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ABSTRACT 

Recent advances in space technology have prompted a surge in the deployment of small satellite constellations by 

companies such as Starlink and OneWeb. Now numbering in the thousands, these constellations have significantly 

increased the burden on satellite operators who must monitor and manage them to ensure their safe and reliable 

functioning. In response to this heightened operational demand, autonomous small satellite operations have become a 

focal point for investment, innovation and exploration. The latest hardware breakthroughs in Edge AI have paved the 

way for applying artificial intelligence (AI) techniques directly on board these small satellite systems, heralding a new 

era of AI-empowered autonomous satellites. Space agencies such as ESA and NASA have taken notice of these 

advancements and are actively pursuing the development of on-board AI systems. This paper investigates the 

application of AI to monitor satellite telemetry data on board small satellites to enable real-time detection and 

immediate response to anomalies. We have curated a unique dataset derived from EIRSAT-1, Ireland's first 

domestically produced satellite, as a testing and validation resource for these ML models and the future development 

of AI-enabled small satellites. This dataset consists of a training set developed during ground testing and containing 

artificial anomalies induced to train satellite operators, a validation dataset containing real anomalies encountered 

during the qualification campaign, and an early flight test dataset collected since the satellite was launched on 

December 1st, 2023. This paper presents an in-depth analysis of the efficacy of several ML techniques when applied 

to the EIRSAT-1 dataset using flight-ready hardware. This study not only showcases the capabilities of these ML 

techniques in an operational environment but also sets the stage for future research and development in autonomous 

satellite systems. 

INTRODUCTION  

Satellite systems are critical in modern technology, 

facilitating communication, navigation, and observation. 

Ensuring their reliability and efficiency is paramount, 

given their operational complexity and the high cost 

associated with mission failures. One key aspect of 

maintaining satellite health is detecting and managing 

anomalies such as hardware malfunctions, software 

errors, and environmental impacts. 

EIRSAT-1 

EIRSAT-1 (Educational Irish Research Satellite-1) [1], 

Ireland’s first satellite (see Figure 1), is an excellent 

focus for machine learning-based anomaly detection 

systems research. EIRSAT-1 was developed and 

launched by students and researchers at University 

College Dublin (UCD). This project was part of the 

European Space Agency's (ESA) “Fly Your Satellite!” 

program [1]. EIRSAT-1 development began in 2017 and 

it launched onboard a SpaceX Falcon 9 on December 1st, 

2023. The primary objective of EIRSAT-1 is to serve as 

an educational tool, providing students and researchers 

with direct experience in satellite design, construction, 

testing, and operation. 

EIRSAT-1 is a 2U CubeSat equipped with three 

payloads designed for scientific and technological 

experiments in space [1]: the Gamma-ray Module 

(GMOD) instrument is designed to detect and analyze 

gamma-ray bursts (GRBs); the ENBIO Module (EMOD) 

experiment tests advanced thermal control coatings 

developed by the Irish company ENBIO; and the Wave-

Based Experiment tests novel technologies for space 

communications. 

EIRSAT-1 incorporates telemetry, command, and data 

handling systems, enabling communication with ground 
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stations and transmission of scientific data back to Earth 

[1]. This allows ground analysis of data the satellite 

system provides from both nominal spacecraft 

operations and the onboard payloads. 

 

Deployment Scenario 

Multiple datasets are generated during the development 

and qualification process for a satellite. Firstly, a dataset 

is designed to train satellite operators on system outputs 

to enable them to recognize when issues arise on board 

[2]. In the case of EIRSAT-1, this is called the Flight-

Test dataset. This dataset is designed to contain artificial 

anomalies deliberately introduced to simulate various 

fault conditions that satellite operators might encounter. 

The Flight-Test dataset is essential in the initial phase of 

developing an anomaly detection model. A machine 

learning model can learn to identify patterns and 

signatures associated with anomalies (or nominal 

behaviour) using this dataset. The controlled 

environment from which the Flight-Test dataset is 

generated allows for model parameters to be 

systematically evaluated and tuned, ensuring that the 

model can recognize a wide range of potential issues.  

