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ABSTRACT

Attitude state estimation for spacecraft often requires writing an integrator or filter from scratch, with
choices depending on the expected sensors, spacecraft and mission properties, and computational resources
available. We create a customizable object-oriented satellite dynamics model with a variety of sensors,
actuators, and disturbances that can be easily applied to any small spacecraft. Relevant disturbances can
be modeled (or ignored), sensor and actuator biases are tracked, and outside effects like eclipse on sun
sensors are included. In this work, we demonstrate the use of a new model to create a dynamics-aware
unscented Kalman filter (UKF) that, in simulation, outperforms current and previous estimators, even for
large satellites and achieves sub-degree accuracy for a small satellite. For example, the mass properties of
a satellite, the actuator and sensor properties, and relevant disturbances can be input, and the UKF with
relevant dynamics, update, and propagation steps will be created. This allows for rapid testing of various
estimation and control paradigms, and the quick development of an attitude determination system (ADS).

Nomenclature

q̄ = quaternion representing orientation
β = bias of sensor or actuator
ω = angular velocity
τ = torque
τs = torque on stored momentum
s = sensor reading
m = spacecraft mass
c = location of spacecraft center of mass
α = body-frame axis of sensor or actuator
J = spacecraft inertia tensor
BECI = local magnetic field in Earth-Centered

Inertial (ECI) frame
SECI = sun position (from satellite) in ECI

frame
RECI = position of spacecraft in ECI frame
VECI = velocity of spacecraft in ECI frame
ν = noise on a sensor or actuator
η = standard deviation of a stochastic pro-

cess such as rate of bias drift
u = control command
N pµ, σq = Normal distribution with mean µ and

variance σ2

p = time-varying disturbance parameter
r̂ = unit vector
I3ˆ3 = identity matrix of size 3 by 3
A pq̄q = Rotation matrix of q̄, from body to ECI
∥x∥ = 2-norm of x

1 Introduction

Attitude estimation has been a challenge since
the early days of space exploration. Hardware sen-
sors capture information used by onboard state es-
timation and control algorithms to generate com-
mands for hardware actuators in order to achieve the
desired spacecraft state. The sensing hardware can
include gyroscopes, magnetometers, sun and Earth
sensors, star trackers and cameras, and radio bea-
cons.1 The information from these sensors can be
turned into estimated attitude through a number of
algorithms, including the TRIAD vector estimation
algorithm, the extended Kalman filter (EKF), and
the unscented Kalman filter (UKF).2 Many more
complex approaches also exist, including robust fil-
tering for detecting measurement faults3–5 , lower-
computational-cost approaches,6 active control to
improve parameter estimation,7 full GPS inclusion,8

and sparse-matrix approaches.9

The many approaches to this problem have
tradeoffs. Some ADCSs (attitude determination and
control systems) do not track angular velocity di-
rectly, instead using the readings off the gyroscopes
as raw input in the predictive step and tracking their
bias.10 This works fine when noise is small, but
can cause problems when higher-noise gyroscopes
are used, such as in cubesats. In such applica-
tions, tracking angular velocity allows for better es-
timation. Many ADCS estimators do not include
the control commands in their estimation, which
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means some information is not being used. For ex-
ample, if a torque is commanded to actuators, the
expected change in angular velocity is known from
the commands and the mass properties of the satel-
lite. When the expected change in angular velocity
is compared to the measured change from the gy-
roscopes, more information about the gyroscope bi-
ases are understood. Similarly, the angular velocity
change that results from magnetic torque provides
information about the satellite’s orientation relative
to the magnetic field. Using the noise and bias of the
control torques allows for more specific modeling of
the covariance and noise in the system, in addition
to accounting for it.

Modeling known disturbances, analytically or by
estimation, allows for more precise estimation than
a general “process error” term. We have more in-
formation about the system than simple filters in-
clude; for example, the torque from drag and resid-
ual dipoles can be modeled near exactly, up to the
accuracy of their parameters.11 When disturbances
cannot be fully modeled, or the parameters are un-
certain, “generalized” disturbance torque can be es-
timated. The generalized disturbance torque effec-
tively serves as the residual on state estimation, ac-
counting for uncaptured disturbances/dynamics er-
rors. This can then be used in controllers – for ex-
ample, as a feedforward adjustment in PID instead
of the integral term.

To better estimate system state, and to under-
stand the disturbances so that they can be more di-
rectly countered, this work details the creation and
testing of an estimator framework for ADCS that
fully models system dynamics, control effort and
bias, disturbances, and sensor bias. The estimation
framework is created in an object-oriented manner
to allow for easy modifications and simplify apply-
ing tests to different satellites, noise environments,
and more. Each estimator, which can include a Ex-
tended Kalman Filter or more advanced approaches,
processes the sensor and control information, relying
on an internal “digital twin” of the satellite to model
the dynamics, sensors, actuators, and disturbances.

2 Approach

The attitude determination system described in
this work was originally inspired by the ADCS needs
for a student CubeSat mission. The mission plan
called for only magnetic attitude control and on-
board electric propulsion. During development, the
concern about torque created by the propulsion (po-
tentially caused by either off-axis thrust, or misalign-
ment between the thrust vector and center of mass)

was raised. While the torque would be small, it
would be continuous for hours, and if any component
of it was aligned with the localB field, it would cause
rotation that could not be countered. These possi-
bilities led to the creation of an attitude trajectory
planner that could include and utilize disturbance
torques, using them to counter each other or relying
on time-varying properties.12 This required an esti-
mator that tracked and estimated uncertain or time-
varying disturbances, as well as actuator noise and
bias. Aside from underactuated CubeSats, this es-
timator had the potential value of improving ADCS
on other satellites, by allowing for direct considera-
tion of disturbances and actuator bias. This allows
for feed-forward control where torques are directly
countered, as opposed to controlling based on their
effect in, for example, a PID control loop. This led
to the inclusion of disturbance parameters and actu-
ator biases in an ADCS estimator, as detailed in this
work. By fully modeling the dynamics, disturbances,
and estimating sensor properties, more information
could be factored into the system, allowing for more
accurate estimation, even if sensors were of low qual-
ity.

To understand the effect of fully including the
dynamics, biases, noise, and disturbances in the es-
timator, a framework is created that allows for satel-
lites to be modeled with specific disturbances, sensor
biases and noise, and actuator biases and noise. The
disturbances and biases can be turned on or off for
various tests, and their relevant parameters can be
changed and/or allowed to evolve over time accord-
ing to specific random-walk models. This object-
oriented system allows for an arbitrary set of actu-
ators and sensors for any satellite. This system is
used inside the ADS to create an internal “virtual
satellite” that matches the system estimates of bi-
ases and disturbances. The dynamics of the virtual
satellite were modeled to fully include these distur-
bances and biases (or not, if turned off), and thus
the dynamics, random-walk models, and other func-
tions can then be used for attitude determination
and control.

To improve estimation accuracy, the estimation
system includes control noise separately from inte-
gration error in the state estimation system. The
separate modeling of control noise, integration noise,
and sensor noise is implemented in the estimators in
the framework of this paper. With the satellite sys-
tem parameterized to allow for sensors, actuators,
physical properties, and disturbances to be included
or not, and with their evolution allowed to vary in
different ways, the attitude estimation framework is
written to build off these choices in a straightfor-
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ward manner. Not only does this approach allow for
easier testing, but it can be applied to other satel-
lites, with varying properties, plants, and sensors,
with minimal effort.

