
SSC24-WV-06

Applying Machine Learning to Equatorial Plasma Bubble Now Casting on
CubeSats

Benjamin Lewis, Shawn Jones, Charles Swenson, Kevin Moon, Mario Harper
Utah State University

[Address (same for all)]; 435-557-1682
benjamin.lewis@usu.edu

ABSTRACT

Equatorial plasma bubbles are a space weather phenomenon that occur at low latitudes within the Earth’s
ionosphere. These bubbles are regions of low-density plasma that form at the base of the ionosphere and
expand upward through the peak and into the topside. They form in the early evening and persist through
the nighttime, stretching north and south along magnetic field lines and effecting a sector of longitudes a
few degrees wide. These bubbles cause scintillations on radio signals that pass through them, disrupting
the performance of systems, such as GPS, throughout the night in regions around the Earth. Due to their
potential social impact, there is a desire to know in real time if equatorial plasma bubbles are occurring.
This can be achieved using a small satellite in orbit with automated processing to locate bubbles by process-
ing data from in-situ sensors. Inter-satellite communications to a LEO communications constellation allows
the possibility of real time detection of equatorial plasma bubbles from such a satellite. Langmuir probes,
impedance probes, and ion drift meters are all instruments capable of detecting plasma bubbles. Sensors
such as the Scintillation Prediction Observations Research Task (SPORT) Brazil/US CubeSat mission rou-
tinely detect equatorial plasma bubbles. This work investigates the application of various machine learning
techniques for the detection of plasma bubbles on a CubeSat using time series plasma density data from
the SPORT instrument. This paper reviews four machine learning approaches: Auto-regressive Integrated
Moving Average (ARIMA) models, Random Forests, Gradient Boosting Machines, and Recurrent Neural
Networks (RNN) such as Long Short-Term Memory (LSTM) networks. The models are evaluated using
common metrics derived from the confusion matrix (e.g. accuracy, sensitivity, positive predictive value,
and F1 score), as well as the computational complexity of the model. Building off of this work, USU will
implement a plasma bubble detection algorithm on a low-power edge computing device built for a CubeSat
to provide near real-time plasma bubble reporting. USU’s Low-power Array for CubeSat Edge Comput-
ing Architecture, Algorithms and Applications (LACE-C3A) project is being funded by NASA’s University
SmallSat Technology Partnership Program to develop an FPGA-based compute board that will be capable
of performing machine learning algorithms on a CubeSat scale. The near real-time plasma bubble reporting
will be one of the applications USU will demonstrate on LACE-C3A.

1 Introduction

Space weather phenomena affect the perfor-
mance of space based communication and naviga-
tion systems. In particular, equatorial plasma bub-
bles are associated with scintillation on RF sig-
nals pass through the ionosphere where bubbles are
present. These bubbles are depletions in the density
of the plasma that propagates from the bottom edge
through the layers of the ionosphere. They form
near the Earth’s equator in the evening after sun-
set and their trails persist till after midnight. The
sheet like bubbles rapidly rise near the Earth’s mag-
netic equator being a tens to hundreds of km wide
in the east-westward directions but expanding 1000’s
of km north-southward along the magnetic field. In-

struments, such as Space Weather Probes (SWP) on
the joint Brazil-NASA Scintillation Prediction Ob-
servations Research Task (SPORT) mission provide
in-situ measurements of ionospheric density while
crossing these bubbles. Within these along track
satellite observations the bubbles are primarily iden-
tified as sudden and significant drops in density of an
order of magnitude or more. SPORT, a 6U Cube-
Sat, was deployed into a mid inclination orbit at
51.6◦ from the international space station at 420 km
on December 29, 2023 and reentered on October 10,
2024. The data set from June to October primarily
covers observations of equatorial plasma bubbles at
an altitude range between 280 to 380 km.

In this paper, we explore several machine learn-
ing approaches to identify plasma bubbles from

Lewis 1 38th Annual Small Satellite Conference

the SPORT density data. These approaches in-
clude Auto-Regressive Integrated Moving Average
(ARIMA), random forests, gradient boosting ma-
chines, and Long Short-Term Memory machines
(LSTM). The goal of this project is to find a machine
learning model to operate in real time on spacecraft
data from an instrument like SWP on SPORT. The
spacecraft can then use this model to perform edge
computing on the SWP data and detect plasma bub-
bles on the spacecraft. This can then be used to pro-
vide near real time detection of regions around the
Earth where plasma bubbles are occurring. Post-
flight, the models can be used for labeling data sec-
tions with bubbles to be sent down with high prior-
ity. This can reduce the amount of data down-linked
to the ground.

2 Background

Plasma bubble formation has been widely stud-
ied. Yokoyama1 and Hysell2 constructed simulations
that show the formation and propagation of plasma
bubbles. Figure 1 from the Yokoyama paper1 shows
a simulation of plasma bubbles forming. The low
density plasma pushes upwards through the layers of
the ionosphere until they reach the peak of the iono-
sphere. There, the bubbles bifurcate into smaller
structures as they propagate into the topside of the
ionosphere. Plasma bubbles matching these models
have been observed by the ROCSAT3 and CHAMP4

missions as well as the SPORT mission.

Figure 1: Simulation of Plasma Bubbles
Forming1

There has been recent research on using machine
learning to predict space weather effects.5 Much of
this research concerns predicting space weather in-
dices, such as Kp, and Dst which are large scale mea-
surements of the fluctuation in the Earth’s magnetic
field. Machine learning techniques were used to clas-
sify plasma bubbles by Thanakulketsarat,6 Chan-
dan,7 and Reddy.8 Thanakulketsarat used very high
frequency radar images to detect plasma bubbles
and built a convolutional neural network (CNN) and
support vector machine (SVM) to classify plasma
bubbles. Chandan used a random forest to classify
bubbles using total electron count. Reddy used an
extreme gradient boosting (XGBoost) model to pre-
dict the Ionospheric Bubble Index (IBI) using data
from the Swarm spacecraft in a regression problem.
Thanakulketsarat and Chandan were able to suc-
cessfully classify different classes of plasma bubbles
with accuracies of 93.08% and 97.6% respectively.
Reddy was able to predict the IBI value with a root
mean square error of 0.08. Thanakulketsarat faced
a data imbalance issue that they remedied by reduc-
ing the dataset by throwing out data that does not
have bubbles.

3 Data

The data we used for this project is electron den-
sity data collected from the Langmuir probe onboard
the SPORT mission. The Langmuir probe consists
of a needle-like probe that extends from the space-
craft. To measure the density the surface of the
probe is held at a constant voltage and the current
collected by the probe is measured at a 100Hz sam-
ple rate. This current can be calibrated into the
electron density of the ionosphere. For this paper,
we use the uncalibrated data as this is the data that
will be available to the model when implemented on
a CubeSat.

