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ABSTRACT

Recent advances in hardware and software technology have made it possible to implement more resource-
demanding deep learning algorithms in lighter hardware environments. This creates opportunities to use
deep learning for space applications on increasingly lighter and smaller spacecraft. The goal of this work
is to demonstrate the viability of implementing a Neural Network Execution Framework (NNEF) that can
facilitate a cross-platform and unified deployment of any neural network onboard a spacecraft hardware
and flight software. The NNEF generalizes the neural network inference process, regardless of the original
framework in which they were created. This allows users to focus on the development of their scientific
model architecture and deep learning objectives, rather than being distracted by the implementation process
onboard the spacecraft. This framework has been implemented to run inside NASA’s core Flight System
and on top of a Raspberry Pi 4 board, demonstrating the capability to execute a variety of trained neural
networks created in Pytorch and Tensor Flow. This includes a neural-based compression algorithm used to
process images from NASA’s Solar Dynamics Observatory in a space-like hardware-software configuration.
This initial software implementation shows the feasibility of our goal, demonstrating the deployment of
deep learning benefits through our framework in a unified way for a broader range of space missions and
applications. In addition, for comparison purposes (not for benchmarking), it showed the performance of
the networks running in the mentioned hardware-software configuration contrasted with the performance
obtained in a regular computer environment.

INTRODUCTION

The purpose of implementing neural networks
(NN) on a spacecraft is to utilize deep learning (DL)
technology for enhancing new science and engineer-
ing applications in space. This enables spacecraft
to operate autonomously, reduces communication
costs, data volume, and latency, and optimizes the
use of computational resources. There is extensive
research focusing on the application of NN for DL
in solving space science and engineering challenges
related to exploration, observation, and operational
tasks, such as123:4

• Analysis of satellite and astronomical imagery

– Image classification and object detection
(asteroids, craters, etc.)

– Change detection (clouds, space debris,
cities growth, etc.)

• Dynamics, navigation, guidance, and control

– Spacecraft propulsion, inertia parame-
ters, spherical harmonics, and drag coef-
ficients

– Terrain mapping and landing system

– Rendezvous and docking operations assis-
tance

– Detection, tracking, and prediction of ob-
ject trajectory

• Onboard data processing

– Reduce transmission bandwidth by data
encoding
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– Signal processing, spectral analysis, and
pattern recognition

– Telemetry analysis

On the one hand, current research is addressing
technical challenges such as data availability, com-
pression models, and validation of models for artifi-
cial intelligence (AI) capabilities on spacecraft.2 On
the other hand, the research and development dedi-
cated to onboard deployment of DL solutions in the
actual constrained hardware-software environment
of a spacecraft remains largely unaddressed. De-
spite the considerable challenge posed by the com-
putational resource requirements for DL, we have
made enough progress in dedicated computing hard-
ware platforms that allow DL models to be deployed
in space.2 Any space DL solution should rely on
having the appropriate hardware architecture, such
as GPUs, FPGAs, and neuromorphic processors, to
have the computational power to manage the billions
of calculations needed to train and execute scientific-
driven and complex NN. However, for space, there
is a trade-off between the required computing hard-
ware and the cost and limited power and weight re-
quirements for spacecraft. As in any modern flight
system, software also has a huge role in space sys-
tems. Efforts have been made to explore the state-of-
the-art DL software implementations for embedded
systems to integrate unique hardware-software con-
figurations to run DL algorithms for specific space-
craft missions and space applications. For example,
one research5 shows the performance of three differ-
ent convolutional NN model architectures for com-
puter vision tasks for space applications are verified
and validated on a specific hardware architecture to
analyze the DL models before deploying them in a
real spacecraft. These are Earth hyper-spectral im-
age segmentation, Mars object image classification,
and Moon crater image detection. They develop
and train the model using the TensorFlow frame-
work. Another research6 describes a DL testbed
flight demonstration conducted on existing flight
hardware using TensorFlow Lite for terrestrial-scene
image classification (collected in flight by the STP-
H5/CSP system). It compares the accuracy, the ex-
ecution time, and the runtime memory usage, when
executing modern pre-trained convolutional neural
networks (CNN), such as MobileNet or Inception-
ResNet. These efforts demonstrated that it is pos-
sible to achieve a reasonable performance executing
modern NN on a low space-grade computational re-
source embedded platform.

