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Abstract—With space becoming more and more crowded, there 

is a growing demand for increasing satellite lifetimes and 

performing on-orbit servicing (OOS) at a scale that calls for 

autonomous missions. Many such missions would require 

chaser satellites to autonomously execute safe and effective 

flightpath to dock with a non-cooperative target satellite on 

orbit. Performing this autonomously requires the chaser to be 

aware of hazards to route around and safe capture points 

through time, i.e., by first identifying and tracking key 

components of the target satellite. State-of-the-art object 

detection algorithms are effective at detecting such objects on a 

frame-by-frame basis. However, implementing them on a real-

time video feed often results in poor performance at tracking 

objects over time, making errors which could be easily corrected 

by rejecting non-physical predictions or by exploiting temporal 

patterns. On the other hand, dedicated object tracking 

algorithms can be far too computationally expensive for 

spaceflight computers. Considering this, the paradigm of 

tracking-by-detection works by incorporating patterns of prior-

frame detections and the corresponding physics in tandem with 

a base object detector. This paper focuses on comparing the 

performance of object tracking-by-detection algorithms with a 

YOLOv8 base object detector: namely, BoTSORT and 

ByteTrack. These algorithms are hardware-in-the-loop tested 

for autonomous spacecraft component detection for a simulated 

tumbling target satellite. This will emulate mission conditions, 

including motion and lighting, with a focus on operating under 

spaceflight computational and power limitations, providing an 

experimental comparison of performance. Results demonstrate 

lightweight tracking-by-detection can improve the reliability of 

autonomous vision-based navigation. 
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1. INTRODUCTION 

The proliferation of spacecraft in orbit in recent years has led 

to numerous benefits to many fields: meteorology for weather 

forecasting and detecting forest fires, SATCOM (satellite 

communications) for secure communications, GPS for 

navigation, worldwide Internet access, and space exploration. 

However, this progress comes at a cost. The U.S. Department 

of Defense’s global Space Surveillance Network tracks over 

27,000 pieces of orbital space debris [1], such as 

decommissioned satellites, broken pieces of spacecraft, and 

fragments of launch vehicles from spacecraft deployments. 

NASA estimates there are millions of untracked pieces of 

orbital space debris. Most of this space debris is present in 

low earth orbit and can travel at speeds of thousands of miles 

per hour. Even small pieces of untracked debris greater than 

5cm pose threats to human spaceflight safety and scientific, 

defense, and commercial assets. 

Extending the lifetime of satellites is a major part of reducing 

the growth of space debris, and on-orbit servicing (OOS) of 

satellites can enable this. There have been several successful 

human-in-the-loop OOS missions by space shuttle astronauts 

[2]  and even robotic autonomous OOS missions, such as 

ETS-VII [3], DART [4], XSS-10/-11 [5] [6], and MEV-1/-2 

[7] [8]. Yet all these missions were performed around 

cooperative spacecraft. However, servicing the ever-

increasing number of unfamiliar, non-cooperative assets in 

orbit at scale will require fully autonomous missions. An 

effective way to accomplish such missions is by utilizing a 

swarm of small chaser satellites that can autonomously 

identify capture points on a non-cooperative spacecraft and 

collaboratively navigate around hazards to dock with at the 

capture points. Using intelligent autonomous swarm satellites 

can not only minimizes the resultant forces and moments on 

the capture interfaces, but it can enabl fast-paced, complex, 
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time-critical operations that would otherwise be infeasible 

due to time lag for ground-based control. 

Prior work in the ORION Laboratory at Florida Tech [9] has 

shown state-of-the-art object detection algorithms like 

YOLOv5 [10] and Faster R-CNN [11] are effective at 

locating solar panels, antennas, and satellite bodies. This is 

done with test datasets of images of satellites and with 

hardware-in-the-loop experiments with a real-life satellite 

mockup. In addition, single-stage object detectors like YOLO 

can run in real-time under restrictive spaceflight-like 

computing constraints [12]. This is accomplished even for 

video feeds of satellites the object detectors have not 

observed in advance and with intraclass variation, e.g., with 

solar panels in various shapes and configurations [13]. 

Further, mapping the detections to 3D point clouds via 

stereographic cameras can dynamically feed artificial 

potential field (APF) guidance algorithms [14] that treat 

satellite bodies as attractive nodes and solar panels as 

repulsive nodes in space. These APF algorithms are 

successful at guiding chasers to capture points, both with 

simulated chasers [15] and real-world chaser drones [16]. 

