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ABSTRACT 

Laser communication systems in optical SatCom systems are mainly used in point-to-point networks, possibly 

deploying standard routing solutions which perform sub-optimally when deployed in transport and access satellite 

networks. Optical signal acquisition is also affected by the changing satellite environment and atmospheric conditions. 

In response, Craft Prospect and partners focused on upgrading optical systems by using machine learning (ML) 

methods to improve laser communication terminals and to simplify interconnectivity of networked laser SatCom 

systems. In this context we target the European OPS-SAT Versatile Optical Laboratory for Telecoms (VOLT) mission 

led by Craft Prospect and the European High Throughput Optical Network (HydRON) project which benefits from 

using machine learning systems. 

Based on initial research and development work on enhancement of satellite free space laser communication systems 

with machine learning, two use cases and their requirements were identified. Firstly, leveraging autonomic networking 

principles to develop distributed ML agents for space network nodes which monitor local network state and can 

autonomously make rerouting decisions on impaired links in a localised way to improve the average network 

throughput. This enables links between optical ground stations (OGS) and the space network segments to quickly 

switch in a smooth and responsive way without having to have multiple paths open; searches carried out for preset 

alternate paths in long/overloaded flow table lists; or an over-reliance on a software defined networking (SDN) 

controller. Secondly, for space segment laser terminals, development of a ML model to boost detection accuracy in 

coarse acquisition in reduced signal-to-noise ratio (SNR) cases with strong background light conditions and varying 

beacon intensity. This is relevant for the scenario where a LEO satellite receives an uplink signal from OGS with 

strong atmospheric fluctuations or background Earth reflections and the detector is saturated. Similarly, in inter-

satellite links (ISL) where satellites are undergoing relative movement and the signal intensity rate of change is rapid, 

the acquisition sensor quickly arrives in a region where SNR is low, or the sensor is saturated. 

In this contribution, we present the developed ML models for these use cases and describe training techniques and 

datasets. We discuss performance results from tests carried out with a network simulator with the results compared to 

an SDN controller solution to demonstrate the benefits. For small network topologies, the ML solution resulted in the 

throughput at the network endpoint being 16.7% higher following link degradation than the SDN controller solution. 

The spatial acquisition detection errors and accuracy under different SNR conditions using the ML solution was 

compared to a benchmark Centre of Gravity detection method typically used in laser terminal beacon acquisition. 

Results showed that the beacon detections from the ML solution were closer in distance to the true spot than the 

conventional method in low SNR conditions by over an order of magnitude, in addition to having an overall accuracy 

of 97.77%. 

With this we show how to enable autonomic routing in optical data, and laser terminals with improved acquisition 

rates in networks for OPS-SAT VOLT and for multitudes of future interconnected laser SatCom missions.
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INTRODUCTION 

Laser communication systems in optical payloads are 

often used in non-optimised satellite communication 

(SatCom) systems. In response to this Craft Prospect and 

partners are focused on upgrading optical systems by 

using machine learning (ML) methods to improve laser 

communication terminals and to simplify 

interconnectivity of networked laser SatCom systems. In 

this context we target the European OPS-SAT Versatile 

Optical Laboratory for Telecoms (VOLT) mission led by 

Craft Prospect and the European Space Agency (ESA) 

High Throughput Optical Network (HydRON) project 

which benefits from using machine learning systems. 

The space and network segments were the focus of 

examination, and this led to the down selection of two 

main opportunities: 

1. ML for Spatial Acquisition 

2. ML for Network Management 

Spatial Acquisition Use Case 

This use case is based on using ML algorithms to 

improve the spatial acquisition segment of the 

acquisition, pointing, and tracking process (APT). The 

APT process is an essential part of communication 

between Laser Communication Terminals (LCTs), and 

so is a key part of HydRON. Accurate beam pointing 

must be established and maintained to have data 

transmission with minimal losses. The method of 

detection chosen for analysis for this activity was CMOS 

and InGaAs camera sensors. This decision was based on 

previous CPL work and expertise with APT systems.  

