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ABSTRACT

Separation of Points and Interval Estimation in Mixed Dose-Response Curves with Selective

Component Labeling

by

Darl D. Flake II, Doctor of Philosophy

Utah State University, 2016

Major Professor: John R. Stevens
Department: Mathematics and Statistics

This dissertation develops, applies, and investigates new methods to improve the analysis of

logistic regression mixture models. An interesting dose-response experiment was previously carried

out on a mixed population, in which the class membership of only a subset of subjects (survivors)

were subsequently labeled. In early analyses of the dataset, challenges with separation of points

and asymmetric confidence intervals were encountered. This dissertation extends the previous anal-

yses by characterizing the model in terms of a mixture of penalized (Firth) logistic regressions and

developing methods for constructing profile likelihood-based confidence and inverse intervals, and

confidence bands in the context of such a model. The proposed methods are applied to the mo-

tivating dataset and another related dataset, resulting in improved inference on model parameters.

Additionally, a simulation experiment is carried out to further illustrate the benefits of the proposed

methods and to begin to explore better designs for future studies. The penalized model is shown to

be less biased than the traditional model and profile likelihood-based intervals are shown to have

better coverage probability than Wald-type intervals. Some limitations, extensions, and alternatives

to the proposed methods are discussed.

(82 pages)
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PUBLIC ABSTRACT

Separation of Points and Interval Estimation in Mixed Dose-Response Curves with Selective

Component Labeling

by

Darl D. Flake II, Doctor of Philosophy

Utah State University, 2016

Major Professor: John R. Stevens
Department: Mathematics and Statistics

Dose-response experiments are those that involve giving subjects different amounts of a treat-

ment and observing the outcome. For example, plants may be given fertilizer and their growth could

be measured or cancer patients could be given different doses of chemotherapy and their response

could be monitored. These experiments are used to understand the relationship between the amount

of, and response to, the treatment. Logistic regression models are often used to summarize data from

these types of experiments. The dose-response experiment that motivated this dissertation involved

treating a grain-pest with a pesticide. Some of the beetles had genes that made them more sensitive

to the pesticide. However, the genes were only looked for in the beetles that survived the treatment.

Additionally, traditional statistical models yielded unreliable results when they were applied to this

data. Both specific summary values (parameter estimates) and likely ranges of values (confidence

intervals) were not reasonable. This dissertation developed new statistical methods to improve the

statistical modeling of dose-response experiments like this one. Two methods that are used in sim-

pler situations, were applied to this dataset to overcome these problems: a Firth penalty and profile

likelihood-based confidence intervals. The Firth penalty improved the parameter estimates and the

profile likelihood-based confidence intervals were an improvement over the traditional confidence
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intervals. Simulations were used to show that proposed methods worked well in a variety of sit-

uations. The statistical methods developed here are applicable to other situations not limited to

dose-response experiments.
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CHAPTER 1

INTRODUCTION

Schlipalius et al. [1] first described the experiment that motivated this dissertation. The re-

searchers carried out a genetic linkage study to identify chromosomal regions that are responsible

for phosphine resistance in Rhyzopertha dominica, a stored grain pest. Two regions, rp5.11 and

rp6.79, were identified as having a significant association with resistance to the insecticide. A sam-

ple of 10,798 beetles from the F5 generation, containing all six combinations of genotypes, were

used in a dose-response experiment in which the beetles were treated with one of 11 doses of phos-

phine. To conserve resources, only the 378 surviving beetles were genotyped for the two genes. The

primary goal of the researchers was to reconstruct dose-response curves for each of the genotypes

while accounting for the missing genotypes of the beetles that were killed by the insecticide in order

to estimate the lowest dose necessary to kill a large proportion of the treated beetles (e.g. LD99, the

dose that is lethal to 99% of subjects). The design and resulting data for this experiment are shown

in Table 1.1.

1.1 Logistic Regression Modeling of Dose-Response

Logistic regression has been used to model dose-response data for decades (e.g. Berkson [3]).

While maximum likelihood estimation is generally used to fit logistic regression models, direct

maximization of the likelihood is not straightforward for the beetle data in Table 1.1, due to the

missing genotypes of the dead beetles. However, the expectation-maximization (EM) algorithm

[4] is a general purpose algorithm for maximum likelihood estimation where incomplete data are

present or where the likelihood can be expressed in terms of a latent variable. The EM algorithm

maximizes the likelihood by iteratively maximizing a surrogate function, the expected conditional

log-likelihood:

Q(θ | θ ′) = E(L (θ | x) | y,θ ′), (1.1)

where θ are the parameters of the log-likelihood L , θ ′ is the proposed or assumed value of the
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Table 1.1: Data for a dose-response experiment from Schlipalius et al. [1] in which Rhyzopertha
dominica were treated with phosphine.

Outcome Phosphine Dosage (µg/L)
Total

(genotype) 0 3 4 5 10 50 100 200 300 400 1000
Dead (NA) 0 16 68 78 77 270 383 740 490 492 7806 10420
Alive (-/B) 31 18 10 1 0 0 0 0 0 0 0 60
Alive (-/H) 27 26 4 4 1 0 0 0 0 0 0 62
Alive (-/A) 10 10 3 7 9 0 0 0 0 0 0 39
Alive (+/B) 6 6 4 2 8 5 0 0 0 0 0 31
Alive (+/H) 20 20 7 6 5 20 10 0 0 0 0 88
Alive (+/A) 4 4 4 2 0 5 7 10 10 8 44 98

Total 98 100 100 100 100 300 400 750 500 500 7850 10798

parameters (usually the estimate of θ at the previous iteration denoted as θ̂ (k)), and y and x are the

observed and unobserved data, respectively. Ibrahim [5] worked out the details of the EM algorithm

in the context of generalized linear models, facilitating the fitting of logistic regression models with

missing values.

Stevens and Schlipalius [6] first analyzed the beetle data using an implementation of the EM

algorithm to obtain parameter estimates from the maximized likelihood. They estimated the asymp-

totic variance-covariance matrix of the parameter estimates by direct calculation of the information

matrix [7]. The estimated parameters were used to calculate median lethal doses (LD50) and corre-

sponding 95% inverse and Fieller intervals. The authors noted that for genotypes -/A and +/B the

fitted dose-response curves appeared to “jump” steeply, either between, or at observed doses. Ad-

ditionally, the variance estimates for the dose-response curve parameters for these genotypes were

extremely large. As a result, the inverse intervals were large and the Fieller intervals did not exist.

1.2 Separation of Points, Firth Logistic Regression, and Bias Reduction

In a subsequent analysis of the beetle data by Rounds [8], he noted that complete or quasi-

complete separation of the data was the likely cause of the inflated standard error estimates of

Stevens and Schlipalius [6]. Complete separation of points occurs when the predicted probability of

all events is greater than the predicted probability of every non-event. Quasi-complete separation of

points occurs when the predicted probability of every event is greater than or equal to the predicted
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probability of every non-event. When such separation is present, maximum likelihood estimates of

parameters do not exist or are not unique [9]. When fitting models to data with separation, pre-

dicted probabilities numerically approach 0 or 1 and the likelihood converges while the parameter

estimates do not.

The model fit in Stevens and Schlipalius [6] demonstrates examples of both types of separation.

The predicted probability of death for beetles with genotype -/A was (practically) zero for all doses

up to and including 10 µg/L of phosphine which also correspond to doses were surviving beetles

from genotype -/A were observed (see Table 1.1). No surviving -/A beetles were observed at the

next higher dose, 50 µg/L, of phosphine. Therefore, all surviving beetles are assumed to have

received lower doses than all dead beetles for the genotype -/A (i.e. complete separation of points).

In the case of genotype +/B, the predicted probability of death was zero for all observed doses up

to and including 10 µg/L of phosphine. Some surviving +/B beetles were observed at 50 µg/L and

the predicted probability of death was approximately 0.69. At the next observed dose, 100 µg/L,

there were no observed surviving beetles with genotype +/B and the predicted probability of death

was one. Therefore, all surviving +/B beetles received doses lower than or equal to those received

by all dead +/B beetles (i.e. quasi-complete separation of points).

Separation of points can be viewed as an extreme case of another problem: bias in logistic

regression estimates. With finite samples, the maximum likelihood estimate of the slope term from

logistic regression is over-estimated, resulting in predicted probabilities closer to 0 and 1 than the

truth. The more extreme the predicted risk, the larger the bias becomes. In the case of complete

separation of points, all observations have extreme risk and the estimates are biased towards infinity.

Firth [10] introduced a penalty on the likelihood with the primary goal of reducing bias in max-

imum likelihood estimates from generalized linear models, including logistic regression. Heinze

and Schemper [11] showed that this same penalty is a good solution to the problem of separation

of points. In addition to reducing bias, another convenient side effect of the penalty term in logistic

regression is that it also reduces the estimated standard error of the parameters. The penalty term

forces the estimated probabilities closer to 0.5 compared to the traditional model. Due to the rela-

tionship between the mean and variance of a binomial random variable, the standard error estimates
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are also smaller. While the Firth penalty has predominantly been used as a remedy for separation of

points, it could argued that this penalty should be used in all logistic regression models.

Dempster et al. [4] stated and Green [12] later proved that including a penalty term G in Q

during the “M” step of the EM algorithm yields the maximum penalized likelihood estimate:

Qpen(θ | θ ′) = Q(θ | θ ′)+G(θ) (1.2)

Rounds [8] proposed a penalized EM algorithm to overcome the challenges encountered by Stevens

and Schlipalius [6] in their analysis of the beetle data. Instead of maximizing the standard binomial

likelihood from logistic regression, he maximized the likelihood with a Firth penalty. While un-

necessary, in the “E” step of the penalized EM algorithm, he planned to take the expectation of the

conditional log likelihood with the penalty:

Qpen(θ | θ ′) = E(L (θ | x)+G(θ) | y,θ ′), (1.3)

He found this to be analytically intractable because the penalty was a function of the missing data.

Therefore, a modified estimate of the expected value was used in place of the true expected value

without sufficient justification. The modification was to use the parameter estimates from the pre-

vious iteration for the penalty term, inadvertently making it equivalent to the proposed method of

Dempster et al. [4].