2.1 Estimated State

The core of any estimation method is the state–
the parameters or values that the system is trying to
estimate. For this framework, the state has several
components: the base state (basic rotational dynam-
ics values), actuator biases, sensor biases, and dis-
turbance parameters. The exact parts of each of
these vary by application instance, but the form is:

xfull “
“

xT
base βT

actuator βT
sensor pT

dist

‰T
(1)

where the presence of biases (β) and disturbance pa-
rameters (pdist) depend on how the satellite is set up
and whether the components are active (e.g., in the
case of disturbances).

The base state is:

xbase “
“

q̄T ωT hT
‰T

(2)

where q̄ is the quaternion defining orientation (con-
verted into a 4-vector), ω is the body-frame angular
velocity, and h is the vector of momenta stored in
each actuator (which is zero and thus absent, except
for reaction wheels).

With perfect information, this state could be
tracked exactly, based on the dynamics that de-
fine the relevant physical properties. Without per-
fect information, the dynamics are used to estimate
the system as they are rules governing its evolution.
Specifically, the dynamics of these components are
governed by the Satellite class (see Section 2.2.1) as
follows (allowing quaternions to operate as 4-vectors
and ω to operate as a quaternion), where J is the in-
ertia tensor of the satellite about the center of mass,
including all reaction wheels, jact,i is the moment of
inertia of the ith reaction wheel about its axis and
u represents the control commands,

9̄q “
1

2
q̄ω “

1

2

„

0 ´ωT

ω ´ rωs
ˆ

ȷ

q̄ (3)

9ω “ J´1
noRW

ˆ

´ω ˆ

ˆ

JnoRWω `

Nact
ÿ

i“1

α̂act,ihi

˙

` τall

˙

(4)

9hi “ ´τs,i ´ jact,i
`

α̂T
act,i 9ω

˘

(5)

where JnoRW “ J ´
řNact

i“1 jact,iα̂act,iα̂
T
act,i represents

the spacecraft inertia tensor ignoring all momentum
storage and τall “

řNact

i“1 τact,i `
řNdist

i“1 τdist,i is the
sum of all actuator and disturbance torques.

These equations define the system’s “real-world”
dynamics and can thus be used to complete the fil-
ter’s predictive step or used in a simulation. The dy-
namics of other components (biases, noise, and dis-
turbances) are contained in classes relevant to each,
and described in the rest of this Section.

2.2 Overall Architecture

To allow for this code to be applied to different
satellites and scenarios, and to allow for easy mod-
ifications during testing, the estimation framework
is created in an object-oriented manner. An Esti-
mator class (with sub-classes for Extended Kalman
Filters (EKFs), Unscented Kalman Filters (UKFs),
Square Root UKFs, etc.) manages the estimation
and updates. To describe the dynamics and what
parameters are represented in the state, there is a
Satellite class that holds a digital twin (as close as
the Estimator can make it) of the satellite. Within
the Satellite, there are instances of disturbances, ac-
tuators, and sensors, that hold the properties and
functions related to those specifically, as shown in
Figure 1. This allows easy addition or modification
of sensors, actuators, and disturbances. This makes
the Satellite class useful for estimation and control,
as dynamics, Jacobians, sensor covariance, and other
vital functions are simple to call, even if the prop-
erties, actuators, and sensors are different between
Satellites. The Satellite class itself can also be used
outside of the Estimator class. For example, when
testing the estimator, a “real” instantiation can be
created and modeled–including with properties that
differ from the Estimator’s understanding to test ro-
bustness. The details and structure of these classes
are described in this section.

2.2.1 Satellite

The Satellite class holds physical and mass pa-
rameters (inertia matrix J , mass m, center of mass
position c), as well as lists of sensors, actuators, and
disturbances. Combining all of this information, the
Satellite class has many methods to represent im-
portant aspects and simulate a spacecraft, either as
the “real” satellite in a simulation or inside an esti-
mator. These methods include:

1. Turning disturbances on or off.

2. Momentum management: generating a mo-
mentum list from actuator properties, or up-
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Figure 1: Diagram of the Satellite class containing classes for sensors, disturbances, and ac-
tuators, with their own listed parameters, as well as satellite parameters: mass m, center of
mass c, and inertia matrix J .

dating the actuator properties from given val-
ues.

3. Matching itself to a provided state (such as
from the previous estimate): setting the mo-
mentum to match what is provided, setting
sensor and actuator biases and disturbance pa-
rameters to match those that have been es-
timated, copying their expected growth/vari-
ances to match those provided. When other
commands, such as dynamics, are then run,
the unit then reflects the provided values. This
is useful for inside estimators, as the internal
satellite needs to be made to match the previ-
ous estimate. Additionally, this method turns
off internal noise so the estimator can proscribe
the noise components.

4. Update randomness: there are commands that
update all of the random values inside the sen-
sors, actuators, and disturbances, according to
their internal update functions. Specifically,
actuator noise and bias, sensor bias, and dis-
turbance parameters can be updated. This is
useful for simulating a satellite, and can be
used in particle filters or Monte Carlo-based
approaches.

5. Dynamics: for a given state, orbital informa-
tion, and control command, find the dynam-
ics of the satellite, including disturbances and
actuator biases. The Jacobian of the state
change 9x with respect to state, control com-

mand, sensor biases (0), actuator biases, and
disturbance main parameters can also be re-
turned, as well as the Hessians of any pair of
those. The Jacobians and Hessians are neces-
sary for some estimation and control optimiza-
tion techniques, such as the Extended Kalman
Filter and some methods of Model Predictive
Control.

6. RK4: for a given state, time step, orbital
information, and control command, perform
Runge-Kutta 4 integrationacross the time step
using the dynamics function to estimate the
next state of the satellite. This includes chang-
ing orbital parameters across the time step, as
well as disturbances and actuator biases. The
values of disturbance parameters and actuator
biases are treated as constant across the time
step. The Jacobian of the new state with re-
spect to state, control command, sensor biases
(though this is 0), actuator biases, and distur-
bance main parameters can also be returned,
as well as the Hessians of any of those with the
control command.

As part of the state is quaternions (see Eq. 2)
there is the question of how to integrate them.
This approach simply numerically integrates
them as vectors and normalizes at each step of
RK4 (the Jacobians/Hessians of the normal-
ization are included in the Jacobians and Hes-
sians of this as well). It has been shown that,
for well-behaved systems, this performs simi-
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larly to “proper” geometric integration.13

7. Control bounds: bound a given control com-
mand to the limits of the actuators.

8. Control covariance: generate the covariance
in the control values, by taking the control
noise variance from each actuator and creat-
ing a block diagonal matrix. This represents
the covariance in executed control.

9. Sensor covariance: Generate the covariance in
the sensor readings for a given list of sampled
sensors, by taking the noise variance from each
sensor and creating a block diagonal matrix.
This represents the covariance in sensed read-
ing.

10. Sensor information: for a given list of sam-
pled sensors along with the base state (angu-
lar velocity and orientation, Eq. 2) and local
vectors (sun position, Earth’s magnetic field,
etc.), the satellite can return the list of read-
ings from those sensors. This can be used
to create simulated sensor readings (including
noise) or to find the expected readings in an es-
timator (without noise). The Jacobians of this
list with respect to the base state and the sen-
sor biases can also be found by stacking the
Jacobians of each sensor. The Jacobians are
vital to an EKF.

