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ABSTRACT 

The rapid development and launch of low-cost satellites have led to constellations of hundreds of satellites, the 

proliferated Low Earth Orbit (p-LEO) constellation, and has changed the dynamic of space-based earth observation. 

The availability of massive numbers of satellites creates the opportunity to tackle larger scale problems, such as larger 

scale monitoring of wildlife, illegal fishing, and climate events. These opportunities must be met with increasing 

automation, preferably using an approach that executes and adapts on-orbit.  

Optimizing distributed resources remains an astronomically challenging problem, even more so when computations 

are performed on the comparatively compute restricted hardware of satellites. We propose a data-efficient two-part 

system, modeled after the Actor-Critic architecture, that models the dynamics of p-LEO constellations and other data 

streams and generates optimized tasking. First, using the Koopman operator theory approach, we model an aggregate 

representation of a heterogenous (multi-modal sensing) satellite constellation to predict satellite availability, 

observation capabilities, and resource utilization. An aggregate representation of the constellation enables scalability 

to model hundreds to thousands of satellites, as well as being agnostic to particular identities (satellites may enter and 

leave the constellation). Second, we use the Hierarchical Bayesian Program Learning (HBPL) paradigm to formulate 

and learn a task decomposition and generation ‘program’. Tasks are constructed and defined probabilistically while 

guided by expert informed structure and bounds, enabling efficient search and optimization of the task space. During 

execution, the HBPL component proposes sets of tasks (serving as the ‘actor’) which are scored by the Koopman 

model. The two methods described above are notable due to their low data requirements and speed of model training 

or updating, making them a stellar pairing for on-orbit applications.  

This data-driven learning approach to task generation was explored to solve the task decomposition problem for the 

BAE Systems Collective Space Tasking and Assimilation Reasoning System (CoSTARS) under the DARPA 

Oversight program. The full architecture includes a distributed auction mechanism for task assignment, a data 

assimilation component, and updates on entities or objectives. The task decomposition approach is evaluated under 

this system architecture for the case of monitoring a set number of entities of interest.  

PROBLEM STATEMENT 

Decreasing launch costs have led to rapid growth in 

space-based earth sensing satellites.  These new 

proliferated Low Earth Orbit (p-LEO) constellations are 

rapidly expanding in scale and sensitivity while also 

diversifying to include broader, multi-modal sensing 

capabilities. Payload orchestration, control, analytics, 

and data dissemination on short, relevant timescales is 

stressing and potentially a large cost driver for the 

constellation owners. Traditional ground control systems 

are stressed as those large data volumes are pushed down 

across limited ground and intra-satellite links, include 

large ground server farm requirements, and inefficient 

satellite re-planning timescales. The increased 

heterogeneity of the space systems also creates 

significant optimization challenges for the ground 

control systems. Increased space-based automation 

offers a more scalable solution, leveraging onboard data 

assimilation and intra-satellite coordination to address 

these challenges and support rapid re-planning time 

scales. 
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These new p-LEO constellations largely focus on 

geospatial intelligence capabilities. Customers include 

business intelligence, investment funds, insurance 

agencies, and non-government organizations focused on 

a wide range of use cases. Maintaining custody of illegal 

fishing vessels, wildlife poachers, and other entities is a 

particularly interesting focus of many space-based earth-

sensing systems. Detecting, monitoring, and identifying 

Illegal fishing and wildlife poaching stress p-LEO 

constellations as it requires rapid and adaptable 

constellation orchestration and data assimilation.  

As part of DARPA’s Oversight program, BAE Systems 

is creating the Collective Space Tasking and 

Assimilation Reasoning System (CoSTARS).  

CoSTARS leverages collective functions, originally 

designed for swarm autonomy, and modified for a 

proliferated LEO (p-LEO) environment to distribute 

tasking, sensing, signal processing, data assimilation, 

bandwidth optimization, and near real time analytics to 

maintain custody on illegal activities across regions of 

interest.  CoSTARS creates a virtual cloud above a 

region of interest (e.g. protected fisheries, national park, 

…) pushing data and tasking to satellites as they flow 

through the sensing regions above. CoSTARS distributes 

the data and sensing by leveraging a collective auction 

function to create ownership of custody and function 

needs across constellations.  This ownership changes as 

a function of upcoming sensing opportunities, bandwidth 

limits, computation resources, and power constraints.  

Lastly, CoSTARS contains Koopman AI models to learn 

and adapt for creation of tasking and behaviors matched 

to historical performance. 

In this paper we focus on the problem of optimizing 

distributed resources within the comparatively compute 

restricted hardware of satellites. We propose a data-

efficient two-part system, modeled after the Actor-Critic 

architecture, that models the dynamics of p-LEO 

constellations and other data streams and generates 

optimized tasking. First, using the Koopman operator 

theory approach, we model an aggregate representation 

of a heterogenous (multi-modal sensing) satellite 

constellation to predict satellite availability, observation 

capabilities, and resource utilization. Second, we use the 

Hierarchical Bayesian Program Learning (HBPL) 

paradigm to formulate and learn a task decomposition 

and generation ‘program’. During execution, the HBPL 

component proposes sets of tasks (serving as the ‘actor’) 

which are scored by the Koopman model.  

BACKGROUND AND CONTEXT 

Illegal fishing activities are estimated to cost $36.4 

billion to the world economy every year according to an 

estimate of the world wildlife organization. Illegal 

fishing is difficult to detect and enforce due to the 

vastness of the maritime domain and limited protection 

resources.  Space-based geospatial intelligence systems 

however offer the ability to monitor the maritime domain 

and enable fishery protection and enforcement of 

international rules.  Space systems can monitor ships in 

a variety of modes including Electro-Optical (EO) 

imagery, Synthetic Aperture radar (SAR) imagery, and 

radio frequency (RF) emissions such as Automatic 

Identification System (AIS) transponders.  Commercial 

companies addressing these sensing modalities include 

Spire, Capella Space, Umbra, IceEye, Planet, Maxar, and 

many others.  