While this end-to-end process has been shown to work to 

varying levels of success, the safety of the missions is not 

assured due to errors in the underlying computer vision 

algorithms. Object detection algorithms work by 

automatically locating the satellite components in video 

frames one-by-one from a video feed, with no analysis of the 

motion of the components through time. As such, 

implementation on a real-time video feed often results in 

deficient performance at tracking objects through time. These 

errors could be easily corrected by rejecting non-physical 

predictions or by exploiting temporal patterns. The present 

article studies the improvements that can be gained by using 

object tracking algorithms to locate hazards and safe capture 

points through time. We implement several low-compute 

object trackers that operate on top of the YOLOv8 [17] object 

detector in attempts improve its predictions using temporal 

patterns, train the trackers to work for tracking satellite 

components, and perform hardware-in-the-loop testing at the 

ORION Laboratory to measure their performance under 

various lighting and motion conditions. 

The article is organized in the following order. Section 2 

defines the object detection and object tracking tasks, reviews 

the relevant computer vision literature, and outlines specific 

failure modes trackers are expected to address. Section 3 

provides information on datasets used for training the object 

trackers and the underlying object detector. Section 4 

discusses the implementations of all algorithms used for 

comparison in the article. Section 5 covers hardware-in-the-

loop experiments and the resulting performance metrics. 

Section 6 outlines the major findings of the study, their 

implications, and their significance. 

2. OBJECT DETECTION AND TRACKING 

Recent advances in deep learning algorithms and computing 

hardware have led to accurate computer vision algorithms 

with low computational footprints. Convolutional neural 

networks (CNNs) accelerated by graphics processing units 

(GPUs) [18] on edge computers enable deployment of 

computer vision on spaceflight-like hardware. 

Satellite Component Detection vs. Tracking 

Prior work focused on the object detection task for spacecraft 

component detection [19]. Object detection requires an 

algorithm to localize objects with a tight bounding box and 

classify those objects—e.g., as satellite bodies, antennas, 

solar panels, and thrusters. 

Object detection comes with many complications. Detectors 

may fail to detect certain components or detect components 

but misclassify them or localize them imprecisely. One 

common failure mode is “class jitter,” where an object is 

persistent and mostly classified correctly, but occasionally 

the algorithm’s prediction switches. In addition, detectors 

experience failures in persistence, where the model loses an 

object that is still in view or miss legitimate object 

disappearances. Some of these typical failure modes are 

depicted in Figure 1 below. 

Many of these shortcomings are related to object detectors 

processing frames one-by-one to make decisions. No 

temporal patterns or associations are considered. For 

example, if a solar panel is detected in several consecutive 

frames and then, suddenly, a detection is made in the same 

region of the image but is labeled a body, there is a high 

chance it is incorrect, but detectors do not consider the past. 

Exploiting prior knowledge should make this “class jitter” 

apparent. Similarly, understanding the trajectory of bounding 

boxes over time for a single object should help us avoid 

failures to localize as it moves smoothly over time.  

The computer vision task of object tracking takes object 

detection a step further. Object trackers are designed to make 

associations between the same objects in subsequent frames, 

thereby generating tracks followed by said objects through 

time. We believe object tracking shows potential to help our 

object detection algorithms overcome the complications 

discussed above. 

Object Detection Algorithms 

 

Modern object detection algorithms (or object detectors) fall 

into three major categories: vision transformers, multi-stage 

object detectors, and single-stage object detectors. 
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While vision transformer-based object detectors are among 

the most accurate [20, 21], they require massive computation, 

and therefore require heavy, high-volume computers that 

draw a large amounts of power. In short, they are too 

expensive for spaceflight computers that have limiting 

volume, weight, and power draw constraints. Multi-stage 

object detectors typically operate in two stages. Region-based 

convolutional neural networks (R-CNNs) [22] are some of 

the most effective multi-stage detectors. However, they are 

also computationally expensive. 

In contrast, single-stage object detectors use a single CNN 

that simultaneously maps image pixels directly to both the 

bounding box and class predictions. Notable early methods, 

such as single shot detectors [23] and the You Only Look 

Once (YOLO) [24], were much cheaper computationally than 

R-CNNs but failed to reach similar accuracies. In recent 

years, the successors to YOLO achieved greater accuracies 

and have surpassed multi-stage detector performance with 

much smaller computational cost, permitting much higher 

framerates. YOLOv8 has been shown to be effective for real-

time satellite feature recognition in lab experiments as a 

result. It has been proven to successfully detect solar panels, 

bodies, antennas, and thrusters under a variety lighting and 

motion conditions for the observer and target RSO.  