2.2.2 Estimator

The Estimator class holds the “virtual satellite”
(an object of the Satellite class), which represents
the Satellite as the estimator understands it. This
includes what disturbances are affecting the satellite,
the sensors and actuators it has, and its dynamics,
what sensor and actuator biases it has, what the
noise is on the sensor readings and actuators, and
the evolution underpinning those actuator and sen-
sor biases and disturbance parameters. Biases and
disturbances can be fixed, and do not change in the
estimated satellite, so they are included in calcula-
tions but do not vary. They can also be left out, and
it will be assumed they are zero. If biases and dis-
turbances are being estimated, however, this class
updates them at each step. This internal satellite
can differ from the “real” satellite used in a simula-
tion (though the same class can be reused for that to
simplify code structure). This allows for testing in
simulation the effect of mis-estimated biases, rates of
random change, difference in mass parameters, etc.
The Estimator also holds the estimate of the satel-
lite’s full state, including the dynamics state and the

biases and disturbances which are being estimated,
along with the estimate’s covariance and expected
process noise/covariance.

There is the question of how to manage aspects
of the full state that are not being used at a given
time step. The momenta, orientation, and angular
velocity are always used, as they define the dynam-
ics. The actuator biases are also always used, even
if the command is zero, as an actuator with a bias
needs to be commanded to remain at zero. Sensor
biases are also always kept on, and grow with each
time step as described in Equation 14, even if the
sensor is not polled in that time step. However, if a
sensor is not being polled, then its value and Jaco-
bian will be zero, and it will not be directly used in
the update. This is done to keep its covariances rele-
vant with other state elements, and because sensors
are likely to be off for a comparatively brief period
but will be used again with some relation to its pre-
vious value of bias.

Disturbances are the more complicated case.
When a disturbance is turned off, it is not used in
the estimation until it is turned back on. This in-
cludes its portion of the covariance. When turned
off and on, there are a number of options for now to
reset the disturbance parameter’s estimate and co-
variance. The estimate and covariance can be set to
the value they were first initialized to, or they can
be saved when turned off and replaced when turned
on. Finally, the estimate can be set to zero but the
covariance from the saved term kept. In all cases,
when turned back on, the cross-terms in the full state
covariance are set to 0. What approach should be
used depends on what the source of the disturbance
is. For propulsion disturbances, which the authors
expect to be the most-used case for a disturbance
that is turned off and on, the saved value is used, as
we expect the largest problems from propulsion to
come from alignment between the satellites center of
mass and the thrust vector, which should be roughly
constant. The estimator class has shortcuts for dis-
abling sun-related sensors and disturbances during
eclipse, as well as propulsion, as these are expected
to be the most frequently varying cases.

There is also the question in estimation of
how to deal with quaternions–when performing the
math underlying estimation, should quaternions be
treated as a vector and normalized (as they are in
the RK4 system in this work) or treated as a three-
element parameter and adjusted in rotation space.
This class allows for either, and provides a method
for adding and subtracting.

The Estimator class itself does not include the es-
timation update method. The specific method used

McKeen 5 38th Annual Small Satellite Conference



is from classes that inherit from the overall Estima-
tor class. The Estimator class itself manages the in-
put and output. Specific inherited classes that have
been implemented include an Extended Kalman Fil-
ter and Unscented Kalman Filter. Other sensor fu-
sion algorithms can be used. The estimation class
handles saving the new estimation and loading the
old estimation, as well as dealing with cross terms.
Additionally, it automatically does not use sun sen-
sors (but allows sun sensor pairs) when in eclipse or
when their reading is beneath the standard devia-
tion of their noise–because they are likely pointing
away from the sun.

2.2.3 Actuators

The actuator class represents all types of actu-
ators, with specific types of actuators being repre-
sented as sub-classes. Currently, there are magne-
torquers (MTQs), reaction wheels (RWs), and a type
of “magic” actuator that simply provides torque
(this could be said to represent ideal thruster pairs,
with exact torque and limitless fuel).

Each actuator has properties and methods to
represent important aspects:

1. Torque generation: each actuator has an axis
in the body frame that defines its axis of ac-
tion, αi. When given a command, ui (and pro-
vided body frame vectors of external proper-
ties where relevant, such as the magnetic field
for MTQs), the instance returns the torque,
τi, created in the body frame by its actions
along this axis. The default torque call in-
cludes bias and noise, as described in this list,
but separate methods can find the value with-
out noise or without either bias or noise. This
is valuable for estimation) It can also return
the Jacobians of torque generated relative to
the “base state” (angular velocity and orienta-
tion), any stored momentum in that actuator,
the command supplied, and its bias, as well
as the Hessian of torque generated to any pair
of those variables. There is also a maximum
value of actuation that the satellite and algo-
rithms can read to limit their commands. Gen-
erated commands above this value produce a
warning.

2. Bias: each actuator can be set to have a bias
or not. The bias, βact,i, is added to the com-
manded value as ui`βact,i. The bias can be set
directly, or evolve over time. When evolving
over time, it is modeled as a discrete random
walk approximating a Wiener process. Specifi-

cally, a bias rate is used, represented as ηb,act,i.
Each time the bias evolves, the time it was up-
dated is saved as tprev. When updated again
at time t, the new bias is

β1
act,i “ Npβact,i, ηb,act,ipt ´ tprevqq, (6)

where Npµ, σq is the normal distribution and
ηb,act,i is a settable parameter governing how
quickly the bias changes. The bias is updated
on command, though an additional setting in
torque calls allows for it to be done then as
well.

Additionally, actuators have a boolean prop-
erty of “estimate bias” to describe whether
this bias is being estimated, or is simply set
and applied to the torque.

3. Noise: while bias changes with a low frequency,
high-frequency noise is also represented. Each
actuator can be set to have actuation noise or
not. The noise, νact,i, varies over time accord-
ing to a customizable noise-evolution model
with various parameters. The default is simply

ν1
act,i “ Np0, ηact,iq, (7)

where ηact,i is a settable parameter which con-
trols the variance of the noise and N pµ, σq is
again the Normal distribution with mean µ
and variance σ2. Because the functions un-
derlying torque might be called repeatedly for
one time step (such as in numerical integra-
tion) or might be called twice in a way that
needs to be consistent (such as torque on body
and stored momentum) noise is only updated
on command, not on every call (though it can
be done as part of a torque call via optional
argument). Noise is added to the command
and bias as ui ` βact,i ` νact,i.

4. Momentum storage: Each actuator is assigned
to have momentum stored or not. It then has
a moment of inertia around its axis, jact,i and
a maximum momentum that can be stored.
There is also a set of functions similar to the
torque generation in this list, but correspond-
ing to the torque applied to the momentum
storage, τs,i with the accompanying Jacobians
and Hessians. Finally, it has a noise term that
works like the sensor noise terms when it comes
to sensing the current momentum stored (note
that sensing bias is NOT implemented for this,
but torque bias and noise are applied to this
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as well as the body torque).

Specifically, body torque and torque on momen-
tum storage are calculated for each actuator, with
the ith actuator assumed to be the correct class, as:

• Magnetorquer on axis α̂act,i:

τi “
`

AT pq̄qBECI

˘

ˆ α̂act,i pui ` βact,i ` νact,iq

(8)

τs,i “ 0 (9)

• Thrusters on axis α̂act,i:

τi “ α̂act,i pui ` βact,i ` νact,iq (10)

τs,i “ 0 (11)

• RWs on axis α̂act,i:

τi “ α̂act,i pui ` βact,i ` νact,iq (12)

τs,i “ ´ pui ` βact,i ` νact,iq (13)

This approach can also be extended to other ac-
tuators, such as control moment gyroscopes.

2.2.4 Sensors

The sensor class represents all types of sensor,
with specific types being represented as sub-classes.
Currently, in the tool as developed, there are mag-
netometers (MTMs), gyroscopes (gyros), GPS (not
used in this discussion which focuses on attitude),
sun sensors, and sun sensor pairs.