1.3 Mixtures of Logistic Regression Models

Stevens and Schlipalius [6] and Rounds [8] viewed the beetle data as an application of logistic

regression with missing categorical covariates. The logistic regression model they chose included

interaction terms between genotype and both the intercept and slope terms of the logistic regression

model. In the event of no missing data, this is no different than fitting individual dose-response

models to each genotype. Wang and Puterman [13] described the EM algorithm for the special

case of logistic regression models where the missing data were the latent class membership of each

(and every) observation. Redner and Walker [14] identified different types of mixture models that
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they distinguished by the extent of partial observation of the class membership in the data. Thus,

a different way to characterize the beetle data is in terms of a mixture model where component

membership is observed for a subset of the subjects. Following the framework of Redner and

Walker [14], the beetle data can be modeled as a Type 4 mixture of logistic regressions, which is

presented later in Equation 2.4.

1.4 Confidence, Prediction, and Inverse Intervals

Confidence intervals, prediction intervals, and inverse intervals are traditionally derived from

the asymptotic variance-covariance matrix of the parameters [15]. This is done by calculating either

the observed, or expected (Fisher’s), information matrix and negating its inverse. Variance estimates

for the raw parameters are taken directly from the diagonal elements of the variance-covariance ma-

trix. Variance estimates for predicted values and their corresponding doses can be calculated by

applying the delta-method to the variance-covariance matrix. The sampling distribution for the

parameter estimates is assumed to be normal, and confidence intervals are chosen to match the cor-

responding quantiles. The resulting Wald-type intervals are symmetric about the estimated quantity.

Additionally, Fieller intervals, asymmetric inverse intervals based on the distribution of the ratio of

the intercept relative to the slope, can also be calculated using the asymptotic variance-covariance

matrix [16]. While Fieller intervals are preferred over Wald-type inverse intervals, they do not

always exist.

In their analyses of the beetle data, Stevens and Schlipalius [6] and Rounds [8] calculated

traditional Wald-type confidence intervals for the parameter estimates. As mentioned above, they

calculated the asymptotic variance-covariance matrix via the methods of Oakes [7]. Stevens and

Schlipalius [6] also used the asymptotic variance-covariance matrix from the traditional EM algo-

rithm together with the delta method to construct confidence and inverse intervals on the predicted

mortality from the dose-response curves. Fieller intervals were constructed but did not exist for

the two genotypes that displayed steep dose-response curves. While Rounds [8] did not calculate

inverse or prediction intervals, he did carry out a small simulation study to evaluate the coverage

probability of the confidence intervals on the parameters. He observed that reliance on the asymp-
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totic normality of the sampling distribution of the parameters was not entirely justified. Specifically,

the coverage probability of the Wald-type confidence intervals on the model parameters was low.

Hudson [17] proposed an alternative to Wald’s method for constructing confidence intervals of

single parameter distributions that he called likelihood intervals. His method consisted of “drawing

a horizontal line across the graph of the likelihood function.” The value of the horizontal line

is generally chosen to correspond to the critical value of the likelihood ratio test. The method

for getting likelihood intervals can be generalized to probability distributions involving more than

one parameter by likelihood profiling. While called “maximum relative likelihood” by Kalbfleish

and Sprott [18], and “the maximized likelihood” by Patefield [19], the “profile likelihood” is the

likelihood function of a parameter of interest, calculated by optimizing over all other (nuisance)

parameters.

Like Wald-type confidence intervals, profile likelihood-based confidence intervals are also ap-

proximate. However, because profile likelihood-based confidence intervals depend on the asymp-

totic distribution of the likelihood ratio, they are often preferred over Wald-type confidence intervals

which rely on the asymptotic normality of the individual parameter estimates [20]. This may be par-

ticularly true when the sample size is small or when an estimate is near a boundary of the parameter

space [21] as is the case with the beetle data. Specifically, Heinze and Schemper [11] showed that

profile likelihood-based confidence intervals are often preferred for penalized (Firth) logistic re-

gression. Even with the penalized model, such intervals are likely to suffer from the small effective

sample size of some of the less abundant mixture components. Profile likelihood-based confidence

intervals are also invariant to reparameterization [21, 22].

Profile likelihood-based confidence bands have been calculated, but only in the absence of

missing data. Based on earlier work (see Bjørnstad [23] for a review), Kreutz et al. [24] explored the

prediction profile likelihood and obtained confidence bands on predictions from complicated mod-

els. To obtain confidence bands based on likelihood profiling, one must maximize the likelihood,

subject to the constraint that the parameters yield a predicted value of interest. If the constrained

maximum likelihood is significantly lower than the unconstrained maximum likelihood, then the

predicted value of interest is outside of the profile likelihood-based confidence interval. A grid
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search on predicted values can be carried out to find the endpoints of the interval.

Similarly, profile likelihood-based inverse intervals have been calculated in the absence of

missing data. For example, Williams [25] proposed calculating confidence intervals on LD50 using

likelihood profiling and Alho and Valtonen [26] extended these results to include inverse intervals

for dose response models with additional covariates and arbitrary predicted risk. For an inverse

interval on LD50, the likelihood is maximized subject to the constraints that the dose is fixed to yield

a predicted probability of 50%. If the fixed dose value yields a constrained maximum likelihood that

is significantly different from the unconstrained maximum likelihood, then it is outside the profile

likelihood-based inverse interval on LD50. Profile likelihood-based inverse intervals may have lower

coverage probability compared to Fieller intervals, but they always exist [26].

Obtaining profile likelihood confidence, inverse, and prediction intervals requires constrained

optimization. Because logistic regression is a generalized linear model, only linear constraints of

the parameters are needed for likelihood profiling of predicted probabilities and their corresponding

inverse intervals. Kim and Taylor [27] demonstrated that, using the restricted EM algorithm, one

can maximize likelihood functions with missing values and linear constraints on the parameters. As

an example they found profile likelihood-based confidence intervals on the parameters of a model

with missing data within the context of the EM algorithm.

1.5 Outline

Various challenges were encountered in previous analyses of the beetle data; although, signifi-

cant progress has been made. This dissertation will extend these methods to provide better inference

on, and interpretation of, the quantities of interest. In chapter 2, the methodological details for the

implementation of a mixture of penalized (Firth) logistic regressions and the construction of the

corresponding Wald-type and profile likelihood-based confidence, prediction, and inverse intervals

will be described. In chapter 3, the developed methods will be applied to the beetle dataset and an-

other similar real dataset. Chapter 4 focuses on a simulation study of different scenarios to improve

the experimental approach of the previous dosing studies in which the bias of the Firth logistic re-

gression mixture model and the coverage probabilities of the confidence and inverse intervals will
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be assessed. Chapter 5 concludes the dissertation with a discussion of the benefits, limitations, and

extensions of, and the alternatives to, the described methods.
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CHAPTER 2

MIXED FIRTH LOGISTIC REGRESSION

This chapter develops the proposed model in detail and describes the algorithm that can be used

to fit it. Similarly, the various confidence intervals and methods to calculate them are explained.

2.1 Model Details

Let yi j be a realization from a binary random variable whose generating distribution is a mixture

of m logistic regression models. We assume that the relationship between the probability of an event

for observation j of class i with covariate vector xi j follows the formula,

πi j =
1

1+ exp−xi jβi
, (2.1)

where βi is a vector of logistic regression parameters, for class i.

The corresponding probability density function for a single class is

pi(yi j | βi) = (πi j)
yi j (1−πi j)

1−yi j , (2.2)

where yi j is the binary event outcome for subject j from class i.

Following Redner and Walker [14], and letting α be the class mixture probabilities, we define

p(yi j | α,β ) =
m

∑
i=1

αi pi(xi j | βi). (2.3)

Then, the log-likelihood of this Type 4 mixture model [14] is:

L (α,β ) =
N0

∑
j=1

log p(y0 j | α,β )+
m

∑
i=1

Ni

∑
j=1

logαi pi(yi j | βi)+ log
N!

N0! · · ·Nm!
, (2.4)

where Ni is the number of subjects from each class i and class i = 0 refers to unlabeled subjects.
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2.2 Estimation via the EM Algorithm

This section describes the details for implementing an EM algorithm for a mixture of penalized

firth logistic regression models.

2.2.1 Initialization

In practice, multiple sets of starting values for the parameters being fit by the EM should be

used to ensure that a global maximum is achieved. However, it is convenient to initialize β at zero

and α uniformly across classes, and this approach appears to function well in practice (e.g. Chapter

3).

2.2.2 Expectation

The expected conditional log-likelihood function for an unpenalized mixture is

Q(α,β | α ′,β ′) =
m

∑
i=1

[
Ni +

N0

∑
j=1

α ′i pi(y0 j | β ′i )
p(y0 j | α ′,β ′)

]
logαi

+
m

∑
i=1

[
Ni

∑
j=1

log pi(yi j | βi)+
N0

∑
j=1

log pi(y0 j | βi)
α ′i pi(y0 j | β ′i )
p(y0 j | α ′,β ′)

]
. (2.5)

Following Dempster et al. [4] and Green [12], for penalized maximization, the expected con-

ditional log-likelihood can be replaced with

Qpen = Q+
m

∑
i=1

Ji (2.6)

where the Firth penalty, Ji, is

Ji =
1
2

∣∣XT diag{W}X
∣∣ , (2.7)

X =

X0

Xi

 , (2.8)
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where Xi is a matrix with rows comprised of xi j, for j = 1, . . . ,Ni, and

W =

W0

Wi

 , (2.9)

where W0 and Wi are vectors comprised, in order, of

W0 j =
α ′i pi(y j | φ ′i )

p(y j |Φ′)
π j(1−π j), (2.10)

for j = 1, . . . ,N0, and Wi j = 1, for j = 1, . . . ,N0.

2.2.3 Maximization

At each “M” iteration of the algorithm, the mixing probabilities, αi, are maximized directly in

the following way:

α
+
i =

1
Ni

Ni

∑
k=1

α ′i pi(y0 j | β ′i )
p(y0 j | α ′,β ′)

. (2.11)

This is not different than the “M” step for the mixing probability of an unpenalized logistic regres-

sion model because α does not appear in J.