3.1 Cleaning the Data

The SPORT density data contains 391 sections
of continuous data. These section represent a pass
through the equatorial region. However, there are
glitches in the data, data drops, and dropped pack-
ets. To clean these, we add in missing timestamps
from the dropped packets and mark these samples
as NaN. We then use a spike removal method where
we have a moving window of 500 samples, and we
calculate the standard deviation of the samples in
the window. If a sample in the window is 3σ away
from the mean, the sample is replaced by a NaN.
We then use linear interpolation to fill the missing

Lewis 2 38th Annual Small Satellite Conference

samples and create a continuous section of data.
There is also noise in the data, specifically, a

near-constant interference from another instrument.
The spacecraft occasionally rotates in a way that
accentuates the noise. We marked the sections that
have this noise so that we can compare performance
on the noisy samples. We did not remove these noise
samples for two reasons. The first is that the sam-
ples in a bubble have a lot of high frequency data,
and filtering out the noise could remove valuable in-
formation in the bubbles. The second is that the
final product of this project is that we want to im-
plement this on a satellite using raw data from an
instrument similar to what was used on the SPORT
mission, and we want to keep the data as similar as
possible.

After cleaning the data, we were left with 360 sec-
tions of data, averaging 168, 969 samples per section,
for a total of 60, 828, 851 samples. We then label the
data. We had a scientist working with the SPORT
data look through all of the sections of data and lo-
cate bubble regions in the data. All samples within
a bubble region are labelled as class 1, while all other
samples are labelled as class 0. After labelling, the
data has 57, 623, 338 samples in class 0 (no bubble)
and 3, 205, 513 samples in class 1 (bubble). A sam-
ple section of the data, including a labelled bubble
section is shown in Figure 2.

The machine learning problem we propose is a
binary classification problem. This could also be
viewed as an anomaly detection problem, as there
is a large class imbalance. Class 0 is the ”normal”
case, and class 1 is the anomaly.

3.2 Data Imbalance

After inspecting our data we found that approx-
imately 5.27% of our data represents class 1 data.
(class 1 is a positive detection of plasma bubbles.)
Because of this large class imbalance, we need to find
a way to create more balanced training and testing
data sets. The fist thing we do is reduce the data
set to only include sections that have at least one
bubble. This reduces the data to 154 sections for a
total of 26,534,472 samples, with 23,332,141 samples
in class 0 and 3,202,331 samples in class 1. Approx-
imately 12.07% of the reduced data is class 1.

To further remedy the class imbalance, we use
two different approaches. The first is sample weight-
ing, which weights each sample according to its class:

class weight = 1− samples in class

total samples
. (1)

This will weight class 1 samples more than class 0

samples to help overcome the data imbalance.

Our second method is to generate synthetic data
to augment the full dataset. In order to create syn-
thetic density profiles (data) we used a three step
approach. Step one, we learn the distributions of the
delta density on give time steps for both class one
and class two. Step two, we ran a Monte Carlo sim-
ulation to create new density profiles. Then smooth
the data and combined the class one and class zero
data. Finally, in step three, we learned the interfer-
ence and noise patterns for our data and the added
the patterns into the synthetic pass to make a more
realistic density profile. The following notation will
be used in this section to explain this approach:

Y = input labels

Ỹ = Generated data labels

X = input data (density value from SPORT data)

X̃ = Generated density

T = sampled time steps

d = Threshold for class transition

A = weights for each time steps

x0|i = new data point for the negative class

T̃ = the set of sample points

x1|i = new data point for the positive class

in each time divided region

W0 = a∀t ∈ T

W1 = a∀t ∈ T

3.3 Step One: Thompson Sampling to Learn
Distributions

Thompson Sampling requires a threshold of suc-
cess. In our case we look at the difference between
two density samples, or delta densities, at given time
steps (T). If the delta density is positive it counts
as a success. We also split the data by class. By
doing so we can isolate the independent density pro-
files. Thus the Thompson distributions are built as
follows, where α is the success count and β is the

Lewis 3 38th Annual Small Satellite Conference

Figure 2: Sample Section of Data

failure count:

T = [1, 2, 3, 4, 5](minutes)

α0|t,j =

Yj :i=0∑
i

{
1 if ∆(Xi −Xi+t) > 0

0 else

β0|t,j =

Yj :i=0∑
i

{
1 if ∆(Xi −Xi+t) <= 0

0 else

α1|t,j =

Yj :i=1∑
i

{
1 if ∆(Xi −Xi+t) > 0

0 else

β1|t,j =

Yj :i=1∑
i

{
1 if ∆(Xi −Xi+t) <= 0

0 else
.

We noticed that the data often has regions where
it follows different distributions. So we decided to
divide the data into ’time regions’ (T̃), where we
build separate distributions for each subdivided re-
gion. Thus we build distributions for each time step
from point x(T) and then we also divided the larger
data set by class, and time from when the pass be-
gan collecting data (T̃). In our case T̃ is defined as
follows:

T̃ = [5, 10, 15, 20, 25, 30](minutes).

3.4 Step two: Monte Carlo Simulation

At this point we have learned distributions for
how the density should increase or decrease for given

time steps for each of the larger time regions. We
have done this for both class 0 and class 1. With
this, we have almost everything needed for a Monte
Carlo simulation. We now need to calculate the av-
erage delta density. Doing this will allow us to center
the learned distribution, then scale them by the av-
erage. We find the average delta density using the
following formulas:

µ0|t,j =
1

n0

Y :i=0∑
i

∆(Xi −Xi+1)

µ1|t,j =
1

n1

Y :i=1∑
i

∆(Xi −Xi+1).

With this information we can run a Monte Carlo
simulation. For each new point we will pull one of
our Thomas distribution sets depending on if we are
going to assign class 0 or class 1 to the point:

Ỹ = ∀jϵT̃∀i ∈ j

{
yi = 0 if (random float < d)

yi = 1 else .

(2)

Thus we will be generating a set of new points based
on desired sample rate for our data. This is what is
meant by ∀i ∈ j in Equation 2. Each new X̃ will be
built as a standard Monte Carlo simulation. Thus:

X̃i+1 = δX̃yi|j ∗ xi, (3)

Lewis 4 38th Annual Small Satellite Conference

where

δx0|j =

Tj∑
i

wi0

(
B0|i,j(α0|i,j , β0|i,j)−

α0|i,j

α0|i,j + β0|i,j

)
µ0|i,j

δx1|j =

Tj∑
i

wi1

(
B1|i,j(α1|i,j , β1|i,j)−

α1|i,j

α1|i,j + β1|i,j

)
µ1|i,j .