Each sensor has properties and methods to rep-
resent important aspects:

1. Reading: each sensor takes a reading of some
property in the body frame, si. The reading
call includes bias and noise, as described in this
list, but separate methods can find the value
without noise or without either bias or noise.
It can also return the Jacobians of the reading
generated relative to the “base state” (angular
velocity and orientation, plus any stored an-
gular momentum) and the sensor’s bias, which
are necessary for an EKF.

2. Bias: each sensor can be set to have a bias or
not. The bias, βsens,i, is added to the basic
reading value as si “ zi ` βsens,i. The bias
can be set directly, or evolve over time. When
evolving over time, it is modeled as a discrete
random walk approximating a Wiener process.
Specifically, a bias rate is used, represented as
ηb,sens,i. Each time the bias evolves, the time it

was updated is saved as tprev. When updated
again at time t, the new bias is

β1
sens,i “ N pβsens,i, ηb,sens,ipt ´ tprevqq , (14)

where Npµ, σq is the normal distribution. The
bias is updated on reading.

Additionally, sensors have a boolean property
of “‘estimate bias” to describe whether this
bias is being estimated, or is simply set and
applied to the reading.

3. Noise: while bias changes with a low frequency,
there is also high-frequency noise represented.
Each sensor can be set to have noise or not.
The noise, νsens,i, varies over time according
to a customizable noise-evolution model with
various parameters. The default is simply

ν1
sens,i “ Np0, ηsens,iq, (15)

where ηsens,i is a settable parameter. The way
that the noise function updates itself is cus-
tomizable to allow for slowly changing param-
eters. Noise is generated and added on every
call of a noisy reading (not on clean readings,
or readings with only bias, and this is impor-
tant for the UKF). By default, noise is added
to the reading and bias as si “ zi ` βsens,i `

νsens,i, but this is customizable.

Readings are calculated for each sensor, desig-
nated with index i, as:

• MTMs with axis α̂sens,i

si “
`

α̂T
sens,iA

T pq̄qBECI

˘

`βsens,i ` νsens,i (16)

• Gyros with axis α̂sens,i

si “
`

α̂T
sens,iω

˘

` βsens,i ` νsens,i (17)

• Sun sensor with efficiency ζi and axis α̂sens,i:

si “ ζi max
´

0,

ˆ

α̂T
sens,iA

T pq̄q
SECI

∥SECI∥

˙

¯

`βsens,i`νsens,i

(18)

• Sun sensor pair with efficiency ζi,˘1 and anti-
parallel axes ˘α̂sens,i:

si “ ζi,m

´

α̂T
sens,iA

T pq̄q
SECI

∥SECI∥

¯

` βsens,i ` νsens,i,

(19)

where m “ sgn
`

α̂T
sens,iA

T pq̄qŝ
˘
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This approach can also be extended to star track-
ers or cameras and Earth horizon sensors.

2.2.5 Disturbances

The disturbance class represents all types of
disturbances, with specific types being represented
as sub-classes. Currently, there is gravity gradi-
ent, drag, solar radiation pressure, residual dipole,
propulsion torque, and a general disturbance torque.
Gravity gradient, drag, and SRP are always modeled
analytically. The other three have a specific param-
eter (moment for dipole, torque for propulsion or
general disturbance) that can be set to a constant or
estimated (it can also be allowed to vary over time
in simulation). Each disturbance has properties and
methods to represent import aspects:

1. Torque generation: each disturbance has a for-
mula, based on those in Fitzgerald,14 that re-
turn the torque in the body frame. It can also
return the Jacobians of torque generated rel-
ative to the orientation. Torques that have a
varying parameter, pdist,i, also have a way to
calculate the Jacobian relative to that param-
eter, which is necessary for the EKF. It can
also find the Hessian with respect to orienta-
tion and the parameter.

2. Time evolution: For the disturbances that
vary over time (propulsion, generalized, and
inherent dipole), if they are set to be time-
varying, they can evolve when an update com-
mand is called. When evolving over time, they
are modeled as a discrete random walk approx-
imating a Wiener process. Specifically, a rate
is used, represented as ηdist,i. Each time the
parameter evolves, the time it was updated is
saved as tprev. When updated again at time t,
the new parameter value is

p1
dist,i “ N3

`

pdist,i, I3ˆ3

`

ηdist,ipt ´ tprevq
˘2

˘

,

(20)

where Nxpµ, σ2q is the x-variate normal distri-
bution. Some disturbances also have the mag-
nitude of their main parameter capped at a
maximum value, as a random walk can veer
off towards infinity but there is a limit to the
torque a propulsion system can create or the
strength of a satellite’s inherent dipole. If so,
the new value is simply divided by the norm,
then times this maximum value.

3. Active/not: disturbances have an “active” pa-
rameter, which allows them to be turned on

and off throughout a run or mission. When off
(active=False), the torque and relevant Jaco-
bians/Hessians return 0.

The disturbances can also be used in control al-
gorithms, by calculating the disturbance torque and
accounting for it in the control law. This is espe-
cially helpful for something like the general distur-
bance torque, which can eliminate the need for an
integral term in some control algorithms.

2.3 Kalman Control Noise

In this work, control noise is separated from pro-
cess noise in the Extended and Unscented Kalman
Filters. The implementation of control noise in the
UKF simply adds sigma points corresponding to the
variance in control. The EKF, however, requires the
control noise to be added with the state dynamics
Jacobians. Consider:

9x “ f px,u ` νcontrol, tq . (21)

where x is the state, u is the control, νcontrol is the
control noise, and f represents the time evolution
of the state. The t component captures things that
vary with orbit, like atmospheric density and the
magnetic field.

Discretizing Equation 21 between time steps:

xk`1 “ xk `

ż tk`1

tk

f pxptq,uptq ` νcontrolptq, tq dt

“ g pxk; tk, tk`1; uk ` ν̃kq ` νint,k

(22)

where u is treated as constant throughout the inte-
gration step, ν̃ is a noise value that corresponds to
the time-integration of the random process νcontrol
over the given time interval, g is the selected method
of numerical integration, and νint,k is the error from
numerical integration. For clarity, we will write
g pxk; tk, tk`1; uk ` ν̃k, q “ gk pxk; uk ` ν̃k, q.

We thus model the predictive step in an EKF as:

x̂k`1|k “ E rgk pxk; uk ` ν̃kq ` νint,ks “ gk
`

x̂k|k; uk

˘

,

(23)

assuming the control noise and integration noise are
zero-mean. The covariance of this is

Pk`1|k “ E
“

xk`1x
T
k`1

‰

´ E rxk`1sE rxk`1s
T

“ E
“

xk`1x
T
k`1

‰

´ x̂k`1|kx̂
T
k`1|k

(24)
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Applying Equation 22 gives

Pk`1|k “ E rpgk pxk; uk ` ν̃kqqpgk pxk; uk ` ν̃kqqT s

` cov pνint,kq ´ x̂k`1|kx̂
T
k`1|k,

(25)

assuming the integration error is independent of the
state and control error. We approximate the system
as

Pk`1|k “ E
”

pgk pxk; ukq ` Bkν̃kqpgk pxk; ukq ` Bkν̃kqT
ı

` cov pνint,kq ´ x̂k`1|kx̂
T
k`1|k,

(26)

where Bk is the Jacobian of gk pxk; ukq with respect
to uk. Our system can then be rewritten, treating
the control error as zero-mean:

Pk`1|k “ E
”

gk pxk; ukq gk pxk; ukq
T

ı

` Bkcov pν̃kqBT
k

` cov pνint,kq ´ x̂k`1|kx̂
T
k`1|k,

(27)