The logistic regression parameters, βi, are found according to

β
+
i ∈ argmaxβi

Ni

∑
j=1

log pi(yi j | βi)+
N0

∑
j=1

log pi(y0 j | βi)
α ′i pi(y0 j | β ′i )
p(y0 j | α ′,β ′)

+ Ji. (2.12)

This is just a Firth logistic regression with weighted observations [8]. This maximization can be car-

ried out by the Newton-Raphson method described in Heinze and Schemper [11] and implemented

in any software that performs Firth logistic regression. Then the updated vector of parameter pro-

posals for the next iteration is θ ′ = (α+,β+).

2.2.4 Convergence

The algorithm is repeated until the differences in subsequent θ are less than some small value

(e.g. 1×10−5 in the application in Chapter 3).
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2.3 Asymptotic Variance-Covariance Matrix

Following Oakes [7], the observed information matrix of the model parameters is a function of

the sum of two matrices of second partial derivatives of Q:

−I(θ) =
∂ 2L (θ ,y)

∂θ
2 =

{
∂ 2Q(θ | θ ′)

∂θ
2 +

∂ 2Q(θ | θ ′)
∂θθ

′

}
θ
′=θ

. (2.13)

The asymptotic variance-covariance matrix Σ is then the inverse of the observed information. That

is, Var(θ) = [−I(θ)]−1. While the matrix involves multiple derivatives it can be calculated com-

putationally via a computer algebra system like Maple. As mentioned in Firth [10] the first order

approximation of the asymptotic variance-covariance matrix for the penalized logistic regression

model is the same as that of the traditional logistic regression model in that it excludes the penalty

term. Therefore the penalty is excluded here as well.

2.4 Intervals Based on Asymptotic Variance-Covariance Matrix

In this section details for calculating confidence and inverse intervals and confidence bands

based on the asymptotic variance-covariance matrix will be described.

2.4.1 Confidence Intervals on Parameter Estimates

Where Σ = Var(θ̂), a 1−α Wald-type confidence interval on an individual parameter θl is

calculated straightforwardly as θ̂l± z1− α

2
Σll , where σll is the diagonal element of Σ corresponding

to θl .

2.4.2 Confidence Bands on Predicted Probability

Let β0 and β1 be the, respective, intercept and slope from a single-class logistic regression

model. The most appropriate scale for normality of the predicted value is that of the linear predictor

or dose:

LDπ =
log( π

1−π
)− β̂0

β̂1
, (2.14)

where LDπ is the dose needed to achieve predicted probability π .
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Therefore a 1−α% confidence band for π can be calculated in the following way:

logit−1

LDπ ± z1− α

2

(
1 LDπ

)
Σβ0β1

 1

LDπ


 , (2.15)

where Σβ0β1 is the portion of Σ = Var(θ̂) corresponding to β0 and β1, and logit−1(v) = (1+e−v)−1.

2.4.3 Inverse Intervals

Following Stevens and Schlipalius [6] and by the delta method, the first order approximation

of the Wald-type inverse interval for LDπ is:

LDπ ± z1− α

2

√√√√√√ 1
β 2

1

(
1 LDπ

)
Σβ0β1

 1

LDπ

 (2.16)

2.4.4 Fieller Intervals

A 1−α% Fieller interval [16] for LDπ can be calculated in the following way:

−

(
β̂0
∗
β̂1−χ2

1−α
σ

β̂0
∗
β̂1

)
±
√

(β̂0
∗
β̂1−χ2

1−α
σ

β̂0
∗
β̂1
)2− (β̂0

∗2−χ2
1−α

σ
β̂0
∗
β̂0
∗)(β̂1

2−χ2
1−α

σ
β̂1β̂1

)

β̂1
2−χ2

1−α
σ

β̂1β̂1

,

(2.17)

where β̂ ∗0 = log( π

1−π
)− β̂0 and σab = Cov(a, b).

2.5 Profile Likelihood-Based Intervals

In the context of the EM algorithm there is no closed form for the profile likelihood. Therefore,

in order to evaluate a single point on a profile likelihood one must be able to maximize the likelihood

subject to a constraint on the parameter(s) of interest. In the case of logistic regression and the

types of confidence intervals to be calculated in this dissertation, only linear constraints are needed.

In practice, a constraint on a likelihood is no different than a penalty within the EM algorithm.

Therefore, like the Firth penalty, linear constraints can be applied to Q during the “M” step and the

desired result will be obtained.
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2.5.1 Linear Constraints within the EM Algorithm

Kim and Taylor [27] described a method for applying linear constraints to parameters within

the EM algorithm. Such constraints can be used to carry out likelihood ratio based hypothesis tests

based on linear combinations of parameter estimates or to profile the likelihood with respect to

parameters of interest.

Following the methods of Kim and Taylor [27], let

Aθ = a (2.18)

represent a linear constraint on the parameter vector θ . The constrained maximum likelihood esti-

mate is found by calculating the restricted estimate from the unrestricted estimate at each iteration

of the EM algorithm:

θ R(l +1) = θU(l +1)[θ R(l)]+ I−1
U AT (AI−1

U AT )−1(a−AθU(l +1)[θ R(l)], (2.19)

where θ R(l) and θU(l) are, respectively, the restricted and unrestricted estimates and IU the cor-

responding information matrix at iteration l. In the context of the current study, the unrestricted

estimates are those found by penalized (Firth) logistic regression for the given “M” step.

In order to calculate the different types of intervals of interest, one only needs to change the

constraint in Equation 2.18.

2.5.2 Confidence Intervals on Parameters

In the “M” step of the EM algorithm we apply Kim and Taylor [27]. The constraint required is

that the single parameter of interest be fixed. Consider the profile likelihood

LP(θl | y) = max
θ j 6=l

L (θ | y). (2.20)

Thus a 1−α% confidence interval on a single parameter θl is:

CI1−α(θl | y) = {θl | −2(LP(θl | y)−L (θ̂ | y))≤ χ
2
1
−1
(1−α)}. (2.21)
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2.5.3 Confidence Bands and Inverse Intervals

The same constraint is used for calculating both inverse intervals and confidence bands. The

difference between the two processes is that in the case of prediction intervals the predicted prob-

ability z is the parameter; while, the dose s is the parameter of interest for the inverse interval. In

other words, the prediction profile likelihood is:

LP(z | s) = max
θ∈{θ |π(βi,x=s)=z}

L (y | θ) (2.22)

and the inverse interval profile likelihood is:

LP(x | z) = max
θ∈{θ |π(βi,x)=z}

L (θ | y), (2.23)

where π(βi,x) is Equation 2.1.

2.5.4 Interval End-Point Location

While the preceding sections described the mathematical definition of the various intervals,

they do not suggest an obvious way to find their endpoints. Two variations on a grid search are

described here. Although simple, they are not very inefficient (see Chapter 5 for discussion on other

alternatives).

To begin, an appropriate step size for the parameter of interest must be selected. Then the

model is refit, with the parameter constrained at sequential fixed values in each direction, starting

from the maximum penalized estimates. To avoid numerical problems, at each new iteration, the

initial values for all parameters in the model can be set to the fitted values from the previous iteration.

This is repeated until the profile likelihood corresponding to the proposed parameter value drops

below a desired level. Then either the endpoint can be interpolated from the resulting grid of values

or step halving can be used to locate the endpoint at the desired precision.
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CHAPTER 3

APPLICATION TO REAL DATA

In the previous chapter the algorithms for fitting mixtures of Firth logistic regressions and for

calculating confidence and inverse intervals and confidence bands were described. Here, they will

be applied to two real datasets. While the datasets are both from dose-response experiments on

beetles, the methods extend beyond these limited examples (see Chapter 5 for more discussion).

3.1 Rhyzopertha dominica

Rounds [8] characterized the Rhyzopertha dominica data (see Table 1.1) as a logistic regression

with missing categorical covariates and he fit both a penalized and an unpenalized version. For the

sake of completeness and to illustrate that the results are the same, this will be repeated in the

context of a mixture of logistic regressions. In addition to the problem of separation, Rounds [8]

also noted that the assumption of approximate normality of parameter estimates was probably not

met for the penalized model. In this section this will be explored through likelihood profiling and

the calculation of profile likelihood-based intervals.

3.1.1 Penalized (Firth) Logistic Regression Mixtures

The unpenalized and penalized mixtures of logistic regression models were applied to the

motivating dataset. The parameter estimates controlling the shape of the dose-response curves can

be found in Figure 3.1. These results are identical to those of Rounds [8]. The mixing probabilities

(α) are similar for the two models. However, the slope (β0) and intercept (β1) terms are different for

some of the genotypes. For genotype +/B, the estimates for β0 and β1 decreased from 89.1 and 30.2

to 11.1 and 3.4, respectively. Similarly, for genotype -/A, the decreases were from 107.8 and 29.8

to 13.5 and 3.3. These differences in parameter estimates translate to dramatic differences in the

predicted dose-response curves between the penalized and unpenalized models. In Figure 3.2 the

curves corresponding to +/B and -/A genotypes are notably less steep for the penalized fit compared
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to the unpenalized fit. The penalized fit does appear to remove the problem of separation that was

observed in the traditional fit.

3.1.2 Likelihood Profiling and Profile Likelihood-Based Intervals

One consequence of non-normality of parameter estimates is asymmetry of the log-likelihood

around the maximum likelihood, which otherwise would be parabolic. To some degree, the likeli-

hood profile displays the shape of the likelihood function in the neighborhood and in the marginal

direction of individual parameters. This will be illustrated for multiple parameters of interest.

3.1.2.1 Confidence Intervals on Model Parameters

First, likelihood profiles of individual parameters were examined. The parameter estimates

from the penalized mixture model were exported to Maple and the asymptotic variance-covariance

matrix was calculated as the inverse of Equation 2.13. The likelihood of the penalized model was

profiled with respect to each of the model parameters, one at a time. Profiling was carried out at

equally spaced intervals of 0.05 times the asymptotic standard error. The likelihood was profiled in

each direction until it dropped below 4 units less than its maximum.