We center the Beta distribution at zero where we
set our threshold, and then we multiply by the aver-
age delta density to then get a new time set density.
We repeat this for each distribution corresponding
to our current time region. In our case we have five
distributions for each time region. We also provided
a parameter W , which is the weights for each time
step. We have defined W such that it sums to 1.
Thus the new density can be built as follows:

X̃ = ∀jϵT̃∀iϵj

{
xi = δx0|j ∗ xi−1 if (yi == 0)

xi = δx1|j ∗ xi−1else
.

(4)

Note: j denotes a larger time region, and i de-
notes each time step distribution we learned in Step
One.

After producing our Monte Carlo random walk,
we smooth the class 0 data to get a smooth transi-
tion on our base density profile. We do this using
a simple low-pass filter. Then we shift the class 1
data down to make sure that our generated “bub-
bles” match the overall trend of class 0. Then finally
we have our new data set with labels, density, and
times.

3.5 Results of data Generation (Step One
Step Two)

We were able to generate approximately 4.5 giga-
bytes of data, about 600 sections of continuous data
and approximately 10, 800, 000 samples. The class
balance in this data is approximately 40 percent
class 1. The class balance is a tunable parameter
that can be adjusted to increase the class balance
if needed. A generated pass is compared with an
actual pass that has no bubbles in Figures 3 and 4.
Generated and actual passes with varying amounts
of bubbles are shown in Figures 5 - 8.

Figure 3: Generated Pass with no Bubbles

Figure 4: Actual Pass with no Bubbles

Figure 5: Generated Pass with Few Large
Bubbles

Lewis 5 38th Annual Small Satellite Conference

Figure 6: Actual Pass with Few Large Bub-
bles

Figure 7: Generated Pass with Many Small
Bubbles

Figure 8: Actual Pass with Many Small Bub-
bles

3.6 Step Three: Learning Interference Pat-
terns

The synthetic data reflects trends and profiles of
the actual data. However, in the actual data there
are interference patterns present. We want to add
these interference patterns to the synthetic data to
better simulate the patterns in the actual data. This
makes it significantly harder to classify bubbles and
thus increases the robustness of our classification al-
gorithms. The first step to learning the interference
pattern is to de-trend the Sport data to isolate the
pattern. This was done by using a high pass filter on
pass that did not have bubbles present. Examples of
the de-trended data from various section are shown
in Figures 9 - 11.

Figure 9: Example of De-trended
Data

Figure 10: Example of De-trended
Data

Lewis 6 38th Annual Small Satellite Conference

Figure 11: Example of De-trended
Data

After the data was de-trended, we used an
ARIMA model to try and learn the interference pat-
tern in the data. The ARIMA model was trained by
feeding it all the de-trended samples.9 An example
of an interference pattern generated by the ARIMA
model is shown in figure 12.

Figure 12: Output Pattern of the ARIMA
Model

Finally, we combined the results of the ARIMA
Model (Step Three) for interference with the results
for the Thomson Sampling with a Monte Carlo sim-
ulation (Step One and Step Two). Resulting in syn-
thetic data that had the trends of plasma density
both with bubbles and with out bubbles, while also
including realistic interface partners to maintain ro-
bustness our or classification algorithms. The follow-
ing figures 13 - 15 show the resulting density profiles
generated with this combined approach.

Figure 13: Generated with an Even
Class Distribution

Figure 14: Generated with an Class
Distribution Skewed to Class 1

Figure 15: Generated with an Class
Distribution Skewed to Class 0

Lewis 7 38th Annual Small Satellite Conference

4 Machine Learning approaches

To perform classification on the data, we tested
four different machine learning approaches, ARIMA,
Random Forests, XGBoost – a common gradient
boosting machine –, and LSTM networks. To eval-
uate the models, we are using the following metrics:
accuracy, precision, recall, f1 score, and ROC AUC
score.

4.1 Scoring Metrics

To explain the scoring metrics we use, we intro-
duce the confusion matrix. For a binary classifica-
tion problem, this matrix consists of four values, as
seen in Table 1. TN (true negative) is the total
number of instances of class 0 that were correctly
identified as class 0. FP (false positive) is the total
number of instances of class 0 that were incorrectly
identified as class 1. FN (false negative) is the total
number of instances of class 1 that were incorrectly
identified as class 0. TP (true positive) is the total
number of instances of class 1 that were correctly
identified as class 1. Given this, TN+FP+FN+TP
represents the total number of samples. From these
values, we can calculate accuracy, precision, recall,
and F1 scores, as shown in equations 5 - 8.

Accuracy is an overall measure of how good the
model is at predicting things correctly. Accuracy is
how many guesses the model got correct over the
total number of samples.

Precision is a score that tells us how precise the
class 1 guesses are. Precision is the total number of
times the model guessed class 1 correctly over the
total number of times the model guessed class 1.

Recall tells us how good the model is at catching
all instances of class 1. Recall is the total number
of times the model guessed class 1 over all true in-
stances of class 1. Both precision and recall can be
flawed metrics. If a model only guesses one instance
of class 1, and is correct, the precision score will be
1. Similarly if a model only guesses class 1, the recall
score will be 1.

To balance the precision and recall scores and
mitigate their individual limitations, we use the F1
score. The F1 score is the harmonic mean of preci-
sion and recall, ensuring that it is high only when
both precision and recall are high. This provides
a more balanced measure of a model’s performance
in predicting the positive class. These metrics, par-
ticularly precision, recall, and F1 score, offer better
insights when evaluating a model on an imbalanced
dataset.

Predicted
Negative
(class 0)

Predicted
Positive
(class 1)

Negative (class 0) TN FP
Positive (class 1) FN TP

Table 1: Confusion Matrix

accuracy =
TN + TP

TN + FP + FN + TP
(5)

precision =
TP

TP + FP
(6)

recall =
TP

TP + FN
(7)

F1 = 2
precision · recall
precision+ recall

(8)

The final score we use is the Receiver Operat-
ing Characteristic - Area Under Curve (ROC AUC)
score. This metric can be applied to any model that
provides a probability of a sample belonging to class
1. It is derived from the ROC curve, which plots the
false positive rate (FPR) against the true positive
rate (TPR) as the threshold for classifying a sample
as class 1 varies. The FPR and TPR are calculated
using equations 9 and 10. The ROC AUC score is the
area under the curve formed by comparing the TPR
to the FRP as the probability threshold increases.
The higher the score, the better, with 1 being per-
fect classification. An example ROC curve is shown
in figure 16. The ROC AUC score gives an idea of
how good the probability predictions of a model are
before applying a threshold. The ROC AUC score
gives a overall measure of how well a model performs
without having to perform thresholding. We use the
ROC AUC score in all contexts where it is applica-
ble.

