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ABSTRACT

In-orbit events and onboard malfunctions, often manifesting as telemetry faults, can compromise satellite
missions. Monitoring such faults through ground operations is time intensive and tedious, motivating the
need for advanced onboard and autonomous satellite resilience capabilities, which will increase the likelihood
of mission success. We present a novel approach for onboard autonomous satellite fault diagnosis that
leverages ensemble learning to jointly detect faults and attribute them to a probable cause. The framework
consists of an ensemble of representation learners, including an Autoencoder (AE), Kalman Filter (KF),
Gaussian Mixture Model (GMM), Long Short Term Memory network (LSTM), and the PCMCI causal
discovery algorithm, which extract informative data representations from satellite telemetry data. Then,
using a decision tree classifier called XGBoost, we detect and classify faults based on the fused representations.
The implementation is modular and can easily integrate into a larger fault response and decision-making
system.

In the development of our prototype, we recognized that the scarcity of historical faulting telemetry data
and detailed ground truth labels present major limitations to the improvement of autonomous fault diagnosis
approaches, both in terms of the ability to train machine learning algorithms and to provide quantitative
and comparative validation of methods. To address this limitation, we develop a novel statistical telemetry
simulation tool, called SatFaultSim, that generates non-faulting and faulting data for the training and
validation of fault detection and attribution algorithms. SatFaultSim can model 11 common fault cases,
such as ionizing radiation faults, system resets, thermal and current faults. Each case statistically emulates
fault scenarios observed during past satellite missions. The tool generates faults based on user input through
configuration files and is extendable to accommodate additional fault cases.

We use SatFaultSim to train and validate our ensemble learning approach to jointly demonstrate the
capability of the simulation tool and the effectiveness of our algorithmic techniques for satellite fault diag-
nosis. We simulate a 10-orbit dataset of faulting and non-faulting telemetry samples, split into training and
validation subsets. After training the machine learning models, we perform an in-depth evaluation resulting
in highly promising results, with an overall combined fault detection and attribution accuracy of 99.89%,
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detection accuracy of 99.94%, and average fault attribution accuracy of 99.97%. The false positive and neg-
ative rates are very low for each fault type, all falling under 0.013%. These metrics show that our approach
is highly capable of identifying and attributing known faults and can serve as a baseline for autonomous
fault diagnosis methods. The algorithmic framework and simulation tool are implemented in Python and
available on Github†. Moving forward, our work will facilitate further improvements to autonomous fault
resilience, such as the integration of non-parametric and un-supervised learning techniques to accommodate
unseen and rare fault types. Our approach can also enhance an autonomous decision-making framework by
informing an onboard fault response or mitigation system.

INTRODUCTION

Satellites are launched in increasing numbers
each year, offering critical services in communica-
tions, navigation, and Earth observation. While
satellite engineers have significantly reduced the
costs of these missions, developing and deploying
satellites — particularly large constellations com-
prising thousands of units1 — still requires consider-
able time and investment. Once in orbit, stakehold-
ers depend on satellites for various tasks, such as
providing internet service and collecting data for sci-
entific research or defense purposes. Unfortunately,
in-orbit events and internal malfunctions can com-
promise a satellite’s functionality, leading to anoma-
lous behaviors known as faults. These faults, often
detectable in the satellite telemetry data, signify de-
viations from normal operations and can require ad-
vanced mitigation strategies.

Unfortunately, manually monitoring telemetry
faults through ground operations is both time-
consuming and labor-intensive for mission opera-
tors. It also relies heavily on consistent and reli-
able communication between the satellite and the
ground station. Furthermore, communication la-
tencies can result in delayed responses, which can
be inadequate for addressing time-sensitive faults.
These obstacles highlight the need for onboard and
autonomous strategies to enhance satellite resilience
against anomalous events, thereby increasing satel-
lite reliability and the likelihood of mission success.

For this study, we focus on advancing two as-
pects of autonomous fault response: fault detection
and fault attribution. Fault detection involves rec-
ognizing abnormal behavior, while fault attribution
involves associating the anomaly to a specific event
or cause. To this end, we develop a joint fault detec-
tion and attribution framework that employs ensem-
ble representation learning techniques and decision
trees applied to satellite telemetry data. Specifically,
we utilize Autoencoders (AE), Kalman Filters (KF),
Gaussian Mixture Models (GMM), Long Short Term
Memory networks (LSTM), and PCMCI causal dis-
covery to learn representations of satellite telemetry

data. We then use the XGBoost decision tree classi-
fier model to detect and attribute faults based on the
learned representations. We develop these capabili-
ties for integration with Auria Space’s flight-certified
Autonomous Planning System Framework (APS).