The profiled log-likelihood of the dose-response curve parameters can be found in Figure 3.3.

The profiles for the intercept (β0) and slope (β1) parameters are clearly asymmetric for multiple

genotypes. Even the mixing proportion (α) is slightly asymmetric for the least frequent genotype,

+/A.

As was described in Section 2.5, profile likelihood-based 95% confidence intervals for the

parameter estimates were calculated by locating the parameter values where each of the profiles

in Figure 3.3 cross a horizontal line at 997.38, which corresponds to L (α,β )− χ2
1
−1
(0.95)/2.

Further, the asymptotic variance-covariance matrix was used to calculate Wald-type intervals for

each of the parameters (as from Section 2.4).

Wald-type and profile likelihood-based confidence intervals are compared in Figure 3.4. While

all the Wald-type intervals are, by definition, symmetric about their estimates, many parameters

have asymmetric profile likelihood-based confidence intervals.
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3.1.2.2 Inverse Intervals

To further illustrate the utility of likelihood profiling, dose (i.e. inverse probability) was another

quantity with respect to which the penalized likelihood from the mixture model was profiled. For

each genotype, the dose was constrained to yield predicted mortalities of 0.5, 0.75, 0.9, 0.95, and

0.99. The step size for inverse probability was set to 0.01. The likelihood was profiled in each

direction until the penalized likelihood dropped 4 units below its maximum. Inverse intervals were

calculated from the profiled likelihoods. So too, were Wald-type and Fieller intervals from the

asymptotic variance-covariance matrix.

Likelihood profiles for lethal doses of interest are shown in Figure 3.5. Although not to the

degree of the model parameters, these profiles also display some asymmetry. The profile of LD95 for

genotype +/B is not smooth like the rest of the profiles. This was caused when, during profiling, the

likelihood either converged to a local maximum or it failed to fully converge before the algorithm

terminated.

Wald-type, Fieller, and profile likelihood-based inverse intervals are shown in Figure 3.6. The

slope term was not significant for genotype +/A in the penalized model. As a result, Fieller intervals

were not able to be calculated for this genotype. Otherwise, Fieller and profile likelihood-based

inverse intervals were similarly asymmetric, with the Fieller intervals being slightly more so in a

few cases (e.g. LD99 for genotypes -/A and +/B).

3.1.2.3 Confidence Bands

As a final, slightly more complex, example of likelihood profiling, the model was refit with

the predicted mortality as the parameter of interest for constraint. For each genotype, the predicted

mortality was constrained at values equally spaced on the logit scale from −5 to 5, corresponding

to predicted probabilities ranging from approximately 0.0067 to 0.9933. For each constrained pre-

dicted mortality value the model was refit, every 0.1 units on the logit scale. Confidence bands were

extracted from the profiled likelihood, one predicted value at a time.

Figure 3.7 plots the profiled likelihood as contours across all predicted probabilities and doses.

Relative to the predicted mortality, the likelihood is steeper for genotypes -/B and -/H, compared
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to other genotypes. These two genotypes represent the largest proportion of beetles in the dataset

(see Table 1.1 and Figure 3.1). The shape of the likelihood represents a combination of the number

of beetles at each dose and the degree to which the pattern of mortality fits the logistic regression

model.

Wald-type confidence bands were calculated according to Equation 2.15. Both the Wald-type

and profile likelihood-based confidence bands are shown in Figure 3.8. The confidence bands are

similar except for genotype +/A where the profile likelihood-based bands are more narrow. Very few

beetles from this genotype were treated at low doses. The Wald-type bands may not be as flexible as

the profile likelihood based bands and therefore do not reflect the changes in the likelihood surface

in this area.

3.2 Tribolium castaneum

In an experiment similar to that of Schlipalius et al. [1], Jagadeesan et al. [2] identified two

genomic locations (tc rph1 and tc rph2) linked with phosphine resistance in another grain pest

species, Tribolium castaneum. They treated 3,910 beetles of the F4 generation of a dihybrid cross

with one of 15 doses of phosphine. In this case, only a random subset of surviving beetles were

genotyped. Table 3.1 contains the data for this experiment.

3.2.1 Penalized (Firth) Logistic Regression Mixtures

Mixtures of traditional and penalized logistic regressions were fit to the Tribolium castaneum

data. Figure 3.9 compares the predicted dose-response curves from the unpenalized and penalized

models for each of the genotypes. Even with relatively closely spaced doses the genotypes ss/rr and

rr/ss show evidence of separation of points for the unpenalized model. All genotypes have slightly

more shallow dose-response curves for the penalized model.

The differences in dose-response curves are perhaps even more clear when the parameter esti-

mates for the models are examined (Figure 3.10). Similar to the Rhyzopertha dominica results, the

mixing probabilities (α) were comparable; however, the slope and intercept terms for all genotypes

are higher for the unpenalized versus the penalized fit. The change is greatest for genotypes ss/rr
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and rr/ss. The differences in slope and intercept terms for genotypes ss/rr and rr/ss translate into

differences in LD99.

3.2.2 Profile Likelihood-Based Intervals

The parameter estimates from the penalized mixture model were exported to Maple to cal-

culated the asymptotic variance-covariance matrix. However, numeric problems were encountered

during the calculation of some of the second partial derivatives of the parameters in Equation 2.13.

As an alternative, the step size for the intercept and slope parameters was based on the asymp-

totic variance-covariance matrix assuming no missing values and expected genotype frequencies

from the penalized fit. The step size for the mixing probability parameters was set to 0.1 on the logit

scale. After the first pass of profiling, step halving was used to find the endpoints of the intervals.

The same approach as with the Rhyzopertha dominica data was employed for step size selection

and profiling of inverse and predicted probabilities except that step halving was used to locate the

interval endpoints. Additionally, the only inverse intervals that were calculated were for LD99.

Profile likelihood-based confidence intervals on the parameters for the penalized fit on the

Tribolium castaneum data are shown in Figure 3.10. Likewise, estimates and intervals for LD99 are

located in the last panel of the same figure. While most of the intervals are basically symmetric,

those for the slope and intercept terms for genotypes ss/rr and rr/ss are not. This carries over to the

estimates for LD99 which are also quite asymmetric.

Profile likelihood-based confidence bands on predicted mortality for each of the genotypes

can be found in Figure 3.11. The upper and lower bands for genotype ss/rr are not as smooth as

those for the other genotypes. This may be due to the combination of small numbers of labeled

beetles, a steep dose-response curve, and only two closely spaced doses in the linear portion of the

dose-response curve for this genotype.

3.2.3 Pattern of Inheritance

As it seems reasonable that the penalized model is a better model than the traditional unpenal-

ized model (particularly in the presence of separation of points), it will be used to learn more about

the genetic inheritance of resistance to phosphine in Tribolium castaneum. If a resistance gene is
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dominant, only one copy of the allele is needed to confer resistance and the dose-response curves

for the heterozygous (sr) and homozygous resistant (rr) genotypes will not be different. Whereas

if the resistance gene is recessive, the heterozygous (sr) and homozygous sensitive (ss) genotypes

will have indistinguishable dose-response curves. Figure 3.12 reproduces the dose-response curves

for the penalized fit. It can be used for a visual assessment as to which of these cases, if either, is

correct.

The methodology of Chapter 2 can be used to construct hypothesis tests to help determine the

inheritance pattern of phosphine resistance. Constraints can be introduced to force the slope and
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intercept parameters to be equal across groups of genotypes.

For each of the two genes, two additional models were fit with linear constraints on β0 and

β1, thus allowing to carry out the aforementioned hypothesis tests. A penalized likelihood ratio test

was carried out for each model compared to the unconstrained model. The tests comparing sr and

rr were highly significant for both tc rph1 (Λ = 98.5, df = 6, p-value = 5.3× 10−19) and tc rph2

(Λ = 286.8, df = 6, p-value = 5.4× 10−59). However, across the genotypes of tc rph2, the dose-

response curves corresponding to the homozygous sensitive and heterozygous genotypes of tc rph1

were not significantly different (Λ = 8.3, df = 6, p-value = 0.22). On the other hand, the differences

between the dose-response curves corresponding to the homozygous sensitive (ss) and heterozygous

genotypes (sr) of tc rph2 were small and only moderately significant (Λ = 14.0, df = 6, p-value =

0.029).

These results suggest that there is insufficient evidence to claim that tc rph1 has anything but a

recessive pattern of inheritance. While there is much more evidence that the homozygous resistant

(rr) genotype of tc rph2 is different from the heterozygous (sr) genotype, there is also some evidence

that the homozygous sensitive (ss) genotype is different from the heterozygous (sr) genotype. This

indicates that tc rph2 may have an intermediate mode of inheritance.

3.3 Discussion

A penalized (Firth) logistic regression mixture model was applied to two dose-response exper-

iments on stored grain pests. The penalized model appears to be a better representation of the true

phenomenon underlying the data compared to an unpenalized model. In both the Rhyzopertha do-

minica and the Tribolium castaneum experiments, the penalized model solved the apparent problem

of separation of points, counteracting the irrationally steep behavior of a couple of the dose-response

curves, in each case. Of particular note to the applied scientist, the differences between the two mod-

els are most extreme in the cases of extreme predicted mortality. One of the main goals for insect

pathologists is to estimate the minimum dose necessary to kill virtually all individuals. For these

datasets the estimates for LD99 were very different for the two models.

Profile likelihood-based intervals were calculated for model parameters, inverse probability
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(dose), and predicted mortality. In many cases (although more so in the Rhyzopertha dominica data),

these intervals were asymmetric, suggesting that the inflexible Wald-type intervals are inadequate.

Due to the fact that profiling is more flexible in its representation of the non-parabolic shape of the

likelihood near its maximum, these intervals are preferred over the traditional Walt-type intervals.