This paper introduces the EIRSAT-1 anomaly detection 

dataset. This paper aims to publish a cleaned and 

“training ready” version of the datasets gathered from the 

EIRSAT-1 development, qualification and flight 

campaigns to enable others to continue the work in the 

future. This dataset is generated from the test campaign 

and initial flight phase of EIRSAT-1. This dataset is split 

into 3 different phases: the Flight-Test dataset, the 

TVAC (Thermal Vacuum Test) dataset, and the Flight 

dataset. The Flight-Test dataset was generated using 

artificially induced anomalies to test how the satellite 

reacts to potential issues; it is also used to train satellite 

operators in handling any potential anomalies the 

satellite suffers. The TVAC dataset contains real 

anomalies that occurred during the Thermal Vacuum 

test. The EIRSAT-1 dataset also contains an initial Flight 

dataset generated in the first several months of operation. 

As well as introducing the dataset, his paper also 

explores a development process where a model can be 

trained on the Flight-Test dataset, validated on the 

TVAC dataset, and deployed on the unlabeled Flight 

dataset, utilizing the metrics from the previous two 

datasets to assume performance metrics on the unlabeled 

flight dataset.  

DATASETS 

This section describes the different parts of the EIRSAT-

1 anomaly detection dataset, and how they can be used 

for building anomaly detection models. The data in the 

three different parts of the dataset described in the 

previous section (Flight-Test, TVAC, and Flight) is 

derived from two sources: the primary software data line 

on board and the failsafe data line. The primary software 

data line is the main data output of the satellite and 

contains all information intended to be transmitted to the 

ground. The failsafe data line serves as a backup with 

reduced functionality, such as no access to payloads, and 

is activated in case of multiple power cycles. Both data 

lines utilize aggregators to gather data from the 

spacecraft and store it in downlinked channels. The 

channels are then classified into four major categories (as 

shown in Table 1): Housekeeping, ADCS (Attitude 

Determination and Control System), TED (Telemetry-

enhanced Statistics), and Power based on the fields they 

include. These fields contain readings and statistics from 

different components of the spacecraft, which are 

described in more detail in the remainder of this section. 

Each category consists of one primary channel and one 

failsafe channel, which is only activated once the 

primary channel is inactive. This means that only one 

channel from any category is active at once. Due to 

resource constraints on the backup system, the failsafe 

channels do not carry the payload entries which are 

included on the primary channel, resulting in a smaller 

feature set. Additionally, each category has a different 

frequency for logging entries into the system, which 

Table 1: The categories of data contained in the EIRSAT-1 datasets 

with the mapping of categories to channels from primary and 

failsafe data lines. 

Category Channels 

(Primary, 

Failsafe) 

Frequency No of Fields 

(Primary, Failsafe) 

Housekeeping 3, 15 50 sec 94, 68 

ADCS 5, 17 300 sec 34, 29 

TED 4, 16 600 sec 77, 46 

Power 7, 19 60 sec 

 

91, 72 

Figure 1: EIRSAT-1. 
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means that not all categories output the same volume of 

data in any given time duration. 

Structure of the Dataset 

The complete dataset for EIRSAT-1 can be found here: 

https://zenodo.org/records/11551556. The dataset is 

distributed in three parts: 

Thermal Vacuum (TVAC) Test Dataset: The TVAC 

dataset is collected from the initial qualification test 

campaign. It contains data from both the primary and 

failsafe data lines, so all eight channels have data in 

them. The campaign suffered some real anomalies, 

which will be discussed later. 

Flight Test Dataset: The Flight Test dataset was 

collected from the second test campaign when EIRSAT 

was used in a flight simulation. During this test, the 

simulation was injected with some artificial anomalies, 

but it also suffered some real anomalies, which will also 

be discussed later. It also contains data from both the 

primary and failsafe data lines. 

Flight Dataset: The Flight Dataset is the dataset 

collected from the EIRSAT flight commissioning phase, 

which lasted four months from December 2023 to March 

2024. EIRSAT did not go into a failsafe mode during the 

commissioning, so these channels had no data. Thus, the 

data in this dataset contains only the four primary 

channels for each month. The data was downlinked for 

each month, thus resulting in four sub-datasets for 

December, January, February, and March. Since this is 

an actual flight dataset, there are no annotated anomalies 

in this dataset. 