We use Uk “ cov pν̃kq and Qk “ cov pνint,kq. Lin-
earizing around x̂k|k, we have

Pk`1|k “ E
“

gk
`

x̂k|k ` δxk; uk

˘

gk
`

x̂k|k ` δxk; uk

˘T
‰

` BkUkB
T
k ` Qk ´ x̂k`1|kx̂

T
k`1|k,

(28)

Approximating with Gk as the derivative of
gk pxk; ukq with respect to xk:

Pk`1|k “ E
“

gk
`

x̂k|k; uk

˘

gk
`

x̂k|k; uk

˘T
‰

` Gkcov pδxkqGT
k

` BkUkB
T
k ` Qk ´ x̂k`1|kx̂

T
k`1|k,

(29)

Because δxk “ xk ´ x̂k|k, we have cov pδxkq “

Pk|k. As we have accounted (with vary-
ing assumptions) for all sources of error,

we have E
”

gk
`

x̂k|k; uk

˘

gk
`

x̂k|k; uk

˘T
ı

“

gk
`

x̂k|k; uk

˘

gk
`

x̂k|k; uk

˘T
“ x̂k`1|kx̂

T
k`1|k exactly,

so we find:

Pk`1|k “ GkPk|kG
T
k ` BkUkB

T
k ` Qk, (30)

which is similar to the conventional EKF expression,
with only an added control noise term.

2.3.1 Overall equation components from
states

It is worth noting that Equations 23-30 include
control error, error in state estimation, integra-
tion error, and disturbing torques. If the model
is used and the disturbing torques are erroneous
(or a general disturbance is not included in the
state but is present in reality), then Equation 22
would need to include a noise torque term. As-
suming this is randomly distributed between times,
independent of other errors, and zero-mean, that
torque noise can be treated similarly to the νint,k
term. (If these assumptions are incorrect, then
it should be approximated or represented as a
generalized torque, as described in Section 2.2.5.)
The equations are the same, except with Qk “

cov pνint,kq ` HJx,ωcov
´

ştk`1

tk
τdistptqdt

¯

JT
x,ωH

T or

Qk “ cov pνint,kq ` CkTkC
T
k , where Tk is the co-

variance integral of the unestimated torque and Ck

is derivative of gk with respect to a torque term; it
is equal to the columns of Gk corresponding to a
generalized disturbance torque.

3 Results

This framework and estimator are tested in sev-
eral ways. First, in Cases A and B (Sections 3.1
and 3.2), the approach from this work is compared
against a well-regarded traditional estimator. It is
tested for a (simulated) large satellite on which the
traditional estimator is demonstrated. The differ-
ence between Cases A and B is that Case A starts
with larger errors and thus shows convergence, while
Case B has smaller initial errors and is more repre-
sentative of behavior once the estimators have con-
verged. Cases C and D (Sections 3.3 and 3.4) then
show the behavior of the dynamics-aware filter on
a nanosatellite, with worse sensors and less inertia.
Case C represents the system behavior when start-
ing with large error and converging. Case D shows
the behavior when starting with small error and con-
tinuing. Cases E and F are used to explore the im-
portance of certain aspects of the dynamics-aware
filter. Specifically, Case E shows the effects of ig-
noring the actuator bias or the disturbances, while
Case F demonstrates the importance of considering
a propulsion torque, when present, and shows how
well the estimator can converge on the torque value.
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3.1 Case A: TRMM Satellite with Initial At-
titude and Bias Errors

This system is first tested against a simple base-
line attitude filter under a variety of conditions. The
baseline is the simple Unscented QUaternion Esti-
mator (USQUE) by Crassidis and Markley.10 There
are more involved and mission-specific filters, includ-
ing versions of the unscented attitude filter that ac-
count for sensor bias and other factors, but this is
a well-behaved and generalizable filter that could
easily be the basis of an approach for a nanosatel-
lite project. The test cases in the USQUE paper10

are recreated, with the addition of all disturbances
(except propulsion) described in,14 as well as active
magnetic control with MTQs, and biases on the sen-
sors and actuators.

Specifically, a Satellite object is created to mimic
the Tropical Rainfall Measuring Mission (TRMM)
used in.10 The satellite has the properties:

• a mass of m “ 3000 kg;

• an inertia matrix of J “ 500 ˚

diag
`“

1 3 3
‰˘

kg m2;

• three-axis MTQs with an arbitrarily-chosen

initial bias of βmtq “ 5 ˚

”

1
3

?
2

1
3

?
2

4
3

?
2

ı

,

a maximum magnetic moment of 100 Am2

for each MTQ, a noise standard deviation of
ηmtq “ 0.0001 Am2 ¨s0.5, and a bias drift rate
of ηb,mtq “ 0.000001 Am2/s0.5;

• three-axis gyroscope with an initial bias of
βgyro “

“

0.1 0.1 0.1
‰

deg/hr (mimicking the
second test case in10), a noise standard devi-
ation of ηgyro “ 0.31623 µrad/s0.5, and a bias
drift rate of ηb,gyro “ 3.1623ˆ 10´4 µrad/s1.5;

• three-axis magnetometer with an initial bias
of βmtm “

“

´0.9948 ´0.0199 ´0.0995
‰

nT,
a noise standard deviation of ηmtm “ 50 nT ¨

s0.5, and a bias drift rate of ηb,mtm “ 1 nT/s0.5;

• three pairs of coarse sun sensors each on
axis, with efficiency of 0.3 and assuming
no degradation, an initial bias of βsun “
“

0.015 0.027 ´0.009
‰

(there are no units on
this), a noise standard deviation of ηsun “

0.0003 s0.5, a bias drift rate of ηb,sun “

0.000003 s´0.5; and

• a residual dipole with initial value
“

0.5 0.001 2
‰

Am2, capped maximum value
of 2 Am2, and a drift rate of ηdipole “ 0.0001
Am2/s0.5.

The satellite is simulated in an approximately circu-
lar orbit (initial position of 7200 km along the ECI
x-axis and an initial velocity of 7.4 km/s perpen-
dicular to this), inclined at 35˝. The effects of J2
on the orbit are considered. The simulation is run
with a time step based on the update period for the
control, sensing, and estimation (either 1 or 10 sec-
onds). The “real” dynamics are integrated using an
RK45 variable time-step solver between time steps.
Sensor and actuator biases, as well as disturbances,
are updated as described in, respectively, Sections
2.2.4, 2.2.3, and 2.2.5, with random distributions.
The simulation runs for either 12 (∆t = 1 s) or 24
hours (∆t = 10 s). To simulate conditions with ac-
tive control, a simple magnetic PD algorithm based
on Lovera15 is applied (with a proportional gain of
10 and a velocity gain of 1000). Specifically, for the
first 30 minutes, no control is applied. From then
until the 2-hour mark, the basic b-dot algorithm16

is applied using numeric differentiation between sen-
sor readings and a gain of 1010. For the remain-
der of the time, the Lovera PD algorithm is applied,
with a quaternion goal of

“

1 0 0 0
‰

until the 6-
hour mark (3 hours in case of 12-hour run), then
“

0 0 1 0
‰

until 12 hours (6 hours in case of 12-

hour run),
“

0 1 0 0
‰

until 18 (9 hours in case of

12-hour run), and
“

1 0 0 0
‰

again until the end
at 24 hours or 12 hours, creating a rather demanding
control schedule.

In addition to the already-given initial biases, the
relevant real state components are an initial angular
velocity of ωp0q “

“

0, 1
15 , 0

‰

deg/s (this is roughly 1
y-axis rotation per orbit), and an initial quaternion
of

“

0.63 ´0.33 ´0.63 0.33
‰

(which is the orien-
tation such that the body z-axis is pointing nadir
and body x-axis is pointing ram).