However, for deep learning technology to become
commonplace for different types of space missions, it
is necessary to offer a DL software framework that
enables a generic and easier deployment and infer-
ence process of any NN models. This DL frame-
work should be suitable for a wide range of hard-
ware architectures and operating systems normally
used in spacecraft, including small satellites. Which
contributes to DL space applications with limited
CPU/GPU power. Also, this framework should be
an important component to optimize the memory
usage, link throughput, latency, and cost of space
communications and science data delivery.

We are aware that to implement a space DL soft-
ware framework with such characteristics, as the one
we are proposing, it is essential to have a flight soft-
ware framework as a foundation for our software
generalization across different platforms. This pro-
vides access to the spacecraft hardware infrastruc-
ture to interact with (memory management, proces-
sors, storage devices, communication devices) and
the underlying operating system in an abstract, and
homogeneous way. It creates a run-time environ-
ment by providing services that are common to most
flight applications (telemetry output, command re-
ceiving, message bus, file and data transfer, etc.)
that simplify the flight software applications devel-
opment. All of this allows us to focus on developing
our DL software framework without worrying about
the concrete hardware and operating system imple-
mentations.

There are already space flight software frame-
works such as Core Flight System7 (cFS) or F Prime
(F’),8 developed by NASA Goddard Space Flight
Center and NASA Jet Propulsion Laboratory, re-
spectively, used in several space flight software-based
missions. There is little information on current space
missions using any space flight software to execute
NN algorithms. Some DL technology test efforts are
ongoing. For example, NASA Glenn Research Cen-
ter explores the use of cFS and specialized hard-
ware to implement cognitive communications capa-
bilities onboard spacecraft to improve the auton-
omy of space communication.9 The project em-
phasizes the development of cognitive decentralized
space networks with AI agents optimizing commu-
nication link throughput, data routing, and system-
wide asset management. They propose future vir-
tualization of cognitive networks using cFS for code
reuse across diverse types of missions, working on
cFS apps as RTEMS1 virtual machines. DL mod-
els could be executed inside a cloud-centric service

1Stands for Real-Time Executive for Multiprocessor Systems. It is a multi-threaded, single-address-space, real-time operating
system
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architecture in space.
Based on the examples shown, even though these

flight software provide a platform to implement
mission-specific DL applications, we can affirm that
there is still a lack of a DL framework to generalize
the implementation of NN models in space missions.
Then, to fill this gap, we conceptualized and devel-
oped a Neural Network Execution Framework
that allows the deployment and execution of the in-
ference process of any (or almost any) neural net-
work models for any DL-based space missions. No
matter what space flight software, operating system,
and hardware configuration are used.

This document is organized as follows: Section
2 depicts the software architecture that was used
to model and develop our framework as a generic
way for NN deployment on top of any space flight
software. Then, section 3 shows a specific frame-
work implementation using cFS, including the com-
ponent view and its relationship to execute a typical
use-case workflow. One subsection is dedicated to
describing cFS architecture as the space flight soft-
ware used for this phase of the NN framework de-
velopment. Next, section 4 shows a demonstration
of how the framework could be used in the inference
of several NN, modeled and trained in Pytorch and
TensorFlow. The final sections show the demonstra-
tion results, conclusions, and future work.

NEURAL NETWORK EXECUTION
FRAMEWORK SOFTWARE ARCHITEC-
TURE

A DL software framework involves a platform, li-
braries, a programming language, and a set of func-
tions that allow us to model, train, test, and deploy
NN models with application domains like prediction,
image processing and recognition, and much more.
Nowadays, the main frameworks to work with DL
model architectures are TensorFlow, PyTorch, and
Caffe, among others. To execute these NN models
in a typical C/C++ space environment, such DL
frameworks need to have a way to save their models
as Model Scripts (and most of them have it). With
this, a spacecraft could execute these model scripts
without requiring the complete DL software frame-
work onboard installation. This agrees with and en-
ables the goal of making DL accessible to virtually
any spacecraft hardware and software configuration.