Channel Definitions 

The spacecraft has eight channels (four from the primary 

data line and four from the failsafe data line), which are 

grouped into four categories. Each category covers 

specific properties of the spacecraft and includes the 

channels that report those properties. Due to the different 

frequencies of each channel, the distribution of data 

across the channels is not uniform, with specific periods 

of time having more data than others. For each category, 

the failsafe data line includes a subset of the parameters 

reported by the primary data line. For example, in the 

‘Housekeeping’ category, Channel 15 comes from the 

primary data line, and Channel 3 comes from the failsafe 

Figure 2: Overview of our data pipeline and data flows. 
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data line (as shown in Table 1). Each category contains 

the following information: 

• Housekeeping: This category contains 

information about the spacecraft's general 

health, including parameters for temperatures, 

health, and the status of different components. 

It also contains many features related to the 

anomalies that occurred during the test 

campaigns. 

• Power: This category contains information 

about electrical power generation, storage, and 

distribution. It includes parameters related to 

the voltages and currents across different 

components of the spacecraft and many features 

related to the anomalies suffered during the test 

campaigns. 

• Telemetry-enhanced Statistics (TED): TED 

mainly contains error counters and other 

spacecraft statistics/readings for different 

components, which can be useful for detecting 

changes in the state of the subsystems reflected 

by changing error counts. 

• Attitude Determination and Control 

Subsystems (ADCS): This category mainly 

contains housekeeping statistics from the 

attitude determination and control subsystems. 

 

1 The pipeline was constructed using Python 3.9, 

ibm_boto3 [3] and the Pandas [4] library. 

It includes the smallest number of parameters 

of any category and is not useful for detecting 

the anomalies reported in the TVAC and Flight-

Test campaigns. 

Each row in the data begins with a timestamp or ‘On-

Board Time (OBT)’ value, which serves as an identifier 

for each individual data point across all datasets [2]. 

Preprocessing Data Pipeline 

Before training any ML models using these datasets, an 

automatic data pipeline1 was constructed to preprocess 

the raw EIRSAT-1 data. The data is saved in a CSV file 

for better readability after preprocessing. The pipeline 

offers two execution modes: local and cloud, enabling 

execution on either a local machine or the IBM cloud. 

Figure 2 provides an overview of the data pipeline. When 

given a target file name, the pipeline retrieves the 

corresponding data file and reads the bytes directly into 

memory. In cloud mode, the pipeline will first download 

the raw data files from IBM Cloud Object Storage using 

the given file name to find the file path within the cloud 

environment. From end to end, the pipeline transforms 

the EIRSAT-1 raw data into a data table according to the 

metadata definition.  

Figure 3: An example of Channel05 raw data and saved CSV data. 
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Figure 3 illustrates an example of converting raw data 

into a usable CSV data table. Initially, the raw data is 

extracted from the Channel05 file as bytes. Following 

this, the pipeline transforms the bytes into an 8-bit data 

representation. Subsequently, the 8-bit data is organized 

into a data frame and converted into appropriate data 

types such as integer, float, string, and bit as defined by 

a meta-data file. Each row in the data begins with the On-

Board Time (OBT) value, which serves as an identifier 

for each individual data point across all datasets [2]. We 

augment the data frame with a timestamp column to 

facilitate downstream time series analysis. This is 

achieved by using the OBT values as Unix time and 

integrating them as Universal Time Coordinated (UTC) 

in the data frame. 

Anomalies 

Anomaly identification is an essential aspect of these 

datasets. For both the Thermal Vacuum (TVAC) Test 

Campaign and the Flight Test Campaign, information 

regarding known anomalies is recorded in the form of 

timestamp ranges provided by the scientists who carried 

out the test. Broadly, each annotated anomaly is 

categorized as an injected anomaly (triggered due to a 

forced change in conditions) or a real anomaly 

(occurring naturally in the system). All the variables 

mentioned with anomalies here are parameters in the 

dataset. The Excel file in the dataset folder shows the 

category to which these parameters belong. Some 

anomalies occurred more than once and for a varying 

duration of time, as shown in Table 2. The instances with 

the anomaly in the dataset have been labelled as ‘1’ for 

their respective column.  

TVAC Dataset 

During the TVAC [6] test campaign, two anomalies were 

encountered. 

1. Anomaly 1: During vibration testing, a 

damaged solder joint on the battery board and 

changing pressure in TVAC stopped the 

communication between the battery and the On-

Board Computer (OBC) from working. The 

noticeable change in the data for this anomaly 

is that the Battery Voltage parameter 

(platform.BAT.batteryVoltage) drops to 0. 