Object Tracking Algorithms 

Modern object tracking algorithms follow one of two 

paradigms: dedicated object tracking and tracking-by-

detection. Dedicated object trackers are designed to learn 

entire object tracks within video sequences as standalone 

algorithms. Tracking-by-detection trackers function in a two-

stage fashion by receiving detections from an object detector 

and using that information to estimate the motion as a 

regression problem operating on those bounding boxes and 

their contents. 

The current state of dedicated object trackers makes them not 

ideal for our application for several reasons. Training them 

requires many annotated video sequences rather than still 

images, which are much more difficult to obtain in large 

numbers. Further, dedicated neural architectures for object 

tracking are quite large, requiring computational resources 

unavailable on-board spacecraft. Third, tracking-by-

detection algorithms claim state-of-the-art performance on 

nearly all multi-object tracking benchmarks—notably, the 

MOTChallenge [25, 26] and DanceTrack [27]datasets. 

Since tracking-by-detection algorithms currently offer 

greater accuracy with less computational costs and easier-to-

obtain training data, they are the optimal choice. Tracking-

by-detection algorithms have three main parts: (1) an object 

Figure 1. Object Detection Failure Modes 
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model that estimates the frame-to-frame motion of each 

object being tracked, (2) an association model that assigns 

new object detections to existing object tracks, and (3) a 

module that creates and destroys object tracks as objects enter 

and leave the image. 

An influential baseline tracking-by-detection algorithm is 

Simple Online and Realtime Tracking (SORT) [28]. It uses a 

Kalman filter for the object model. The state of each tracked 

object is modeled as coordinates of the center of the bounding 

box, area, aspect ratio, and 1-frame linearized velocity of 

these values. The association model uses IOU distances 

between detections in consecutive frames with optimal 

assignment by the Hungarian algorithm. SORT instantiates 

new object tracks if a new detection has low or undefined 

IOU with previous detections, and object tracks are deleted if 

objects are not detected for a preset number of frames. This 

tracker is far less computationally expensive than even very 

fast object detectors, so it has a negligible effect on framerate. 

Later, DeepSORT [29] introduced a feature extractor CNN 

pre-trained to map the image pixels within bounding boxes to 

representation vectors that could be compared. This so-called 

reID network allowed the model to use appearance features 

to associate objects through time more effectively, but it 

introduced computational complexity, resulting in lower 

effective framerates. Another notable innovation came in 

ByteTrack [30]. The authors found that typically discarded, 

low-confidence object detections often correspond to 

partially occluded objects, temporarily blurred objects, or 

objects changing size. This allowed ByteTrack to improve its 

constructed trajectories. Most subsequent high-quality 

trackers were heavily influenced by these algorithms. 

BoTSORT [31] is similar to DeepSORT, but it adjusts the 

Kalman filter state vector to include width and height 

instead of area and aspect ratio. It allows state-dependent 

process and measurement noise, adds compensation for 

rigid camera motion, implements BYTE to enhance its 

trajectories, and opts for a faster ReID network. Of the two 

algorithms tested herein, this one is the most expensive. 

 

In this work, two tracking-by-detection algorithms will be 

tested: ByteTrack and BoTSORT, each with an underlying 

object detector YOLOv8 trained to detect satellite bodies, 

antennas, solar panels, and thrusters. Each method draws 

from SORT, mostly with some variations of the Kalman 

filters, innovations to the association models, and 

interpolation schemes for missing frames. Focus lies in 

improving detection performance with trackers without 

reducing the YOLOv8 framerate substantially. However, it is 

uncertain how much performance gain will occur with the 

low yet effective 4-5 FPS YOLOv8 achieves on spaceflight-

like hardware (e.g. Raspberry Pi). This uncertainty is because 

Kalman filters and association models operate frame-to-

frame and relatively large motion may occur between frames 

that are 0.2-0.25 seconds apart. The effectiveness of object 

trackers in the low framerate regime is a key question 

addressed by this work.  