In addition to developing a machine learning
framework for fault detection and attribution, we
also create a novel telemetry simulation tool named
SatFaultSim. This tool is designed for the train-
ing and validation of fault detection and attribution
methods. It represents a significant improvement
over previous efforts in autonomous fault diagnosis,
which have often been constrained by a lack of his-
torical faulting telemetry data and the absence of
detailed ground truth labels. SatFaultSim addresses
these challenges by providing a flexible simulated en-
vironment where diverse fault scenarios can be sys-
tematically introduced and evaluated.

We utilize our newly developed telemetry simu-
lation tool, SatFaultSim, to generate telemetry data
across 10 orbits, including normal operations and 11
randomly occurring faults. This simulated dataset
serves as the foundation for training and validat-
ing our ensemble learning approach for fault detec-
tion and attribution. After conducting a thorough
evaluation of our model’s predictions, the results are
highly encouraging: our approach achieves an overall
combined fault detection and attribution accuracy of
99.89%, with a detection accuracy of 99.94% and an
average fault attribution accuracy of 99.97%. Addi-
tionally, the false positive and negative rates for each
fault type are exceptionally low, all below 0.013%.

These metrics demonstrate that our framework
is not only proficient at identifying known faults but
also consistently recognizes a diverse array of fault
types. Furthermore, we showcase the functionality
and potential of SatFaultSim for supporting ongo-
ing research efforts by offering a controlled environ-
ment for algorithmic testing and validation. Lastly,
our ensemble learning framework sets a promising
foundation that can be further enhanced with self-
supervised and unsupervised learning techniques to
address rare or previously unseen fault types, broad-
ening the applicability and robustness of our ap-

†https://github.com/madelineloui/SOFAR
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proach for satellite operations.

Previous Work

We review several significant contributions to the
field of autonomous fault resilience strategies, be-
ginning with advancements in fault detection. The
survey by Goldstein et al. provides a comprehen-
sive overview of unsupervised statistical methods
for multivariate fault detection, including cluster-
ing and outlier detection techniques.2 Boumghar
et al. explore the application of deep learning
through autoencoder neural networks for identify-
ing anomalous spacecraft behavior.3 Hundman et
al. apply semi-supervised learning techniques, uti-
lizing recurrent neural networks (RNNs) coupled
with non-parametric thresholding, to detect space-
craft anomalies.4 Carlton investigates the efficacy of
statistical change-point event detection methods for
monitoring satellite telemetry streams.5

We also consider key developments in au-
tonomous fault diagnosis and attribution. Tipaldi
et al. review various fault detection and recovery
strategies for space projects from a systems engi-
neering perspective.6 Ibrahim et al. integrate sup-
port vector machines (SVM) with fault tree analy-
sis to detect satellite failures and attribute them to
likely causes.7 Tudoroiu et al. develop a fault di-
agnosis system for spacecraft reaction wheel errors
using interacting multiple model (IMM) filters.8 Li
et al. employ dynamic neural networks for similar
diagnostic purposes.9 Suo et al. focus on satellite
power system fault diagnosis, employing fuzzy Bayes
risk-based feature selection and SVMs.10 Xie et al.
introduce a fault diagnosis framework for power sys-
tems that utilizes Bayesian learning to deduce causal
relationships.11 Lastly, Gizzi et al. present a novel
approach to fault detection and attribution for both
known and rare fault cases, leveraging a combina-
tion of Kalman Filters, Autoencoders, and causality
networks.12

These works collectively speak to the diverse
and innovative approaches being explored and ap-
plied within the realm of satellite fault manage-
ment. They also highlight the transition towards
more sophisticated, autonomous systems for ensur-
ing greater reliability in space operations.

Contributions

While many existing fault diagnosis approaches
offer significant insights, we observe that they of-
ten depend on a single learning model. In con-
trast, ensemble learning, which aggregates predic-
tions from multiple models to enhance overall per-

formance for a given task,13 remains underutilized in
this domain. Moreover, the acquisition of appropri-
ate training and evaluation data presents substan-
tial challenges: datasets are not always accessible,
faults occur sparsely, and satellite mission data fre-
quently lacks detailed ground truth labeling. The
variability in data used for evaluating different ap-
proaches also complicates the comparison of algo-
rithmic strategies.