2. Anomaly 2: This is a communication issue on 

the I2C Line between the onboard computer 

and the communications subsystem. The 

primary indicator for this anomaly is that the 

Temperature value shown in the parameter 

(platform.CMC.temperaturePA) abruptly goes 

to 0. It is important to note that this value can 

naturally go to 0 if the sensor is facing away 

from the sun in colder conditions. Therefore, it 

is also essential to notice the other Common 

Mode Current (CMC) parameters in the dataset. 

The TVAC anomalies are real anomalies that occurred 

during the test campaign [6].  

Flight-Test Dataset: The following anomalies arose and 

were annotated during the flight-test campaign. 

1. Anomaly 1: This is an anomaly with the 

Electrical Power Subsystem (EPS) Watchdog 

module, which manages power management 

and distribution in the satellite. It is related to 

all the platform.EPS parameters in the dataset. 

This anomaly occurs when all these parameters 

go to 0 for four minutes before the spacecraft 

power cycles (which may initiate failsafe). 

2. Anomaly 2: This is an injected Low Battery 

Anomaly. The battery voltage was dropped 

below the configurable voltage of 7.5V. 

Regarding the dataset, this value approximates 

830 units in the associated parameter in the 

dataset (platform.EPS.busVoltages[0]). 

3. Anomaly 3: This is an OBC Reset Sequence 

triggered when the system enters failsafe mode. 

The key indicator for this anomaly is the 

OBT.Uptime parameter, which would reset to 

0. 

4. Anomaly 4: This is a more difficult gyro-error 

anomaly to identify. Noticing discrepancies in 

the values requires examining multiple 

Dataset Anomaly Instances Samples 

TVAC Anomaly 1 2 496 

TVAC Anomaly 2 4 3039 

Flight Test Anomaly 1 1 30 

Flight Test Anomaly 2 2 16055 

Flight Test Anomaly 3 1 92 

Flight Test Anomaly 4 1 1096 

Flight Test Anomaly 5 1 164 

Table 2: The data distribution of each anomaly in the dataset. 
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platform ADCS parameters in the dataset (e.g., 

ADCS.rawGyroRate).  

5. Anomaly 5: This is an injected replication of 

Anomaly 2 in the TVAC test. An injected I2C 

CMC anomaly (an anomaly in the transceiver 

that interfaces between the OBC and the I2C) 

causes an OBC reboot. The indicator for the 

anomaly is the decrease in the same parameter 

as Anomaly 2 in TVAC 

(platform.CMC.temperaturePa) to 0. However, 

like Anomaly 2 in the TVAC test, this value can 

naturally go to 0 as well, so other CMC  

transceiver parameters must also be noticed. 

Training a Supervised Machine Learning Model on the 

Dataset 

We trained a supervised machine-learning model on all 

the channels belonging to the Primary Data line of each 

category. It is important to note that since the anomalies 

marked in both datasets are mutually exclusive except 

for Anomaly 2 (TVAC) and Anomaly 5 (Flight Test), the 

supervised ML models are not expected to replicate 

performance across both datasets.  

First, we combine all the anomalies in our dataset into a 

single feature (Anomaly_Bin) that represents the binary 

existence of an anomaly in the dataset. Thus, we treat this 

as a binary classification problem targeted at the 

existence of anomalies. We isolate individual channels 

and drop the columns with missing values to obtain data 

from a particular channel (primary/failsafe data line of a 

particular category).  

In each dataset, numerous features do not provide much 

information since their values do not vary much 

throughout the dataset. These features would not be 

helpful in model training and can affect the model’s 

performance. Thus, we reduce the number of features 

using Principal Component Analysis (PCA) [7] to retain 

95% variance across the data. This leads to a significant 

decrease in the number of features for training. An 

example of cluster distribution of the top 5 features is 

shown in Figures 4 and 5. Here, the X and Y axis refer 

to the top five principal components obtained from PCA. 

We map these components against each other to show 

the distribution between the anomalous and non-

anomalous data. 

The features obtained from PCA are passed to a Random 

Forest Classifier [8]. We use 5-fold cross-validation [10] 

to validate the model performance on the training set. 

The model performance for each channel on both 

datasets is shown in Table 3. The support column 

indicates the number of samples in the test set for the 

anomalous class. 