Computational challenges were encountered while calculating both the Wald-type and profile

likelihood-based intervals. In the Tribolium castaneum data, some elements of the information ma-

trix were undefined. One of the primary goals of developing the profile likelihood-based intervals

methods was to avoid the mathematical analysis necessary for calculating standard errors. There-

fore, understanding and solving this problem was not pursued. That is, the availability of the profile

likelihood-based confidence intervals provided a useful alternative to the problematic Wald-type

intervals. In the Rhyzopertha dominica data, there was some evidence of incomplete convergence

while profiling dose for one of the genotypes. Smaller step sizes, different initial values, or more

restrictive convergence criteria could be applied to prevent this problem.

Applying the method of linear constrained optimization to the penalized EM algorithm not

only made profiling possible but it also enabled the execution of some interesting hypothesis tests

in the Tribolium castaneum data. These hypothesis tests were used to facilitate the understanding

of the pattern of heredity of phosphine resistance.

Some factors, within the control of the researchers, were different between the designs of the

Rhyzopertha dominica and Tribolium castaneum dosing experiments. For example, even though the

lethality of phosphine is on the same order for the two species, the number and spacing of doses

differed. There were more doses that were more uniformly spaced in the Tribolium castaneum

experiment. Additionally, the number of beetles assigned to each dose was more uniform in the

second experiment. While none of the genotypes of the dead beetles were determined, all live

beetles were genotyped in the first study and only a random portion in the second. These, and other

factors, can be manipulated to improve the experimental design to yield more information without

changing the size of the study.

While there is sufficient evidence to argue that the mixture of penalized logistic regressions and

profile likelihood-based intervals are better than their traditional counterparts for these two beetle
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datasets, it is not obvious in what other circumstances they would be preferred. In Chapter 4 other

potential situations will be explored through simulation.
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CHAPTER 4

SIMULATION STUDY

In Chapter 3, two mixture models of logistic regressions, unpenalized and penalized, were

each fit to data from two similar dose-response experiments. Wald-type and profile likelihood-

based confidence intervals were also calculated. Results were compared between the traditional and

penalized mixtures and between the Wald and profile confidence intervals. Differences between

these pairs of methods were observed. While the proposed methods appeared reasonable, it is

impossible to determine, from these datasets alone, which methods are closer to the truth than the

traditional methods. Additionally, the strategy used to label subjects in the two experiments was

nearly the same and was limited to live beetles.

In this chapter simulation will be used to simultaneously expand the variety of situations where

the methods can be applied and determine which methods produce more reliable results. The bias of

the two mixture models’ point estimates and the coverage probability of the corresponding intervals

will be assessed.

4.1 Simulations

A simplified version of the beetle designs from Chapter 3 served as the base scenario for

all simulations. The theoretical population of beetles consisted of two genotypes found at equal

proportions. One hundred beetles were randomly assigned to each of 10 doses that were equally

spaced on the log scale (1:2 serial dilutions starting from 1000µg/L). The total number of beetles

in the study was 1000 individuals. The base scenario will be referred to as scenario A.

4.1.1 Number and Spacing of Doses

The base scenario was modified three ways to alter the number and spacing of doses. First, the

number of doses was doubled by including doses midway between each of doses used in the base

scenario (3:2 serial dilutions starting from 1000µg/L). Each dose was administered to 50 beetles.
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This is scenario B. For scenario C, four-fold dilutions were used to yield 5 doses. Two-hundred

beetles were treated with each dose in order to keep the total number of beetles the same. The last

dosing scenario, scenario D, kept the number of doses at 10, but rather than making them uniform

on the log scale the doses were closer together at low doses and further apart at high doses (doses at

0.002, 0.003, 0.004, 0.006, 0.010, 0.016, 0.027, 0.053, 0.125, and 1 µg/L) .

4.1.2 Allocation of Observations to Doses

Further modifications of the base design changed the allocation of beetles away from uniform.

In one scenario more beetles were treated with low doses. Beetles were assigned to doses starting

with 190 at the lowest dose and decreasing the number of beetles by 20 at each dose down to 10

beetles at the highest dose (scenario E). The opposite was done to create a scenario where more

beetles received the highest doses (scenario F).

4.1.3 Prototypical Genotypes

Genotypes from the Rhyzopertha dominica study were used as prototypes for the relationship

between phosphine dose and survival. The fitted dose-response curves were used to simulate the

number of dead subjects for each dataset. For each scenario described above, five combinations of

genotype pairs were simulated: one sensitive and one moderately resistant genotype (-/H and -/A),

one sensitive and one highly resistant genotype (-/H and +/A), two moderately resistant genotypes

(-/A and +/B), one moderately resistant and one highly resistant genotype (-/A and +/A), and two

highly resistant genotypes (+/H and +/A).

4.1.4 Selection of Subjects for Labeling

For every scenario and pair of prototypical genotypes two approaches for labeling the geno-

types were employed. First, to be consistent with the two real studies, the genotypes of all dead

beetles were censored. Alternatively, only the labels for a random number of beetles at each dose,

equal to the number of surviving beetles at the dose, were retained.
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4.1.5 Model Fitting and Summarization

For each of the 30 combinations of 6 scenarios and 5 pairs of prototypical genotypes, 1000

datasets were simulated. Both labeling procedures were applied to each dataset. In all, 60,000 par-

tially labeled datasets were produced. The methods from Chapter 1 were applied to each simulated

dataset and labeling approach. Mixtures of traditional and penalized logistic regressions were fit

to each dataset. The average of each parameter estimate was calculated across replicate datasets.

For the penalized model fits, Wald-type and profile likelihood-based confidence intervals were cal-

culated for all the dose-response parameter estimates. Additionally, the LD99 and corresponding

Fieller, Wald-type, and profile likelihood-based inverse intervals were calculated. The coverage

probability of these intervals was determined for each set of replicates.

4.2 Results

Figures 4.1 and 4.2 each show examples of the penalized and unpenalized models fit to 100

datasets selected from the simulated study. Both figures display data simulated from scenario C,

where 5 equally spaced doses were each administered to 200 subjects. Additionally, both label-

ing strategies are shown. In order to visualize all model parameters in a single graph (including

the mixing probability), the predicted proportion of total dead beetles is plotted instead of the pre-

dicted mortality. In Figure 4.1, the subjects were drawn from a theoretical population consisting

of half sensitive (-/H) and half highly resistant (+/A) genotypes. Fitted dose-response curves from

two moderately resistant genotypes (-/A and +/B) are shown in Figure 4.2. These two plots pro-

vide a reference for illustrating examples of trends found across the 28 additional combinations of

scenarios and pairs of prototype samples where 1000 datasets were simulated.

4.2.1 Separation of Points and Bias

The average parameter estimates for all the simulated data are plotted in Figure 4.3.

The slope and intercept terms tend to be biased in the same direction, in effect keeping the

inflection point of the dose-response curves centered on the true value across the four combinations

of labeling strategies and models. The slope and intercept terms are unbiased for the penalized fit

regardless of the labeling strategy (e.g. Figure 4.2) except for in the case of the sensitive genotype
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Fig. 4.1: Examples of penalized and unpenalized models fit to 100 simulated datasets with two
labeling strategies. The datasets were simulated from scenario C, where five equally spaced doses
were each assigned to 200 random subjects from an equally mixed population of sensitive (-/H) and
highly resistant (+/A) genotypes.
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labeling strategies. The datasets were simulated from scenario C, where five equally spaced doses
were each assigned to 200 random subjects from an equally mixed population of two moderately
resistant genotypes (-/A and +/B).
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Fig. 4.3: Comparison of penalized and unpenalized parameter estimates averaged across replicates
within each simulation scenario (A-F) and labeling strategy.
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(-/H, e.g. Figure 4.1). There is an extremely high chance of separation of points for this genotype.

The slope from the penalized model is less steep than the truth. Whereas, the unpenalized model

yields slope estimates that are much steeper than the truth with a much bigger magnitude than the

penalized estimates.

The mixing proportions are virtually unbiased when the alternative labeling strategy is em-

ployed. When only live beetles are labeled the mixing proportion can be biased. The penalized

model can be worse than the unpenalized model. For instance, genotype +/B in Figure 4.2, is es-

timated to be more abundant than expected under the “alive only” labeling strategy. The model

compensated by finding complete separation of points more often than it should have. With com-

plete labeling, approximately 1.5% of simulated datasets would have quasi-complete separation of

points for genotype +/B. However, when only live subjects were labeled, 38.7% of the unpenalized

fits showed evidence of separation. Although not as extreme, a similar increase was observed for

genotype -/A.

4.2.2 Confidence Intervals and Coverage Probability

There were numeric problems in calculating the asymptotic variance covariance matrix for

6773 of the 30,000 datasets where the “deceased and survivors” labeling strategy was used. These

numerical imprecisions were nearly exclusive to, but included almost all, simulations across all

scenarios involving the sensitive (-/H) and highly resistant (+/A) genotypes and approximately one

third of the simulations involving the sensitive (-/H) and moderately resistant (-/A) genotypes from

scenarios B and D.

Figure 4.4 shows the average coverage probability of both the Wald-type and profile likelihood-

based confidence intervals for both labeling strategies in every scenario. The coverage probability

for Wald-type confidence intervals on the mixing proportions is higher than 95% in virtually ev-

ery case. On the other hand, the coverage probabilities of the profile likelihood-based confidence

intervals for the mixing proportions are very close to 95%. In fact, the profile likelihood-based

confidence intervals tend to have better coverage (closer to 95%) than the Wald-type confidence

intervals for the slope and intercept parameters as well. The Wald-type confidence intervals have
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particularly low coverage in the cases where the penalized estimates were biased, for instance those

involving the sensitive genotype (-/H).

The sensitive genotype (-/H) also produces Fieller intervals on LD99 with very low coverage

probability (see Figure 4.5). Although it is not visible in the figure, neither the Wald-type nor the

profile likelihood-based intervals have superior coverage probability of the true LD99, for the other

genotypes.

4.3 Discussion

A simulation study was carried out to evaluate the performance of penalized (Firth) logistic

regression mixtures and profile likelihood based-confidence intervals over more traditional methods

in the context of dose-response experiments.