Therefore, with all of this in mind, we created our
Neural Network Execution Framework (NNEF) with
the capacity to execute the inference process on any
NN model (saved as a Model Script) for space appli-
cations. Its software architecture is implemented as

an extension layer made of a group of components
on top of space flight software for getting the in-
puts from science applications and delivering the re-
sults through the communications channels (receiv-
ing commands, sending telemetry, and transferring
files from and to the ground station). Also, with the
space flight software we can access the abstracted
hardware (i.e., CPU/GPU, memory, storage, etc.)
and software resources (i.e., the operating system,
basic flight functions, etc.). In summary, perfor-
mance and execution depend on the hardware, re-
source abstraction depends on the space flight soft-
ware, and implementation and deployment general-
ization are allowed by our NN execution framework.
We built this version to integrate the following char-
acteristics:

• Support for the most common and important
DL frameworks, as long as they can save their
NN models as scripts to be executed in a
lightweight environment.

• If one or more specific NN models are imple-
mented in our framework, it allows their ex-
ecution using the same interface (inputs and
outputs), no matter what the DL framework
used to make and train that model.

• Allow the execution of trained NN models by
loading the corresponding Model Script file, re-
ceiving the input dataset from another science
application or file system, and delivering the
inference output results.

• The NN model training is supported, but is
not suggested for small spacecraft due to its
computational resource limitations.

• Uploading the NN Model Script file from the
ground station, allowing to update it at run-
time without reinstalling or rebooting any of
the framework software components.

• Integration with the spacecraft command in-
put system to start the inference process of
one of the deployed NN models.

• Integration with the spacecraft telemetry out-
put system to send the status of the NN pro-
cess and the NN execution platform.

• Storage of the inference output data, which
could be downloaded to the ground station.

• All of the above should be managed from
the ground station through a command-and-
telemetry local system.
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Figure 1 shows how the current architecture has
been implemented.

Figure 1: Neural Network Execution Frame-
work. General Software Architecture

The architecture’s components are described as
follows:

A. An application called NN Manager serves
as the main interface for commanding the NN
execution. This command should contain the
NN model the user wishes to execute and all
of its parameters, such as the used DL frame-
work Model Script (Python, TensorFlow, etc.),
dataset size, and batch size, among others.
This component reads the input dataset, which
may come from messages or files generated by
other onboard science applications, executes
the corresponding NN Abstract Client compo-
nent (see item B.), and manages and saves in
the file system the predicted or inferred NN
results. Then, space flight software will send
them to the ground station. Additionally, the
application takes charge of sending its status
updates, housekeeping telemetry, and the sta-
tus of the NN process.

To do its job, the NN Manager should inte-
grate with the underlying space flight systems,

adhering to its standard application architec-
ture and rules. It should receive and send mes-
sages from it for handling command inputs and
telemetry outputs, and it should interact with
it to save and read files from the storage device.
It is the responsibility of the space flight soft-
ware to communicate with the ground station
software for command and telemetry interac-
tion and the transfer of files between them.

B. NN Abstract Client, consisting of one ab-
stract class, has the primary role of providing
a generic and abstract interface for the exe-
cution of one specific NN model, having one
abstract class for each NN Model type. It fol-
lows the abstract factory object-oriented de-
sign pattern. This pattern is a well-known cre-
ational pattern to instantiate concrete classes
to produce concrete products, but the user
deals only with the abstract definitions of those
classes, represented by this abstract client, ig-
noring the actual implementations. In this
case, the user role is done by the NN Man-
ager, which will interact in the same way with
the NN Model, no matter what DL framework
was used for its modeling and training.

C. Behind the previous abstract client, a NN
Concrete Client class is instantiated to load
and execute the NN Model Script developed
and trained in its specific DL framework. The
user should integrate one new concrete client
per DL framework Model Script for that NN
model type. Here. Each implementation uses
its own C/C++ code and additional propri-
etary framework libraries to train, test, or ex-
ecute the inference process of the specific NN
model.

NN FRAMEWORK IMPLEMENTATION
WITH NASA’S cFS

As a starting point and specific implementation,
we use NASA’s cFS as the base space flight software
of our NN execution framework, so it can be inte-
grated into cFS-based missions. But there are other
flight software platforms in which we could integrate
the framework shortly.

cFS as Our Space Flight Software

Thanks to the platform-independent architecture
of cFS and the growing number of space missions
that use it,10 we selected such space flight software
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as our first choice to implement our NNEF. Fig-
ure 2 shows the cFS dynamic run-time environment
and its layered architecture and component-based
design.