Detection is conventionally done using traditional 

computer vision (CV) algorithms, such as the Centre of 

Gravity (CoG) algorithm, which identifies the incoming 

laser beacon spot on the detector from its high pixel 

intensity value as compared to the background details on 

the detector. Accuracy and time of the conventional 

solution can be affected by effects on the sensor such as 

background noise and dead/hot pixel anomalies. As 

such, this use case involved detection of the incoming 

beacon in low Signal to Noise Ratio (SNR) conditions to 

investigate if ML can be used to boost the SNR during 

detection. Two main scenarios were selected for analysis 

where the baseline CoG accuracy is reduced: 

In Scenario 1, a low Earth orbit (LEO) satellite points 

towards the Earth optical ground station (OGS) and is 

receiving uplink. Strong background light can be present 

on the LCT sensor from background Earth reflections 

(due to Earth albedo) which reduces the uplink signal 

dynamic range on the acquisition sensor and furthermore 

the signal fluctuates (approximately 20dB) in power at 

the receiving LCT due to atmospheric turbulence. Here 

SNR boosting is of interest for improved acquisition. 

In Scenario 2, an inter-satellite link (ISL) is being 

established and the two satellites with LCT are 

undergoing movement towards each other or away from 

each other and the intensity of the beam increases and 

decreases over their fly-by. Here although no strong 

background noise is expected as the LCTs are pointing 

into dark space but due to the received changing beacon 

power, SNR boosting is of interest for improved 

acquisition due to the strong signal fluctuation rate. In 

this scenario the acquisition sensor quickly ends up in a 

region where SNR in the image is low or the sensor is 

saturated. 

This allows ML model detection accuracy to be 

compared with SNR showing where the use of ML is 

most effective. The results from the ML model detection 

were fed into a conventional CoG algorithm to get an 

enhanced output as the bounding box generated by the 

model allows for the Region of Interest (ROI) to be 

decreased and the centre of the spot to be better found 

for tracking purposes. The combined approach was 

compared with a pure CoG detection-based result. 

Network Healing Use Case 

The use case focused on network management was 

performed in partnership with CGI, using their 

experience with concepts and simulations of networks. 

In HydRON, the network architecture is built on optical 

links between the spacecraft and the OGS, and on optical 

ISL1. In HydRON study, several routing concepts were 

analysed, and preference was given to centralised routing 

solutions due to the ability to maintain network routing 

semantics as promptly as possible when facing the 

changing network topologies. However, as the name 

suggests, centralised routing solutions fully rely on the 

central controller decisions to act and react to network 

impairments. Thus, we see room for improved fault 

management and decrease of routing reaction times if 

routing devices can have a certain level or discretionary 

routing decision, time and scope limited. 

Optical links result in the high throughput requirements 

as set out by HydRON, however optical links between 

satellites and OGS can also be affected by atmospheric 

conditions such as turbulence or adverse weather 

conditions, which affects the requirements on optical 

links to have a clear line of sight. Additionally, ISLs 

could be affected by factors such as changing distances 

between satellites, capabilities of different LCTs and 

varying solar background conditions. These scenarios 

could cause performance degradation on network links 
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and lower throughput. The conventional solution is to 

handle small degradation via buffering at the network 

nodes until normal operation can resume. For more 

persistent outage, the SDN centralised controller 

monitors network links and if it detects faulty links 

through regular link probing, then it is configured to re-

route the traffic on some other path through the network 

to reach the required end point. However, with a 

centralised controller, this means there is a 

communication overhead between nodes and the 

controller, increasing the time for the throughput 

reduction to be resolved.   

The ML solution to improve the data-plane resilience to 

outages is through implementing autonomic network 

functionality8 by deploying a software application on 

each switch node to monitor its links, and then analyse 

the traffic to make a prediction on the link quality using 

ML. This software application is known as an Agent for 

this work. The Agent then determines if local re-routing 

actions are required and what the best path to the end 

point is based on its knowledge of the network topology 

and latencies across the network. The Agent applications 

can send notifications of path updates to other Agents, so 

knowledge of a link degradation is shared with the nodes 

neighbouring a degraded link, or within a limited local 

radius. The aim is that by temporarily bypassing the 

communication overhead with a controller and having 

the nodes themselves perform localised re-routing, it will 

allow the throughput to recover from degradation more 

effectively. It also offers redundancy if connection is lost 

with the controller node. The performance of the ML 

Agents will be compared to that of the SDN controllers 

for the same scenarios.  