FPR =
FP

TP + FN
(9)

TPR =
TP

TP + FN
= recall (10)

Lewis 8 38th Annual Small Satellite Conference

Figure 16: ROC Curve

For our application, we would rather incorrectly
report a bubble than miss a bubble, so we weight the
recall score higher than other scores. However, since
the recall score is flawed by itself, we also include
the other scores to find a model that is biased to-
wards detecting bubbles, but is still a good classifier
overall.

4.2 ARIMA

ARIMA models are a well used technique to per-
form predictive forecasting of time-series data.9 To
use ARIMA models to perform classification of time-
series data, we train an ARIMA model for each class.
To build the training set for these models, we divide
the training data according to class and use each
subset to train the respective model. To test the
data, we feed the density data into each model and
use them to predict the next sample. We then test
how accurate each prediction is to the actual density
value and label the class according to which model
predicts the real data better. This formulation is not
as sensitive to class imbalance. As long as there is
enough data to train a good ARIMA model for each
class, the class imbalance does not matter.

4.3 Random Forests

Random forests are a common machine learn-
ing approach that have been used in a wide variety
of machine learning contexts. Random forests are
a combination of tree predictors that are all trained
independently.10 With a large number of estimators,
the majority of the estimators tend to agree on the
correct classification. In order to use random forests
to classify the time series data, we take a window of
data around a sample point as the input vector to
the random forest.

4.4 XGBoost

Extreme Gradient Boosting (XGBoost) is one of
the most common gradient boosting methods used.

XGBoost trains trees on the data like a random
forest, but instead of training each tree indepen-
dently, the trees are trained sequentially so that the
next tree improves on the deficiencies of the previ-
ous tree.11 Since XGBoost uses decision trees as the
base classifier like random forests, we take a window
of data around a sample point as the input vector to
the XGBoost.

4.5 LSTM

The LSTM is a type of Recurrent Neural Net-
work (RNN) that alleviates the vanishing gradient
problem.12 RNNs work by using the output of a neu-
ron as part of the input. The LSTM truncates the
gradient and introduces a forget gate that reduces
vanishing and exploding gradients. Since RNNs, and
subsequently the LSTM, have a memory and retain
past data, they are naturally formulated to perform
well on time-series data.

4.6 Feature Engineering

For the random forest and XGBoost methods, we
want to include the time dependencies of the data, so
to do this, for each density sample, we create a win-
dow of data that includes samples from before the
sample, and after the sample. Our window size in
101 samples, 50 samples before the current samples
and 50 samples after the current sample. Example
windows of both classes are shown in figures 17 and
18.

Figure 17: Sample Window of Class 0

Lewis 9 38th Annual Small Satellite Conference

Figure 18: Sample Window of Class 1

In addition to windowing, we decided to perform
some feature engineering to try to improve perfor-
mance. We apply the following pre-processing to
the windowed data to create different features for the
classifier to use: Fast Fourier Transform (FFT), Dis-
crete Cosine Transform (DCT), Daubechies wavelet
db3, and the auto-correlation.

4.6.1 Fast Fourier Transform (FFT)

We noticed that the bubble data has a lot more
high frequency components than the non-bubble
data. The FFT expresses the windowed data as a
function of frequency. An example of this trans-
formation applied to the sample windows from each
class is shown in figures 19 and 20 with the DC value
removed to better visualize the data. We can see
that the bubble data has more high-frequency infor-
mation than the non-bubble data. This difference in
scale can be easily used by a decision tree to classify
the data.

Figure 19: Sample Window of Class 0 with
FFT Applied

Figure 20: Sample Window of Class 1 with
FFT Applied

4.6.2 Discrete Cosine Transform (DCT)

The FFT gives us frequency information, but it
produces a complex value, This makes this window-
ing approach more difficult and computationally ex-
pensive when implementing on hardware. A similar
transform than outputs a real number is the DCT.
The DCT is a transformation that uses the cosine
function as the basis function rather than the com-
plex exponential like the FFT does. An example of
this transformation applied to the sample windows
from each class is shown in figures 21 and 22. Simi-
lar to the FFT, the bubble class has a lot more high
frequency information that the non-bubble class.

Figure 21: Sample Window of Class 0 with
DCT Applied

Lewis 10 38th Annual Small Satellite Conference

Figure 22: Sample Window of Class 1 with
DCT Applied

4.6.3 Daubechies Wavelet Transform

The FFT and DCT both give frequency informa-
tion, but no temporal information. This may cause
errors in the samples transitioning between bubble
and no bubble. The wavelet transformation includes
high frequency information and preserves temporal
information. The Daubechies wavelet transforma-
tion involves passing the window trough a specific
low pass filter and down sampling to form the ”av-
erage” samples. The window is also passed through
a specific high pass filter and down sampling to
form the ”difference” samples. An example of the
Daubechies 3db wavelet transform applied to the
sample windows from each class is shown in figures
23 and 24.

Figure 23: Sample Window of Class 0 with
Daubechies 3db Applied

Figure 24: Sample Window of Class 1 with
Daubechies 3db Applied

4.6.4 Auto-correlation Function

From studying the data, we can see that the
class 0 has a repeating pattern of interference. The
pattern changes throughout different sections, but
always has approximately the same period. This
would show up in the auto-correlation function. We
used the cyclic auto-correlation function. This is
calculated by using the FFT as seen in equation 11
where ∗ refers to the complex conjugate and IFFT
refers to the inverse fast Fourier transform. The auto
correlation tells us how much the window looks like
itself at different time lags. An example of the auto-
correlation function for a sample window from each
class is shown in figures 25 and 26. We can see that
there are spikes at multiples of 50 lags in the class 0
data that are absent in the class 1 data.

auto(x) = IFFT (FFT (x) · FFT (x)∗) (11)

Figure 25: Auto Correlation of Class 0 Sam-
ple Window

Lewis 11 38th Annual Small Satellite Conference

Figure 26: Auto Correlation of Class 1 Sam-
ple Window

5 Hyperparameter Tuning Results

We started evaluating the models by performing
hyperparameter tuning on each model type. To do
this, we created a small subset of the data to use for
training and testing. We selected 10 sections of data
with a variety of bubble types. We then combined
this with synthetic data until the class balance was
approximately 20%. We then built a test set out of
only data sections selected from the real data. We
used these sets to evaluate the models. Since the
class balance is approximately 20%, a model is only
performing better than randomly guessing if the ac-
curacy of the model is greater than 80%.

The results for each model are shown below after
performing hyperparameter tuning. We then com-
pare the results of the best hyperparameters from
each model. When analyzing the models, the accu-
racy score should be higher than 80% if the model
is performing well.