Figure 2: cFS Layered Service Architec-
ture.7 The Core Flight Executive (cFE) is
a portable, platform-independent framework
that creates an application runtime environ-
ment. Applications provide mission function-
ality using a combination of cFS community
apps and mission-specific apps. The OS Ab-
straction Layer (OSAL) is a software library
that provides a single API to the cFE regard-
less of the underlying real-time operating sys-
tem. The Platform Support Package (PSP) is
a software library that provides a single API
to underlying avionics hardware and board
support package.

Implementation Software Architecture

Following the section 2 implementation rules, we
integrate our NNEF as a new layer on top of a cFS.
This means that our framework classes are now an
extension group of cFS applications and libraries, on
top of a standard cFS framework.

Figure 3 shows how the NNEF architecture is
adapted to cFS.

Figure 3: NN Execution Framework and cFS
Implementation. Software Architecture

The specific architecture’s components are de-
scribed as follows:

a. NN Manager is implemented as a cFS applica-
tion, so it adheres to the standard cFS appli-
cation architecture and rules. As mentioned in
item A., for this case, this class integrates with
cFS, receiving and sending CCSDS2 messages
from and to the cFE Software Bus for handling
interaction with Command Ingestion (CI) and
Telemetry Output (TO) components. To save
the predicted or inferred NN results for the cFS
to send them to the ground station, the NN
Manager uses the Data Storage (DS) applica-
tion, sending the binary results as software bus
messages. DS is configured to receive those
messages and save them on a storage device
such as a solid-state recorder.11 Also, through
cFE Executive Services (ES), the application
interacts with the underlying PSP and OSAL
layers, as explained in Figure 2

b. The classes described in items B. and C. are
implemented as cFS C++ libraries. So, its
code is independent of cFE services and cFS
applications.

2Stands for Consultative Committee for Space Data Systems.12 Supports CCSDS version 727.0-B-5.
3Stands for CCSDS File Delivery Protocol.
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c. Operations outside of our NNEF. These oper-
ations depend only on the cFS:

c.1 COSMOS ground station software is used
for communications between satellites and
ground stations. This component sends
commands, receives spacecraft telemetry,
and supports CFDP3 for file transfer
through its CFDP Engine. cFS can com-
municate with the ground station software
(COSMOS) using CI and TO components.

c.2 With CFDP application (CF) and its
handshake with COSMOS CFDP Engine,
the user can download the inferred NN re-
sult files to the ground station and upload
the NN Model Scripts files to be executed
in the concrete clients (See item C.). It
works by mapping CFDP-compliant PDUs
in and out of the cFS’s software bus.13

c.3 The File Management (FM) application
provides onboard file system management
services by processing ground commands
for copying, moving, renaming, and de-
compressing files. Creating directories,
deleting files and directories. Also provid-
ing file and directory informational teleme-
try messages.14

Figure 4 below clarifies the framework execution
workflow and how each component is operating:

Figure 4: NN Execution Workflow

The next numerated list describes Figure 4 steps:

1. If the NN Model Script hasn’t been uploaded
yet or there is a need to update it, a ground
command is sent to start Model Script file up-
loading.

2. CF manages the transmission of the file and
saves the Model Script in the file system or
spacecraft data recorder (SDR).

3. A Science App (or ground station) sends a
command to DS that enables the storage of
any subsequent science data message.

4. DS will take and save on the file system all
available science data messages for which it is
configured.

5. A command is sent from the ground station
to prepare the DS for the storage of the in-
ferred (predicted) data from the NN that will
be produced in the next steps.

6. Ground sends a command to the NN Manager
to execute the NN Model. Should indicate
the desired NN Model type, the concrete NN
model implementation, the data size to be pro-
cessed, the batch size, and the reserved mem-
ory for each one of the inferred elements.
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7. NN Manager gets one instance of the cor-
responding NN abstract and concrete clients
(cFS libraries) and sends them the input data
in binary form.

8. The concrete NN client acquires the Model
Script and loads the trained NN model. Then
transform the input data to obtain the dataset
(typically in tensor form) and feed the NN
model with it. The inferred results are trans-
formed again into binary form and sent back
to the NN Manager.

9. NN Manager formats and sends the results to
the bus, so that DS saves them in the space-
craft file system.

10. A ground command is sent to CF to download
the result data files. CF manages the down-
load transaction to the ground station.