Separation of points and bias in the slope (and intercept) terms of dose-response curves occurs

when too few doses are applied to too few subjects in regions where the dose-response curve is

expected to be steep. The penalized model reduces or eliminates this problem. When only surviving

subjects are labeled the mixing proportion can also be biased. The penalized model does not appear

to fix this bias; however, the alternative labeling strategy (a random sampling of surviving and

deceased subjects) does.

Similar to the Tribolium castaneum analysis, problems with numerical precision were encoun-

tered when calculating the asymptotic variance-covariance matrix. While such calculations are

necessary for calculating both Wald-type and Fieller inverse intervals, profile likelihood-based in-

tervals avoid them and were able to be calculated. Additionally, the Wald-type and Fieller intervals

were more susceptible to small biases that remained in the penalized fit in extreme cases. Overall,

the profile likelihood-based intervals had better coverage probability than the traditional intervals.

While not fully examined here, there is some evidence that the width and symmetry of inter-

vals may be improved using the alternative labeling strategy (Figure 4.2). Additional simulation

studies and applications to real data should be used to explore the effect of other labeling strate-

gies, experimental designs, and sample size limitations on penalized logistic regression mixtures

and corresponding profile likelihood based intervals.
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Fig. 4.4: Comparison of average coverage of Wald-type and profile likelihood-based confidence
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CHAPTER 5

DISCUSSION

The Rhyzopertha dominica fumigation experiment provides an interesting dataset where a

novel combination of statistical methods can be applied. Perhaps the most obvious characteristic of

the data is that the genotypes of the beetles that died were unobserved. Additionally, the number of

events are not only extremely low and high, relative to the non-events for some doses, but there is

also evidence of complete or quasi-complete separation of the data. Low effective sample size and

parameter estimates near their boundaries also call into question the use of Wald-type confidence

intervals. The novelty of this dissertation is the simultaneous employment of the EM algorithm,

penalized (Firth) logistic regression, and likelihood profiling to overcome the challenge of missing

data, to ensure unique and consistent parameter estimates, and to obtain confidence intervals with

suitable coverage probability.

Previous to this dissertation, the beetle data had been characterized as a penalized logistic

regression model with missing categorical covariates. Here, a more natural characterization of a

mixture of penalized logistic regression models with partial labeling of the mixture components

was used. Both the mixture of penalized logistic regression models and the partial labeling of

logistic regression mixture components are novel applications. The benefits of the penalty were

illustrated in the presence of missing values using real data as well as simulations. For the first time,

profile penalized likelihood-based confidence intervals were calculated in the presence of missing

values. Additionally, profile likelihood based confidence bands and inverse intervals had never been

calculated in the mixture setting with or without the Firth penalty. These intervals were shown to

behave as expected in real data and in a simulation study.

5.1 Benefits of the Proposed Methods

It was illustrated that mixed penalized (Firth) regressions overcome the previously observed

problem of separation of points. Implementation of the penalized model is barely more complex
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than the unpenalized model. In extreme cases of separation, the penalized model yielded slope and

intercept estimates that were biased in the opposite direction of the unpenalized model; although,

the magnitude of the bias was much less extreme.

In the setting of mixed logistic regressions, profile likelihood-based intervals have advantages

over both Wald-type and Fieller intervals. Advanced analytical or computational expertise or a com-

bination of the two are required for the calculation of the asymptotic variance-covariance matrix,

on which both traditional intervals rely. Profile likelihood-based intervals have consistently better

coverage probability than Wald-type intervals and they are less susceptible to bias in the underlying

parameters. Additionally, the same method of linearly constrained optimization can be used to cal-

culate various kinds of intervals, while understanding of the sampling distribution of the parameter

of interest and an application of the delta method is required to generate appropriate Wald-type in-

tervals. Finally, likelihood profiling serves two useful purposes, in that it can be used to provide a

useful diagnostic for the appropriateness of symmetric Wald-type intervals and, at the same time, to

calculate better confidence intervals when they are not.

5.2 Limitations of the Proposed Methods

The major drawback of the methods introduced in this dissertation is computational expense.

Maximizing individual models is not particularly time consuming; however, profiling requires mul-

tiple maximizations of the same likelihood with different constraints. One must be able to move

along the likelihood surface efficiently. If aggressive step sizes are taken and reasonable initial val-

ues are not proposed, the complete data information matrix in the “M” step becomes numerically

singular. To avoid this problem in this study, small steps were always taken, thereby increasing the

time needed for computation. For example, on a 2.5 GHz with 6 GB of RAM, it required approxi-

mately four and a half days of constant computation to fit all simulated datasets for a single labeling

strategy and to profile the likelihoods to calculate confidence intervals of the intercepts, slopes, and

mixing proportions of the same.

Methods for speeding up the EM algorithm and for the efficient localization of the endpoints of

profile likelihood-based confidence intervals have been proposed. These usually involve knowledge
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of the observed data information matrix. For example, Venzon and Moolgavkar [28] proposed a

method that maximizes the observed likelihood directly using a Newton-Raphson method and the

information matrix from Oakes [7], to obtain profile likelihood-based confidence interval endpoints.

Similar methods could be used to replace the EM algorithm entirely for both model fitting and

endpoint location.

5.3 Alternatives to the Proposed Methods

This dissertation presents an analysis of mixtures of penalized (Firth) logistic regression mod-

els from the frequentist perspective. An alternative would be to fit this model within the Bayesian

framework. The Firth penalty is the same as imposing Jeffreys prior on the parameters in the con-

text of a Bayesian analysis [10]. Ibrahim and Laud [29] described the analysis of generalized linear

models using Jeffreys prior. Chen et al. [30] provided analytical and computational details for lo-

gistic regression with Jeffreys prior. From the Bayesian perspective, missing data are treated like

additional parameters. Models with missing data are fit by data augmentation. Future work could

include comparing the results for the frequentist and Bayesian model fits.

5.4 Extensions of the Proposed Methods

While this dissertation only employs application to data from dose-response experiments of

phosphine on beetles, mixtures of penalized (Firth) logistic regression models could also be more

widely applied. In a vignette for their R package flexmix, Grün and Leisch [31] provide four exam-

ple datasets that have been analyzed using mixtures of logistic regressions. (One of which was an

experiment involving Tribolium castaneum, although not a dose-response experiment. Another was

a dose-response experiment, but it did not involve stored grain pests.) It would be interesting to see

if any conclusions would change as a result of applying the proposed methods.

It is also conceivable to use the proposed methods in studies investigating genome-wide asso-

ciation of dose-response such as discovery of potential drug, insecticide, or pesticide targets; or for

finding biomarkers of resistance to the same. While all subjects in a representative set selected from

a population would need to be randomly assigned to a dose of the agent of interest, only a subset of

subjects would need to be genotyped for the common genetic variants distributed across the genome.
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The methods developed here could be used to identify the markers with the strongest association

with response while saving on the cost of evaluating all subjects. Additional investigation is needed

to determine if such a design would have any advantages over current practice.

5.5 Conclusion

Mixtures of penalized logistic regressions show very little bias in comparison to mixtures of

traditional logistic regression even in very extreme study situations. Profile likelihood-based in-

tervals are more flexible, easier to implement, and have better coverage than asymptotic variance-

covariance based intervals. Therefore, it is suggested that mixed penalized (Firth) logistic regres-

sions and profile likelihood-based intervals be used in place of mixed logistic regressions and Wald-

type intervals, particularly when there is the potential for separation of points. These methods are

implemented in R code provided in Appendix A, including a demonstration using the actual Rhy-

zopertha dominica data in Appendix A.5.
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APPENDIX A

Code

A.1 R Function for Fitting a Mixture of Logistic Regressions

logistic_regression_EM <- function(

z,

m,

y.known,

z.known,

X,

initial.p,

initial.beta,

max.iter = 5000

){

n.groups <- length(initial.p)

### Initial Values

p <- initial.p

beta <- initial.beta

mu <- 1/(1 + exp(-as.vector(X%*%beta)))

y.unknown <- m - z - apply(y.known, 2, sum)

z.unknown <- z - apply(z.known, 2, sum)

i <- 0

my.loglik <-

sum(z.unknown*log(apply(p * matrix(mu, nrow = n.groups), 2, sum))) +

sum((y.known*log(p*(1 - matrix(mu, nrow = n.groups))))[y.known!=0]) +

lfactorial(sum(m)) -

sum(lfactorial(sum(z.unknown)), lfactorial(apply(y.known, 1, sum)))

EM.converged <- F

starttime <- Sys.time()

while(!EM.converged){

i <- i + 1

cat(i, sep = "\n")

### Expectation

pgivenz <- as.vector(p*matrix(mu, nrow = n.groups))/

rep(apply(matrix(p*mu, nrow = n.groups), 2, sum), each = n.groups)

pgiveny <- as.vector(p*(1 - matrix(mu, nrow = n.groups)))/

rep(

apply(matrix(p*(1 - mu), nrow = n.groups), 2, sum),
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each = n.groups

)

y.long <- as.vector(y.known) + rep(y.unknown, each = n.groups)*pgiveny

z.long <- as.vector(z.known) + rep(z.unknown, each = n.groups)*pgivenz

m.long <- z.long + y.long

### Maximization

fit <- try(

glm(cbind(z.long, y.long) ~ -1 + X, family = "binomial"),

silent = TRUE

)

if("try-error" %in% class(fit)) {break}

# Directly for p

p_prime <- apply(matrix(z.long + y.long, nrow = n.groups), 1, sum) /

sum(z.long + y.long)

beta_prime <- coef(fit)

ll_new <-

sum(lgamma(m.long + 1) - lgamma(z.long + 1) - lgamma(y.long + 1)) +

(z.long %*% -log(1 + exp(as.vector(-X%*%beta_prime)))) +

((y.long) %*% -log(1 + exp(as.vector(X%*%beta_prime))))

### Convergence of EM

EM.converged <- all(abs(c(p_prime - p, beta_prime - beta)) < 1e-10) |

i == max.iter

p <- p_prime

beta <- beta_prime

mu <- 1/(1 + exp(-as.vector(X%*%beta)))

my.ll <- sum(

z.unknown*log(apply(p * matrix(mu, nrow = n.groups), 2, sum))) +

sum((y.known*log(p*(1 - matrix(mu, nrow = n.groups))))[y.known!=0]) +

lfactorial(sum(m)) -

sum(lfactorial(sum(z.unknown)), lfactorial(apply(y.known, 1, sum))