5.1 ARIMA

We performed hyperparameter tuning on the
ARIMA models using the parameter grid shown in
table 2. The performance results of the ARIMA
models are shown in table 3. The ROC AUC score
does not apply to the ARIMA model, as the model
does not output a probability, just a class label.

Table 2: ARIMA Parameter Grid

P 5 10 15
Q 0 5 10

Table 3: ARIMA Model Performance

(P, Q) accuracy precision recall F1
(5, 0) 0.486 0.251 0.689 0.368
(10, 0) 0.833 0.793 0.315 0.451
(15, 0) 0.833 0.793 0.315 0.451
(5, 5) 0.836 0.804 0.325 0.463
(10, 5) 0.834 0.800 0.315 0.452
(15, 5) 0.834 0.789 0.320 0.455
(5, 10) 0.834 0.801 0.313 0.450
(10, 10) 0.834 0.820 0.303 0.443
(15, 10) 0.831 0.849 0.273 0.413

From the results, we can see that the ARIMA
model is able to perform classification better than
randomly guessing, as the accuracy is higher than
80%. However the recall score is low while the pre-
cision score is high. This means that the model is
good at not detecting false bubbles, but misses many
bubbles. The best ARIMA model has parameters
P = 5, Q = 5 with the highest accuracy and F1
score as well as the second highest recall score.

5.2 Random Forest

We performed hyperparameter on the random
forests as well. We tuned on all window types using
3 fold cross validation and the parameter grid shown
in table 4. The results and the best hyperparameters
for each window type are shown in tables 5 and 6.
Table 5 shows the best model parameters for a given
window type. Table 6 shows the results of the model
with the best parameters for each window type. In
tables 5 and 6, the different window types are spec-
ified as follows: A - Raw window, B - FFT window,
C - DCT window, D - Daubechies db3 window, E -
Auto-correlation window.

Table 4: Random Forest Parameter Grid

number of estimators 100 200
max depth 5 10
min samples split 2 5
min samples leaf 2 4

Lewis 12 38th Annual Small Satellite Conference

Table 5: Random Forest Best Models

number of
estimators

max
depth

min
samples
split

min
samples
leaf

A 100 10 5 2
B 200 10 2 2
C 100 10 2 2
D 200 10 5 4
E 200 10 2 2

Table 6: Random Forest Model Performance

accu-
racy

preci-
sion

recall F1
ROC
AUC

A 0.841 0.683 0.499 0.577 0.723
B 0.933 0.839 0.859 0.849 0.964
C 0.929 0.833 0.842 0.838 0.966
D 0.915 0.846 0.743 0.791 0.937
E 0.810 0.595 0.400 0.479 0.679

From the results, we can see that the FFT win-
dow performs the best for the random forest model,
followed closely by the DCT. Both the FFT and the
DCT give information on the frequency content of
the window. This means that for the random forest
model, analyzing the frequency content of the den-
sity is one of the best ways to perform classification.

5.3 XGBoost

We performed hyperparameter tuning on all win-
dow types using 5 fold cross validation and the pa-
rameter grid shown in table 7. The results and
the best hyperparameters for each window type are
shown in tables 8 and 9. In tables 8 and 9, the
different window types are specified as follows: A -
Raw window, B - FFT window, C - DCT window,
D - Daubechies db3 window, E - Auto-correlation
window.

Table 7: XGBoost Parameter Grid

number of estimators 100 200 300
max depth 3 5 7
learning rate 0.01 0.1 0.2

Table 8: XGBoost Best Models

number of
estimators

max
depth

learning
rate

A 300 7 0.2
B 300 3 0.01
C 100 7 0.1
D 300 7 0.2
E 300 7 0.2

Table 9: XGBoost Model Performance

accu-
racy

preci-
sion

recall F1
ROC
AUC

A 0.920 0.807 0.831 0.819 0.935
B 0.925 0.791 0.893 0.839 0.961
C 0.907 0.728 0.912 0.810 0.966
D 0.912 0.761 0.865 0.809 0.955
E 0.842 0.675 0.522 0.589 0.744

Analyzing this, we can see that the FFT and
DCT windows performed the best. From this, we
can tell that the frequency content of the density
is critical in determining whether there is a bubble
or not. This is similar to the results from analyzing
the random forest model. For our particular applica-
tion, we want to skew more towards reporting false
bubbles over missing bubbles. As such, we weight
a good recall score over other scores, so we would
choose the DCT model as our best XGBoost model.

5.4 LSTM

We trained an LSTM on the hyperparameter
tuning set. We trained three different small archi-
tectures to test the efficacy of the LSTM model. To
prepare the data for the LSTM, we broke the input
data into sequences similarly to how we sequenced
the data for the random forest and XGBoost mod-
els. For this model we used a sequence length of 101
samples. We trained three LSTM with structures
are seen in table 10. The results for each architec-
ture is shown in table 11.

Table 10: Model Architectures

Model # Layer Output Size Parameter #

1
LSTM 3 60
Dense 1 4

2
LSTM 5 140
Dense 1 6

3
LSTM 50 10400
Dense 1 51

Lewis 13 38th Annual Small Satellite Conference

Table 11: LSTM Evaluation Metrics

model
accu-
racy

preci-
sion

recall F1
ROC
AUC

1 0.846 0.838 0.360 0.503 0.536
2 0.843 0.814 0.360 0.499 0.567
3 0.874 0.896 0.477 0.623 0.737

Analyzing this, we can see that the LSTM is able
to classify the data, and that larger LSTM models
tend to perform better that the small models. How-
ever the recall score is low while the precision score
is high. This means that, like the ARIMA model,
the model is good at not detecting false bubbles but
misses many bubbles.

5.5 Comparison

The best results from each model are shown in
table 12.

Table 12: Best Models of Each Type

ARIMA
Random
Forest

XGBoost LSTM

accu-
racy

0.836 0.933 0.907 0.874

preci-
sion

0.804 0.839 0.728 0.896

recall 0.325 0.859 0.912 0.477

F1 0.463 0.849 0.810 0.623

ROC
AUC

NA 0.964 0.966 0.737

We can see that the random forest model and the
XGBoost model perform well with high scores in all
five scores. The recall scores of the ARIMA and
LSTM models are low, indicating that these models
miss a lot of bubbles without detection.

We found that adding the synthetic data sig-
nificantly improved the performance of the models
trained on the hyperparameter tuning set. For ex-
ample, the best performing XGBoost model trained
on the real dataset with sample weighting is com-
pared to the best XGBoost model trained using the
data augmented with synthetic data in table 13.