An estimated Satellite object is also created. It
has identical mass properties to the “real” satellite,
but does not have modeled actuator bias or biases
on magnetometers and sun sensors. The standard
deviation of the noise on the sensors is identical to
the “real” satellite. Initial estimated gyro bias is
set as

“

0 20.1 0
‰

deg/hr (mimicking the second
test case in10), and the correct gyro bias drift rate
is used. The other components of the estimated
state are an initial angular velocity (though this is
not used, due to the nature of USQUE filter) of
ω̂p0q “

“

0 0 0
‰

deg/s, and an initial quaternion

of
“

´0.16 ´0.85 0.31 0.39
‰

(this is similar to the
second case in,10 as it is rotations of ´50, 50, and
160 degrees around the x, y, and z-axes (calculated
as a Modified Rodrigues Parameter) from the correct
orientation.

The covariance on the initial estimate has no
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cross-terms. As in,10 Patt “ p50˝q2 and Pgyro bias “

p20˝/hrq2. The integration covariance is calculated
as in.10 For comparison with expected values on
the magnetometer and sun sensor, the position of
the satellite is assumed to be known exactly. The
magnetic field is calculated with the 13th genera-
tion IGRF (up to degree N “ 13) and the sun po-
sition information with the python package skyfield.
Disturbances are modeled with exact information.
However, there may be discrepancies between the
disturbance experienced by the “real” satellite and
the virtual satellite based on error in the orientation
estimation. For example, if the estimated orienta-
tion is such that major principal axis of the satellite
is pointing nadir, it will estimate zero gravity gradi-
ent torque, while the “real” satellite may experience
a torque corresponding to its actual orientation.

The USQUE was compared against an instanti-
ation of the filter described throughout this work,
in an identical simulation. The estimated Satellite
object for this filter has identical mass properties to
the real satellite, and models actuator and sensor
biases (and a dipole, when relevant). The standard
deviation of the noise on sensors is identical to the
real satellite. Initial state estimates are the same
as in the USQUE case, with assumed zeros for the
biases. The correct bias (and dipole) drift rates are
used.

The covariance on the initial estimate has
no cross-terms. The initial covariance estimates
are Pω “ Pgyro bias “ p20˝/hrq2, Patt “

p50˝q2, Pmtq bias “ p5Am2
q2, Pmtm bias “ p1nTq2,

Psun bias “ p0.03q2, and Pdipole “ p1Am2
q2. The in-

tegration covariance for actuators, sensors, and bi-
ases with randomness are identical to drift rates used
in the random calculation times the time step ∆t.
The integration covariance on attitude is 10´12p∆tq2

rad2 and on the angular velocity it is 10´17p∆tq
rad2/s2. These values were selected based on ex-
perimentation. For the unscented filter parameters,
a value of α “ 1, β “ 2, and κ “ 3 ´ pL ` 3q (with
the additional 3 to account for control noise and L
is the state length).

Figure 2: Angular estimation error in Case
A (Section 3.1), showing quicker convergence
and higher accuracy with the Dynamics-
Aware Filter.

Figure 2 shows the overall angular error of the
different methods (the dynamics-aware filter in this
work vs. USQUE, and ∆t of 10 s and 1 s) on
this test. The USQUE approach stays between 1
and 10 degrees of error. The dynamics-aware fil-
ter, on the other hand, continues to improve, until
it eventually reaches approximately 0.01 degrees of
error. This pattern is true in both the 1 s and 10 s
cases, though the 1 s case converges faster. Figure 3
shows breakdown of this angular error by axis into
a Modified Rodrigues Parameter (MRP). The plot
is bounded at ˘1˝ of error to show the behavior of
the dynamics-ware filter. The dynamics-aware filter
converges quickly and evens out to near-zero error,
while the USQUE oscillates dramatically, including
well past 1 degree and thus past the bounds of the
plot. As can be seen in Figure 4, the dynamics-aware
filter is also more accurate on angular velocity. Fig-
ure 4 shows the magnitude of angular velocity error.
The USQUE has around 0.001 ˝/s of error, while the
dynamics-aware filter continues to converge further
to around 0.00001 ˝/s of error. This is true in both
the 1 s and 10 s timestep cases, though again the 1 s
case converges faster. Overall, the dynamics-aware
filter outperforms the standard USQUE filter, as it
accounts for the control and disturbances governing
the system’s movement.
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Figure 3: Case A (Section 3.1) orientation er-
ror, expressed as Modified Rodrigues Param-
eter (MRP), showing faster convergence and
higher accuracy for the Dynamics-Aware Fil-
ter. Notably, the error in the USQUE cases
exceeds 1 degree and thus goes past the edge
of the plot.

Figure 4: Case A (Section 3.1) angular ve-
locity error, showing faster convergence and
higher accuracy for the Dynamics-Aware Fil-
ter.

3.2 Case B: TRMM Satellite with Only
Small Initial Bias Errors

The tests from Case A, in Section 3.1, were also
repeated with a “close” start. This is to match
the third example in10 and to show what happens
over time, after the filters have converged. The
satellite, orbit, and most parameters are the same.
The difference is how accurate the estimator’s ini-
tial estimates are. In this case, the initial estimated
angular velocity and attitude are exactly correct,

the initial estimate of gyro biases is all zeros, and
Patt “ p0.5˝q. For the dynamics-aware filter from
this work, Pω “ p0.5˝/minq2.

Figure 5: Angular estimation error in Case B
(Section 3.2), showing higher accuracy with
the Dynamics-Aware Filter. With the “close”
initial estimate, both filters converge very
quickly.

The overall angular error of this “close” case is
shown in Figure 5. The USQUE approach has single-
digit degrees of error, while the dynamics filter again
reaches 0.01 degrees of error, supporting the results
from Case A in Figure 2, and showing that both
approaches are stable once converged. With the
close initial estimate, the filter converges much more
quickly. Figure 6 shows the per-axis breakdown of
this angular error, represented as a Modified Ro-
drigues Parameter (MRP). The axes are each capped
at ˘0.1˝ to show the beahvior of the dynamics-aware
filter, which remains close to zero, with very small
error. The USQUE results exhibit a much greater
error, passing the bounds of the plot. Figure 7 shows
the magnitude of the angular velocity error. Again,
both the 10 s and 1 s results are similar for both
USQUE and the dynamics-aware filter. The USQUE
has around 0.001 ˝/s of error while the dynamics-
aware filter has about 0.00001 ˝/s of error. Overall,
the dynamics-aware filter outperforms the standard
USQUE filter, as it accounts for the control and dis-
turbances governing the system’s movement.
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Figure 6: Case B (Section 3.2) orientation er-
ror, expressed as Modified Rodrigues Param-
eter (MRP), showing higher accuracy for the
Dynamics-Aware Filter. Notably, the error
in the USQUE cases exceeds 0.1 degree and
thus goes past the edge of the plot.

Figure 7: Case B (Section 3.2) angular ve-
locity error, showing higher accuracy for the
Dynamics-Aware Filter.

3.3 Case C: CubeSat with Initial Bias and
Attitude Errors

The dynamics-aware filter is perhaps most use-
ful for nanosatellites where the sensors may be sig-
nificantly worse than those in Sections 3.1 and 3.2.
With such sensors, tracking the angular velocity and
disturbances alongside the gyroscope bias increases
the information available to the filter by incorpo-
rating knowledge of the dynamics and disturbances.
Thus, other tests were run benchmarking this filter
in a cubesat test case.