A common decision-making framework is the Observe, 

Orient, Decide, & Act (OODA) framework (Figure 1).  

Traditional timelines to have a satellite observe an 

activity, download the data to the ground station, analyze 

(orient) and identify the activity, decide how to respond, 

and then act (e.g. deploy to interdict an illegal fishing 

trawler) are days.  That timeline is too slow and resource 

heavy for success at the necessary scale.  This problem 

is even worse today with far more observation (satellite 

collects) across many different sensor types requiring 

data assimilation across the modalities and sending 

updates to the interdicting vessel.  These capabilities all 

need to be pushed to autonomous and distributed systems 

to respond to the necessary scale of the problem.  

Emerging and Evolving Low Earth Orbit Capabilities 

The combination of reduced launch costs, advances in 

microelectronics and materials, and development of 

small satellites has led to a rise in interest for new 

applications of massive low earth orbit constellations1,  

such as SpaceX’s Starlink constellation serving 

connectivity to users through over 4000 satellites2. 

Communications, space Internet-of-Things, and Earth 

observation missions make up 96% of the proposed 

constellations2. There is a growing market for global 

space-based connectivity, as well as improved and more 

continuous monitoring of the Earth. This trend will place 

tens of thousands of satellites in orbit; however, this 

presents a new major challenge for efficient planning and 

coordination of all those resources.    

Figure 1 Observe, Orient, Decide, and Act 
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Manual, Centralized Ground Operations to Distributed 

On-Orbit Autonomy 

The remoteness of space, the reliability of 

communication, and the many hazards to human life 

have always made space operations a compelling target 

for remote and automated operation. In 1967, the Soviet 

Union performed the first automated docking in space. 

The first automated planning for space was the Spike 

scheduling system, in 1990, that used pointing, power, 

thermal, comms constraints to plan observations for the 

Hubble Space Telescope3. The Hubble planner was a 

ground-based system that calculated and uplinked its 

plans. In 2000, the Earth Observing-1 (EO-1) spacecraft 

was launched with onboard capabilities to perform 

mission planning and scientific analysis4.  

The rise in number of satellites as well as the increase in 

communications capabilities naturally opens the 

opportunities but also the challenges for constellation 

wide operations. Practical distributed satellite uses are 

well established through the GPS constellations for 

positioning, and communications constellations, such as 

IRIDIUM, for global telecom. However, the biggest new 

opportunity is for distributed earth observation, and the 

increased performance brought through multiple 

simultaneous observations across geographic locations, 

as well as increased revisit times5. Autonomy and AI can 

bring more optimal management of resources, reduced 

inactivity periods, responsive, flexibility and 

adaptability to distributed satellite systems5. However, 

pushing more of the Earth observation tasks towards on-

board operations with a heterogeneous distributed 

constellation of satellites remains a challenge.  

COSTARS ARCHITECTURE 

Collective Space Tasking and Assimilation Reasoning 

System (CoSTARS) enables key technical and 

architectural innovations to meet Oversight program 

needs. CoSTARS utilizes collective objectives that are 

flexible and enable support to a wide range of space 

system implementations and capabilities. We focus on 

rapid adaptability and learning by CoSTARS to new 

spacecraft, sensors, sensor types, and contexts.  

Functional View 

The dynamical system complexity of both p-LEO space 

constellations and the custody mission highlight the 

importance of robust and adaptive system modeling and 

architectural design.  

Figure 2 diagrams the activity and data flow through the 

custody maintenance process. CoSTARS automatically 

creates multi-option tasking based on entity quality, 

features, and expected behaviors. A distributed auction 

brokering system collectively works across CoSTARS 

and other space systems to dynamically assign and 

allocate based on the system’s ability, availability, and 

cost to meet the necessary tasking. Once tasks are 

allocated, they are scheduled by the CoSTARS resource 

management system. Sensor data is then assimilated and 

assessed by our data assimilation and entity 

classification applications creating a fused picture. 

Custody needs are continuously re-assessed locally to 

examine needs for new tasking and resource allocations. 

Additionally, system and target behaviors are learned to 

automatically create optimal behaviors over the 

heterogeneous space systems. The spacecraft constraints 

on power, processing, and data management are 

fundamental to our design goals and implemented as part 

of the resource brokering.

 

Figure 2 CoSTARS is designed to be adaptable to deployment needs and available resources, including on-orbit 

execution or a combination of ground and on-orbit deployment of different function services. 
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Collective Functions  

As p-LEO constellation grow to 100s of satellites it is 

natural to examine scalable optimization and 

organization functions.  Research in swarm theory has 

shown significant value in controlling heterogenous, 

distributed systems6,7. This work, based on observations 

of bees, ants, and other colony animals often enables 

complex and near-optimal behaviors based on locally 

evaluated collective functions.  These individual 

behaviors are organized by locally determined collective 

functions that work across the swarm to produce the 

intended behaviors. 

While the physics of space preclude significant active 

control to create persistent, high-density clustering, the 

concept of collective functions expands easily to p-LEO 

space coordination.   Over any geographic region the 

individuals within the collective region are changing 

rapidly on timescales of a 1 - 10 minutes. We use the 

concept of collective to organize actions and activities 

over the local region.  These activities are based on 

individual regional needs, e.g. monitoring for illegal 

fishing in a specific exclusion zone.  Our analysis has 

shown that collective functions creating local 

assignments based on distance from area of interest, 

satellite resource constraints, and bandwidth linkages 

assigns resources in an efficient manner.  These 

resources include functions such as auction broker, data 

assimilation engine, and other components in the 

overhead region. These results will be discussed further 

in a poster session at Small Satellite 20248.   