NN FRAMEWORK DEMONSTRATION

Chosen Neural Networks

The reader can observe in this document’s intro-
duction that many types of NN models have suitable
execution onboard a spacecraft. As a proof of con-
cept, we show two types of NN Models:

1. A simple Convolutional Autoencoder
(CAE) is selected as a NN inference demon-
stration, with no particular space application,
but the reconstruction of handwritten digits
image dataset. The same CAE model was
implemented, trained, and tested using both
Pytorch and Tensorflow frameworks. Figure 5
shows the layered architecture of the selected
CAE NN. The Encoder segment captures a re-
duced representation of the input image, called
Latent Space. The Decoder segment tries to
reconstruct the image as well as possible. The
unsupervised NN is trained to create a latent
space, so the differences between the original
images and restored ones are minimized. It
used 60,000 MNIST4 images for training and
20,000 images for testing the models.

Although the model is made of two differ-
ent sub-models (encoder and decoder), both
of them were trained and tested as a whole
and unique model. The trained encoder seg-
ment is meant to be run on the spacecraft flight
software through our NNEF. The encoder re-
duces the size of the input images (assum-
ing they were created by a previous process

or application and saved in the spacecraft file
system) and creates the corresponding latent
space of each image. They can be downloaded
to the ground station. This ensures minimal
space and latency in data transmission. Next,
the decoder segment will be executed at the
ground station to acquire the decoded images
back using the corresponding DL framework.

Both the NN model and training examples,
from Pytorch and Tensorflow, are available in
the GitHub folder repository https://t.ly/

FX2AO under the MNIST_CAE name. They can
be executed using the Jupyter Notebook on
Linux environments to observe the training
and testing processes and to watch for a com-
parison between original and reconstructed im-
ages (see table 1 for product version informa-
tion). At the end of each code example, the
Model Script that represents the trained en-
coder model is saved to be uploaded and exe-
cuted in the spacecraft. The Pytorch encoder
Model Script is saved as a single file Torch-
Script format. The Tensorflow encoder Model
Script is saved as a multiple file SavedModel
format. We also created a specific example
code to transform and decode the binary out-
put data that represents the encoded images
coming from the spacecraft.

2. A Neural-based Image Compressor on
NASA’s Solar Dynamics Observatory (SDO)
is selected as a complex NN inference demon-
stration with a particular space application as
the efficient compression applied to solar im-
ages that comes from the SDO. This NNModel
was developed and trained in Pytorch using
specialized quantization and entropy NASA li-
braries to encode and decode the images.16

Figure 6 shows the architecture of this NN
Model. See the reference for more details
about the architecture, training, and results.

We took a checkpoint of the pre-trained model
from https://t.ly/ds0LW, and, as in the pre-
vious CAE NN Model, only the compression
model is executed on the spacecraft flight soft-
ware through our NNEF. This reduces the
size of the input images and creates the cor-
responding latent space. For testing, we used
a 32 SDO images dataset, previously saved in
the spacecraft file system.

The Pytorch code to test this model is avail-
able in the GitHub folder repository https:

4Stands for Modified National Institute of Standards and Technology database of handwritten digits15
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Figure 5: Simple CAE Architecture

Figure 6: NASA Neural-based Image Compressor. The input image is down-scaled by a factor
of 16 to get the latent code and up-sampled in reverse to get the reconstructed image.16
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//t.ly/FX2AO under the nasa_compressor

name. At the end of the code, the Model
Script that represents the trained compressor
model is saved to be uploaded and executed
in the spacecraft. The Pytorch compression
Model Script is saved as a single file Torch-
Script format. They can be executed using the
Jupiter Notebook under Linux environments
to observe the evaluation process and to watch
for a comparison between original and recon-
structed images (See table 1 for product ver-
sion information). We also created a specific
example code to transform and decompress the
binary output data that represents the com-
pressed SDO images coming from the space-
craft.

As we already mentioned, this NN model origi-
nally uses specialized quantization and entropy
C/C++ libraries for the compression model,
which are linked to the original Pytorch code.
However, we needed to change the original Py-
torch code, so it was possible to transform the
NN model to its Model Script version and re-
compile such libraries to access them from the
Model Script version and the original Pytorch
model as well.

Table 1: Product Versions to Train and Test
Both NN Models

Framework/Application Version

Jupyter Notebook (Linux) 7.1.1

Python 3.11.4

Pytorch 2.2.1

Tensor Flow 2.13.0

Neural Networks Implementation

Sticking to the proposed NN Framework software
architecture to execute any NN on the spacecraft,
shown in 1, specific abstract and concrete compo-
nents were created to deal with the execution of the
chosen NN Models. Figure 7 shows these compo-
nents for both Pytorch and TensorFlow CAE NN
and the related elements. Also, in Figure 8, it
is shown the software components for the Pytorch
NASA Neural-based compressor NN.