)

my.loglik <- c(my.loglik, my.ll)

}

endtime <- Sys.time()

list(

my.loglik = my.loglik,

parameters = matrix(

c(beta, p),

nrow = n.groups,

dimnames = list(

genotype = 1:n.groups,

parameter = c("b0", "b1", "p")

)
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),

unpenalized.loglik = my.ll,

time = difftime(endtime, starttime, units = "secs"),

converged = i < max.iter

)

}

A.2 R Function for Fitting a Mixture of Penalized Logistic Regressions

firth_logistic_regression_EM <- function(z, m, y.known, z.known, X,

A = NULL, a = NULL, which.group = NULL, initial.p, initial.beta){

n.groups <- length(initial.p)

### Initial Values

p <- initial.p

beta <- initial.beta

mu <- 1/(1 + exp(-as.vector(X%*%beta)))

y.unknown <- m - z - apply(y.known, 2, sum)

z.unknown <- z - apply(z.known, 2, sum)

pgivenz <- as.vector(p*matrix(mu, nrow = n.groups))/

rep(apply(matrix(p*mu, nrow = n.groups), 2, sum), each = n.groups)

pgiveny <- as.vector(p*(1 - matrix(mu, nrow = n.groups)))/

rep(apply(matrix(p*(1 - mu), nrow = n.groups), 2, sum), each = n.groups)

y.long <- as.vector(y.known) + rep(y.unknown, each = n.groups)*pgiveny

z.long <- as.vector(z.known) + rep(z.unknown, each = n.groups)*pgivenz

m.long <- z.long + y.long

my.loglik <-

sum(

y.unknown*log(apply(p * (1 - matrix(mu, nrow = n.groups)), 2, sum))

) +

sum(z.unknown*log(apply(p * matrix(mu, nrow = n.groups), 2, sum))) +

sum((y.known*log(p * (1 - matrix(mu, nrow = n.groups))))[y.known!=0]) +

sum((z.known*log(p * matrix(mu, nrow = n.groups)))[z.known!=0]) +

lfactorial(sum(m)) -

sum(

lfactorial(sum(z.unknown + y.unknown)),

lfactorial(apply(z.known, 1, sum) + apply(y.known, 1, sum))

) + 1/2 * log(det(t(X) %*% diag(m.long/(1 + exp(as.vector(-X%*%beta)))/

(1 + exp(as.vector(X%*%beta)))) %*% X))

i <- 0

EM.converged <- F

starttime <- Sys.time()

while(!EM.converged){

i <- i + 1
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#cat(i, sep = "\n")

### Expectation

pgivenz <- as.vector(p*matrix(mu, nrow = n.groups))/

rep(apply(matrix(p*mu, nrow = n.groups), 2, sum), each = n.groups)

pgiveny <- as.vector(p*(1 - matrix(mu, nrow = n.groups)))/

rep(apply(matrix(p*(1 - mu), nrow = n.groups), 2, sum), each = n.groups)

y.long <- as.vector(y.known) + rep(y.unknown, each = n.groups)*pgiveny

z.long <- as.vector(z.known) + rep(z.unknown, each = n.groups)*pgivenz

m.long <- z.long + y.long

### Maximization

# Directly for p

p_new <- apply(matrix(z.long + y.long, nrow = n.groups), 1, sum) /

sum(z.long + y.long)

# Newton method for beta

beta_LR <- beta

ll <-

sum(lgamma(m.long + 1) - lgamma(z.long + 1) - lgamma(y.long + 1)) +

(z.long %*% -log(1 + exp(as.vector(-X%*%beta_LR)))) +

(y.long %*%-log(1 + exp(as.vector(X%*%beta_LR))))

LR.converged <- FALSE

#j <- 0

while(!LR.converged){

#j <- j + 1

#cat(j, sep = "\n")

eta <- as.vector(X%*%beta_LR)

mu <- 1/(1 + exp(-eta))

W <- diag(m.long*mu*(1-mu))

information <- t(X)%*%W%*%X

# inv.information <- qr.solve(information)

inv.information <- solve(information)

hat <- sqrt(W)%*%X%*%inv.information%*%t(X)%*%sqrt(W)

score <- t(X)%*%(z.long - m.long*mu + diag(hat)*(1/2 - mu))

change <- as.vector(inv.information%*%score)

# Step halving

tuner <- 1#/2

ll.increased <- FALSE

while(!ll.increased){

beta_new <- beta_LR + tuner*change

if(!is.null(A)){

inv.information.p <- diag(p_new^2/apply(matrix(m.long, nrow =

n.groups), 1, sum))

inv.information.all <- cbind(rbind(inv.information, matrix(0,

ncol = ncol(inv.information), nrow = nrow(inv.information.p))),

rbind(matrix(0, nrow = nrow(inv.information), ncol = ncol(
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inv.information.p)), inv.information.p))

parameters_new <- c(beta_new, p_new) + inv.information.all%*%

t(A)%*%solve(A%*%inv.information.all%*%t(A))%*%(a - A%*%c(

beta_new, p_new))

beta_blah <- beta_new

beta_new <- parameters_new[1:length(beta)]

p_new <- parameters_new[(length(beta)+1):length(parameters_new)]

mu_new <- 1/(1 + exp(-as.vector(X%*%beta_new)))

}

ll_new <-

sum(lgamma(m.long + 1) - lgamma(z.long + 1) - lgamma(y.long + 1)) +

(z.long %*% -log(1 + exp(as.vector(-X%*%beta_new)))) +

((y.long) %*% -log(1 + exp(as.vector(X%*%beta_new))))

ll.increased <- TRUE#ll_new >= ll & !is.na(ll_new)

tuner <- tuner/2

}

# Convergence of newton method

LR.converged <- all(abs(beta_LR - beta_new) < 1e-5)# & ll_new >= ll

beta_LR <- beta_new

ll <- ll_new

}

p_prime <- p_new

beta_prime <- beta_LR

### Convergence of EM

EM.converged <- all(abs(c(p_prime - p, beta_prime - beta)) < 1e-5) |

i > 5000

p <- p_prime

beta <- beta_prime

mu <- 1/(1 + exp(-as.vector(X%*%beta)))

my.ll <-

sum(

y.unknown*log(apply(p * (1 - matrix(mu, nrow = n.groups)), 2, sum))

) +

sum(z.unknown*log(apply(p * matrix(mu, nrow = n.groups), 2, sum))) +

sum(

(y.known*log(p * (1 - matrix(mu, nrow = n.groups))))[y.known!=0]

) +

sum((z.known*log(p * matrix(mu, nrow = n.groups)))[z.known!=0]) +

lfactorial(sum(m)) -

sum(

lfactorial(sum(z.unknown + y.unknown)),

lfactorial(apply(z.known, 1, sum) + apply(y.known, 1, sum))

) + 1/2 *

log(det(
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t(X) %*%

diag(

m.long/

(1 + exp(as.vector(-X%*%beta)))/

(1 + exp(as.vector(X%*%beta)))

) %*%

X

))

my.loglik <- c(my.loglik, my.ll)

}

endtime <- Sys.time()

list(

my.loglik = my.loglik,

z = z,

m = m,

y.known = y.known,

z.known = z.known,

y.unknown = y.unknown,

z.unknown = z.unknown,

X = X,

parameters = matrix(

c(beta, p),

nrow = n.groups,

dimnames = list(genotype = 1:n.groups, parameter = c("b0", "b1", "p"))

),

penalized.loglik = my.ll,

time = difftime(endtime, starttime, units = "secs")

)

}

A.3 R Function For Profiling

profile <- function(

fit,

parameter = c("b0", "b1", "p", "prediction", "inverse"),

group,

upper = TRUE,

pred.pi = NULL,

step = NA

){

z <- fit$z

m <- fit$m

y.known <- fit$y.known

z.known <- fit$z.known

X <- fit$X
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n.groups <- nrow(fit$parameters)

if(parameter == "prediction"){

mle <- pred.pi

A <- matrix(0, nrow = 2, ncol = 3*n.groups)

A[1, group + n.groups*(which(c("b0", "b1", "p") == "b0") - 1)] <- 1

A[1, group + n.groups*(which(c("b0", "b1", "p") == "b1") - 1)] <-

(log(pred.pi/(1-pred.pi))-fit$parameters[group, "b0"])/

fit$parameters[group, "b1"]

A[2, (n.groups*2+1):(n.groups*3)] <- 1

} else {

if(parameter == "inverse"){

mle <- (log(pred.pi/(1-pred.pi)) - fit$parameters[group, "b0"])/

fit$parameters[group, "b1"]

a <- c(log(pred.pi/(1-pred.pi)), 1)

A <- matrix(0, nrow = 2, ncol = 3*n.groups)

A[1, group + n.groups*(which(c("b0", "b1", "p") == "b0") - 1)] <- 1

A[2, (n.groups*2+1):(n.groups*3)] <- 1

} else {

mle <- fit$parameters[group, parameter]

A <- matrix(0, nrow = 2, ncol = 3*n.groups)

A[1,

group + n.groups*(which(c("b0", "b1", "p") == parameter) - 1)] <- 1

A[2, (n.groups*2+1):(n.groups*3)] <- 1

}

}

if(parameter %in% c("p", "prediction")){

old.test <- round(log(mle/(1-mle)), 1)

} else {

old.test <- mle

}

old.fit <- fit

if(parameter %in% c("p", "prediction", "inverse")){

old.test <- ifelse(

upper,

floor(old.test*10)/10,

ceiling(old.test*10)/10

)

}

profile.loglik <- NULL

l <- 0
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while(old.fit$penalized.loglik > (fit$penalized.loglik - 4) &

!(parameter == "prediction" & abs(old.test) > 6)){

l <- l + 1

cat(l, sep = "\n")