Custody Maintenance  

The CoSTARS system functionally implements an 

OODA loop to implement each operator objective.  In 

this case, we focus on regional monitoring of illegal 

fishing. We define custody maintenance as the objective 

for this regional monitoring. We refer to custody in the 

sense that our system has sufficient capability to localize 

and identify an entity at any point in time. Where 

sufficient capability considers both our knowledge about 

the entity’s behavior and the available sensing 

capabilities across different modalities to observe, 

localize, and identify the entity in question. Therefore, 

custody maintenance is the process by which we assess 

our current level of custody and act to maintain that 

custody in the future.  

Leveraging collective function assignment and auction 

algorithms satellite sensor tasks are created and assigned.  

Collected data is routed to the appropriate data 

assimilation engine and filtered movement data and ID 

features are created.  This filtered data is associated back 

to the mission need and a common intelligence picture is 

created.  The intelligence picture is evaluated and again 

the system decides on whether to create new sensor 

tasking or alert for a governmental interdiction.  

Learning is applied both at task creation and the common 

intelligence picture application to improve overall 

system performance. 

DATA-DRIVEN TASK DECOMPOSITION 

ARCHITECTURE 

The task decomposition component of the overall 

CoSTARS architecture is a data-driven model to 

generate tasks that efficient satisfy the objective of 

maintaining custody over the entities of interest. More 

plainly, the task decomposition approach falls under the 

banner of machine learning methods that are trained 

based on data that are from or representative of the true 

system and environment of interest.  

The problem setup of creating tasks, that when executed, 

influence the state of the ‘information environment’ and 

result in a delayed reward of entity custody updates maps 

well to a reinforcement learning (RL) interpretation.  

Actor-Critic Motivation 

Within the reinforcement learning approach there are 

three major paradigms, model-based, policy-based, and 

value-based learning9. Model-based RL seeks to learn a 

model or representation of the underlying environment 

or system and use that model to support the policy. In our 

setting, the underlying environment and systems to be 

modeled include the constellation state dynamics, which 

will use the Koopman modeling, serving as the critic, 

described later. Policy-based RL updates the policy 

directly, and for our problem is related to the program 

that generates tasks. Value-based RL focuses on 

estimating the value function, or the cumulative reward 

observed after taking the optimal action. Maintenance of 

custody provides the overall signal of value in our 

problem, and as an intermediate measure, the Task 

Likelihood described later provides a measure of value 

for a given entity and constellation state with the 

generated action, i.e., the state-action pair. One could 

consider pure value-based or policy-based learning 

approaches to solve this, there are several considerations 

that lead towards taking a two-model actor-critic 

approach. 

A recent paper by Sutton and Barto reviews the history 

and motivations behind the Actor-Critic Architecture 

and point to one powerful concept in actor-critic like 

algorithms, that they offer a good way to introduce prior 

knowledge into the learning process10. The architecture 

and other inductive biases of learning methods have been 

an instrumental tool in separating out expert 

understanding of a problem to what needs to be learned, 

a separation of concerns. Our problem has a natural 
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separation of concerns in the following two ways. The 

action of generating a task is more dominantly concerned 

about aspects of the entity that determine when to 

observe, what type of sensor to select, and how to look 

(e.g. what angle to point). The critic performing the 

evaluation of the task, can model the more complex 

dynamics and features inherent in both the satellite 

constellation and environmental factors (e.g., weather) 

The action of generating a task is a mix of discrete and 

continuous action spaces, already leading towards 

policy-based methods to support continuous spaces. The 

natural distributed nature of satellite constellations may 

benefit from or even require the use of the actor-critic 

architecture which is extensible to distributed and multi-

agent formulations. Furthermore, as will be discussed in 

the next two sections, this separability of the actor and 

critic roles allows for different algorithmic approaches to 

be taken in each, particularly with respect to data 

efficiency. This departure, in the actor-critic 

architecture, from the standard neural network-based 

implementation is why we refer to is as more “actor-

critic inspired.” 

Inputs and Outputs of each model 

The Task Decomposition (actor) and Task-Assessment 

(critic) components operate in a query and response loop, 

as seen in the diagram of Figure 3. When the full Task 

Decomposition architecture receives an entity to 

monitor, the information about the entity is input to and 

processed by the Hierarchical Bayesian Program 

Learning (HBPL) component. The entity should include 

information about the type of entity (animal, ship, etc..), 

including any defining features such as length, color, 

etc.., the current estimated position, or other known state 

information. The entity monitoring request may be 

accompanied by additional objectives such as position 

accuracy desired. The HBPL component then may 

generate one or more Proposed Tasks to submit to the 

Task-Assessment component. The HBPL Task 

Decomposition component can propose a diversity of 

tasks to maintain supervision of the entity, such as 

different rates to revisit, or use of different sensing 

modalities.  

The Koopman-based Task-Assessment component 

receives and processes the Proposed Tasks to return a 

Task Likelihood score for each submitted task. Based on 

the type of entity and parameters selected in the task 

(time to observe, sensor type, ...) the Task-Assessment 

component will select a combination of geometric and 

data-driven models to look forward in time and estimate 

the likelihood of task success. The calculation of Task 

likelihood is covered later, but considers predictions on 

constellation workload, power levels, and observability 

factors. The component then response to the Task 

Decomposition component’s query with the 

corresponding task likelihoods.  

