [e3,e5] = _le3, [e4,e51 =0
> DGsetup(LDK,[X],[0]);

3,_lx1 9 kX308 49 (10.6)

Lie algebra: algk (10.8)
E IsoK:=IsotropySubalgebra(KV,[x1=0,x2=0,x3=0,x4=0],output=[algK]);
IsoK = [ X4] (10.9)

> Mat:=Matrix([[1, O, O, O, O], [O, 1, O, O, O], [0, O, 1, O, O], [O, O, O, O, -1/_kappa], [0, O, O, -1,
| -1/_kappa]]):
> COB:=evalDG(convert(Mat.Matrix([[X1],[X2],[X3],[X4],[X5]]).list));
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1 1
COB:= | X1, X2, X3, — e X5, — X4 — e X5 (10.10)
=> DGequal(eval(LieAlgebraData(COB),_|/_kappa=a),LD);
true (10.11)
E List:=op(GetComponents(H,DGinformation(alg,"FrameBaseVectors")));
List:==[0,0,0,1, —1] (10.12)
> evalDG(add(List[i]*COBJi],i=1..5)*(1)-op(IsoK));
0 X1 (10.13)
(F14, 1) = (33.14) (includes (33.18) when k < 0)
;> C := DGTable[Indx5D[10]][" StructureConstants"]:
> LD :=_DG([["LieAlgebra", alg, [5, table()]], C1);
LD:=[el,e2] =0, [el,e3] =0, [el,e4] =0, [el,e5] =el, [e2,e3] =0, [e2, e4] = el, [e2, (11.1)
e5]=e2 [e3 e4d] =e2 [e3 e5] = —cel +e3, [e4,e5]=0
[> DGsetup(LD):
| > Iso := DGTable[Indx5D[10]]["Isotropy"]:
| > V := DGinformation("FrameBaseVectors"):
> H:=DGzip(Iso, V, "plus");
H:=[e4] (11.2)
> DGsetup([x1,x2,x3,x4],P);
Manifold: P (11.3)
> KV:=DGzip([[O0, 1, 0, 0], [O, O, 1, O], [0, x3, -exp(x1), O], [1, x2, x3, 0], [exp(-x1), x1*_k-1/2*
exp(-2*x4), 0, exp(-x1)]],DGinformation("FrameBaseVectors"));
-2x4
— _ oxl -x1 _£ -x1
i KV:= [axj axs, x36x2 ex axs, ax1+x26xz+ x36x3,e X ax1+(x1 _k 5 ) 6x2+e X 6x4] (11.4)
> LDK:=LieAlgebraData(KV,algK);
LDK:= [el,e2] =0, [el,e3] =0, [el,ed] = el, [el,e5]=0,[e2,e3] = el, [e2 ed] = e2, (11.5)
[e2,e5] =0, [e3,e4] =0, [e3,e5] = e2, [ed, e5] = _kel —e5
> DGsetup(LDK,[X],[O]);
Lie algebra: algk (11.6)
E IsoK:=IsotropySubalgebra(KV,[x1=0,x2=0,x3=0,x4=0],output=[algK]);
IsoK := [ X2 + X3] (11.7)
> Mat:=Matrix([[-abs(_k), O, 0, 0, 0], [O, sqrt(abs(_k)), O, O, O], [0, O, O, O, 1], [0, -sqrt(abs(_k)), -
| sqrt(abs(_k)), 0, 0], [0, 0, 0, 1, -1]]):
> COB:=evalDG(convert(Mat.Matrix([[X1],[X2],[X3],[X4],[X5]]).list));
COB:=| —|_k X1, JT_R X2,X5 — JT_K X2— JT_K X3 X4—X5]| (11.8)
> DGequal(eval(LieAlgebraData(COB), k/abs(_k)=-epsilon),LD);
true (11.9)
E List:=op(GetComponents(H,DGinformation(alg,"FrameBaseVectors")));
List:=1[0,0,0,1,0] (11.10)
> evalDG(add(List[i]*COBJi],i=1..5)*(-1/sqrt(abs(_k)))-op(IsoK));
0 X1 (11.11)

(F14, 2) = (33.16)

|:> C := DGTable[Indx5D[11]][" StructureConstants"]:
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> LD :=_DG([["LieAlgebra", alg, [5, table()]], C1);

LD:=[el, e2] =2 el, [el,e3] = —e2 [el,ed] =0, [el,e5] =0, [e2 e3] =2 e3, [e2 e4 (12.1)
1=0,[e2,e5]=0,[e3,e4] =0,[e3,e5] =0, [e4,e5]=0

> DGsetup(LD):

> |so := DGTable[Indx5D[11]]["Isotropy"]:

> V := DGinformation("FrameBaseVectors"):

> H := DGzip(lso, V, "plus");

H:=[e3+ e4] (12.2)

=> DGsetup([x1,x2,x3,x4],P);
Manifold: P (12.3)
E KV:=DGzip([[1, O, O, 0], [0, exp(x3), O, 0], [0, O, 1, O, [O, O, O, 1], [exp(-x3), -exp(-x3)*x2" 2,
-2*exp(-x3)*x2, 0]],DGinformation("FrameBaseVectors"));

KV := x3 -X3 —e-X3x22 _2eX3x2 .
1% [axl,e 040 40 €0 —eXIx20 —2eXIx20 (12.4)