It is envisioned that this ML enabled network healing 

functionality could fit into real use cases such as an OGS 

with up to 20 space nodes in view wherein some of the 

optical links are degraded with reduced throughput due 

to cloud cover, atmospheric turbulence, or some 

temporary obstruction like a passing aircraft. Local re-

routing capability would enable the satellite nodes to 

quickly detect the degradation and perform re-routing to 

maintain overall end user quality. Figure 1 is a 

hypothetical illustration of this real use case; with 20 

space nodes organised by LEO, medium Earth orbits 

(MEO) and geostationary orbits (GEO), and dashed lines 

between nodes highlighting potential links. In this 

example, space node S20 needs to downlink to the OGS, 

but cloud cover is impairing the link. Network healing 

ML Agents would allow S20 to detect the degradation 

on its link, and for the other nodes in the network to 

report on their link qualities, allowing S20 route its 

traffic through other satellites on the optimal path 

determined by the ML. Similarly, there could be the case 

of multiple OGS in view of the space segment with the 

path to one OGS obstructed, wherein the local healing 

solution could enable routing to another OGS, reducing 

handover. 

MACHINE LEARNING MODELS 

Spatial Acquisition Model 

The YOLOv3 Tiny model was used to perform object 

detection on camera sensor images to distinguish the 

incoming beacon from the noise conditions. YOLO – or 

You Only Look Once – is a fully convolutional, single-

stage object detection model designed for real time 

object detection. For the tiny version of YOLOv3, the 

model is comprised of a feature extracting backbone of 

7 convolutional layers using 3x3 kernels interspersed 

with normalisation, pooling and leaky ReLU layers. This 

architecture is seen in Figure 2. 

  

  

  

  

    

   

      

      

  

  

   

   
   

   

   

  

   

   

   

Figure 1: Hypothetical illustration of real-world application of network healing use case. 
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The skip connection in the model, where the output of an 

intermediate layer is concatenated with the final output, 

allows for detections of objects to be made at different 

scales in an image. The input to the model is a scaled 

image, normalised to the maximum pixel intensity based 

on the precision of the pixel values. After passing 

through the model, the outputs obtained are the 

classification for objects that have been detected in the 

image, the bounding boxes that contain these objects, 

and confidence scores around the detections. 

The YOLO model was selected primarily due to the 

inference speed which is required for real time detection 

and the possibility of tracking. Using optimised 

hardware implementations, YOLOv3 can process over 

200 frames per second (corresponding to an inference 

time of 5ms)2, 3, 4. Convolutional neural networks have 

been shown to have strengths in object detection tasks of 

this type7. 

After the bounding boxes have been detected using the 

ML model, the standard Centre of Gravity algorithm is 

used within the region of interest defined by the 

bounding box to detect the spot itself.  

Network Healing Model 

The model developed for the network healing use case 

was comprised of a temporal autoencoder (TAE) which 

learns a low-dimensional representation of the timeseries 

data with a multi-layered perceptron (MLP) to make 

predictions on latency. It is a novel architecture based on 

a similar model used for clustering of time series data6. 

The TAE is used to learn the most important features of 

the data at different temporal scales by using a 

convolutional layer followed by bi-directional long 

short-term memory (LSTM) layers to learn the short 

term and longer-term patterns respectively. The choice 

of algorithm was informed by the traffic data available 

in the simulator and the need to have a quantitative 

Figure 2: YOLOv3 Tiny architecture. 

Figure 3: Architecture of the deep temporal regression (DTR) model. Blue blocks are used at inference. 



 

Harvey 5 38th Annual Small Satellite Conference 

model that can be used for well-informed routing 

choices.  

For the ML agent to be able to make decisions as to 

where to re-route data, a regression model must be 

developed as this allows for the prediction of a 

continuous variable after training. This means the 

unsupervised clustering algorithms that were originally 

considered were not suitable for this problem as clusters 

would require classification in post of what clusters merit 

re-routing. To add label classes of link capacity means 

that the model cannot learn when re-routing decisions 

can be made. The concept was to use the model on a node 

to use its limited view of its own node edge statistics to 

predict the increase to the latency over the full path, and 

so the algorithm needs to be able to learn how temporal 

features of the network statistics affect the full path flow 

properties. These requirements led to the development of 

the deep temporal regression (DTR) model with the 

architecture shown in Figure 3.  