Table 13: Comparing Results from Best XG-
Boost Models

augmented
data set

real
data
only

accuracy 0.907 0.847
precision 0.728 0.602
recall 0.912 0.877
F1 0.810 0.714
ROC AUC 0.966 0.879

6 Training on The Full Data Set

We then trained the models on the full dataset.
We built two versions of the full dataset, the first set
is the SPORT data reduced to just the sweeps that
have bubbles. This dataset is approximately 12%
class 1 (bubbles). Sample weighting is applied to
this set to help overcome the data imbalance issue.
To build the second training set, we added synthetic
data to the SPORT data until the class balance was
approximately 40%.

We divided the full dataset into a training set,
a validation set, and a test set. The training set is
70% of the data, and the validation and test sets
are both 15% of the data. When building the test
dataset, we ensure that the test set does not include
any synthetic data or data that was used to perform
hyperparameter tuning. Doing this means that the
test set balance is approximately 10% class 1. This
means that when evaluating a model, an accuracy
of 90% or lower is less accurate than always guess-
ing class 0. Because of this imbalance, the precision,
recall, and F1 scores are more informative than ac-
curacy in evaluating a model. After evaluating the
models on the test set and forming predictions, we
applied a median filter to smooth the noise in the
results. Since the median filter does not give a prob-
ability score, the ROC AUC score does not apply to
this analysis.

6.1 ARIMA

We trained an ARIMA model using the best pa-
rameters from our hyperparameter tuning on the
full data set. The ARIMA model has parameters
P = 5, D = 1, Q = 5. We then put the output
of the ARIMA prediction through a median filter
to smooth the results. We found that the ARIMA
model trained on the full dataset without synthetic
data performed better than the model trained on the
full dataset augmented with synthetic data. The re-

Lewis 14 38th Annual Small Satellite Conference

sults of the ARIMAmodel trained on the full dataset
without synthetic data is shown in table 14.

Table 14: Results from ARIMA Model
Trained on the Full Dataset with Median Fil-
ter

Filter
size

accuracy precision recall F1

1 0.9232 0.3268 0.1694 0.2232
13 0.9343 0.4804 0.1078 0.1761
55 0.9332 0.4057 0.0562 0.0987

We noticed that the recall score of the ARIMA
model is significantly lower that the recall scores
from hyperparameter tuning. We compare the Ran-
dom Forest model trained on the hyperparameter
tuning set tested on the test set from the full dataset
in table 15. Analyzing these models, we can see that
the ARIMA model trained on the full dataset has a
higher accuracy and the model trained on the hyper-
parameter has higher precision, recall, and F1 score.
This means that the hyperparameter model is bet-
ter at identifying class 1 examples than the model
trained on the full dataset, but does make more mis-
takes overall.

Table 15: Results from ARIMA Model
Trained on the Hyperparameter Tuning Set
with Median Filter

Filter
size

accuracy precision recall F1

1 0.9091 0.5290 0.2498 0.3394
13 0.9205 0.7692 0.2139 0.3347
55 0.9184 0.7749 0.1796 0.2916

6.2 Random Forests

We trained a Random forest model using the best
parameters for hyperparameter tuning shown in ta-
ble 16 on the full dataset. We found that the Ran-
dom Forest model trained on the full dataset with-
out synthetic data performed better that the model
trained on the full dataset augmented with synthetic
data. The results of the model trained on the full
dataset without synthetic data is shown in table 17.

Table 16: Random Forest Best Parameter
Grid

number of
estimators

max
depth

min
samples
split

min
samples
leaf

200 10 5 2

Table 17: Results from Random Forest Model
Trained on the Full Dataset with Median Fil-
ter

Filter
size

accuracy precision recall F1

1 0.9639 0.9135 0.4928 0.6402
13 0.9636 0.9135 0.4931 0.6405
55 0.9641 0.9172 0.4934 0.6416

We noticed that the recall score of the Random
Forest model is significantly lower that the recall
scores in the hyperparameter tuning set. We com-
pare the Random Forest model trained on the hyper-
parameter tuning set tested on the test set from the
full dataset in table 18. Analyzing this we see that
the model trained on the full dataset without syn-
thetic data has higher accuracy and precision while
the model trained on the hyperparameter tuning set
has higher recall and F1 score. This means that
the model trained on the hyperparameter tuning
set catches more bubbles at the expense of miss-
classifying a few sections of class 0 as class 1.

Table 18: Results from Random Forest Model
Trained on the Hyperparameter Tuning Set
with Median Filter

Filter
size

accuracy precision recall F1

1 0.9156 0.5305 0.8436 0.6514
13 0.9159 0.5315 0.8458 0.6528
55 0.9163 0.5329 0.8486 0.6547

6.3 XGBoost

We trained an XGBoost model on the full dataset
with the best parameters from hyperparameter tun-
ing, shown in table 19. We found that the XGBoost
model trained on the full dataset without synthetic
data performed better that the model trained on the
full dataset augmented with synthetic data.

Lewis 15 38th Annual Small Satellite Conference

Table 19: XGBoost Best Parameter Grid

number of
estimators

max
depth

learning
rate

100 7 0.1

After training the model, we tested on the test
data set and fed the results through a median filter
to reduce noise in the results. The results of different
median filter sizes are shown in table 20.

Table 20: Results from XGBoost Model
Trained on the Full Dataset with Median Fil-
ter

Filter
size

accuracy precision recall F1

1 0.9530 0.8867 0.3197 0.4700
13 0.9533 0.9040 0.3170 0.4694
55 0.9537 0.9200 0.3171 0.4716

We noticed that the recall score of the XGBoost
model is significantly lower that the recall scores in
the hyperparameter tuning set. We compare the
XGBoost model trained on the hyperparameter tun-
ing set tested on the test set from the full dataset
in table 21. Analyzing this we see a similar scenario
as the Random Forest model. The model trained on
the full dataset without synthetic data has higher
accuracy and precision while the model trained on
the hyperparameter tuning set has higher recall and
F1 score. This means that the model trained on the
hyperparameter tuning set catches more bubbles at
the expense of miss-classifying a few sections of class
0 as class 1.

Table 21: Results from XGBoost Model
Trained on the Hyperparameter Tuning Set
with Median Filter

Filter
size

accuracy precision recall F1

1 0.9347 0.6806 0.8644 0.7616
13 0.9352 0.6818 0.8675 0.7635
55 0.9358 0.6838 0.8703 0.7659

6.4 LSTM

Since the LSTM performs better on a larger
dataset, we re-did the hyperparameter tuning on
the LSTM model. The data was sequenced into se-
quences 101 samples long, the same as in the small
hyperparameter tuning set. We tested six different

model architectures with model sizes seen in table
22. These models were trained on the full dataset
for 1 epoch and compared in table 23. When train-
ing the LSTM, the full dataset augmented with syn-
thetic data performed better than training on the
full dataset without synthetic data.