=> LDK:=LieAlgebraData(KV,algK);
LDK:= [el,e2] =0, [el,e3] =0, [el,e4] =0,[el,e5]=0,[e2 e3] = —e2, [e2 e4] =0, (12.5)

i [e2,e5] = —2e3,[e3,e4] =0, [e3,e5] = —e5, [e4,e5] = 0
> DGsetup(LDK,[X],[0]);

Lie algebra: algK (12.6)
> IsoK:=IsotropySubalgebra(KV,[x1=0,x2=0,x3=0,x4=0],output=[algK]);
IsoK = [ X1 — X5] (12.7)

:> Mat:=Matrix([[O, 1, O, O, O], [O, O, -2, O, O], [O, O, O, O, -1], [1, O, O, O, 0], [O, O, O, 1, O]]):
> COB:=evalDG(convert(Mat.Matrix([[X1],[X2],[X3],[X4],[X5]]),list));

COB = [X2, —2 X3, — X5, X1, X4] (12.8)
> DGequal(eval(LieAlgebraData(COB)),LD);
true (12.9)
> List:=op(GetComponents(H,DGinformation(alg,"FrameBaseVectors")));
List:=10,0,1,1,0] (12.10)

=> evalDG(add(List[i]*COBJi],i=1..5)*(1)-op(IsoK));
0 X1 (12.11)
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C. MAPLE DATABASE

# [5, F8, 0]

DGTable[[5, F8, O0]][" StructureConstants"] = [[[1, 2, 1], 2], [[1,
2], [[4, 5, 4], 1]]:

DGTable[[5, F8, O0]]["Isotropy"] := [][O, O, 1, 1, O], [O, 0, 0,

DGTable[[5, F8, O0]][" Parameters"] := [[],[]]:

# [5, F8, 1]

DGTable[[5, F8, 1]][" StructureConstants"] := [[[1, 5, 1], —1],
1], 3, 5, 3], 1], [[4, 5, 4], —1]]:

DGTable[[5, F8, 1]]["Isotropy"] := [][O, O, O, 1, O], [O, 0, 0,

DGTable[[5, F8, 1]][" Parameters"] := [[] ,[]]:
F11 ; ; 4

# [5, F11, 0]

DGTable[[5, F11, O0]][" StructureConstants"] := [[[1, 5, tan(a)],
([4+. 5, 3], —1], [[3, 5, 4], 1]]:

DGTable[]|5, F11, O]]["Isotropy"] := [[0, O, O, O, 1]]

DGTable[[5, F11,

0]][" Parameters "]

[[a],[a > O, a% Pi/2]]:
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a)l,

F12 44 i . "

# [5, F12, O]

DGTable[[5, F12, 0]][" StructureConstants"] := [[[1, 3, 2], 1], [[2, 3, 1], —1], [[4, 5,
4], —1]]:

DGTable[[5, F12, 0]][" Isotropy"] := [[0, O, 1, O, O]]:

DGTable[[5, F12, 0]][" Parameters"] := [[],[]]:

# [5, F12, 1]

DGTable[[5, F12, 1]][" StructureConstants"] := [[[1, 2, 1], 2],[[1, 3, 2], —-1], [[2, 3, 3],
2], [[4, 5, 4], 1]]:

DGTable[[5, F12, 1]][" Isotropy"] := [[1, 0, —1, 0, O]]:

DGTable[[5, F12, 1]][" Parameters"] := [[],[]]:

4 [5, F12, 2]

DGTable[[5, F12, 2]][" StructureConstants"] := [[[1, 2, 3], 1], [[1, 3, 2], —-1], [[2, 3,
1], 11, [l4, 5, 4], 1]]:

DGTable[[5, F12, 2]]["Isotropy"] := [[1, O, O, O, O]]:

DGTable[[5, F12, 2]][" Parameters"] = [[] ,[]]:

4 [5, F12, 3]
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DGTable[[5, F12, 3]][" StructureConstants"] := [[[1, 2, 1], 2], [[1, 3, 2], —=2], [[2, 3,
3], 2]

DGTable[[5, F12, 3]]["Isotropy"] := [[1, 0, -1, 0, 0]]:

DGTable[[5, F12, 3]][" Parameters"] := [[],[]]:

# [5, F12, 4]

DGTable[[5, F12, 4]][" StructureConstants"] := [[[1, 2, 1], 2], [[1, 3, 2], —-2], [[2, 3,
3], 2]]:

DGTable[[5, F12, 4]]["Isotropy"] := [[1, O, =1, —2, O]]:

DGTable[[5, F12, 4]][" Parameters"] = [[] ,[]]:

# [5, F12, 5]

DGTable[[5, F12, 5]][" StructureConstants"] := [[[1, 2, 3], 1], [[1, 3, 2], —1], [[2, 3,
1], 1]]:

DGTable[|5, F12, 5]]["Isotropy"] := [[1, 0O, O, O, O]]:

DGTable[[5, F12, 5]][" Parameters"] = [[] ,[]]:

# [5, F12, 6]

DGTable[[5, F12, 6]][" StructureConstants"] := [[[1, 2, 3], 1], [[1, 3, 2], —1], [[2, 3,
1], 1]1:

DGTable[[5, F12, 6]][" Isotropy "] := [[1, O, 0, —1, O]]:

DGTable[|5, F12, 6]][" Parameters"] := [[],[]]:

# [5, F12, 7]

DGTable[[5, F12,

-1

StructureConstants "] [rr¥, 3, 21, 11, [l2, 3, 1], —1]]:

DGTable[[5, F12, 7]][" Isotropy"] := [[0, O, 1, O, 0]]

DGTable[[5, F12, 7]][" Parameters"] = [[] ,[]]:

# [6, F12, 8]

DGTable[|5, F12, 8]|[" StructureConstants"] := [[[2, 3, 1], 1], [[2, 4, 3], 1], [[3, 4,
—1]]:

DGTable[[5, F12, 8]][" Isotropy"] := [[0, O, 0, 1, O]]:

DGTable[[5, F12, 8]][" Parameters"] := [[],[]]:

4 [5, F12, 9]

DGTable[[5, F12, 9]][" StructureConstants"] := [[[1, 4, 1], -2], [[2, 3, 1], 1], [[2, 4,
2], -1], [l2, 5, 3], —1], [[8, 4, 3], —1], [[3, 5, 2], 1]]:

DGTable[|5, F12, 9]]["Isotropy"] := [[0, O, O, O, 1]]:

DGTable[[5, F12, 9]][" Parameters"] := [[] ,[]]:

# [5, F12, 10]

DGTable[[5, F12, 10]][" StructureConstants"] := [[[1, 3, 1], -—1], [[1, 4, 2], -—-1], [[2,
2], —1], [[2, 4, 1], 1]]:

DGTable[[5, F12, 10]]["Isotropy"] := [[0O, O, O, 1, O]]:

DGTable[[5, F12, 10]][" Parameters"] := [[] ,[]]:

7 7 77 7



C. MAPLE DATABASE 169

# [5, F12, 11]

DGTable[[5, F12, 11]][" StructureConstants"] := [[[1, 4, 1], betal, [[2, 4, 2], -1], [[2,
5, 3], 1], [[3, 4, 3], —1], [[3, 5, 2], —1]]:

DGTable[]|5, F12, 11]]["Isotropy"] := [[0O, O, O, O, 1]]:

DGTable[[5, F12, 11]][" Parameters"] := [[beta],[beta <>0]]:

HH# F13 45 # i 4

# [5, F13, 0]

DGTable[[5, F13, 0]][" StructureConstants"] := [[[1, 3, 1], 1], [[2, 3, 2], —1], [[4, 5,
41, 11]:

DGTable[[5, F13, 0]][" Isotropy"] := [[0, O, 1, O, O]]:

DGTable[[5, F13, 0]][" Parameters"] := [[],[]]:

# [5, F13, 1]

DGTable[[5, F13, 1]][" StructureConstants"] := [[[1, 2, 1], 2], [[2, 3, 3], 2], [[1, 3, 2],
—1], [[4, 5, 4], 1]]:

DGTable[[5, F13, 1]][" Isotropy"] := [[0, 1, 0, 0, O]]:

DGTable[[5, F13, 1]][" Parameters"] := [[] ,[]]:

4 [5, F13, 2]

DGTable[[5, F13, 2]]|[" StructureConstants"] := [[[1, 3, 1], 1], [[2, 3, 2], —1]]:

DGTable[[5, F13, 2]][" Isotropy"] := [[0, O, 1, O, O0]]:

DGTable[[5, F13, 2]][" Parameters"] := [[],[]]:

- [5, F13, 3]

DGTable[[5, F13, 3]][" StructureConstants"] := [[[2, 3, 1], -1], [[2, 4, 2], —-1], [[3, 4,
3], 1]]:

DGTable[|5, F13, 3]]["Isotropy"] := [[0, O, O, 1, O]]:

DGTable[[5, F13, 3]][" Parameters"] := [[],[]]:

4 [5, F13, 4]

DGTable[[5, F13, 4]][" StructureConstants"] := [[[1, 2, 1], 2], [[1, 3, 2], 1], [[2, 3, 3],
2]]:

DGTable[|5, F13, 4]]["Isotropy"] := [[0, 1, 0, O, O]]:

DGTable[[5, F13, 4]][" Parameters"] = [[] ,[]]:

# [5, F13, 5]

DGTable[[5, F13, 5]][" StructureConstants"] = [[[1, 2, 1], 2], [[1, 3, 2], 1], [[2, 3, 3],
2]]:

DGTable[[5, F13, 5]][" Isotropy"] := [[0, 1, 0, —2, 0]]:

DGTable[[5, F13, 5]][" Parameters"] = [[] ,[]]:

# [6, F13, 6]
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DGTable[[5, F13, 6]][" StructureConstants"] = [[[1, 4, 1], -1], [[2, 3, 1], 1], [[2, 5,
2], 11, [[3, 4, 3], -1, [[3, 5, 3], —1]I:

DGTable[|5, F13, 6]][" Isotropy"] := [[0, O, O, O, 1]]:

DGTable[[5, F13, 6]][" Parameters"] = [[] ,[]]:

# [5, F13, 7]

DGTable[[5, F13, 7]][" StructureConstants"] = [[[1, 2, 1], 1], [[3, 4, 3], 1]]

DGTable[[5, F13, 7]]["Isotropy"] := [[0, 1, 0, —1, O]]

DGTable[[5, F13, 7]][" Parameters"] = [[] ,[]]

# [5, F13, 8]

DGTable[[5, F13, 8]][" StructureConstants"] := [[[1, 5, 1], -1], [[2, 4, 2], -—-1], [[3, 4,
3], —al], [[3, 5, 3], —a]]:

DGTable[[5, F13, 8]|["Isotropy"] := [[0, 0O, O, 1, —1]]:

DGTable[[5, F13, 8]][" Parameters"] := [[a].,[a>0,a<=1]]:

S P14 Hd iy Loy L

# [5, F14, 0]

L L L L

DGTal;le[[5, F14, o]][" StructlireConstants”] [frr, 5, 1], 1], I[[2, 4, 1], 1], [[2, 5, 2],
1], [[3, 4, 2], 1], [[3, 5, 3], 1]]:

DGTable[[5, F14, 0]][" Isotropy"] := [[0, O, O, 1, O]]:

DGTable[[5, F14, 0]][" Parameters"] := [[] ,[]]:

# [5, F14, 1]

DGTable[[5, F14, 1]][" StructureConstants"] := [[[1, 5, 1], 1], [[2, 4, 1], 1], [[2, 5, 2],
1], s, 4, 2], 1], [[3, 5, 1], —epsilon], [[3, 5, 3], 1]]:

DGTable[[5, F14, 1]][" Isotropy"] := [[0, 0, 0, 1, 0]]:

DGTable[|5, F14, 1]][" Parameters"] := |[[epsilon],[abs(epsilon)=1]]:

# [5, F14, 2]

DGTable[[5, F14, 2]][" StructureConstants"] := [[[1, 2, 1], 2], [[1, 3, 2], -—-1], [[2, 3,
3], 2]]:

DGTable[[5, F14, 2]][" Isotropy"] := [[0, O, 1, 1, 0]]:

DGTable[[5, F14, 2]][" Parameters"] := [[],[]]:

# [5, F14, 3]

DGTable[[5, F14, 3]][" StructureConstants"] := [[[1, 4, 1], 1], [[2, 3, 1], 1], [[2, 4, 2],
1]]:

DGTable[|5, F14, 3]]["Isotropy"] := [[0, 1, 1, O, O]]:

DGTable[[5, F14, 3]][" Parameters"] = [[] ,[]]:

4 [5, F14, 4]
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DGTable[[5, F14, 4]][" StructureConstants"] := [[[2, &, 1], 1], [[3, 4, 1], 1], [[4, 5, 2],
1]]:

DGTable[[5, F14, 4]]["Isotropy"] := [[0, 0, 0, 0, 1]]:

DGTable[[5, F14, 4]][" Parameters"] := [[],[]]:

4 [5, F14, 5]

DGTable[[5, F14, 5]][" StructureConstants"] := [[[2, 5, 1], 1], [[3, 5, 2], 1]]:

DGTable[[5, F14, 5]][" Isotropy"] := [[0, 0, 0, 0, I1]]:

DGTable[[5, F14, 5]][" Parameters"] := [[] ,[]]:

4 [5, F14, 6]

DGTable[[5, F14, 6]][" StructureConstants"] := [[[3, 4, 2], 1], [[3, &5, 1], 1], [[4, 5, 3],
1]]:

DGTable[|5, F14, 6]][" Isotropy"] := [[0, O, O, O, 1]]:

DGTable[[5, F14, 6]][" Parameters"] := [[] ,[]]:

4 [5, F14, 7]

DGTable[[5, F14, 7]][" StructureConstants"] = [[[1, 5, 1], -1], [[2, 3, 1], 1], [[2, 5,
2], —1], [[3, 5, 4], 1]]:

DGTable[[5, F14, 7]]["Isotropy"] := [[1, -1, —1, O, O]]:

DGTable[[5, F14, 7]][" Parameters"] = [[] ,[]]:

# [5, F14, 8]

DGTable[[5, F14, 8]][" StructureConstants"] := [[[2, 5, 1], 1], [[3, 4, 1], 1], [[3, 5, 2],
—-1], [14, 5, 3], 1]l

DGTable[[5, F14, 8]][" Isotropy"] := [[0, O, 0, 1, 0O]]:

DGTable[[5, F14, 8]][" Parameters"] := [[] ,[]]:

# [5, F14, 9]

DGTable[|5, F14, 9]][" StructureConstants"] := [[[2, 3, 1], -1], [[3, 5, 2], —1], [[4, 5,
41, —1]:

DGTable[[5, F14, 9]][" Isotropy"] := [[0, 1, 1, 1, O]]:

DGTable[[5, F14, 9]][" Parameters"] := [[],[]]:

# [5, F14, 10]

DGTable[[5, F14, 10]][" StructureConstants"] := [[[2, 3, 1], -1], [[3, 5, 2], -—1], [[4, 5,
4], —-1]]:

DGTable[|5, F14, 10]]|"Isotropy"] := [[1, O, —1, 0, O]]:

DGTable[[5, F14, 10]][" Parameters"] := [[],[]]:

# [5, F14, 11]

DGTable[[5, F14, 11]][" StructureConstants"] := [[[1, 5, 1], -—1], [[2, 3, 1], 1], [[2, 5,
2], —1], [[4, 5, 4], —a]]:

DGTable[[5, F14, 11]]["Isotropy"] := [[O0O, 1, 1, 1, O]]:

DGTable[[5, F14, 11]][" Parameters"] := [[a],[a<>1,a<>0]]:

L

I L L

7
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# [5, F14, 12]

DGTable[[5, F14, 12]][" StructureConstants"] := [[[1, 5, 1], -1], [[2, 3, 1], 1], [[2, 5,
2], —1], [[4, 5, 4], —a]]:

DGTable[|5, F14, 12]]["Isotropy "] := [[0, O, 1, 1, O]]:

DGTable[[5, F14, 12]][" Parameters"] := [[a],[a<>1l,a<>0]]:

# [5, F14, 13]

L L L L L

DGTable[[5, F14, 13]][" StructureConstants"] :=

(1, 5, 11, —1], [[2, 3, 1], 1], [[3, 5,
3], -1], [I3, 5, 4], -1], [[4, 5, 1], —-1], [[4, 5, 4], -—-1]]:
0

DGTable[[5, F14, 13]]["Isotropy"] := [[O0, 1, 1, O, O]]:

DGTable[[5, F14, 13]][" Parameters"] := [[] ,[]]:

# [6, F14, 14]

DGTable[[5, F14, 14]][" StructureConstants"| := [[[1, 5, 1], -1], [[2, 3, 1], 1], [[2, 5,
2], -1, [[4, 5, 1], -1], [[4, 5, 4], —1]]:

DGTable[[5, F14, 14]]["Isotropy"] := [[O0, 1, 1, O, O]]:

DGTable[[5, F14, 14]][" Parameters"] := [[] ,[]]:

# [5, F14, 15]

DGTable[[5, F14, 15]][" StructureConstants"] := [[[1, 5, 1], -1], [[2, 3, 1], —-1], [[3, 5,
3], -1, [[3, 5, 4], -1], [[4, 5, 1], O], [[4, 5, 4], —1]:

DGTable[[5, F14, 15]]["Isotropy"] := [[O0, 1, 1, O, O]]:

DGTable[[5, F14, 15]][" Parameters"] := [[] ,[]]:

# [5, F14, 16]

DGTable[[5, F14, 16]][" StructureConstants"] := [[[1, 5, 1], —-1], [[2, 3, 1], 1], [[2, 5,
2], —1], [[4, 5, 4], —1]]:

DGTable[[5, F14, 16]][" Isotropy "] := [[0O, 1, 1, O, O]]:

DGTable[[5, F14, 16]][" Parameters"] = [[] ,[]]:

# [5, F14, 17]

DGTable[[5, F14, 17]][" StructureConstants"] := [[[2, 3, 1], 1], [[2, 4, 2], -—-1], [[3, 4,
3], 1]]:

DGTable[[5, F14, 17]]["Isotropy"] := [[0O, 1, —2, 0, O]]:

DGTable[[5, F14, 17]]|" Parameters"] := [[],[]]:

# [5, F14, 18]

DGTable[[5, F14, 18]][" StructureConstants"] := [[[2, 3, 1], 1], [[2, 4, 2], -—-1], [[3, 4,
3], 1]]:

DGTable[|5, F14, 18]]|"Isotropy"] := [|[0O, 1, —2, 0, 1]]:

DGTable[[5, F14, 18]][" Parameters"] := [[],[]]:

# [5, F14, 19]

DGTable[[5, F14, 19]][" StructureConstants"] := [[[2, 3, 1], 1], [[2, 4, 3], 1], [[3, 4,
2], —-1]]:

DGTable[[5, F14, 19]][" Isotropy"] := [[0, 1, 0, 0, 0]]:

DGTable[[5, F14, 19]][" Parameters"] := [[],[]]:
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L I 1y

DGTable[[5, F14, 20]][" StructureConstants"] := [[[2, 3, 1], 1], [[2, 4, 3], 1], [[3, 4,
2], —-1]]:

DGTable[[5, F14, 20]][" Isotropy"] := [[O0O, 1, O, O, —1]]:

DGTable[[5, F14, 20]][" Parameters"] := [[] ,[]]:

# [5, F14, 21]

DGTable[[5, F14, 21]][" StructureConstants"] := [[[2, 3, 1], 1], [[2, 5, 3], —1], [[3, 5,
2], 1], [[4, 5. 1], —1]]:

DGTable[[5, F14, 21]]["Isotropy"] := [[0, O, 1, O, O]]:

DGTable[[5, F14, 21]][" Parameters"] = [[] ,[]]:

# [5, F14, 22]

DGTable[[5, F14, 22]][" StructureConstants"] := [[[2, 3, 1], 1], [[2, 5, 3], —1], [[3, 5,
2], 1], [[4, 5. 1], —1]]:

DGTable[[5, F14, 22]]["Isotropy "] := [[0, O, 1, 1, O]]:

DGTable[[5, F14, 22]][" Parameters"] := [[],[]]:

# [5, F14, 23]

DGTable[[5, F14, 23]][" StructureConstants"] := [[[2, 3, 1], 1], [[2, 5, 2], 1], [[3, 5,
3], —1], [[4, 5, 1], —1]]:

DGTable[[5, F14, 23]]["Isotropy"] := [[0, 1, —1, 0, O]]:

DGTable[[5, F14, 23]][" Parameters"] := [[],[]]:

# [5, F14, 24]

DGTable[[|5, F14, 24]]|" StructureConstants"] := [[[2, 3, 1], 1], [[2, 5, 2], 1], [[3, 5,
3], —1], [[4, 5, 1], —1]:

DGTable[[5, F14, 24]]["Isotropy"] := [[0, 1, —1, —1, 0]]:

DGTable[[5, F14, 24]]|" Parameters"] := [[],[]]:

# [5, F14, 25]

DGTable[[5, F14, 25]][" StructureConstants"] := [[[1, 4, 1], -=2], [[2, 3, 1], 1], [[2, 4,
2], —1], [[3, 4, 2], —1], [[3, 4, 3], —1]]:

DGTable[[5, F14, 25]][" Isotropy"] := [[0, 0, 1, 0, 0]]:

DGTable[|5, F14, 25]]|" Parameters"] := [[],[]]:

# [6, F14, 26]

DGTable[[5, F14, 26]][" StructureConstants"] := [[[1, 4, 1], -2], [[2, 3, 1], 1], [[2, 4,
2], —1], [[3, 4, 2], —1], [[3, 4, 3], —1]]:

DGTable[[5, F14, 26]][" Isotropy"] := [[0, O, 1, 0, 1]]:

DGTable[[5, F14, 26]][" Parameters"] = [[] ,[]]:

# [5, F14, 27]

DGTable[[5, F14, 27]][" StructureConstants"] := [[[1, 4, 1], —a-—1], [[2, 3, 1], —-1], [[2,
4, 2], —-1], [[3, 4, 3], —a]]:

DGTable[[5, F14, 27]]["Isotropy"] := [[O0O, 1, —1, O, O]]:

DGTable[[5, F14, 27]][" Parameters"] := [[a],[a<>0,a<=1,a>—1]]:

# [5, F14, 28]

DGTable[[5, F14, 28]][" StructureConstants"] := [[[1, 4, 1], —a-—1], [[2, 3, 1], —-1], [[2,

4, 2], —-1], [[3, 4, 3], —al]]:
DGTable[[5, F14, 28]]["Isotropy"] := [[0O, 1, —1, O, 1]]:
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DGTable[[5, F14, 28]][" Parameters"] := [[a],[a<>0,a<=1l,a>—1]]:

# [6, F14, 29]

DGTable[|5, F14, 29]]|" StructureConstants"] := [[[1, 4, 1], —2«alpha], [[2, 3, 1], 1],
[[2, 4, 2], —alpha], [[2, 4, 3], 1], [[3, 4, 2], —1], [[3, 4, 3], —alpha]]:

DGTable[[5, F14, 29]][" Isotropy"] := [[0, 1, 0, 0, 0]]:

DGTable[[|5, F14, 29]]|" Parameters"] := [[alpha],[alpha >0]]:

# [5, F14, 30]

DGTable[[5, F14, 30]][" StructureConstants"] := [[[1, 4, 1], —2xalphal], [[2, 3, 1], 1],
[[2, 4, 2], —alpha], [[2, 4, 3], 1], [[3, 4, 2], —-1], [[3, 4, 3], —alpha]]:

DGTable[[5, F14, 30]]["Isotropy"] := [[0, 1, 0, O, 1]]:

DGTable[[5, F14, 30]][" Parameters"] := [[alpha], [alpha >0]]:

# [5, F14, 31]

DGTable[[5, F14, 31]][" StructureConstants"| := [[[2, 3, 1], 1], [[2, 5, 3], —-1], [[3., 5,
2], 11, [[4, 5, 4], —alpha]]:

DGTable[[5, F14, 31]]["Isotropy "] := [[0, O, 1, O, O]]:

DGTable[[5, F14, 31]][" Parameters"] := [[alpha],[alpha<>1,alpha >0]]:

# [5, F14, 32]

DGTable[[5, F14, 32]][" StructureConstants"| := [[[2, 3, 1], 1], [[2, 5, 3], —-1], [[3, 5,
2], 11, [[4, 5, 4], —alpha]]:

DGTable[[5, F14, 32]]["Isotropy"] := [[0, O, 1, —1, O]]:

DGTable[[5, F14, 32]][" Parameters"] := [[alpha],[alpha<>1,alpha >0]]:

” [5, F1a, 33]

DGTable[[5, F14, 33]][" StructureConstants"] := [[[2, 3, 1], 1], [[2, 5, 2], —-1], [[3, 5,
3], 1], [[4, 5, 4], —a]]:

DGTable[[5, F14, 33]]["Isotropy"] := [[O0O, 1, —1, O, O]]:

DGTable[[5, F14, 33]][" Parameters"] := [[a].,[a<>1]]:

# [5, F14, 34]

DGTable[[5, F14, 34]][" StructureConstants"] := [[[2, 3, 1], 1], [[2, 5, 2], —1], [[3, 5,
3], 1], [[4, 5. 4], —all:

DGTable[[5, F14, 34]]["Isotropy"] := [[O0O, 1, —1, —1, O]]:

DGTable[[5, F14, 34]][" Parameters"] := [[a].,[a<>1]]:

" [5, F1a, 35]

DGTable[[5, F14, 35]][" StructureConstants"] := [[[2, 3, 1], 1], [[2, 5, 2], —-1], [[3, 5,
3], 1], [[4, 5. 4], —1]]:

DGTable[|5, F14, 35]]|" Isotropy"] := [|0O, 1, —1, O, O]]:

DGTable[[5, F14, 35]][" Parameters"] := [[],[]]:

# [5, F14, 36]

DGTable[[5, F14, 36]][" StructureConstants"] := [[[2, 3, 1], 1], [[2, 5, 2], —-1], [[3, 5,
3], 1], [[4, 5. 4], —1]]:

DGTable[[5, F14, 36]][" Isotropy"] := [[0, 1, —1, —1/2, 0]]:

DGTable[[5, F14, 36]][" Parameters"] := [[] ,[]]:
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DGTable[[5, F14, 37]][" StructureConstants"] := [[[1, 5, 1], —2«alphal], [[2, 3, 1], 1],
[[2, 5, 2], —alphal, [[2, 5, 3], 1], [[3, 5, 2], —1], [[3, 5, 3], —alphal, [[4, 5, 4],
—beta ]]:

DGTable[[5, F14, 37]]["Isotropy"] := [[0, 1, 0, 1, O]]:

DGTable[|5, F14, 37]]|" Parameters"] := [[alpha,beta],[alpha<>0,beta >0]]:

# [6, F14, 38]

DGTable[[5, F14, 38]][" StructureConstants"] := [[[1, 5, 1], —2«alphal], [[2, 3, 1], 1],
[{z, 5, 2], —alpha], [[2, 5, 3], 1], [[3, 5, 2], —1], [[3, 5, 3], —alpha], [[4, 5, 4],
—beta]]:

DGTable[[5, F14, 38]]["Isotropy"] := [[0, 1, 0, O, O]]:

DGTable[[5, F14, 38]]|" Parameters"] := [[alpha,6beta],[alpha<>0,beta >0]]:

” [5, F1a, 39]

DGTable[[5, F14, 39]][" StructureConstants"] := [[[1, 5, 1], —1-a], [[2, 3, 1], 1], [[2, 5,
2], —1], [[3, 5, 3], —a], [[4, 5, 4], —=b]]:

DGTable[[5, F14, 39]]["Isotropy "] := [[O0, 1, 1, 1, O]]:

DGTable[[5, F14, 39]][" Parameters"] := [[a,b],[a<=1l,a>—-1,b<>0]]:

# [5, F14, 40]

DGTable[[5, F14, 40]][" StructureConstants"] := [[[1, 5, 1], —-1-a], [[2, 3, 1], 1], [[2, 5,
2], -1, [[3, 5, 3], —a], [[4, 5, 4], =b]]:

DGTable[[5, F14, 40]][" Isotropy"] := [[O0O, 1, 1, O, O]]:

DGTable[[5, F14, 40]][" Parameters"] := [[a,b],[a<=l,a>—1,b<>0]]:

# [5, F14, 41]

DGTable[[5, F14, 41]][" StructureConstants"] := [[[1, 5, 1], —-2], [[2, 3, 1], 1], [[2, 5,
2], -1], [[2, 5, 3], —-1], [[3, 5, 3], —1], [[4, 5, 4], —a]]

DGTable[[5, F14, 41]]["Isotropy"] := [[0, 1, 0, 1, O]]:

DGTable[[5, F14, 41]][" Parameters"] := [[a].,[a<>0]]:

# [6, F14, 42]

DGTaLgle[[57 F14, 42]]["Struc/t/ureCOIlstant,s"] = [[[1;’5, 1], 72]; [r2z, 3, 1], 1], [I2, 5,
2], -1], [[2, 5, 3], —1], [[3, 5, 3], —1], [[4, 5, 4], —a]]:
0

DGTable[[5, F14, 42]]["Isotropy"] := [[0, 1, 0, 0, O]]:

DGTable[[5, F14, 42]][" Parameters"] := [[a,b],[a<>0]]:

# [5, F14, 43]

DGTable[[5, F14, 43]][" StructureConstants"] := [[[1, 5, 1], —1-a], [[2, 3, 1], 1], [[2, 5,
2], —al, [[3, 5, 3], —1], [[3, 5, 4], —1], [[4, 5, 4], —1]]:

DGTable[[5, F14, 43]]["Isotropy"] := [[0, 1, 1, O, O]]:

DGTable[[5, F14, 43]][" Parameters"] := [[],[]]:

# [5, F14, 44]

DGTable[[5, F14, 44]][" StructureConstants"] := [[[1, 5, 1], —-1-a], [[2, 3, 1], 1], [[2, 5,

2], —al, [[3, 5, 3], —1], [[4, 5, 4], —1]]:
DGTable[[5, F14, 44]]["Isotropy "] := [[O0, 1, 1, O, O]]:
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DGTable[[5, F14, 44]]|" Parameters"] := [[],[]]:

# [5, F14, 45]

DGTable[[5, F14, 45]][" StructureConstants"] := [[[1, 5, 1], -—-2], [[2, 3, 1], 1], [[2, 5,
2], -1], [z, 5, 3], -1], [[3, 5, 3], —1], [[3, 5, 4], —1], [[4, 5, 4], —1]]:

DGTable[[5, F14, 45]]["Isotropy"] := [[O0O, 1, —1, 1, O]]:

DGTable[[5, F14, 45]][" Parameters"] := [[],[]]:

# [5, Fi14, 46]

DGTable[[5, F14, 46]][" StructureConstants"| := [[[1, 5, 1], —-2], [[2, 3, 1], 1], [[2, 5,
2], —1], [[2, 5, 3], —1], [[3, 5, 3], —1], [[4, &, 4], —1]]:

DGTable[[5, F14, 46]][" Isotropy"] := [[O0O, 1, —1, O, O]]:

DGTable[[5, F14, 46]][" Parameters"] = [[] ,[]]:

# [5, F14, 47]

DGTable[[5, F14, 47]][" StructureConstants"] := [[[1, 5, 1], —-1-a], [[2, 3, 1], 1], [[2, 5,
2], -1], [[3, 5, 3], —a], [[4, 5, 1], —1], [[4, 5, 4], —1-a]]:

DGTable[[5, F14, 47]]["Isotropy"] := [[0, 1, 1, 1, 0O]]:

DGTable[[5, F14, 47]][" Parameters"] := [[a],[a<=1l,a>—1]]:

# [5, F14, 48]

DGTable[[|5, F14, 48]][" StructureConstants"] := [[[1, 5, 1], —1-a], [[2, 3, 1], 1], [[2, 5,
2], -1], [[38, 5, 3], —a], [[4, 5, 1], —1], [[4, 5, 4], —1-a]]:

DGTable[[5, F14, 48]]["Isotropy"] := [[0, 1, 1, 0, O]]:

DGTable[[5, F14, 48]][" Parameters"] = [[a],[a<=l,a>—1]]:

Eia [5, F14, 49]

DGTable[[5, F14, 49]][" StructureConstants"] := [[[1, 5, 1], —2«alpha], [[2, 3, 1], 1],
[[2, 5, 2], —alphal, [[2, 5, 3], —1], [[3, 5, 2], 11, [[3, 5, 3], —alpha], [[4, 5, 1],
—1], [[4, 5, 4], —2*alpha]]:

DGTable[[5, F14, 49]][" Isotropy"] := [[0, O, 1, —1, O]]:

DGTable[[5, F14, 49]][" Parameters"] := [[alpha],[alpha >0]]:

# [5, F14, 50]

DGTable[[5, F14, 50]][" StructureConstants"] := [[[1, 5, 1], —2xalphal], [[2, 3, 1], 1],
[{z, 5, 2], —alpha], [[2, 5, 3], —-1], [[3, 5, 2], 1], [[3, 5, 3], —alpha], [[4, 5, 1],
—1], [[4, 5, 4], —2xalphal]]:

DGTable[|5, F14, 50]]["Isotropy "] := [[0O, O, 1, O, O]]:

DGTable[[5, F14, 50]][" Parameters"] := [[alpha],[alpha >0]]:

# [5, F14, 51]

DGTable[[5, F14, 51]][" StructureConstants"] := [[[1, 5, 1], —2], [[2, 3, 1], 1], [[2, 5,
2], -1l, [z, 5, 3], -1], [[3, 5, 3], -1, [[4, 5, 1], —1], [[4, 5, 4], —2]]:

DGTable[[5, F14, 51]]["Isotropy"] := [[O0O, 1, 1, 1, O]]:

DGTable[[5, F14,

51]][" Parameters "]

= [[1,11]:
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# [5, F14, 52]

HH

DGv"l;aLb,le[[57 F1'4',' 52]]["Strvt;c'tt;reConst;n't,s"] = [[['17 5, 1], !2']', [[2, 3, 11, 11, [[2, 5,
2], —1], [[2, 5, 3], —11, [[3, 5, 3], —11, [[4, 5, 11, —11, [[4., 5, 4], —2]]:
0

DGTable[|5, F14, 52]]["Isotropy "] := [[0O, 1, 1, O, O]]:

DGTable[[5, F14, 52]][" Parameters"] := [[],[]]:

# [5, F14, 53]

DGTable[[5, F14, 53]][" StructureConstants"] := [[[1, 5, 1], —-1-a], [[2, 3, 1], 1], [[2, 5,
2], —1I, (I3, 5, 3], —a], [[4, 5, 4], —1-a]]:

DGTable[[5, F14, 53]]["Isotropy "] := [[O0, 1, 1, 1, O]]:

DGTable[[5, F14, 53]][" Parameters"] := [[a],[a<=1l,a>—1]]:

# [5, F14, 54]

DGTable[[5, F14, 54]][" StructureConstants"]| := [[[1, 5, 1], —-1-a], [[2., 3, 1], 1], [[2, 5,
2], —-1], [[3, 5, 3], —a], [[4, 5, 4], —1-a]]:

DGTable[[5, F14, 54]]["Isotropy "] := [[O0, 1, 1, O, O]]:

DGTable[[5, F14, 54]][" Parameters"] := [[a],[a<=1l,a>—1]]:

# [5, F14, 55]

DGTable[|5, F14, 55]]|" StructureConstants"] := [[[1, 5, 1], —2«alpha], [[2, 3, 1], 1],

[[2, 5, 2], —alphal], [[2, 5, 3], —11, [[3, 5, 2], 1], [[3, 5, 3], —alpha], [[4, 5, 4],
—2xalpha]]:

DGTable[[5, F14, 55]][" Isotropy"] := [[0O, O, 1, —1, O]]:

DGTable[[5, F14, 55]][" Parameters"] := [[alpha],[alpha >0]]:

# [5, F14, 56]

DGTable[[5, F14, 56]][" StructureConstants"] := [[[1l, 5, 1], —2«alphal], [[2, 3, 1], 1],
[[2, 5, 2], —alpha], [[2, 5, 3], —1], [[3, 5, 2], 1], [[3, 5, 3], —alpha], [[4, 5, 4],
—2xalpha|]:

DGTable[[5, F14, 56]][" Isotropy"] := [[0, O, 1, 0, O]]:

DGTable[|5, F14, 56]]|" Parameters"] := [[alpha],[alpha >0]]:

# [5, F14, 57]

DGTaLgle[[57 F14"' 57]]["StrucvtvureConstan't,s"] i= [[[17”5, 1], 72’]" [rz, 3, 1], 1], [I2, 5,
2], -1, [l2, 5, 3], -—-1], [[3, 5, 3], —1], [[4, 5, 4], —-2]]:
1

DGTable[[5, F14, 57]]["Isotropy"] := [[0, 1, 1, 1, 0O]]:
DGTable[[5, F14, 57]]|" Parameters"] := [[],[]]:
# [5, F14, 58]

DGTab,le[[E), F14, 58]]["Struc/tureConstant,s"] 1= [[[1,,5, 1], -2, [l2, 3, 1], 1], [I2, 5,
2]7 _1]7 [[27 5, 3]7 _1]7 [[37 5, 3]7 _1]7 [[47 5, 4]7 _2]]:

DGTable[[5, F14, 58]]["Isotropy "] := [[O0, 1, 1, O, O]]:

DGTable[[5, F14, 58]][" Parameters"] := [[] ,[]]:
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