To address these challenges, we provide the fol-
lowing contributions:

1. We develop an algorithmic approach for joint
fault detection and attribution that leverages
ensemble learning and decision trees to en-
hance the robustness and accuracy of fault di-
agnosis.

2. We develop a statistical satellite telemetry sim-
ulation tool, named SatFaultSim, that au-
tomatically generates normal and faulting
telemetry data for training and evaluation pur-
poses.

3. We demonstrate the effectiveness of our al-
gorithmic framework using data generated
by SatFaultSim and include a comprehensive
evaluation of the model performance.

APPROACH

In this section, we provide a brief overview of
our algorithmic approach for autonomous fault di-
agnosis. Figure 1 illustrates the inference pipeline
of our fault detection and attribution module. Fig-
ure 2 depicts the module, highlighted by the yellow
block, as part of a broader satellite fault resilience
system. Data sources feed telemetry samples into
the system for learning and inference, while the on-
board response system and ground mission opera-
tors interface with autonomous fault detection and
attribution predictions for enhanced resilience.

The module performs joint fault detection and
attribution by leveraging an ensemble of five rep-
resentation learning algorithms and a decision tree
classifier. The data representation ensemble consists
of the following: an Autoencoder14 (AE), Kalman
Filter15 (KF), Gaussian Mixture Model16 (GMM),
Long Short Term Memory network17 (LSTM), and
the PCMCI causal discovery algorithm18 (PCMCI),
each capturing different latent aspects of the teleme-
try data. After concatenating the latent representa-
tions, we apply Extreme Gradient Boosting19 (XG-
Boost), a form of Gradient Boosted Decision Trees,
as a supervised classification approach for both de-
tecting and attributing fault causes using the learned
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representations of the data. We expand on each
model in the following subsections.

Figure 1: Fault Detection and Attribution Mod-
ule

Autoencoder

Autoencoder neural networks14 (AE) learn lower
dimensional representations of data by utilizing un-
supervised data reconstruction. An AE consists of
two main components: an encoder and a decoder.
First, the encoder f compresses the input data into
a lower dimensional latent space. Then, the decoder
g projects the latent representation back into the
original input data space. The network learns op-
timal parameters for the encoder and decoder by
performing data reconstruction, where the objec-
tive is to minimize the reconstruction error. This
error compares the original input, x, with the the
decoder’s output, x̂ = g(f(x)) aiming to make the
reconstructed output as close as possible to the ini-
tial data. While different loss functions can be used,
mean squared error (MSE) is a popular method for
quantifying the reconstruction error for AE neural
networks:

L(x, x̂) =
1

N

N∑
i=1

(xi − x̂i)
2 (1)

Several works employ the AE for fault-related ap-
plications: for example, An et al. utilize the recon-
struction error of a Variational Autoencoder (VAE)
to detect intrusions in communication networks20

and Fang et al. use Denoising Autoencoders (DAE)
to detect faults in satellite electrical power system
streams.21 Gizzi et al. similarly leverage the recon-
struction loss of an AE to detect satellite faults in
telemetry data.

We leverage a neural-network based AE to de-
tect anomalous data by first training the model with
sliding windows of nonfaulting telemetry data. Dur-
ing inference, we compute the reconstruction error
for each telemetry signal at each time step. Higher
reconstruction errors can indicate the presence of
anomalies.

Kalman Filter

The Kalman filter15 (KF) estimates states of a
linear dynamic system with Gaussian noise. The fil-
tering process consists of two main steps: prediction
and update.

In the prediction step, the KF predicts the next
system state and error covariance based on the sys-
tem’s previous states and the known behavior of the
system:

x̂n,n−1 = Ax̂n−1,n−1 +Bun (2)

Σn,n−1 = AΣn−1,n−1A
T +Q (3)

where in Eq. 2, x̂n,n−1 is the predicted state es-
timate, A is the state transition matrix, B is the
control-input model, and un is the control vector.
In Eq. 3, Σn,n−1 is the predicted covariance esti-
mate and Q is the process noise covariance.

In the update step, the filter updates its predic-
tion based on the new measurement:

Kn = Σn,n−1H
T (HΣn,n−1H

T +R)−1 (4)

x̂n,n = x̂n,n−1 +Kn(zn −Hx̂n,n−1) (5)

Σn,n = (I −KnH)Σn|n−1 (6)

where in Eq. 4, Kn is the Kalman Gain, H is the
observation model, and R is the measurement noise
covariance. In Eq. 5, x̂n,n is the updated state esti-
mate and zn is the actual measurement. In Eq. 6,
Σn,n is the updated covariance estimate and I is the
identity matrix.