Table 22: LSTM Model Architectures for Full
Dataset

Model # Layer Output Size Parameter #

1
LSTM 50 10400
Dense 1 51

2
LSTM 100 40800
Dense 1 101

3
LSTM 50 10400
LSTM 25 7600
Dense 1 26

4
LSTM 100 40800
LSTM 50 30200
Dense 1 51

5

LSTM 50 10400
LSTM 40 14560
LSTM 30 8520
LSTM 20 4080
LSTM 10 1240
Dense 1 11

6

LSTM 100 40800
LSTM 75 52800
LSTM 50 25200
LSTM 25 7600
LSTM 10 1440
Dense 1 11

Table 23: LSTM Evaluation Metrics

model
accu-
racy

preci-
sion

recall F1
ROC
AUC

1 0.900 0.322 0.057 0.007 0.467
2 0.900 0.286 0.043 0.006 0.460
3 0.880 0.278 0.176 0.018 0.569
4 0.885 0.311 0.187 0.019 0.584
5 0.883 0.226 0.101 0.011 0.556
6 0.896 0.287 0.073 0.009 0.517

Analyzing this round of hyperparameter tuning,
we can see that while the smaller models have high
accuracy, the low recall score indicates that the
model is missing many of the bubbles. Model num-
ber 4 scores highest on recall and still scores high on
all other scores. We take the architecture of model
4 and train it on the full augmented dataset for 10

Lewis 16 38th Annual Small Satellite Conference

epochs. The results of this LSTM with a median
filter applied are shown in table 24.

Table 24: Results from LSTM Model Trained
on the Full Dataset with Median Filter

Filter
size

accuracy precision recall F1

1 0.8512 0.2929 0.4178 0.3444
13 0.8512 0.2933 0.4185 0.3449
55 0.8514 0.2944 0.4211 0.3465

We noticed that in all of the other model types,
a model trained on the hyperparameter tuning data
set tends to have a higher recall score than the model
trained on the full dataset. Because of this, we de-
cided to train an LSTM model with the same ar-
chitecture on the hyperparameter tuning set for 10
epochs and test it on the same test set as the full
dataset. The results from the LSTM trained on the
hyperparameter tuning dataset are shown in table
25. Analyzing the LSTM results, we can see that
the model trained on the full dataset has a higher
recall and F1 score, while the model trained on the
hyperparameter tuning set has higher accuracy and
precision. Interestingly, this is the reverse of the
trend seen in the other models, where using the hy-
perparameter tuning set tends to increase recall and
the F1 score at the expense of accuracy and preci-
sion.

Table 25: Results from LSTM Model Trained
on the Hyperparameter Tuning Set with Me-
dian Filter

Filter
size

accuracy precision recall F1

1 0.8771 0.3054 0.2456 0.2723
13 0.8772 0.3056 0.2459 0.2725
55 0.8770 0.3047 0.2448 0.2715

6.5 Comparing Models

We now compare the best model from each model
type and dataset in table 26. Analyzing these re-
sults, we can see that the tree-based methods tend
to have the highest scores overall. We can also see
that the models trained on the hyperparameter tun-
ing set tend to have a much higher recall score at
the cost of lowering the accuracy and precision.

Table 26: Final Results of Models Tested on
the Full Dataset

Model
accu-
racy

preci-
sion

recall F1

ARIMA
Full Dataset

0.9232 0.3268 0.1694 0.2232

ARIMA
Hyper-

parameter
Dataset

0.9091 0.5290 0.2498 0.3394

Random
Forest

Full Dataset
0.9641 0.9172 0.4934 0.6416

Random
Forest
Hyper-

parameter
Dataset

0.9163 0.5329 0.8486 0.6547

XGBoost
Full Dataset

0.9537 0.9200 0.3171 0.4716

XGBoost
Hyper-

parameter
Dataset

0.9358 0.6838 0.8703 0.7659

LSTM
Full Dataset

0.8514 0.2944 0.4211 0.3465

LSTM
Hyper-

parameter
Dataset

0.8772 0.3056 0.2459 0.2725

Figure 27 presents a detailed analysis of a sample
data section, comparing actual class labels with pre-
dicted class labels from our XGBoost model trained
on the hyperparameter tuning dataset. In this sec-
tion, we observe an extensive region of plasma bub-
bles followed by several smaller bubble regions. The
model successfully identifies most of the extensive
bubble region, though it does not capture it contin-
uously. Additionally, the model incorrectly labels
some non-bubble regions as bubbles. Despite these
inaccuracies, our primary goal is to determine the
occurrence of plasma bubbles over a large time scale.
The goal of the plasma bubble detection application
on the ITA-SAT2 satellite that this model is being
developed for is to detect if there is any plasma bub-
ble interference as the satellite passes through the
equatorial region. Detecting the entire bubbles is

Lewis 17 38th Annual Small Satellite Conference

not as important as detecting that there is a bubble
in the equatorial region. Therefore, even though the
model does not detect every part of the bubble, it
effectively identifies the general areas where bubbles
are present.

Figure 27: Section of Density Data with Ac-
tual Labels and Predicted Labels from the
XGBoost Model Trained on the Hyperparam-
eter Tuning Set

7 Model Complexity

The goal of building this model is to implement it
on an FPGA on a small satellite. Because of this we
want to prioritize simple models that can be easily
implemented on a satellite. We analyze the com-
plexity of each model.

7.1 ARIMA

A ARIMA model defined as ARIMA(P,D,Q) re-
quires P +Q multiplications and P +Q+D− 2 ad-
ditions. Our approach has two ARIMA models, and
the results of each model is compared. The equation
to calculate the total number of floating point oper-
ations (FLOP) required for our ARIMA approach is
shown in equation 12. Our best model had parame-
ters P = 5, D = 1, Q = 5. This gives a total of 39
FLOPs per sample.

FLOP = 2 ∗ (2P + 2Q+D − 2) + 1 (12)

7.2 Random Forest

A Random Forest model uses decision trees to
classify a sample point. To evaluate the trees, we
need to make at most the maximum depth of the tree
comparisons per tree, then find the majority of the
tree results. The number of comparisons, or FLOPs
required for a random forest is shown in equation

13. Our best model has 200 estimators with a maxi-
mum depth of 10. This means according to equation
13 that the best random forest evaluation requires
approximately 2200 FLOPs per sample.