3. DATASETS 

The YOLOv8 object detection algorithm was trained and 

tested on images of satellite mock-ups obtained in the 

ORION Facility at Florida Tech’s Autonomy Lab. Two 

videos of satellite mockups were captured under both normal 

and extreme lighting conditions were taken. In each case, the 

mockup undergoes a 75% rotation at a constant angular 

velocity. Each video is approximately 3 minutes and captured 

at 30 frames per second. The 3692 total image frames 

captured were manually annotated with bounding boxes and 

class labels for all solar panels, satellite bodies, antennas, and 

thrusters. The has 7,437 solar panel, 3692 satellite body, 3652 

antenna, and 758 thruster annotations altogether, as 

summarized in Figure 2. In addition, each component of the 

satellite mockup is given a unique identifier to permit 

measurement of the object tracker’s ability to quickly re-

identify components if they are temporarily non-visible or not 

detected. 

 

The dataset was split into training and testing datasets. The 

first 80% of frames of each video were assigned to training 

dataset while the latter 20% is allocated to test data, 

specifically with 360 frames each. The rotational motion 

observed is the same in the two training segments of the 

videos to ensure the satellite positioning and the camera’s 

viewing angle is substantially different in the test segments. 

These unseen test segments test the algorithm’s ability to 

generalize to views not previously seen. This is important, as 

the goal is for a chaser satellite to autonomously detect and 

localize solar panels, antennas, satellite bodies, and solar 

panels of a known but non-cooperative satellite. 

 

 

4. METHODS 

The experiments performed herein follow the tracking-by-

detection paradigm for object tracking. The base object 

detector in all cases is the YOLOv8 algorithm 

implementation by Ultralytics. As such, the first step was to 

train this algorithm to detect solar panels, antennas, thrusters, 

and satellite bodies in still images via the training dataset 

described above. All frames of the videos are scaled to 

480x480-pixels RGB color images. Various augmentation 

techniques including random crops, horizontal flips, 

translations, and random cutout boxes, were used during 

training. This serves to provide synthetic augmentation to the 

training data, which improved model generalization to the 

test data. 
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We used the smallest YOLOv8 nano-sized neural 

architecture, which has 3.2m parameters, requires only 6 MB 

of memory, and processes images in 8.7B floating point 

operations (FLOPS), making it suitable for spaceflight 

hardware. The YOLOv8 nano model upgrades the prior use 

of the YOLOv5 small model in [12], which provides some 

substantial improvements in accuracy, runtime/framerates, 

and memory requirements. 

We then used the two object trackers: ByteTrack [30] and 

BoTSORT [32]. ByteTrack and BoTSORT are packaged 

with the public YOLOv8 repository by Ultralytics. Each 

looks at the past detections by the YOLOv8 object detector 

with the goal of making sense of physical patterns to track 

features through time, re-identify them when they are 

temporarily lost by the detector or occluded from the camera, 

help with the classification predictions.  

To evaluate tracker performance for low framerate regimes, 

the two 360-frame final sequences of the normal and extreme 

lighting videos are sampled down to framerates of 1, 2, 5, 10, 

15, and 30 Hz. In each video and framerate, tracking will be 

performed with each tracking algorithm (with YOLOv8 

detections), and performance will be computed. This will 

address the largely unanalyzed question of low-framerate 

object tracking performance of these algorithms. 

5. EXPERIMENTS 

The performance of each object tracking algorithm will be 

assessed based on hardware-in-the-loop experiments. Each 

will be assessed based on the two test cases to determine how 

well each tracker will perform at tracking solar panels, the 

satellite body, antenna, and thruster of a satellite mockup 

under different lighting and motion conditions. 

Each case was simulated physically, and videos were 

recorded at the ORION Facility at the Autonomy Lab at 

Florida Institute of Technology. The facility is equipped with 

a hardware-in-the-loop formation flight and docking 

simulator. It has the ability to simulate motion conditions for 

a satellite mockup with a body and solar panels including 

realistic size, configuration, shape, and reflectivity. Orbital 

lighting effects are simulated effectively with a Hilio 

Litepanel D12 350W LED light fixture with a 5,600 K color 

temperature within a room with non-reflective black walls. 

Several evaluation metrics will be used to measure the 

model's ability to track objects through time. These metrics 

compare model predictions to human-annotated (or ground-

truth) bounding boxes and labels in each frame of the test 

videos. 

Two metrics measure the object detector’s classification 

performance: precision is the percentage of correct positive 

predictions in each class, and recall is the percentage of 

ground-truth objects from each class correctly classified. To 

calculate precision and recall, we will refer to classifications 

as: 

• True positives (TP): The correct identification of a 

ground-truth bounding box. 

• False positives (FP): The incorrect identification of 

an object that is devoid or misplaced. 

• False negative (FN): The missed identification of a 

ground-truth bounding box. 