The model performance in Table 3 unveils some 

interesting insights. The model trained on Channel 15 

(the primary data line of the Housekeeping category) 

shows the best anomaly detection performance. This is 

consistent with the fact that it carries many important 

parameters (features) with respect to the anomalies 

found in the dataset. On the contrary, Channel 17 (the 

Figure 4: The PCA distribution obtained from the TVAC Dataset on Channel 15. 
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primary data line of the ADCS Category) carries fewer 

features that are mostly irrelevant to most labelled 

anomalies. This justifies the model's poor performance 

on this channel.  

Due to the difference in the number of parameters 

(features) reported by the primary and failsafe data lines, 

channels from the two data lines corresponding to the 

same category (e.g. Channels 15 and 3 correspond to the 

primary and failsafe data lines for the Housekeeping 

category) have mismatched feature set. To use both 

channels together, we would have to employ a strategy 

to fill in the missing (NaN) values for parameters that are 

included in the primary (e.g. Channel 15) but not in the 

corresponding failsafe (e.g. Channel 3) data line. Such a 

strategy can also allow us to use all the data in a 

particular category. A further extension could be to fill 

in all the missing values in the complete dataset. Since 

the merged dataset includes data from all channels with 

missing values for the parameters not reported by a 

particular channel, accurately filling these values would 

remove the distinction between channels and enable the 

complete dataset to be used. This is a possible future 

direction for this dataset. 

Another challenge here is that while anomalies were 

encountered in both campaigns, they were not the same 

anomalies thus affecting generalizability across the two 

test campaign datasets that we use for model training. 

We validated the Flight-Test dataset on the TVAC 

dataset for Channel 15 to capture the transferability. 

Although the anomalies suffered across both datasets are 

different, a high F-score (0.97) on the non-anomalous 

data shows the ability of the model to generalize on non-

anomalous data well. For the anomalous data, the model 

obtained an F-Score of 0.56. 

Table 3: Per Channel performance on binary classification of 

anomalous data in the TVAC and Flight-Test datasets. 

Dataset Channel Precision Recall F1-

Score 

Support 

TVAC 

15 1.00 0.95 0.98 482 

16 1.00 0.82 0.90 17 

17 0.88 0.21 0.33 34 

19 1.00 0.74 0.85 237 

Flight 

Test 

15 0.99 0.87 0.93 2089 

16 0.85 0.87 0.86 174 

17 0.03 0.03 0.03 347 

19 0.91 0.83 0.87 1725 

Figure 5: The PCA distribution obtained from the Flight Test Dataset. 
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Training a Semi-Ssupervised Machine Learning Model 

Continuing from the supervised model, we also trained 

an unsupervised machine learning model to compare 

performance. An unsupervised model carries the 

advantage of not being dependent on labels, which 

removes the limitations of model generalizability due to 

differing anomalies in the TVAC and Flight Test 

datasets. The model is trained on the Primary data line 

for the Housekeeping category (Channel-15). We did not 

reduce the number of features for this task, resulting in 

an 85-feature input. Here, our aim is to fit the model on 

non-anomalous data so that it reconstructs non-

anomalous data well but gives a greater reconstruction 

error when reconstructing anomalous data. The model is 

compiled using the Adaptive Motion Estimator (Adam) 

optimizer, and the reconstruction loss is calculated from 

the mean-squared error (MSE). 

The model is a dense autoencoder with a one-layer 

Encoder and Decoder. The Encoder is a dense layer of 

20 neurons activated by ReLU with a dropout value of 

0.5. This is followed by the decoder layer, which has a 

size of 85 neurons (the same as the input) and is activated 

by the sigmoid function. The architectural specifications 

of the model are determined by fine-tuning through 

Keras Tuner. Upon training, the model achieves a ROC 

score of 0.78. 

The model is evaluated on both the Flight-Test and the 

TVAC Dataset. The resultant performance of the model 

across the datasets is shown in Table 4. Here, the F1-

Score on TVAC and the Flight-Test dataset are similar, 

which shows that the model can generalize well on the 

non-anomalous data across both datasets. 

Deployment on Flight Board 

We also deployed the autoencoder model on the 

commercial version of the Ubotica UB0100, the Intel 

Myriad-X. This board is currently flying on the 

European Space Agency’s Phi-Sat-1 mission for Cloud 

Segmentation [11] and is due to fly on the Phi-Sat-2.   