FLOP = #estimators ∗max depth+#estimators

(13)

7.3 XGBoost

The XGBoost model is similar to the Random
Forest model, as it requires the evaluation of of a set
of decision trees, then finding the majority of the
results. The total FLOPs for an XGBoost model
is approximated by equation 13 Our best XGBoost
model has 100 estimators and a maximum depth of
7. This means that, according to equation 13, the
XGBoost model requires approximately 800 FLOPs
per sample.

7.4 LSTM

The LSTM architecture consists of various
LSTM layers followed by a dense layer. The total
number of FLOPs per LSTM layer is calculated by
equation 14 where h is the size of the output layer
and d is the size of the input layer and the total
number of FLOPs per Dense layer is calculated by
equation 15 where m is the size of the output layer
and d is the size of the input layer. The total size
of each layer in our LSTM architecture is shown in
table 27. Using these equations, we calculate that
the LSTM requires 284100 FLOPs per sample.

FLOPLSTM = 16 ∗ (d ∗ h+ h2 + h) (14)

FLOPDense = 2 ∗ d ∗m (15)

Table 27: Size of LSTM Layers

Layer Input Size Output Size
LSTM 1 100
LSTM 100 50
Dense 50 1

We compare the complexity of all different model
types in table 28. We can see that the LSTM is
orders of magnitude more complex than any other
model. The LSTM is more difficult to implement
on hardware than any other model. Additionally,
the tree-based models, random forests and XGBoost,
use comparisons which are implemented as subtrac-
tion operations in hardware. This operation is sim-
pler to implement in custom hardware on an FPGA
than multiplications.

Lewis 18 38th Annual Small Satellite Conference

Table 28: Comparison of Model Complexity

Model FLOPs per sample
ARIMA 39
Random Forest 2200
XGBoost 800
LSTM 284100

8 Conclusion

We successfully trained several machine learning
models to classify equatorial plasma bubbles as ob-
served in ionospheric density data from a satellite
in a mid inclination orbit. Among these models,
the Random Forest and XGBoost methods achieved
the highest scores. Our best-performing model is
the XGBoost model, trained using our hyperparam-
eter tuning set, with an accuracy of 93.58% and an
F1 score of 0.7659. These models are also signif-
icantly less complex than the LSTM model, mak-
ing them simpler to implement in hardware. The
best-performing Random Forest and XGBoost mod-
els used the FFT and DCT windows, respectively,
indicating that analyzing the frequency content of
the SPORT density data is an effective method for
locating plasma bubbles. This is consistent with the
approach used by SPORT data scientists, who look
for regions in the density data where the density
drops and appears ”noise-like.”

Another significant finding is that adding syn-
thetic data improved model performance on small
scales but not on large scales. This suggests
that a small amount of synthetic data enhances
the model’s understanding, but too much synthetic
data degrades performance. Additionally, models
trained on the hyperparameter tuning set consis-
tently achieved higher recall and F1 scores. This
indicates that, in terms of recall, the larger dataset
causes overfitting, thereby reducing performance.

8.1 Future Work

Looking forward, we plan to continue improving
our plasma bubble detection model. In this paper,
we only used the density data collected by the Lang-
muir probe on the SWP instrument. The SWP in-
strument also includes an electric field probe, a mag-
netometer, and an impedance probe that calculates
plasma density. Plasma bubbles are detectable in
data from these probes as well. Incorporating data
from these additional probes may enhance the per-
formance of the plasma bubble classifier.

We also plan to implement our model on an
FPGA. We will deploy the architecture on the

LACE-C3A board to perform plasma bubble clas-
sification on a low-power computing device. The
LACE-C3A board will be flown on the ITA-SAT2
mission alongside a new version of the SWP instru-
ment, where it will classify bubbles using data from
the SWP instrument.

References

[1] Yokoyama, T. A review on the numerical simu-
lation of equatorial plasma bubbles toward scin-
tillation evaluation and forecasting. Prog Earth
Planet Sci 4, 37 (2017).

[2] Hysell, D. L., Kirchman, A., Harding, B.
J.,Heelis, R. A., England, S. L., Frey, H.
U.,& Mende, S. B. (2024). Using ICON satel-
lite data to forecast equatorial ionospheric in-
stability throughout 2022.Space Weather, 22,
e2023SW003817. (2023)

[3] Su, S.-Y., H. C. Yeh, and R. A. Heelis (2001),
ROCSAT 1 ionospheric plasma and electro-
dynamics instrument observations of equato-
rial spread F: An early transitional scale re-
sult, J. Geophys. Res., 106(A12), 29153–29159,
doi:10.1029/2001JA900109.

[4] C. Stolle, H. Lu¨hr, M. Rother, and G. Balasis,
”Magnetic signatures of equatorial spread F as
observed by the CHAMP satellite”, 2006

[5] Camporeale, E. (2019). The challenge of ma-
chine learning in Space Weather: Nowcasting
and forecasting. Space Weather, 17, 1166–1207.
https://doi.org/10.1029/2018SW002061

[6] Thanakulketsarat, T., Supnithi, P., Myint,
L.M.M. et al. Classification of the equato-
rial plasma bubbles using convolutional neu-
ral network and support vector machine tech-
niques. Earth Planets Space 75, 161 (2023).
https://doi.org/10.1186/s40623-023-01903-7

[7] Chandan Kapil, Gopi K. Seemala, Ma-
chine learning approach for detection of
plasma depletions from TEC, Advances
in Space Research, Volume 73, Issue 7,
2024, Pages 3833-3844, ISSN 0273-1177,
https://doi.org/10.1016/j.asr.2023.04.042.

[8] Reddy, S. A., Forsyth, C., Aruliah, A.,
Smith, A., Bortnik, J., Aa, E., Kataria, D.
O., & Lewis, G. (2023). Predicting swarm

Lewis 19 38th Annual Small Satellite Conference

equatorial plasma bubbles via machine learn-
ing and Shapley Values. Journal of Geo-
physical Research: Space Physics, 128(6).
https://doi.org/10.1029/2022ja031183

[9] Box, G. E. P., Jenkins, G. M. (1968). Some re-
cent advances in forecasting and control. Journal
of the Royal Statistical Association: C, XVII, 91-
109.

[10] Breiman, L. Random Forests. Ma-
chine Learning 45, 5–32 (2001).
https://doi.org/10.1023/A:1010933404324

[11] Chen, T., & Guestrin, C. (2016). XG-
Boost. Proceedings of the 22nd ACM
SIGKDD International Conference on
Knowledge Discovery and Data Mining.
https://doi.org/10.1145/2939672.2939785

[12] Hochreiter, Sepp & Schmidhuber,
Jürgen. (1997). Long Short-term Mem-
ory. Neural computation. 9. 1735-80.
10.1162/neco.1997.9.8.1735.

Lewis 20 38th Annual Small Satellite Conference