 

Figure 3 The Task Decomposition module consists of two components, one to create proposed tasks, and 

another to score the tasks in a Query-Response process.  

Overall Algorithm 

The overall algorithm, as in Figure 4, is a straightforward 

loop over all the entities received. For each entity, the 

Task Decomposer will generate a set of proposed tasks. 

This could include one or more tasks and would be part 

of the configuration of the Task Decomposer. The model 

behind the Task Decomposer is probabilistic, therefore 

we can sample from the underlying task generation 

distribution. We could just as well take the maximum 
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value over the task distribution, which in probabilistic 

decision-making terms would be a pure exploitation 

move. However, we would like to generate a diversity of 

tasks for a few reasons. Firstly, exploring the task space 

will improve learning for both the HPBP task 

decomposition models and the Koopman system of 

system constellation models. Secondly, we don’t expect 

the HBPL model to capture all relevant factors in its task 

generating models. The Koopman task-assessment 

component captures and provides additional 

understanding, and the task which is mostly likely in the 

HBPL task distribution space may miss some insight that 

the Koopman model has captured.  

After the task-assessment component has returned the 

task likelihood scores, the algorithm selects one or more 

of the tasks. The implementation of the select 

function can be as simple as taking the task with the max 

likelihood score from the assessment model. In more 

sophisticated approaches, it could select multiple tasks 

based on a weighting between the assessment score and 

factors in the HBPL model. The select function could 

also take some form of risk into consideration, such as 

the rates of false positives and negatives in the 

underlying models.  

Finally, the set of selected tasks for this entity are 

submitted to the constellation for assignment and 

scheduling. The loop continues until all entities have 

tasks generated and submitted to satellites for 

assignment.

 

 

Figure 4 The overall Task Decomposition component algorithm is a Query and Response process for each entity 

in the entity list. 

CONSTELLATION MODELLING WITH 

KOOPMAN OPERATOR 

Operating an effective custody maintenance capability 

requires matching the observation needs of each entity 

with the available satellite resources. The increasing 

numbers of satellites and the push towards on-board 

decisions making challenges this distributed resource 

matching problem. The challenge motivates the 

approach to use data-driven modeling of constellation 

load dynamics. We make the following observations. 

First, due to the distributed and asynchronous nature of 

the auction allocation process, it is not possible to predict 

which individual satellite will be assigned a particular 

task. However, given a set of historical data, we can 

model the aggregate behavior and loading on the 

constellation under various conditions. Second, we can 

generate tasking that is more likely to be successful 

assigned and executed by the aggregate constellation, 

and we are agnostic to the identity of which satellite 

executes the task.  

Furthermore, we can model various individual and 

aggregate quantities including sensor usage, battery 

state, compute load, and thermal state. We can model 

these quantities using a combination of geometric 

information and measured data. Geometric or analytical 

models might include the Satellite-Earth geometry based 

on line-of-sight, and solar exposure calculations to 

inform battery charging rates. More data-driven models 

may include weather data, battery performance data, and 

historical payload utilization rates can be used to model 

likelihoods of task success.   

Finally, even when we don’t have control over an 

observation system, but do have access to the data 

produced, we can model the type and rates of receiving 

information about types of entities or specific geographic 

regions. An example would be information about cargo 

and fishing vessels reported through the AIS system11. 

For the case of wildlife management, the Argos System 

company provides several sensors and solutions that 

could feed data on specific entities or could be used to 
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infer information about a population of entities12. We can 

include expected external information to determine the 

need for generating a task, given the nature of the entity 

or region. 

Koopman Operator 

Koopman operator theory stems from dynamical 

systems theory as an alternative viewpoint to the 

classical, geometric, state space view13,14. Consider a 

(nonlinear) dynamical system 𝑥(𝑛 + 1) = 𝑆(𝑥(𝑛)), 

where 𝑥 lives in a state space 𝑋 and 𝑆: 𝑋 → 𝑋. The 

classical viewpoint would be to try to find special 

solutions such as fixed points and periodic order or limit 

cycles and determine their stability, i.e., the behavior of 

the nearby trajectories in state space. 

Koopman operator theory takes a different approach. 

Instead of following trajectories in state space, one looks 

at the evolution of observables (functions) 𝑔:𝑋 → 𝐶 that 

are defined on the state space15,16. Let 𝐹 be a vector space 

of vector-valued functions, which we assume is closed 

under composition with 𝑆, i.e., 𝑔 ∘ 𝑆. The Koopman 

operator 𝐾: 𝐹 → 𝐹 is defined by this composition 

operation 𝐾𝑔(𝑥) = 𝑔 ∘ 𝑆(𝑥). 

Koopman Operator theory can capture the dominant 

nonlinear behavior of the underlying dynamical system 

and, in certain cases, perform better than traditional state 

space and linearization techniques. The price one must 

pay in exchange is the operator is now infinite-

dimensional since it acts on an infinite dimensional 

function space. Figure 5 shows a schematic of this lifting 

process. 

 

Figure 5 Koopman lifting schematic. A nonlinear 

ODE  �̇� = 𝒇(𝒙) has a flow map 𝑭𝒕(𝒙). Instead of 

looking at state space trajectories, a vector-valued 

observable 𝒈:𝑿 → 𝑪𝒏 is defined on the state space. 

The flow map induces a the Koopman semigroup of 

operators 𝑼𝒕 which defines the evolution of the 

observable. This family of operators are linear albeit 

infinite-dimensional.  