The residual error in a Kalman Filter is the dif-
ference between the actual and predicted measure-
ment at each time step. It indicates how well the
filter’s predictions match the real observations:

yn = zn −Hnx̂n,n−1 (7)

The residual error can capture potential anoma-
lies in the data while taking into account Gaussian
noise. Several approaches utilize the Kalman filter
for fault diagnosis, such as implementing a multi-
ple model based approach to diagnose power system
faults in NASA missions,22 using multiple interact-
ing Kalman filters to monitor faults,8 and employing
the z-score of the residual error to determine the sig-
nificance of potential fault attributes.12

In our prototype, we learn the control-input
model, B, by fitting a linear system for each signal
over time using an auto-regressive model. During
inference, we extract the residual error, yn, of the
model after each update, which measures the dis-
tance between observed and expected values. The
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Figure 2: Fault Diagnosis and Response System

error measurement can indicate potential anomalies
in the satellite system.

Gaussian Mixture Model

The Gaussian Mixture Model16 (GMM) is a
probabilistic method used to represent data as a
mixture of Gaussian distributions. Each Gaussian
component has a corresponding mean, covariance
and weight, which indicates the amount it con-
tributes to the overall model. The probability den-
sity of a GMM is given by

p(x) =

K∑
k=1

πkN (x|µk,Σk) (8)

where K is the number of components, and πk and
N(x|µk,Σk) are the weight and the Gaussian distri-
bution of the k-th component, respectively.

The GMM fits the parameters (means, covari-
ances, and mixture weights) to the observed data us-
ing the Expectation-Maximization (EM) algorithm.
In the expectation, or E-step, it calculates the proba-
bility that each data point belongs to each Gaussian
component given current parameter estimates:

γ(znk) =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj ,Σj)

(9)

where γ(znk) is the probability that observation xn

belongs to component k, also known as the ”respon-
sibility” of the component for that data point.

In the maximization, or M-step, it updates the
weights, means, and covariances of each component
by maximizing the likelihood of the data given the
responsibilities calculated in the E-step:

πk =
1

N

N∑
n=1

γ(znk) (10)

µk =

∑N
n=1 γ(znk)xn∑N
n=1 γ(znk)

(11)

Σk =

∑N
n=1 γ(znk)(xn − µn)(xn − µn)

T∑N
n=1 γ(znk)

(12)

where N is the total number of data points. The
parameters can be randomly initialized at the start.
The process iteratively performs the EM steps until
convergence.

GMMs can effectively identify anomalies in data,
such as detecting potential safety issues on com-
mercial airlines by assessing flight parameters like
airspeed, altitude, pitch, and roll.23 To apply the
GMM to satellite telemetry faults, we first fit the
GMM to non-faulting data. We can then utilize
the model to assess deviations in new data observa-
tions by evaluating their likelihood under the learned
model, as defined in Eq. 8. Observations that yield
low likelihoods, indicating deviations from the ex-
pected model, may signal anomalies.
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Long Short Term Memory

The Long Short Term Memory network17

(LSTM) is a type of recurrent neural network (RNN)
that captures long-range dependencies in sequential
data using gating mechanisms. The network archi-
tecture consists of many LSTM “cells”, including
input gates, forget gates, and output gates for pro-
cessing and retaining relevant data. The forget gate
discards irrelevant information from the cell:

ft = σ(Wf · [ht−1, xt] + bf ) (13)

where Wf is the weight matrix and bf is the bias of
the forget gate, ht−1 is the output of the previous
LSTM unit, and xt is the input at the current time
step.