The board evaluates 585 data frames per second using 

this model. A data frame in this context is one feature 

window being passed through the model. For 

comparison, the same model, when executed on an 11th-

generation Intel Core i7 CPU, evaluates 10,897 frames 

per second. This marked difference is expected given the 

resource constraints on the flight board but shows 

promise with the capabilities of model deployment on a 

board that is currently in flight on a CubeSat. 

Details of the Flight Dataset 

The Flight dataset consists of real-time data obtained 

from the EIRSAT-1 flight mission from December to 

March. During the entire flight duration, the satellite did 

not go into failsafe mode, so the failsafe data line does 

not contain any data. All data from the flight is recorded 

in the four Primary channels for each category (15, 16, 

17, 19).  

The flight data has no annotations for anomalies that 

would have been encountered during flight; hence, it is 

an unlabeled dataset. Due to the downlink constraints in 

communications, there are also gaps in the data. This 

means that data from one part of the month might have 

been downloaded in another month. The timestamp (On-

Board Time) parameter ‘OBT’ can be consulted to create 

a coherent time series. For example, in the Channel 15 

CSV file for December, the OBT value jumps from 

105093 to 261456. The data for the missing time stamps 

was later downlinked in January. Thus, the missing time 

stamps can be found at the beginning of the Channel 15 

CSV file for January. The number of timestamps 

downlinked in each month is seen in Table 5. 

This dataset can provide a good exercise for users and 

the community in general for trying out anomaly 

detection on an actual flight dataset without any labels. 

The table thus warrants an unsupervised approach with a 

greater focus on non-anomalous data [9].  

Dataset F1-Score 

TVAC 0.732 

Flight-Test 0.717 

Table 4: Results for the autoencoder on the TVAC and Flight 

Test Datasets 

Channel Dec Jan Feb Mar 

15 23376 38663 27368 21614 

16 812 2897 556 571 

17 1163 2115 328 2165 

19 3084 14823 4407 5659 

Total 28435 58498 32659 30009 

Table 5: Data for each month in the Flight dataset. 
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FUTURE WORK 

The purpose of this paper is twofold. Firstly, we 

introduce a new complete dataset to the community with 

two accompanying labelled test campaign datasets that 

can be used to validate the performance of anomaly 

detection models. Secondly, we use a PCA-based 

Random Forest Classifier to validate the annotations 

present in the testing datasets. In the future, we will build 

on this work and attempt to label the in-flight dataset in 

multiple phases thoroughly. We have also released this 

dataset publicly to allow others in the community to 

work on it. Our current work naturally builds up to this 

goal by enabling us to use the trained classifiers to 

generate soft labels, which would be helpful given the 

model's generalizability (as evaluated across the TVAC 

and Flight-Test datasets).  

Furthermore, we will attempt to bypass the issues of 

annotation quality that arise in such datasets by adopting 

an unsupervised or semi-supervised ML approach. We 

will focus on the non-anomalous samples and the 

multivariate trends that can make this identification 

easier. An alternative approach is to adopt a recurrent 

neural network or an LSTM that is more capable of 

dealing with the temporal aspects of the data. 

Finally, the missing values when the data is mapped 

temporally over the timestamp (OBT), especially in the 

case of channels from the failsafe data line, is an 

interesting problem which would require some 

interpolation or an alternative method to enable the use 

of maximum data for the ML model. When applied to all 

data samples in the merged form of the data (when 

mapped by OBT), such interpolations could further 

reduce the data's complexity by minimising the 

differences across different channels. 

CONCLUSION: 

In this paper, we have introduced three new datasets: two 

from test campaigns and one from in-flight data under 

real conditions. Using these datasets we have trained and 

evaluated a number of machine learning models, 

demonstrating the potential of the EIRSAT-1 datset for 

further research and application. Our work represents an 

initial stage the community can build upon, with plans to 

label the in-flight dataset further and refine the machine 

learning model for enhanced performance. 

Additionally, we have presented a transformation 

methodology specifically designed to prepare satellite 

telemetry data for time series analysis. To support this, 

we have developed a data pipeline that facilitates the 

transformation process, offering flexibility through two 

execution modes: local and cloud-based. Our dataset is 

available on Zenodo, and we are inviting collaboration 

and further advancements in this field. This work lays a 

foundational framework for future developments and 

improvements in satellite telemetry data analysis. 
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