TRAINING  

The chosen use cases did not have readily available 

datasets for ML training. As such, datasets had to be 

created as part of this activity that were suitable for the 

scenarios. 

Spatial Acquisition Training 

The data required for training and testing were images 

recorded from the camera sensor that were representative 

of what would be seen during the acquisition phase. This 

required the presence of several key features: the 

incoming laser beacon at different intensities and 

positions, and different noise conditions.   

The primary dataset for this use case was generated 

semi-synthetically from a source of two sets of 1000 

images from an InGaAs camera sensor, provided by 

ESA. The first set of 1000 grayscale images consisted 

only of a very low background noise level and could 

represent the ISL scenario with dark space in the 

background. The second set was from the same camera, 

but opened to let a higher level of light onto the sensor 

and this could represent the spacecraft to OGS scenario 

with the Earth in the background casting light onto the 

sensor. 

The source images did not include the incoming beacon 

spot, so this required the addition of this feature 

synthetically using Python image manipulation code. 

This allowed for generation of large numbers of images 

for the dataset through precise control of the beacon 

features (shape, position, and intensity). Incoming 

beacon spots were added using a kernel that creates a 

spot in the required Airy pattern and could be adjusted to 

different sizes and levels of visible ring lobes. The 

primary lobe was scaled to where it was only a few pixels 

across on the image, approximately 3 pixels across at its 

brightest. 

The initial dataset used for training consisted of two 

subsets of 2000 images from both the low and high 

background noise image source sets. For both noise sets 

this resulted in a subset with the spot only a few pixels 

across with no visible ring, and a subset with the 

intensity of the spot increased until the ring was visible 

over the noise. The SNR in this training dataset averaged 

around 1.04dB for the high background noise images, 

and around 17.596dB for the low background noise 

images, with the maximum SNR at 22.839dB. SNR was 

calculated using Equation 1, where ‘S’ is the highest 

pixel value of the laser spot, and ‘N’ is the average pixel 

value of the background noise of the full image. 

𝑆𝑁𝑅 = 10 log10(
𝑆

𝑁
) (1) 

From this dataset 70% of images were used for model 

retraining, 10% for model validation and 20% for 

functional testing (ML model inference, without the use 

of a testbench). The most important part of the YOLO 

model which allows for high quality object detection 

with a simple network is the loss function. The loss 

function is a combination of mean squared error for the 

bounding box offsets; binary cross entropy for 

objectness score; and sparse categorical entropy for class 

prediction. 

In addition to the synthetically generated dataset, another 

dataset was originally created using the CPL optical test 

bench which consists of the components of a CPL APT 

system arranged on an optical breadboard. Using a fast-

steering mirror and optical attenuation filters, a dataset 

was created that showed the incoming beacon at different 

intensities and positions in different background noise 

conditions, as well as in the presence of an outgoing 

beacon which created blinding effects on the sensor. 

Various camera conditions were also included, showing 

levels of dead and hot pixels. Another version of the 

same ML model was trained and tested on this dataset. 

However, the use of the optical test bench for 

performance testing was deemed to be too far from real 

conditions in terms of accuracy and relevance, so this 

dataset was subsequently used to only reinforce the 

adaptability of the ML model to different conditions for 

training instead of specific performance results.  

The synthetically created dataset was the primary source 

for performance training and testing.  
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Network Healing Training  

The datasets used for training the model were created 

using the CGI network simulator which consists of a 

Linux machine running Mininet. Mininet is an open-

source network emulator which can emulate switches, 

hosts (data endpoints), and SDN controllers, along with 

aspects of network links and data flow. The simulator 

had an Open Network Operating System (ONOS) 

controller application which enabled traffic control and 

operated as an SDN controller. The emulated switches 

were in Open VSwitch (OVS) format and have flow 

tables which set the rules of which ports traffic should 

flow through at any given time, and these can be altered 

either by the SDN controller or by manual OVS 

commands. 

The required data from the network to build the datasets 

are as follows: 

• Switch node port statistics: bytes sent and received, 

buffer backlog, errors. Viewing total bytes 

sent/received over time allows patterns to be 

observed in the traffic at a node. For example, a 

reduction in the rate of bytes being received over 

time may indicate some degradation. 