Since the Koopman operator is linear, it often has a 

spectral decomposition, allowing an observable to be 

decomposed into a linear combination of triplets --- 

eigenvalues, eigenfunctions, and Koopman modes, 

which are the projection coefficients for the vector-

valued observable onto the eigenspace16. Additionally, 

there may exist a continuous part of the spectrum due to 

the operator being infinite dimensional. Even though the 

operator is infinite, we can get good approximations of 

the eigenvalues and modes using data-driven methods 

based on fast numerical linear algebra algorithms. This 

requires the judicious choice of observables to get good 

approximations.  

Constellation Data and Modelling Process 

We make use of an approximation of the Koopman 

Operator that derives a finite matrix to evolve the state 

of the system forward in time. The procedure to produce 

the finite Koopman matrix is typically some form of the 

Dynamic Mode Decomposition (DMD). In addition, the 

delay embeddings technique is used to transform the data 

to capture different types of behaviors observed in the 

constellation data.  

While any of the constellation data recorded over 

time can be used in the constellation dynamics 

modeling, we will illustrate the technique using the 

state trajectories of the set of satellites in the 

constellation. As in 

 

Figure 6, we take a data set of satellite trajectories 

recorded over a sufficient amount of time to capture 

the important dynamics. Each satellite coordinate 

history is transformed using the delay embeddings 
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approach to produce a Hankel matrix with d delays. 

The Hankel matrix is a square matrix in which each 

ascending skew-diagonal from left to right is a 

constant, and often appears in system identification 

approaches. Delay-coordinate approaches are often 

used in time-series prediction, going back to even the 

original Koopman paper13,16. Then, each satellite’s 

delayed coordinates are concatenated together. This 

process of delaying and concatenating is visualized in 

the flow diagram in 

 

Figure 6.  

 

 

Figure 6 Starting with satellite trajectory data, the coordinate histories for each satellite are transformed 

according to the delay embedding approach for d delays. The delayed satellite coordinates are then 

concatenated together, and this serves as the base data for performing the DMD to produce the Koopman 

matrix. 

Training of the Koopman matrix 𝐾 is performed by 

DMD using the concatenated matrix described above. 
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Specifically, if (𝑥𝑖
𝑘)

𝑖=1

𝑚𝑘+1
 is a time series of satellite 

motion for each satellite 𝑘 = 1,… , 𝑛, then let 𝑋 be the 

matrix with columns 

[𝑥1
1, … , 𝑥𝑚1

1 , … , 𝑥1
𝑛, … , 𝑥𝑚𝑛

𝑛 ].  (1) 

And let 𝑌 be the matrix with columns 

[𝑥2
1, … , 𝑥𝑚1+1

1 , … , 𝑥2
𝑛, … , 𝑥𝑚𝑛+1

𝑛 ]. (2) 

Then, DMD is performed with 𝑋 and 𝑌 to solve 𝐾𝑋 ≈ 𝑌 

for the Koopman matrix 𝐾. The Koopman evolution 

matrix, 𝐾, captures the constellation dynamics (and other 

dynamics included in data) and allows for the prediction 

of any arbitrary satellite, therefore allowing the modeling 

and prediction of satellites coming in or dropping out of 

the constellation.  

Lifting the satellite data to the aggregate density model 

The previous section described modeling process to 

learn a matrix that evolves a satellite’s state over time to 

predict availability and capability status for a satellite. 

Since the dynamics have been learned as a linear 

operator, we can generate these predictions quickly for a 

large number of satellites. A useful dual of this state-

based prediction is to leverage the true insight of the 

Koopman operator and generate models based on so-

called “observables” or transformations of the 

underlying state.  

Working in the observable space can have a few 

advantages. Often an observed or measured description 

of a system is simpler or more useful to work with, this 

is especially true when working with large quantities of 

units. For instance, we could understand the thermal state 

of a system (e.g., the temperature) based on calculations 

of all the interactions of the atoms in a certain region, 

which would be a very intensive calculation. Or we could 

model the temperature of a system based with a few 

parameters that are based on observations or 

measurements of the system. Likewise, as the number of 

satellites increases, we may think less about which 

satellite has what capability at what time, and more about 

the dynamics of capability and availability in the 

aggregate sense.  

We commonly refer to this process of transforming the 

data as ‘lifting’ and operating over Koopman models in 

the ‘lifted space’. A useful lifting technique is to 

transform the data points into a ‘density’. In this 

formulation, the concentration of a data type is captured 

as a region with higher density. For the case of satellite 

position, the ‘availability density’ describes the number 

of satellites within that sub-region over some interval of 

time, as visualized in Figure 7. These densities evolve 

over time when the Koopman matrix is applied to the 

density state of the constellation.  

 

Figure 7 Visual representation of the constellation 

satellite density 

EARTH OBSERVATION TASK 

DECOMPOSITION WITH HBPL 

Maintaining custody of a revolving and growing entity 

list using an evolving set of heterogeneous resources 

requires a flexible task decomposition system. Hard-

coded templates for task decomposition and hand-

crafted models of satellite resources become stale and 

time consuming to maintain at scale especially given the 

evolving nature of p-LEO space systems. Our auto-

generated tasks are distributed to our distributed 

planning and scheduling services which coordinate and 

agree on task assignment and resource utilization across 

heterogeneous assets. Agreement must be reached under 

dynamically evolving entity behaviors and requests on 

custody status. CoSTARS provides Task Decomposition 

to model and flexibly generate tasks. 

Taking the reinforcement learning viewpoint of task 

decomposition, there is a limited action space for 

creating a task. For a given entity, the actions or decision 

points in the observation task include when to look (time 

of task, revisit rate), where to look (lat/long position), 

and how to look (sensor type, angle to the horizon, 

frequency band). While these actions could be explored 

randomly and independently, there are some 

dependencies between actions that can guide the 

decision-making process of creating a task.  