Specifically, a Satellite object was created with:

• a mass of m “ 4 kg;

• an inertia matrix of

J “

»

–

0.0314 5.9 ˆ 10´5 ´0.0067
5.9 ˆ 10´5 0.0341 ´0.0001

´0.0067 ´0.0001 0.01005

fi

fl

kgm2;

• three-axis MTQs with arbitrarily-chosen error
parameters: an initial bias of βmtq “ 0.05 ˚
”

1
3

?
2

1
3

?
2

4
3

?
2

ı

, a maximum magnetic mo-

ment of 1 Am2 for each MTQ, a noise standard
deviation of ηmtq “ 0.0001 Am2 ¨s0.5, and a
bias drift rate of ηb,mtq “ 0.000001 Am2/s0.5;

• three-axis gyroscope with an initial bias of

βgyro “ 0.1 ˚

”

1?
11

´1?
11

3?
11

ı

deg/s, a noise

standard deviation of ηgyro “ 0.0004 deg/s0.5,
and a bias drift rate of ηb,gyro “ 0.03 deg/s1.5,
similar to MEMS gyros17;18

• three-axis magnetometer with an initial bias
of βmtm “

“

´9.948 ´0.199 ´0.995
‰

nT, a
noise standard deviation of ηmtm “ 300 nT
¨ s0.5,18 and a bias drift rate of ηb,mtm “ 1
nT/s0.5;

• three pairs of coarse solar sensors each
axis, with efficiency of 0.3 and assumed
no degradation, an initial bias of βsun “
“

0.015 0.027 ´0.009
‰

(there are no units on
this), a noise standard deviation of ηsun “

0.0003 s0.5, and a bias drift rate of ηb,sun “

0.000003 s´0.5.

The satellite is simulated in an approximately circu-
lar orbit (initial position of 7000 km along the ECI
x-axis and an initial velocity of 8 km/s perpendicu-
lar to this), inclined at 45˝. The effects of J2 on the
orbit are considered. The simulation is run with a
time step based on the update period for the con-
trol, sensing, and filter of 1 second. The “real” dy-
namics are integrated using an RK45 variable time-
step solver between time steps. Sensor and actua-
tor biases, as well as disturbances, are updated as
described in Sections 2.2.4, 2.2.3, and 2.2.4, respec-
tively, with random distributions. The simulation
runs for 3 hours. To simulate real-world conditions
with control, a simple magnetic PD algorithm based
on Lovera15 is applied (with a proportional gain of
10 and a velocity gain of 1000). Specifically, for the
first 5 minutes, no control is applied. From then un-
til the 15-minute mark, the basic b-dot algorithm is
applied using numeric differentiation between sen-
sor readings and a gain of 106. For the remainder
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of the time, the Lovera PD algorithm is applied,
with a quaternion goal of

“

1 0 0 0
‰

until 25% of

the way through, then
“

0 0 1 0
‰

until halfway,
“

0 1 0 0
‰

until 75% , and
“

1 0 0 0
‰

again
until the end.

In addition to the already-given initial
biases, the relevant real state components
are an initial angular velocity of ωp0q “
“

´0.00698 0.00563 ´0.01497
‰

deg/s, and an ini-

tial quaternion of
“

0.897 ´0.391 0.164 ´0.128
‰

.

This satellite is simulated and its orientation esti-
mated by the dynamics-aware filter. The estimated
Satellite object has identical mass properties to the
“real” satellite, and models actuator and sensor bi-
ases (and propulsion, when relevant). The standard
deviation of the noise on sensors is identical to the
“real” satellite. The initial estimate for all biases
and propulsion is 0. The correct bias (and propul-
sion) drift rates are used. The initial angular veloc-
ity is estimated to be 0 and the initial quaternion is
estimated to be

“

1 0 0 0
‰

.

The covariance on the initial estimate has no
cross-terms. The initial covariance estimates are
Pω “ Pgyro bias “ p1˝/sq2, Patt “ 10 rad2,
Pgyro bias “ p0.2˝/sq2, Pmtq bias “ p0.1Am2

q2,
Pmtm bias “ p100nTq2, and Psun bias “ p0.03q2.The
integration covariance for actuators, sensors, and bi-
ases with randomness are identical to drift rates used
in the random calculation times the time step ∆t
(which is 1 second). The integration covariance on
attitude is 10´12p∆tq2 rad2 and on the angular ve-
locity it is 10´17p∆tq rad2/s2. These values are se-
lected based on experimentation. For the unscented
filter parameters, a value of α “ 1, β “ 2, and
κ “ 3 ´ pL ` 3q are used, with the additional 3 to
account for control noise added to the state length
L.

For comparison with expected values on the mag-
netometer and sun sensor, the position of the satel-
lite is assumed to be known exactly. The magnetic
field is calculated using the 13th generation IGRF
model (up to order N “ 13) and the sun position
information with the python module skyfield. Dis-
turbances are modeled with exact information, but
their value may vary based on discrepancies between
the “real” and estimated orientations.

Figure 8: Case C (Section 3.3) showing the
estimator orientation estimate converging to
within 1 degree (usually close to 0.1 degree)
on a CubeSat with simple sensors.

Under these conditions, the dynamics-aware fil-
ter described in this work performs admirably, de-
spite the poor information from sensors. As shown
in Figure 8, it achieves roughly 0.1 degree estima-
tion accuracy (and always within 1 degree), despite
the disturbances, constant motion, and poor sensor
quality. It also shows that the filter converges in
less than an hour, roughly 3000 seconds. The break-
down of this angular error per-axis (using Modified
Rodrigues parameters) can be seen in Figure 9. This
more clearly shows that the angular estimation error
around each axis is close to 0.1 degrees, and always
beneath 0.5 degrees. Finally, the norm of the error
in estimated angular velocity is shown in Figure 10.
The estimate of angular velocity is off by roughly
0.001 degrees/second, usually less. It again shows a
convergence time of less than an hour. This would
be a promising performance for a CubeSat without
a star tracker and using simple sensors, with an es-
timation accuracy of a fraction of a degree.
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Figure 9: Case C (Section 3.3) showing
the estimator’s orientation error by-axis as a
Modified Rodrigues parameter, running on a
CubeSat with simple sensors. On each axis,
it converges to within 0.5 degrees.

Figure 10: Case C (Section 3.3) showing the
norm of the estimator’s angular velocity er-
ror, running on a CubeSat with simple sen-
sors. It remains within 0.001 degrees/sec.

3.4 Case D: CubeSat with Only Small Initial
Bias Errors

The test from Case C, Section 3.3, was repeated
with a “close” start, to demonstrate performance
over time, after the filter has already converged. In
this simulation, the initial estimated angular veloc-
ity and attitude are exactly correct, Patt “ p0.5˝q,
and Pω “ p0.5˝/minq2.

Figure 11: Case D (Section 3.4) shows
the estimator orientation estimate staying to
roughly 0.1 degrees on a CubeSat with simple
sensors.

This “close” case mirrors the original perfor-
mance from Section 3.3, indicating that such perfor-
mance would continue over time, after the system
has already converged. Figure 11 shows an angular
estimation accuracy of approximately 0.1 degrees,
similar to Figure 8. The breakdown of this angular
error per axis (as Modified Rodrigues parameters) is
provided in Figure 12. It can be seen that the an-
gular error on each axis remains under 0.1 degrees.
The norm of the angular velocity error, shown in Fig-
ure 13, remains under 0.001 degrees/second. These
results support those in Section 3.3 as a promising
estimation accuracy for a CubeSat without a star
tracker and using simple sensors.

Figure 12: Case D (Section 3.4) showing
the estimator’s orientation error by axis as
a Modified Rodrigues parameter, running on
a CubeSat with simple sensors. On each axis,
it stays mostly within 0.1 degrees.
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Figure 13: Case D (Section 3.4) showing the
norm of the estimator’s angular velocity er-
ror, running on a CubeSat with simple sen-
sors. It remains within 0.001 degrees/sec.