The input gate updates the cell state based on
new information. It consists of a sigmoid gate, which
decides which values to update, and a tanh activa-
tion layer, which creates a vector of new candidate
values to be added to the state:

it = σ(Wi · [ht−1, xt] + bi) (14)

C̃t = tanh(Wc · [ht−1, xt] + bc) (15)

where it is the output of the input gate and C̃t is the
vector of new candidate values. Then, the cell state
CT is updated by forgetting irrelevant components
of the previous states via the forget gate and adding
new candidate values scaled by the input gate:

Ct = ft ∗ Ct−1 + it ∗ C̃t (16)

The output gate determines the next hidden
state ht by filtering the cell state with the output
gate:

σt = σ(Wo · [ht−1, xt] + bo) (17)

ht = ot ∗ tanh(Ct) (18)

Various studies have utilized LSTM networks for
fault detection and similar applications. For in-
stance, Malhotra et al. design a stacked LSTM
network to detect anomalies in time series data,
such as for space shuttle and multi-sensor engines.24

Another work leverages a convolutional LSTM for
anomaly detection in videos.25

In our approach, we first train the LSTM with
non-faulting data to forecast sequential telemetry
signals. The network optimizes parameters by mini-
mizing the loss function, which compares the predic-
tions with observed values using a measure such as
mean squared error (MSE), similar to Eq. 1. Dur-
ing inference, we feed sequential telemetry signals

through the LSTM network and extract the mean
squared error (MSE) loss at each time step, which
can indicate the presence of a fault.

PCMCI Causal Discovery

PCMCI is a causal network discovery algorithm
developed by Runge et al. for time series data.18 It
estimates causal parents using a two-step process be-
ginning with the PC (Peter-Clark) algorithm for ini-
tial parent selection and the momentary conditional
independence (MCI) algorithm for further pruning.
The first step, the PC algorithm, is a Markov discov-
ery algorithm using conditional independence tests.
It selects an initial parent set, P̂ (Xj

t ), for each vari-
able at time step t, Xj

t ∈ {X1
t , X

2
t , . . . , X

N
t }, by

testing the conditional independence of each pos-
sible parent. The MCI condition further tests the
selected parents:

MCI : Xi
t−τ ⊥̸⊥ Xj

t |P̂ (Xj
t )\{Xi

t−τ}, P̂ (Xi
t−τ ) (19)

by conditioning on both the parents and time shifted
parents.

Runge et al. successfully demonstrate that
PCMCI can reconstruct air flow mechanisms in the
tropical Pacific using causal inferences.18 Similarly,
Gizzi et al. employ PCMCI to identify possible
causal relationships within spacecraft systems, en-
abling direct prediction of which satellite system
may contribute to a fault.12 This usage of PCMCI
aligns closely with our work, highlighting the util-
ity of PCMCI in complex system diagnosis. In our
approach, however, we primarily employ PCMCI as
a tool for causal representation learning rather than
for direct attribution. We focus on evaluating the
strongest causal parents of each signal at each time
step, capturing dependencies across the flight system
that are crucial for real time fault diagnosis.

Decision Tree Classifier

XGBoost,19 or Extreme Gradient Boosting, is a
form of Gradient Boosted Decision Trees (GBDT),
which learns an optimal decision tree by adding or
pruning hierarchical trees to best fit the data. Boost-
ing refers to a meta-learning strategy of iteratively
training weak learners to improve performance on in-
stances with high error rates.26 GBDTs are trained
sequentially, where each subsequent tree attempts
to correct the errors made by the previous trees. It
performs the following prediction update at each it-
eration t:

Ft(xi) = Ft−1(xi) + γ · ht(xi) (20)
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where F (xi) is the prediction, γ is the learning rate,
and ht(xi) is the prediction of the weak learner ht.
Gradient boosting finds the optimal weak learner ht

at each iteration that minimizes the loss function
L(yi, F (xi)):

ht(xi) = −δL(yi, F (xi))

δF (xi)
(21)

GBDTs can flexibly learn on datasets with con-
tinuous or discrete variables, different scales and
units, and can function with missing data. The
robustness and flexibility of XGBoost enables its
use with any number of data streams from differ-
ent sources, accommodating almost any data type.
Another significant benefit of decision trees is their
interpretable nature. Given that fault detection al-
gorithms have traditionally relied on threshold and
rules-based systems, XGBoost is particularly well-
suited for these tasks by automatically and effi-
ciently learning an optimal set of interpretable rules.

Ikram et al. apply a similar strategy, integrating
outputs from several deep learning models and us-
ing XGBoost to identify cybersecurity intrusions.27

Another study combines k-means clustering with de-
cision trees for detecting communication anomalies,
employing XGBoost to generate interpretable clas-
sification rules.28

In our approach, we concatenate the features
learned from the five representation learners, then
train XGBoost to classify the aggregated features
at each time step as either non-faulting or one of 11
fault types. We will elaborate on the individual fault
cases in the following section.