Precision (P) and recall (R) can then be calculated 

respectively as:  

𝑃 =
TP

TP + FP
 (1) 

𝑅 =
TP

TP + FN
 (2) 

Figure 2. Annotated Satellite Component Dataset 
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The qualities of a good object detector include finding all 

ground-truths and identifying only the relevant objects. This 

means the detector should have increasing recall and high 

precision while the confidence threshold decreases. Average 

precision (AP) summarizes the behavior of precision and 

recall that are caused by the changing confidence levels of the 

bounding boxes. AP is approximately the area under a 

smoothed precision-recall curve for a single class.  

These metrics only measure classification performance and 

ignore the quality of the predicted bounding boxes. The 

similarity of two bounding boxes can be measured by the 

intersection of the bounding box and the ground truth it 

estimates over its union. This intersection over union (IOU) 

between overlapping predicted and ground-truth bounding 

boxes, will be between 0 and 1, where 1 indicates the boxes 

are identical and 0 indicates no relation. This idea is 

represented in Figure 3. 

 

Figure 3. Intersection Over Union (IOU) 

To measure the overall performance of our model, in both 

classification and localization, we use mean average 

precision (mAP). While AP is calculated for each class, the 

mAP is the average AP values for all classes. We measure the 

mAP with an IOU threshold of 0.5 (mAP@0.5). This 

threshold means a detection will only be considered "correct" 

if it makes a correct classification and the IOU between the 

predicted and ground-truth bounding boxes is at least 50%, to 

ensure good localization by our detector. A second, more 

comprehensive metric is mAP@0.5:0.95, where the mAP at 

thresholds of 0.5, 0.55, …, 0.95 is averaged to determine the 

ability of the detector as we increase the IOU threshold [33]. 

Finally, we have our metrics to measure how accurately the 

algorithm tracks targets. The identity switches (IDS or 

IDSW) metric counts the number of times the algorithm 

switches between objects. Multi-object tracking accuracy 

(MOTA) is a metric which combines the false positive rate 

(FP), false negative rate (FN) and mismatch rate (IDS) 

relative to the total number of ground truth detections (gtDet) 

into a single number giving an overall quantification of the 

tracking accuracy performance [34].  

𝑀𝑂𝑇𝐴 = 1 −
|𝐹𝑁| + |𝐹𝑃| + |𝐼𝐷𝑆|

|𝑔𝑡𝐷𝑒𝑡|
 (3) 

The identification metric IDF1 looks at the accuracy of 

associating the same object detected across all frames. It 

determines present trajectories by calculating the bijective 

mapping of ground truth trajectories (gtTrajs) to predicted 

trajectories (prTraj). It is computed as the ratio of identity true 

positives (IDTP) to the average number of IDTP, identity 

false negatives (IDFN) and identity false positives (IDFP). 

As such it can be seen as a combination of identity precision 

(IDP) and identity recall (IDR). 

𝐼𝐷𝑅 =
|𝐼𝐷𝑇𝑃|

|𝐼𝐷𝑇𝑃| + |𝐼𝐷𝐹𝑁|
 (4) 

𝐼𝐷𝑃 =
|𝐼𝐷𝑇𝑃|

|𝐼𝐷𝑇𝑃| + |𝐼𝐷𝐹𝑃|
 (5) 

𝐼𝐷𝐹1 =
|𝐼𝐷𝑇𝑃|

|𝐼𝐷𝑇𝑃| + 0.5|𝐼𝐷𝐹𝑁| + 0.5|𝐼𝐷𝐹𝑃|
 (6) 

A major goal is to develop a satellite component tracking 

system to enable autonomous on-orbit proximity operations 

with non-cooperative spacecraft. As such, the computer 

vision algorithms are not allowed to view the satellite 

mockup at orientations appearing in the test set during 

training. 

In the first experiment, we measure the baseline performance 

of the trained YOLOv8 model on the two test cases, wherein 

the detector had to identify the target satellite’s body, two 

solar panels, antenna, and thruster. These results are shown 

in Table 1 below. 

Case 1 corresponds to the normal lighting conditions while 

Case 2 corresponds to the extreme lighting condition scenario 

in all forthcoming comparisons. 

Table 1: YOLOv8 Model Baseline Performance (All 

Classes) 

Case P R mAP @0.5 mAP@0.5:0.95 

1 0.974 0.927 0.957 0.628 

2 0.786 0.740 0.755 0.435 

 

Here, we see the model performs worse but still quite well in 

the extreme lighting of Case 2. However, these average 

metrics across the classes only tell part of the story. In Table 

2 below, we see the class-specific mAP@0.5. 