Consider the example of monitoring wildlife which has 

been tagged with a transmitter. First, it may be necessary 

to consider the location and characteristics of the animal 
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to determine when to look. If the animal is slow, has 

predictable behaviors and lives in an open environment 

like a grassy plain, it is not necessary to observe that 

often. Second, depending both on the location and 

characteristics of the animal and how soon you need to 

observe, different sensors may apply. A daytime 

observation can be performed with an electro-optical 

sensor, but nighttime observations would have to 

leverage the rf transmission or an available infrared 

sensor. Additional context like weather and terrain can 

factor into the prior decisions as well.  

Following from the actions space dependency argument 

above, we make use of Hierarchical Bayesian Program 

Learning (HBPL) to model and generate tasks based on 

historical data and an expert informed template structure 

to guide decision points in the task.  

Hierarchical Bayesian Program Learning (HBPL) 

HBPL provides a framework for learning probabilistic 

programs that represent high-level concepts (types) and 

allows them to be constructed as a combination of an 

extensible set of parts (primitives) and their combined 

relationships in a hierarchical manner. These learned 

concepts or types serve as a template for the program to 

generate new instances based on a given input. As an 

example, HBPL has been demonstrated in modeling 

handwritten characters17,18, where alphabet characters 

serve as types that are modeled. Each character is 

modeled using a set of pen-strokes (primitives) that are 

probabilistically combined as sub-units which form a 

program describing how a character is drawn. Programs 

then serve as generative models for creating new 

exemplars of hand-drawn characters. 

In our basic task decomposition model, the primitives 

consist of the type of sensor, the location to point, and a 

time to perform the observation task. An example of the 

HBPL process for Earth observation tasking is shown in 

Figure 8. Following the though process from the wildlife 

example, the entity and current location helps determine 

the time to observe, which in turn can guide the choice 

of sensor type to use. This composition of sub-units 

(primitives) yields the task template 𝜓. This provides the 

general structure for a task generation program based on 

that template, 𝑃(𝜓). Then under a specific input Φ, 

which could include target location and characteristics, 

an exemplar task or instance of the task template is 

created from program 𝑃(Τ|𝜓,Φ). Variation in resulting 

exemplar tasks is captured through the Bayesian 

probabilistic framework of HBPL. This is the aspect of 

HBPL that allows for multiple tasks to be generated for 

a given input, to be further evaluated by the Koopman 

Task-Assessment component.  

 

Figure 8 HBPL template construction and instance generation procedure based on a set or primitives, 

relationships, and input tokens. 
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Bayesian Modeling for Task Timing 

Each primitive in the HBPL program has one or more 

probability distributions that model the desired quantity 

(time to task, sensor type, …). An important part of the 

Bayesian modeling process is understanding the data 

generating process and determining and appropriate 

distribution to represent the primitive. Figure 9 

illustrates one representation of program that selects the 

‘time to task’ and the sensor type. Each part of the model 

may be conditioned on some initial input such as the 

entity type and some measure of custody confidence. 

Model components may also be conditioned on values 

generated from an intermediate step, such as the use of 

the time to task value in the sensor type selection model.  

 

Figure 9 The inputs or initial conditions to the 

model might include the type of the entity and an 

initial confidence level of the custody. This directs 

the HBPL model to draw a prediction from the 

Time to Task distribution updated under those 

conditions.  

Here, we focus on the modeling question of when to do 

the task. We are concerned with the efficient utilization 

of resources and suggest that there is a “just right” time 

to observe the entity when it’s not too late to observe, but 

also not unnecessarily early. To illustrate the concept, 

consider the simple scenario, in Figure 10, in which an 

entity’s position is known at T=0 with some level of 

confidence (red ellipse). The entity travels along at a 

constant velocity but may make some slight turns that 

cause the area that contains the predicted location to 

grow over time (expanding position covariance). We 

assume that if we capture the entity anywhere in our field 

of view (transparent blue square), then we are sure to 

detect it and maintain custody. A high frequency of 

observations will maintain custody, but since we are 

concerned with the efficient utilization of resources, we 

prefer to wait longer and therefore the value of that 

observation increases monotonically over time, until the 

point in which the entity could be outside the field of 

view and value sharply drops.  

 

Figure 10 Consider that the value of an observation 

increases in time until the potential location of that 

entity leaves the extent of the field of View. 

A baseline model can be obtained with the following 

data generating approach. We consider a constant 

velocity model which undergoes a random direction 

change at discrete intervals of time. Specifically, we 

describe the two-dimensional motion of an entity as: 

[
𝑥𝑖+1
𝑦𝑖+1

] = [
𝑥𝑖
𝑦𝑖
] + 𝑉 [

cos 𝜃
sin 𝜃

] (3) 

Where the entity makes a random turn or change in its 

velocity vector according to angle 𝜃 which is a random 

variable distributed according to 𝜃~2𝜋𝑈(0,1), where 

𝑈(0,1) is a uniform random value between 0 and 1. 

The location prediction model assumes that the entity 

maintains the same constant velocity vector, or 

equivalently uses a fixed angle 𝜃𝑝 to determine future 

position. For simplicity, the field of view has a circular 

ground footprint with a radius of 10 miles. The center of 

the field of view is pointed at the predicted location of 

the entity. Custody is maintained if the true location of 

the entity is anywhere within the circular field of view.   

TASK LIKELIHOOD CALCULATION 

As described in the earlier constellation modeling 

section, the Koopman-based Task-Assessment 

component receives and processes the Proposed Tasks to 

return a Task Likelihood score for each submitted task. 