Following the workflow enumerated steps in Fig-
ure 4, for each tested NN Model, the specific NN
components and their role inside the workflow are
described.

For the Convolutional Autoencoder NN Model
(check with Figure 7),

• In steps 1 and 2, the Encoder NN Model
Scripts are uploaded to spacecraft. The Torch-
Script Encoder NN and SavedModel Encoder
NN script files come from the Pytorch and
TensorFlow frameworks, respectively.

• For step 6, the user indicates to the NN Man-
ager App that he wants to execute the MNIST
Encoder part of the CAE NN Model. Also, he
indicates if he prefers to use the Phyton or
the TensorFlow version. Also, he should set
the appropriate dataset size, batch size, and
inferred element memory reserved size.

• For steps 7 and 8, the abstract client would be
MINST Encoder Lib, which is responsible
for obtaining and executing the corresponding
concrete Encoder client according to the de-
sired DL framework to use. Two concrete En-
coder clients were implemented:

1. Encoder Torch Client runs the Py-
torch Encoder version, loading the model
from the TorchScript Encoder NN script
file. This implementation uses the
LibTorch (a C++ Pytorch API) auxil-
iary library (see https://pytorch.org/

cppdocs/frontend.html) to execute the
NN from C++.

2. Encoder TensorFlow Client runs the
TensorFlow Encoder version, loading the
model from the SavedModel Encoder
NN script file. This implementation
uses the LibTensorFlow for C auxil-
iary library from the TensorFlow official
site (see https://www.tensorflow.org/
install/lang_c) and CppFlow C++
lib (see https://serizba.github.io/

cppflow/index.html) as a high-level
wrapper to execute the NN from C++.

• After all workflow steps are complete, the
ground station receives the binary output
data. Then, the data is transformed and deliv-
ered to the decoder part of the corresponding
CAE NNModel, which reconstructs a close ap-
proximation of the original images.

For the Neural-based SDO Image Compressor
NN Model (check with Figure 8),

• In steps 1 and 2, the SDO Encoder NN Model
Script is uploaded to the spacecraft. The
TorchScript SDO Encoder NN script file comes
from the Pytorch framework.
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Figure 7: Framework Software Architecture for a Simple CEA NN

Figure 8: Framework Software Architecture for the NASA SDO Compressor NN
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• For step 6, the user indicates to the NN Man-
ager App that he wants to execute the SDO
Compressor part of the NN Model. Also, he
should set the appropriate dataset size, batch
size, and inferred element memory reserved
size.

• For steps 7 and 8, the abstract client would
be SDO Compressor Lib, which is respon-
sible for obtaining and executing the cor-
responding concrete SDO Compressor client
according to the desired DL framework to
use. Only one concrete SDO Compressor
client was implemented: SDO Compressor
Torch Client runs the Pytorch version, load-
ing the model from the TorchScript SDO En-
coder Model script file. This implementa-
tion uses the LibTorch (a C++ Pytorch API)
auxiliary library (see https://pytorch.org/

cppdocs/frontend.html) to execute the NN
from C++. As we mentioned before, addi-
tional specialized C++ libraries are used inside
the TorchScript SDO Encoder Model.

• After all workflow steps are complete, the
ground station receives the binary output
data. Then, the data is transformed and de-
livered to the SDO Decoder part of the SDO
Neural-based NN Model, which reconstructs a
close approximation of the original images.

Neural Networks Deployment and Execution

To demonstrate that the framework is suitable
to execute all the NN Models running the NNEF
in a realistic on-orbit hardware-software configura-
tion, we set up a Raspberry Pi board, with a Linux
Ubuntu OS. Also, we installed our NNEF on top of
a basic cFS system distribution, including FM, DS,
and CF additional apps, and we deployed all the
shown NN models with the corresponding C/C++
clients and libraries. LibTorch and CppFlowLib are
integrated into the operating system and dynami-
cally loaded through the cmake configuration files.
COSMOS application is executed on a regular com-
puter to emulate the ground station. It was neces-
sary to create the COSMOS configuration files to
target the cFS commands and telemetry system.
Also, to integrate all necessary setup for the CFDP
engine and its PDU communications with cFS’s CF
app, and create the new commands and telemetry
files for our new NN Manager App. The next table
(Table 2) shows all computer devices and operating
system specifications.