FAULT SIMULATION TOOL

To address the shortage and sparsity of relevant,
complete, and labeled faulting datasets for satel-
lite telemetry faults, we developed our own faulting
telemetry simulation tool, called SatFaultSim, to fa-
cilitate the algorithmic evaluation of our approach.
The tool eliminates the need to compile disparate
data and hand label telemetry samples and also pro-
vides a controlled environment for comparative stud-
ies.

By leveraging the expert domain knowledge of
satellite engineers and analysing telemetry data
from real satellite missions operated by the Air
Force Research Laboratory (AFRL) and the MIT
Space Telecommunications, Astronomy and Radi-
ation (STAR) Laboratory, we design the tool to
mimic various satellite subsystems and common
fault types. SatFaultSim currently supports 14 dif-

ferent telemetry variables, including heater volt-
ages and current draws; battery voltages, currents
and temperature readings; solar panel temperature
measurements; radio communication current draws
during pre-determined downlink opportunities, and
additional voltage, current and temperature read-
ings for various components throughout the onboard
computer system. The tool simulates telemetry sam-
ples in 90-minute orbits, including eclipse periods, at
adjustable sampling rates. It can generate both non-
faulting data and 11 different fault scenarios that fall
under 4 broader categories: ionizing radiation faults
(IRF), system resets (SR), thermal faults (K), and
current faults (I), recorded in Table 1.

SatFaultSim can be easily modified and ex-
tended. User input through configuration files en-
ables adjustment of statistical values of both faulting
and non-faulting data, along with the frequency and
type of faults, the length of the simulated data, and
the sampling rate. This flexibility ensures that the
simulation can accommodate for variances in differ-
ent satellite systems. The tool also includes random-
ness in the data generation process to imitate natu-
ral variations and prevent over-fitting during model
training. While the simulations do not capture every
possible fault, the tool can be extended to accommo-
date additional fault types without interfering with
the existing functionality.

EXPERIMENTS

We train and evaluate our ensemble representa-
tion learner and XGBoost classifier approach using
10 orbits of data simulated by SatFaultSim. We
first train the ensemble representation learning algo-
rithms using simulated non-faulting telemetry data.
Then, we feed a set of simulated data containing
both faulting and non-faulting samples through the
trained ensemble algorithms to create a training set
for the decision tree classifer. The data input to
the representation learners is a sliding window of 20
telemetry samples. The output consists of 92 total
features, in which features 0-14 contain the AE re-
construction error values for each signal, feature 15
is the GMM likelihood score, features 16-30 are the
KF residual error values for each signal, feature 31 is
the LSTM loss, features 32-76 encode the 3 strongest
causal parents of each signal from the PCMCI algo-
rithm, and features 77-91 are the raw signal values
at the current time step. We split the aggregated
features into training and test sets, shown in Table
2, and fit the XGBoost model to the training set us-
ing a tree depth of 6 for 100 iterations with early
stopping.

Anderson 7 38th Annual Small Satellite Conference

Approved for public release; distribution is unlimited. Public Affairs release approval #AFRL-2024-2694.



Table 1: Simulated Fault Cases

Ionizing

IRF Z Radiation results in zeros for some or
all variables

Radiation Fault IRF S Radiation causes stale data (stuck
until reset or power change)

IRF R Radiation causes garbage values (bit
flips)

System Reset
SR C System reset causes jump in data (all

variables, including onboard clock)

SR N System reset causes jump in data (all
variables except clock, since clock is a
ground clock)

Thermal Fault

K L Sensor loss causes NAN values (-999)

K F Sensor failure causes abnormally
high/low values, garbage thermal
values, or stale values

K C Nearby component failure causes
abnormal low/decreasing thermal
values or abnormal high/increasing
thermal values

K H High external temperatures over
sensor maximum reading

Current Fault
I O Mechanical failure causes high current

values

I U Mechanical failure causes low current
values

Table 2: Distribution of Fault Cases in Training
and Test Sets

Fault Case Train Test

No fault 71653 18019

IRF Z 2292 561

IRF S 7213 1706

IRF R 2197 563

SR C 40 13

SR N 45 7

K L 2458 602

K F 3509 861

K C 5173 1280

K H 3704 937

I O 1894 462

I U 4943 1265

Evaluation Metrics

To quantify the performance of our approach, we
evaluate the detection and attribution accuracy, true
positive rate (TPR) and false positive rate (FPR) for
each individual faulting case and for the combined
system. The accuracy compares the number of cor-

rect predictions to the total number of predictions:

ACC =
TP + TN

TP + TN + FP + FN
(22)

where TP is the number of true positives, TN is the
number of true negatives, FP is the number of false
positives, and FN is the number of false negatives.
The TPR compares the number of correct detections
to the total number of positive samples with the fol-
lowing ratio:

TPR =
TP

TP + FN
(23)

while the FPR compares the number of correct rejec-
tions to the total number of negative samples with
the following ratio:

FPR =
FP

TN + FP
(24)

We also perform two computational performance
benchmark tests using a desktop computer and a
Raspberry Pi as a preliminary assessment of the via-
bility of onboard implementation. The desktop com-
puter has an Intel i7 2.60 GHz CPU with 12 threads
and 32 GB RAM. The Raspberry Pi has a Cortex-
A72 1.8 GHz processor with 4 threads with 1.8 GB
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RAM. We measure the memory and compute time
for training and inference of the proposed algorith-
mic approach on these platforms.

Table 3: Overall Performance

Metric Accuracy
(%)

Combined fault detection and
attribution accuracy (all cases)

99.89

Combined fault detection and
attribution accuracy (only
faulting cases)

99.79

Detection accuracy 99.94

Detection True Positive Rate
(TPR)

99.88

Detection False Positive Rate
(FPR)

0.039

Average attribution accuracy 99.97

Average attribution TPR 99.85

Average attribution FPR 0.023

RESULTS

We record evaluation metrics for both detection
and attribution tasks. Table 3 reports the overall
performance metrics. Combined fault detection and
attribution accuracy measures the number of cor-
rect fault detections and attributions to one of 11
fault cases. We evaluate this for the entire dataset
(both non-fault and faulting cases) and achieve an
accuracy of 99.89%. To ensure that the high ac-
curacy is not dominated by the non-faulting cases,
which make up the majority of the dataset, we also
measure the combined fault detection and attribu-
tion accuracy of only faulting cases, which is 99.79%.
This gives us confidence that the algorithm performs
accurately for both faulting and non-faulting cases.
Next, we evaluate overall detection performance,
which indicates the algorithm’s ability to distinguish
the presence and absence of a fault (as opposed to
attribution, which involves association of a fault to
a specific event). The detection accuracy is 99.94%,
the TPR is 99.88%, and the FPR is 0.039%. The
high TPR indicates that there is a high frequency
of true positives in proportion to the total number
of positive samples. The low FPR indicates that
there is a low frequency of false negatives in propor-
tion to true negatives. We similarly evaluate these
metrics for fault attribution, which measures the al-
gorithm’s ability to associate faulting data to the
correct cause. The attribution accuracy is 99.97%,
the TPR is 99.85% and the FPR is 0.023%. Over-

all, the high accuracies, high true positive rates, and
low false positive rates all indicate that the proto-
type is exceptionally competent for fault detection
and attribution of known faults within the simulated
environment.

We further investigate per-fault performance
metrics to evaluate the consistency of the algorith-
mic approach across different fault types, shown in
Table 4. For each of the 11 fault cases, we eval-
uate the attribution accuracy, which measures the
algorithm’s ability to correctly attribute the partic-
ular fault given fault detection. We also evaluate
the combined detection and attribution accuracy,
which measures the algorithm’s ability to both de-
tect and attribute the fault. We also report the at-
tribution TPR and FPR to gain insight on the rate
of true and false negatives across fault types. We
illustrate the error rates for each fault case in Fig-
ure 3, which conveys low false positive and negative
rates throughout, with a maximum error rate of only
0.013%. Overall, the high attribution accuracy, high
combined detection and attribution accuracy, high
attribution TPR, and low attribution FPR values
across all fault cases indicate that the prototype is
able to successfully identify diverse fault types.

Table 4: Per-Fault Performance

Fault
Type

Attribution
Accuracy

Detection
and Attri-
bution

Accuracy

Attribution
FPR

IRF Z 99.98% 99.73% 0.026%

IRF S 99.98% 99.88% 0.031%

IRF R 99.90% 99.11% 0.013%

SR C 100.0% 100.0% 0.000%

SR N 100.0% 100.0% 0.000%

K L 99.98% 99.83% 0.026%

K F 99.96% 99.77% 0.000%

K C 99.93% 99.65% 0.072%

K H 99.96% 99.84% 0.041%

I O 100.0% 100.0% 0.000%

I U 99.96% 99.84% 0.043%

Feature Importance

XGBoost enables examination of the learned op-
timal tree hierarchy, which can provide interpretabil-
ity and insight into the model behavior. Specifically,
we can calculate the F-score, which indicates the
number of times each feature was split on within the
decision tree. Figure 4 displays the importance of
different input features based on their F-score value.
Feature numbers can be referenced from the Exper-
iments section. Based on this evaluation, the most
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Figure 3: False Positive and Negative Rates Across Fault Types

important features from our experiment include the
clock’s KF residual error and the solar panel tem-
perature’s AE reconstruction error.