3.5 Case E: Effect of Ignoring Actuator Bias
or Disturbances

The dynamics-aware estimator in Case C is
tracking quaternion orientation and angular veloc-
ity, and utilizing the dynamics, but it is also model-
ing actuator bias and disturbances. To test whether
these are important, the same tests as in Case C are
run (with the same setup), but excluding actuator
bias or disturbances from the estimator (but not the
“real” satellite).

Figure 14 compares the angular estimation be-
tween an exact replica of Case C against an identical
satellite but an estimator that does not consider ac-
tuator bias. When the actuator bias is considered,
the estimations stay at approximately 0.1 degrees
of accuracy. However, when ignored, the system di-
verges wildly and remains approximately 180 degrees
off from the correct orientation.

Figure 14: Case E (Section 3.6) comparing
the full dynamics filter’s performance when
actuator bias (starting value of βMTQ “ 0.05 ˚
”
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, drift rate of ηb,mtq “ 0.000001

Am2/s0.5) is ignored by the estimator or con-
sidered. Including the actuator bias has an
accuracy of around 0.1 degrees, while exclud-
ing it results in being 180 degrees off.

Figure 15 compares the angular estimation be-
tween an exact replica of Case C against an identi-
cal satellite but an estimator that does not consider
the system disturbances. When the disturbances are
considered, the estimations stay at approximately
0.1 degrees of accuracy. However, when ignored, the
system only has an accuracy of around 1 degree.

Figure 15: Case E (Section 3.6) comparing
the full dynamics filter’s performance when
disturbances are ignored by the estimator or
considered. Including the disturbances gen-
erates an accuracy of around 0.1 degrees,
while excluding them results in an estimation
error of around 1 degree.
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3.6 Case F: CubeSat with Propulsion

To understand how the system deals with dis-
turbances and to test the initial use case, a repeat
of Case C (Section 3.3) was run, with the addition
of a disturbing propulsion torque with initial value
”
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´8?
74

1?
74

ı

µNm, capped maximum value of

10 µNm, and a drift rate of ηdipole “ 0.01 µNm/s0.5.

Figure 16: Case F (Section 3.6) comparing
the full dynamics filter’s performance when a
propulsion disturbance is ignored by the es-
timator or considered. Including the propul-
sion generates an accuracy of around 0.1 de-
grees, while excluding them results in an es-
timation error of around 180 degrees.

The importance of including this torque in the
estimator can be seen in Figure 16. Similar to the
results in Figure 14, estimating while ignoring the
disturbance torque results in a failure to converge
and an angular error of around 180 degrees. How-
ever, when it is accounted for and being estimated
by the system, the estimate converges to about 0.1
degree. It does this by estimating the value of the
propulsion torque and tracking it over time, includ-
ing it in the dynamics that it uses to estimate the
evolution of the system state. The system’s estimate
of the propulsion torque compared to its “real” value
can be seen in Figure 17. The estimate of the dis-
turbing torque (dotted lines) converges quickly to
the actual value (solid lines) and tracks it over time.
It is not exact, but rather close, allowing for the ef-
fect of this torque to be included in the estimator’s
understanding of system dynamics.

Figure 17: Case F (Section 3.6) compar-
ing the full dynamics filter’s estimated of
a propulsion disturbance against the “real”
value. The system estimate quickly converges
and generally tracks the torque to roughly
5ˆ10´7 Nm, an order of magnitude less than
the disturbance magnitude.

4 Summary and Future Work

These results show the potential value of fully
including system dynamics in state estimation and,
through this framework, allowing for complicated
and detailed dynamics-aware estimation for a wide
range of satellites with many different properties and
disturbances. Specifically, dynamics-aware filtering
outperforms USQUE by up to orders of magnitude
in terms of angular and angular velocity errors when
applied to a system with high-quality sensors (e.g.,
TRMM in Cases A and B, Sections 3.1 and 3.2). It
also performs rather well, with less than a degree
of angular error, when applied to a simulated cube-
sat with poor sensor quality, and this is true when
there is bias error or bias and attitude error. The
most significant result, however, may be that both
of these outcomes were achieved by simply providing
basic information about the sensors, actuators, and
satellite mass properties (along with the time step),
to the filter. Despite the differences in sensor accu-
racy, satellite properties, disturbance strength, and
orbit, good performance was achieved in both cases
with identical code. The ability to use this filter by
simply describing the satellite’s properties has great
potential among small satellites. These promising
results indicate the potential use of dynamics-based
filters, especially for smallsats, where mass proper-
ties can be more accurately determined. However,
there is much work remaining on this problem.
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There are many sensors and a few actuators that
are not yet implemented. This includes star cam-
eras and trackers, control moment gyroscopes, Earth
horizon sensors, and more. Extending to cover these
would increase the number of use cases of this sys-
tem, allowing it to model more varieties of space-
craft and be applicable to more missions. Given the
class-based structure of this framework, such modi-
fications should feasible.

The use of dynamics-aware modeling and larger
states makes this approach more computationally
complex than other approaches. The trade-off be-
tween accuracy and calculation resources should be
further investigated. There are many sub-topics in
the computational resources space, including ques-
tions of time step, and how to make this estimation
approach (and the specific framework in this work)
more efficient or precise for a specific case. As the
dynamics-aware filter framework used in this work
was implemented in Python, it can likely be made
much faster using C++ or other compiled languages.

The extended Kalman Filter can have difficul-
ties when there are “corners” in the system relat-
ing to the state. One example would be when the
faces affected by drag and SRP change through rota-
tion. One approach to deal with these sharp changes
would be to approximate the torques using spherical
harmonics, based on the orientation of the ram (for
drag) and sunward (for SRP) vectors in the body
frame.

There is the question of what happens if the dis-
turbance models (or the inertia matrix and other
properties) are incorrect. If the estimator has
enough “slack,” small modeling errors or inaccura-
cies should be handled well. However, wild mis-
estimates, or those that interact with other aspects
of the dynamics, may have a greater effect. Further
research to understand when these cases occur and
what their impact is would be well-warranted. Sim-
ilar questions exist for mis-estimating variances and
noise on sensors, actuators, disturbances, and other
parameters. This includes more complex or specific
questions such as how solar panel degradation can be
modeled as bias and the effect of a spacecraft’s own
dipole (inherent, or from magnetorquers, and poten-
tially electric activity) on magnetometer bias. All of
this also ties into classic estimation questions regard-
ing choosing parameters, covariances, and noise, and
how to tune these values for a given application, as
well as more modern questions regarding choosing
correct error and evolution models, and cases of de-
pendency.

There are many questions relating to varying pa-
rameters in this approach, as well. For example,

how well can it track multiple time-varying distur-
bance torques? There is the possibility of including a
generalized disturbance torque (estimated and time-
varying, as described in Section 2.2.5) instead of each
torque individually; this could reduce computational
complexity and rely less on specific knowledge of the
system.

There is room to extend this work in new di-
rections, as well. An expectation-maximization ap-
proach is worth considering, switching estimating
the state based on dynamics, and estimating system
properties–like mass, inertia matrix properties, and
off-axis actuator components, as well as properties
currently covered in this system, like residual dipole
or biases. A particle filter-based approach would
also be interesting to see, as it may better capture
the nonlinearities in this system.

Lastly, this has only been tested in one simu-
lation software. Further tests in other simulations
(potentially including hardware-in-loop) could show
this system’s benefits and weaknesses. Testing it on
an actual satellite, on-orbit, would be the most com-
pelling validation of its performance.
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