Table 2: Hardware and Operating Systems
(OS) for Demonstration

Emulated Spacecraft specs

Board: Raspberry Pi 4 - Model B

Processor: 64-bit quad-core Cortex-A72

Memory: 8 GB RAM

Storage: 32 GB

OS: Linux Ubuntu Desktop for

RPi 23.10 (64-bit)

Emulated Ground Station specs

Processor: Intel(R) Core(TM) i7-10875H × 2

Memory: 8 GB RAM

Storage: 108 GB

OS: Linux Ubuntu 23.04 (64-bit)

All NN Execution Framework code, the inte-
grated NN Model applications and components, and
the specific integration with cFS are available in the
GitHub folder repository https://t.ly/FX2AO un-
der the NNEF name. Table 3 describes all software
applications or frameworks and their versions used
to run our NNEF demonstration.

Table 3: NN Execution Framework Software
Environment

Framework/Application Version

Emulated Spacecraft

NASA cFS bundle draco-rc5

cFS: CFDP App draco-rc5

cFS: DS App draco-rc5

cFS: FM App draco-rc5

LibTorch (C++ Pytorch API) 2.1.0

Libtensorflow (C TensorFlow API) 2.14.0

CppFlow (C++ TensorFlow API) 2.0.0

Emulated Ground Station

Docker Engine 26.0.1

OpenC3 COSMOS 5.0.6
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Table 4: Encoder NN Performance Comparative

NN Model Regular computer Raspberry Pi

Latency Throughput Latency Throughput

(sec/image) (images/sec) (sec/image) (images/sec)

TF MNIST Encoder 3.3× 10−3 4,900 4.87× 10−4 2,051

PT MNIST Encoder 3.5× 10−4 6,500 5.13× 10−4 1,951

PT SDO Neural Compressor 1.67 0.79 5.02 0.20

PT: Pytorch, TF: Tensor Flow

1. Our NN Execution Framework was able to ex-
ecute the inference process of all deployed NN
models onboard a cFS-based spacecraft using
a unified way to execute it, receiving the in-
put data set and predicting the results. We
demonstrate in this work that it is possible to
integrate simple and complex TensorFlow and
Pytorch-trained networks inside NNEF, and
all of that can run on top of a space-like small
hardware-software configuration.

2. We were able to send the inferred results files
to the ground station. All results were cor-
rectly decoded and compared in their corre-
sponding DL framework.

3. The performance of the inference process of all
NN Models onboard a Raspberry Pi is shown
in Table 4. And is compared with the perfor-
mance we would get with the ground station
regular computer specifications, but using the
corresponding original DL Framework to ex-
ecute exactly the same NN Models. As ex-
pected, we can see the performance in small
hardware-software configurations is lower, but
it is enough to execute NN Models with real-
life complexity for space missions.

4. The MNIST Encoder works much faster than
the SDO Compressor because the latter pro-
cesses greater images and performs more com-
plex and resource-demanding mathematical
operations. For small hardware, the MNIST
Encoder throughput is approximately 2000 im-
ages/sec. and with the SDO Neural Compres-
sor, we can generate compressed representa-
tions at a rate of 1 image every 5 seconds.

Therefore, it could be concluded that the NNEF
is a suitable framework to deploy and execute a
large number of NN-based space applications, at
least with less or equal complexity than the neural-
based SDO image compression NN shown here. Fa-
cilitating the deployment and execution of the in-
ference process using cFS as space flight software,

that allows us to be agnostic of what operating sys-
tem and hardware configuration are used. Moreover,
demonstrating that this configuration can run in a
small hardware-software setup, similar to the one
currently used in real space missions.

FUTURE WORK

For the next stages of our project, we will be
working on:

• Integrate and test more examples and more
types of NN models to be applied in realistic
space applications to ensure a broader NNEF
DL applicability.

• Integrate the NNEF with more Space Flight
systems, such as F Prime and others, to ensure
we can integrate the NNEF into more space
mission types and ensure cross-platform com-
patibility.

• Continue testing on several space-type hard-
ware boards to integrate our NNEF with more
complex hardware platforms, such as real-time
OS and FPGAs.
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