Figure 4: Ranked XGBoost Feature Importance

Computational Load Performance

We report training and evaluation times on
both desktop and flight-like hardware to character-
ize computational performance, recorded in Table
5. We trained the fault detection and attribution
model, then ran the evaluation using 115,000 time
steps with 14 telemetry variables, consisting of 1.7
million total data points. We highlight the low
process memory usage (under 100 Mb) and rapid
evaluation time (0.9s for the desktop and 3.0s for
the Raspberry Pi to evaluate over 100,000 samples)
amounting to less than 0.0001 seconds per sample,
which is more than sufficient for real-time use on
most onboard computers.

Discussion

Our evaluation conveys that our prototype oper-
ates with high accuracy and precision using the sim-
ulated telemetry data. The XGBoost model lever-
ages the data representations from the ensemble
methods to efficiently learn patterns in faulting and
non-faulting data. Low error rates across 11 different
fault cases confirm that the system can accurately
identify a diverse array of fault scenarios. While the
simulated faults may not encompass every potential
error that could occur during flight, a custom fault
resilience system that leverages this framework can
provide in-orbit resilience using a priori knowledge
of the system to anticipate and diagnose common
faults. Additionally, hardware tests reveal a minimal
computational load, revealing its potential viability
for integration with onboard flight systems.

FUTURE WORK

There are many opportunities to build upon the
existing algorithmic framework and simulation tool,
such as the following possible directions:

1. Roles of different representation learners: An
in-depth study on the role and importance
of each representation learner for the classi-
fication step may enable simplification of the
framework. This can minimize the extraction
of unimportant features and thereby save com-
putational resources.

2. Enhancing robustness, adaptability, and scal-
ability: While our methodology yields highly
promising results in diagnosing known faults
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Table 5: Platform Specifications and Performance

Platform RAM
Size

Memory
Usage

CPU Threads Train
Time

Eval.
Time

Desktop 32 GB <100 Mb Intel i7
2.60GHz

12 17m 40s 0.9s

Raspberry
Pi

1.8 GB <100 Mb Cortex-
A72

1.8GHz

4 67m 51s 3.0s

within a simulated environment, it predom-
inantly relies on supervised techniques and
may struggle with previously unseen or rare
real-world fault cases. To address this limita-
tion, it is essential to integrate semi-supervised
and un-supervised techniques, such as active
learning and non-parametric methods, into the
framework. Additionally, exploring the scala-
bility of our method to accommodate higher-
dimensional telemetry data streams is crucial
for ensuring its applicability to more complex
systems.

3. Onboard execution for satellite missions: We
would like to integrate our framework into a
satellite flight system for real-time fault re-
silience. This would involve implementing the
algorithms on an onboard computer architec-
ture and evaluating its performance with real
satellite telemetry signals.

4. Integration into a broader satellite decision-
making system: Our approach is modular and
can be used within a larger planning and
decision-making system, as shown in Figure 2.
There is growing interest in how autonomous
onboard decision-making systems can leverage
fault predictions to react and resolve possible
errors. A promising direction for further de-
velopment includes creating optimization al-
gorithms for planning and scheduling recovery
actions when a fault is detected.

5. Enhance SatFaultSim capabilities: Future
work will focus on diversifying the supported
fault types using additional datasets from
satellite missions. This involves not only mod-
eling common faults, but also rare and com-
plex anomalous behaviors. This approach will
enhance the system’s robustness and ability to
handle a broader spectrum of potential issues.

Our research demonstrates the effectiveness of
ensemble learning and decision trees for detecting
and attributing known fault types. Additionally, our
telemetry simulation tool has proven highly valuable

for training and evaluating the algorithmic frame-
work. The numerous future directions highlight the
potential of both the simulation tool and initial sys-
tem prototype to drive future research for improving
onboard autonomous fault resilience capabilities.
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