This task likelihood score is intended to be a flexible 

measure on how valuable a specific task configuration is 

predicted to be. The current task likelihood score 

evaluates the feasibility of a task configuration. As the 

CoSTARS system develops and different types of data 

are available to process and model, the type of measure 

this score describes can expand. The earliest use for this 

task scoring is to evaluate the likelihood that this task 
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will be successfully assigned through the distributed task 

allocation and resource management. Some 

considerations for this stage of the modeling includes 

prediction on resource availability to meet task 

requirements, including if a sensor is available or if the 

power levels are sufficient for the task. As modeling 

develops and data availability increases, this calculation 

can capture more measures such as, likelihood of 

successful detection given a successful scheduling, and 

likelihood this task contributes to custody given 

successful assignment and detection.  

We approach the problem of formulating the task 

likelihood by considering the combination of two classes 

of models, analytic/geometric and data-driven. The 

analytic or geometric parts of the modeling can include 

basic line of sight calculations, analytical models of 

battery draw and solar charging (with respect to the 

Earth-Sun-satellite geometry). The data-driven modeling 

pieces include those harder to formulate aspects like the 

resulting task load across satellites after the distributed 

allocation, weather modeling, or more complex battery 

or thermal dynamics models.  

In this work, we focus on the task likelihood concept of 

successful assignment of a task to a satellite, or a task 

feasibility likelihood. The key concept in this calculation 

is that of a ‘blocking rate’ in which we characterize the 

available time slots for a task on any given satellite to be 

blocked or available and can be thought of as the 

outcome of a weighted coin flip.  

Consider a task 𝑇 with a pointing location loc(𝑇), and a 

resource requirement req(𝑇). Let 𝐼 be the number of 

timesteps within the provided window and let 𝑀 be the 

number of satellites of the correct sensor type for 𝑇. Let 

feasible(𝑖,𝑚) be the event in which the mth satellite can 

accomplish task 𝑇 at timestep 𝑖. For 𝑛 ∈ ℕ, let [𝑛] =
{1, … , 𝑛}. 

We consider that satellites are independent, then 

𝑃(feasible(𝑖,𝑚)  for some  𝑖 ∈ [𝐼],  𝑚 ∈ [𝑀])  

= 1 − ∏ (1 − 𝑃(feasible(𝑖,𝑚)  for some   𝑖

𝑚∈[𝑀]

∈ [𝐼])). 

(4) 

Fix a satellite 𝑚 ∈ [𝑀], and for a subset 𝐽 ⊆ [𝐼], let 

open
𝐽
 be the event in which exactly the timesteps of 𝐽 

are open (not blocked) for satellite 𝑚. Then, by the law 

of total probability, this allows us to separate out the 

expected availability (open slots) of satellites, and the 

capability (feasibility) present, as  

𝑃(feasible(𝑖,𝑚)  for some   𝑖 ∈ [𝐼]) 

= ∑ 𝑃

𝐽⊆[𝐼]

(open
𝐽
) 𝑃(feasible(𝑖,𝑚)  for some   𝑖

∈ [𝐼] |open
𝐽
) 

(5) 

We model the availability or blocking rate of a satellite 

by independent Bernoulli trials across timesteps. Let 𝑟 ∈

[0,1] be the blocking rate, so 𝑃 (open
𝐽
) = 𝑟𝐼−|𝐽|(1 −

𝑟)|𝐽|. To determine 𝑃 (feasible(𝑖,𝑚)  for some   𝑖 ∈

[𝐼] |open
𝐽
), observe that  

𝑃 (feasible(𝑖,𝑚)  for some   𝑖 ∈ [𝐼] |open
𝐽
)

≥ max
𝑖∈𝐽

𝑃(feasible(𝑖,𝑚) | 𝑚 open at 𝑖). 

(6) 

Since once the obstacle of blocking is removed, the 

feasibility likelihood over all timesteps is at least the 

likelihood at any individual timestep. We make a 

conservative assumption that the above inequality is an 

equality to state that 

𝑃 (feasible(𝑖,𝑚)  for some   𝑖 ∈ [𝐼] |open
𝐽
)

= max
𝑖∈𝐽

𝑃(feasible(𝑖,𝑚) | 𝑚 open at 𝑖). 

(7) 

While conservative, for the purposes of using the task 

likelihood score for decision making, this assumption 

says that if the task is likely to fit in at least one time slot, 

that is sufficient.  

Next, we describe a particular implementation of 

𝑃(feasible(𝑖,𝑚) | 𝑚 open at 𝑖). Let 𝑟𝑖,𝑚 be the resource 

available for satellite 𝑚 at timestep 𝑖. Let 

LOS(loc(𝑇),  𝑖,  𝑚) be the event in which satellite 𝑚 in 

in line of sight of loc(𝑇) at timestep 𝑖. We make the 

assumption that for a given satellite and timestep, the 

resource availability and satellite position are 

independent. Then we can state a particular feasibility 

formulation, 

𝑃(feasible(𝑖,𝑚) | 𝑚 open at 𝑖)

= 𝑃 (𝑟𝑖,𝑚 ≥ req(𝑇)) 𝑃(LOS(loc(𝑇),  𝑖,  𝑚)). 

(8) 

Both parts of the expression on the right side can be 

replaced or modeled using data-driven methods, 

particularly when we consider complex resource 

dynamics and additional factors online of sight including 

weather, occlusions, or other forms of interference.  
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INITIAL FINDINGS 

This paper has proposed a new learning-based actor-

critic architecture to solve the problem of creating tasks 

for a distributed satellite system to maintain custody over 

many targets. We have developed each piece, HBPL task 

decomposition and Koopman constellation modeling 

and task assessment, in parallel and the coordination of 

both components in the overall actor-critic architecture 

and algorithm is under active development. We present 

the initial findings for this new approach. 