The number of detections made by the Yolov5 model was 

recorded and then compared to the number of detections 

made when incorporating the object tracking algorithms. This 

is shown in Tables 2 through 5 below. 

Table 2. YOLOv8 Model Baseline Performance (Class-

specific mAP@0.5) 

Case Antenna Body Solar Thruster 

1 0.995 0.995 0.847 0.911 

2 0.563 0.995 0.799 0.663 

 

As we see, the baseline YOLOv8 object detector shows 

excellent performance in the scenario, although it shows 
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some struggles with smaller features like antennas and 

thrusters under the extreme lighting conditions of Case 2. 

However, even mAP above 0.5 is generally considered to be 

good in the object detection literature, especially with such a 

small YOLOv8 nano architecture. 

Next, we move on to analyzing the performance of the tracker 

via the MOTA and IDF1 metrics. We present performance of 

both ByteTrack and BoTSORT on each of the two test cases 

and at test video framerates 1, 2, 5, 10, 15, and 30 Hz in Table 

3 as well as Figure 4 and Figure 5 

Table 3: Tracker Performance Comparison for Different 

Framerates and Test Cases 

  MOTA IDF1 

Case Hz Byte BoT Byte BoT 

1 1 0.811 0.811 0.906 0.906 

1 2 0.868 0.849 0.934 0.934 

1 5 0.864 0.853 0.932 0.936 

1 10 0.864 0.866 0.932 0.940 

1 15 0.880 0.873 0.939 0.940 

1 30 0.884 0.861 0.942 0.942 

2 1 0.593 0.611 0.778 0.778 

2 2 0.648 0.704 0.815 0.843 

2 5 0.757 0.784 0.884 0.900 

2 10 0.756 0.746 0.908 0.912 

2 15 0.739 0.710 0.899 0.894 

2 30 0.730 0.722 0.908 0.903 

 

 

 

Figure 4 MOTA vs FPS comparison for both 

trackers and cases 

 

Figure 5 IDF1 vs FPS comparison for both 

trackers and cases 

These results show that implementing the tracking algorithms 

alongside our base YOLOv8 object detector results in very 

high tracking performance. BoTSORT seems to have a slight 

advantage in the IDF1 metrics at framerates of 5 to 10 Hz 

with nearly identical performances at higher or lower 

framerates. BoTSORT also outperforms ByteTrack in 

extreme lighting with low framerates by both metrics. 

ByteTrack performs better under moderate lighting, 

generally having higher MOTA with competitive IDF1 

scores. It is also noted that tracking attained optimal or near 

optimal performance by 5 Hz after which performance 

plateaued. This indicates that tracking can be implemented 

successfully at these lower frame rates, which is ideal for on 

orbit servising use case wherin there is significant 

computational and power limitations.  

All in all, it seems the two trackers perform quite similarly by 

tracking quality metrics. However, ByteTrack is substantially 

less computationally expensive. In fact, the authors of 

BoTSORT report framerates of 29.6 Hz for ByteTrack and 

6.6 Hz for BoTSORT.  As such, we can conclude ByteTrack 

should be preferred for real-time satellite component tracking 

if we intend the algorithms to run onboard. 

 

6. CONCLUSIONS 

Overall, it was found that implementing object trackers 

ByteTrack and BoTSORT both provide reliable tracking of 

satellite components when used with a high-performance 

object detector YOLOv8. We also demonstrate the intuitive 

finding that both object detection and object tracking are 

substantially more challenging in the case of extreme 

lighting, but the models presented herein still exhibit high 

performance in such cases. 

A unique finding of this article is that these both ByteTrack 

and BoTSORT trackers perform well in tandem with a high-

accuracy object detector even with low inference framerates 

- near optimal performance from as low as 5 Hz - a surprising 

result largely not claimed to be a strength by the developers 

of the object trackers, as they tend to recommend use with 

object detectors running at a minimum of 30 Hz. This 
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indicates tracking-by-detection paradigm is promising for use 

on resource-constrained spaceflight hardware, where 30 Hz 

object detection is challenging to achieve if not entirely 

infeasible. 

While ByteTrack and BoTSORT are shown to perform 

similarly in tracking quality while ByteTrack has far less 

computational cost and is hence preferred for onboard 

applications, as it can be deployed on edge computers such 

as Raspberry Pi or other resource-limited computers feasible 

for use in satellite and other space applications. 
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