# new.test <- old.test + step

new.test <- old.test + step*(2*upper-1)

if(parameter == "inverse"){

A[1, group + n.groups*(which(c("b0", "b1", "p") == "b1") - 1)] <-

new.test

} else {

if(parameter == "p"){

a <- c(1/(1+exp(-new.test)), 1)

} else {

a <- c(new.test, 1)

}

}

parameters.start <- old.fit$parameters

new.fit <- firth_logistic_regression_EM(

z = z,

m = m,

y.known = y.known,

z.known = z.known,

X = X,

A = A,

a = a,

initial.p = as.vector(parameters.start[, "p"]),

initial.beta = as.vector(parameters.start[, c("b0", "b1")])

)

profile.loglik <- rbind(

profile.loglik,

c(new.test, new.fit$penalized.loglik, as.vector(new.fit$parameters))

)

old.fit <- new.fit

old.test <- new.test

}

profile.loglik

}

A.4 R Function for Finding Profile Likelihood Interval Endpoints

locate_endpoint <- function(

fit,

parameter = c("b0", "b1", "p", "prediction", "inverse"),

group,
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upper = TRUE,

pred.pi = NULL,

step = NA,

alpha = 0.05

){

z <- fit$z

m <- fit$m

y.known <- fit$y.known

z.known <- fit$z.known

X <- fit$X

n.groups <- nrow(fit$parameters)

if(parameter == "prediction"){

mle <- pred.pi

A <- matrix(0, nrow = 2, ncol = 3*n.groups)

A[1, group + n.groups*(which(c("b0", "b1", "p") == "b0") - 1)] <- 1

A[1, group + n.groups*(which(c("b0", "b1", "p") == "b1") - 1)] <-

(log(pred.pi/(1-pred.pi))-fit$parameters[group, "b0"])/

fit$parameters[group, "b1"]

A[2, (n.groups*2+1):(n.groups*3)] <- 1

} else {

if(parameter == "inverse"){

mle <- (log(pred.pi/(1-pred.pi)) - fit$parameters[group, "b0"])/

fit$parameters[group, "b1"]

a <- c(log(pred.pi/(1-pred.pi)), 1)

A <- matrix(0, nrow = 2, ncol = 3*n.groups)

A[1, group + n.groups*(which(c("b0", "b1", "p") == "b0") - 1)] <- 1

A[2, (n.groups*2+1):(n.groups*3)] <- 1

} else {

mle <- fit$parameters[group, parameter]

A <- matrix(0, nrow = 2, ncol = 3*n.groups)

A[1,

group + n.groups*(which(c("b0", "b1", "p") == parameter) - 1)] <- 1

A[2, (n.groups*2+1):(n.groups*3)] <- 1

}

}

new.fit <- fit

if(parameter %in% c("p", "prediction")){

new.test <- log(mle/(1-mle))

} else {

new.test <- mle

}
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profile.loglik <- NULL

converged <- FALSE

beyond.threshold <- FALSE

i <- 0

while(!converged){

i <- i + 1

# cat(i, sep = "\n")

if(!beyond.threshold){

high.fit <- new.fit

high.test <- new.test

new.test <- high.test + step*(2*upper-1)

parameters.start <- new.fit$parameters

} else {

if(new.fit$penalized.loglik >

(fit$penalized.loglik - qchisq(1-alpha,1)/2)){

high.fit <- new.fit

high.test <- new.test

} else {

low.fit <- new.fit

low.test <- new.test

}

new.test <- mean(c(low.test, high.test))

parameters.start <- high.fit$parameters

}

if(parameter == "inverse"){

A[1, group + n.groups*(which(c("b0", "b1", "p") == "b1") - 1)] <-

new.test

} else {

if(parameter == "p"){

a <- c(1/(1+exp(-new.test)), 1)

} else {

a <- c(new.test, 1)

}

}

new.fit <- firth_logistic_regression_EM(

z = z,

m = m,

y.known = y.known,

z.known = z.known,

X = X,

A = A,

a = a,

initial.p = as.vector(parameters.start[, "p"]),

initial.beta = as.vector(parameters.start[, c("b0", "b1")])

)

if(!beyond.threshold){
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beyond.threshold <- new.fit$penalized.loglik <

(fit$penalized.loglik - qchisq(0.95, 1)/2)

} else {

converged <- beyond.threshold & abs(low.test - high.test) < 1e-5

}

}

new.test

}

A.5 Example Application of the Previous Functions to the Rhyzopertha dominica Data

###

### Schlipalius et al 2002

###

m <- c(98, 100, 100, 100, 100, 300, 400, 750, 500, 500, 7850)

dose <- c(0, 0.003, 0.004, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 1)

logdose <- log(0.004 + dose)

logdose.long <- rep(logdose, each = 6)

genotype <- factor(

rep(

paste(

rep(c("-", "+"), each=3),

rep(c("B", "H", "A"), 2), sep="/"

),

times = 11

),

levels = paste(

rep(c("-", "+"), each=3),

rep(c("B", "H", "A"), 2),

sep="/"

)

)

X <- data.matrix(model.matrix(~-1 + genotype + genotype:logdose.long))

genotype.labels <- paste(

rep(c("-", "+"), each=3),

rep(c("B", "H", "A"), 2),

sep="/"

)

colnames(X) <- paste(

rep(genotype.labels, 2),

rep(c("b0", "b1"), each = 6),

sep = "_"
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)

genotype.key <- data.frame(

group = 1:6,

genotype = genotype.labels,

rp6.79 = rep(c("$-$", "$+$"), each = 3),

rp5.11 = rep(c("B", "H", "A"), times = 2),

stringsAsFactors = FALSE

)

y <- matrix(nrow = 6, ncol = 11)

y[1,] <- c(31, 18, 10, 1, 0, 0, 0, 0, 0, 0, 0)

y[2,] <- c(27, 26, 4, 4, 1, 0, 0, 0, 0, 0, 0)

y[3,] <- c(10, 10, 3, 7, 9, 0, 0, 0, 0, 0, 0)

y[4,] <- c(6, 6, 4, 2, 8, 5, 0, 0, 0, 0, 0)

y[5,] <- c(20, 20, 7, 6, 5, 20, 10, 0, 0, 0, 0)

y[6,] <- c(4, 4, 4, 2, 0, 5, 7, 10, 10, 8, 44)

### Run EM

fit <- firth_logistic_regression_EM(

z = m - apply(y, 2, sum),

m = m,

y.known = y,

z.known = matrix(0, nrow = 6, ncol = 11),

X = X,

initial.p = rep(1/6, 6),

initial.beta = rep(0, 12)

)

### Profile $\beta_0$ above its point estimate

profile(fit,

parameter = "b0",

group = 1,

upper = TRUE,

step = 2

)

### Extract lower confidence limit for $LD_{99}$

locate_endpoint(fit,

parameter = "inverse",

group = i,

upper = FALSE,

pred.pi = 0.99,

alpha = 0.05,

step = 0.1

)
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A.6 Function for Simulating from Mixture of Dose-Response Curves

simulate_mixture <- function(parameters, logdose, samplesize) {

d <- length(logdose)

# m <- rep(samplesize, d)

m <- samplesize

a.b0 <- parameters[1, 1]

a.b1 <- parameters[1, 2]

b.b0 <- parameters[2, 1]

b.b1 <- parameters[2, 2]

p <- parameters[1, 3]

genotype.a <- rbinom(d, m, p)

genotype.b <- m - genotype.a

z.a <- rbinom(d, genotype.a, 1/(1 + exp(-(a.b0 + logdose * a.b1))))

z.b <- rbinom(d, genotype.b, 1/(1 + exp(-(b.b0 + logdose * b.b1))))

logdose.long <- rep(logdose, each = 2)

genotype.labels <- c("a", "b")

genotype <- factor(rep(genotype.labels, times = d), levels =

genotype.labels)

X <- data.matrix(model.matrix(~-1 + genotype + genotype:logdose.long))

colnames(X) <- paste(rep(genotype.labels, 2), rep(c("b0", "b1"), each =

2), sep = "_")

list(

parameters = parameters,

logdose = logdose,

m = m,

genotype = rbind(genotype.a, genotype.b),

z = rbind(z.a, z.b),

X = X

)

}

A.7 Code for Labeling and Fitting Models to Simulated Data

# Simulate Data

x <- simulate_mixture(

parameters = cbind(fit$parameters[unlist(setup[i, c("low", "high")]),
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1:2],

p = c(0.5, 0.5)),

logdose = log(1/2^(9:0)),

samplesize = rep(100, times = 10)

)

# Label all live beetles and fit unpenalized model

logistic_regression_EM(

z = apply(x$z, 2, sum),

m = x$m,

y.known = x$genotype - x$z,

z.known = matrix(0, nrow = 2, ncol = length(x$m)),

X = x$X,

initial.p = x$parameters[, "p"],

initial.beta = as.vector(x$parameters[, c("b0", "b1")]),

max.iter = 1000

)

# Label all live beetles and fit penalized model

firth_logistic_regression_EM(

z = apply(x$z, 2, sum),

m = x$m,

y.known = x$genotype - x$z,

z.known = matrix(0, nrow = 2, ncol = length(x$m)),

X = x$X,

initial.p = x$parameters[, "p"],

initial.beta = c(0, 0, 0, 0)

)

# Label random dead and live beetles

y <- x$m - apply(x$z, 2, sum)

all <- rbind(x$z, x$genotype - x$z)

known <- NULL

for(i in 1:length(y)){

known <- cbind(

known,

table(sample(rep(factor(1:4), times = all[, i]), y[i]))

)

}

z.known <- known[1:2, ]

y.known <- known[3:4, ]

#Fit unpenalized model

logistic_regression_EM(

z = apply(x$z, 2, sum),

m = x$m,
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y.known = y.known,

z.known = z.known,

X = x$X,

initial.p = x$parameters[, "p"],

initial.beta = as.vector(x$parameters[, c("b0", "b1")]),

max.iter = 1000

)

#Fit penalized model

firth_logistic_regression_EM(

z = apply(x$z, 2, sum),

m = x$m,

y.known = y.known,

z.known = z.known,

X = x$X,

initial.p = x$parameters[, "p"],

initial.beta = c(0, 0, 0, 0)

)
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