Koopman Constellation Modeling 

An initial focus of the constellation state modeling was 

capturing the propagation of the satellite position in both 

the state formulation and the lifted density formulation, 

as seen in the constellation modeling section. This 

modeling served as the foundation for layering in other 

types of state data, including the availability of 

resources. The task likelihood development has focused 

on the availability of a satellite to perform a task based 

on an estimated blocking rate. We can also include the 

blocking rate as an estimated value derived from 

historical missions and satellite activity. Figure 11 

includes two graphs illustrating the blocking rates based 

on simulated data in which satellites were tasked to 

observe a set of 20 entities. These evaluations of the 

blocking rate are based on a task window of 10 minutes, 

in which at the current time, t_now, we consider different 

future tasking times as a “look ahead.” Each color in the 

graph corresponds to a different satellite, and the graphs 

compare the blocking rate for a look ahead of 6 and 30 

minutes.  

 

Figure 11 When evaluating a task to be done in the 

future, given the current time t_now, a specific 

satellite, a desired task window size, we can predict 

the blocking rate for a look ahead time into the 

future. 

HBPL Task Decomposition Bayesian Modeling 

We simulate 100,000 trajectories of the entity movement 

pattern described above. For each trajectory we choose a 

random time to look and predict the future location based 

on our constant velocity model, and check if the entity is 

within the field of view. Figure 12 shows the outcome of 

all the tasks that were successful, e.g., where custody 

was maintained. The position of each colored circle 

represents the true location of the entity when we choose 

to look, and the color is the time of observation. The 

density (and color) of the circles indicates that observing 

earlier and therefore closer to the known starting position 

has a higher frequency of maintaining custody.  
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Figure 12 Density of circles indicate how frequent 

custody was maintained. Color of circles indicates 

how far into the future was the last successful time 

you could look. 

The circle color and position distribution follow from the 

intuition that observing earlier is more likely to maintain 

custody. However, given that we are interested in the 

success rate of observing later, we are interested in the 

distribution of successful observations if taken later in 

time. Additionally, we recognize that successful 

maintenance of custody is influenced by the starting 

custody state. Figure 13 captures a few trends in the 

modeling of the optimal ‘last time to look’. The data in 

the histogram represent all the successful instances of 

maintaining custody using a task assigned to observe 

zero to 600 minutes into the future. Each instances has a 

random initial custody error between 0.0 and 1.0, in 

which 0 represents no or very low uncertainty of custody, 

and 1 represents complete uncertainty about entity 

custody. Focusing on the first histogram bucket near the 

value 0.0 on the x axis, we can see a high count for a last 

time to look between 0 and 100. As the last time of 

successful tasks increases, we see that a doubling of time 

to the 100 to 200 bucket decreases success rates by about 

20%, a tripling reduces success rate by about 60%, and 

so on. If we look across the x-axis and focus on a single 

‘last time’ range, we see that the influence of initial 

custody is negligible until about 0.5 custody status. 

 

Figure 13 A initial custody error of 0 indicates high 

confidence, whereas custody error of 1 is complete 

loss of custody. The data generating experiments 

reveal the frequency at which custody is maintained 

for later observation times. 

Task Likelihood 

We evaluate some initial task likelihood 

calculations by looking at the effect of blocking 

rates on the scoring of tasks. The setup used in 

producing Figure 14 consists of a set of 30 satellites 

in a low earth orbit with wide fields of view. The 

tasks under consideration are all in one geographic 

area, and the timing of the tasks are randomly 

sampled across 90 minutes. In the left plot in Figure 

14, we can see that under a low blocking rate, we 

predict nearly all potential tasks have a high 

likelihood score. The small set of zero likelihood 

occurs for tasks whose timing is not aligned with 

any satellites having coverage at that time. As seen 

in the right plot of Figure 14, with a higher blocking 

rate, the likelihood of our task distribution shifts 

downward.  
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Figure 14 Blocking rate shifts the task likelihood 

score downwards. 

CONCLUSIONS AND FUTURE WORK 

We presented the problem of generating and distributing 

tasks to a large heterogeneous constellation of satellites 

to support the custody maintenance of a set of entities. 

The overall CoSTARS system architecture addresses the 

full pipeline of task decomposition and allocation across 

a distributed satellite system, and the dissemination and 

consolidation and filtering of observation data to support 

custody updates. This paper focused on a flexible and 

adaptable automated task decomposition architecture 

that drew inspiration from the successful reinforcement 

learning actor-critic architecture. We presented the 

development of each sub-component for Task 

Decomposition. Hierarchical Bayesian Program 

Learning was used in the task generation, which serves 

as the actor. In parallel, we developed the Koopman-

based constellation modeling component that evaluates 

proposed tasks and gives a task likelihood score, serving 

as the critic. Each of the techniques has lower data 

volume requirements and faster training times than other 

state-of-the-art approaches such as neural networks, 

supporting data-efficient and on-orbit execution. 

We presented initial findings on each of the elements of 

the learning architecture including Koopman 

constellation and resources modeling, Bayesian task 

timing modeling, and the resulting task likelihood scores 

based on a different levels of blocking rates. Future work 

includes expanding the set of primitives and Bayesian 

modeling for the HBPL component. We plan to capture 

more constellation dynamics in Koopman models across 

different resources and interactions. We will extend the 

task likelihood calculation to include custody likelihood 

as more metrics and data are available. Finally, we will 

integrate all the components of this architecture in a 

feedback loop and evaluate within the modeling and 

simulation environment we have developed to 

characterize the overall learning dynamics.  
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