• Full path flow statistics: latency, jitter, throughput. 

Measuring full path latency allows patterns in 

behaviour observed at a node to be compared to the 

latency of the full path. For example, for the 

reduction in bytes received at a port discussed 

above, if there is an increase in latency at the same 

moment, this confirms degradation of the link, and 

not just a natural reduction in traffic flow. 

Simulation runs were also performed on the simulator 

with variations on the following network parameters: 

starting throughput, level of throughput reduction, 

pattern of throughput reduction (steps or single drop), 

statistics sampling rate, simulation time and network 

topology. Two topologies were used for statistics 

gathering: a complex 8 node network for collecting 

statistics from multiple interfaces at once, and a simple 

topology of two nodes connected in a chain for mapping 

link statistics to latency. Statistics were collected from 

each side of network links to highlight any traffic 

patterns. The simulation runs collected for training 

included a range of starting throughputs and level of 

throughput reduction, in addition to different patterns of 

throughput reduction (single or multiple steps). The 

dataset also included differentiations for distinguishing 

between healthy throughput reduction (no latency 

increase) and degraded link quality (latency increases as 

throughput decreases). Starting throughputs varied from 

100MBps to 2000MBps in 100MBps increments. In total 

there was 62 simulation runs ranging from 90 to 400 

second duration.  

To train the DTR model, there are two loss functions that 

are minimised simultaneously: the mean squared error 

between the input data and the reconstructed data from 

the TAE, and the mean squared error between the true 

latency value and the prediction from the MLP. 

Hyperparameters of the model were tuned using a grid 

search to find the optimal parameters. Using the dataset 

of 75,774 data points once it has been windowed which 

was split 70/20/10 into training, testing, and validation 

sets, an 𝑅2 score on the test set was 0.595. 

Training the model also involved the development of the 

software for the Agent applications. The ML Agent 

software was constructed from Python code and 

packaged into one program that could initialise and 

monitor the function of the Agents on the CGI simulator. 

The Agents can interface with the network to collect 

statistics from network node ports and have a stored map 

of the topology of the network. Once internal machine 

learning inference and path decisions have been made, 

the Agents can then enact updates to switch flow tables 

using OpenVSwitch commands.  

TEST SCENARIOS & RESULTS 

Specific scenarios were created for the purposes of 

performance testing of the machine learning models. The 

test results will be described following the outline of the 

test scenarios. 

Spatial Acquisition Testing 

Twelve simulated datasets of 500 images each were 

generated specifically for performance testing this use 

case: three levels of background noise (low, medium, 

and high), with each noise level having four intensity 

levels of the incoming beacon ranging from only the 

central lobe being visible and a few pixels across to 

bright central lobe and clear first ring lobe.  To generate 

the medium noise images, a naïve method was selected 

for brevity where the high noise images had their 

intensities halved and the pixels shuffled to ensure that 

the images were random and simulated being drawn 

from a completely new distribution. The purpose of this 

was to test the performance of the model across a range 

of sensor conditions. 

Examples are shown of each level of background noise 

in Figure 4. The spot intensities are at all at the highest 

spot level for comparison in this figure, and the images 

have been zoomed in to show the details of the spot. The 

full images are sized at 888x888 pixels. For the datasets 

these specific images belong to the average signal to 

noise ratios are as follows: (1) – 15.28dB, (2) – 4.14dB 

and (3) – 1.31dB.  
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Figure 4: Examples of synthetically created images 

used for testing. Top left (1) – low background noise, 

top-right (2) – medium background noise and 

bottom-middle (3) – high background noise. All 

beacon spots have been set to the highest intensity at 

spot level 4. 

The average SNR values for the rest of the datasets are 

as follows: 

Table 1: Summary of average SNR values for 

synthetic datasets based on noise level and spot 

intensity level. 

 Low 

Background 

Noise 

Medium 

Background 

Noise 

High 

Background 

Noise 

Spot Level 1 14.02dB 3.14dB 1.19dB 

Spot Level 2  14.13dB 4.03dB 1.23dB 

Spot Level 3  14.82dB 4.07dB 1.31dB 

The datasets were put through the ML model to perform 

inference which outputs bounding boxes around where 

the incoming beacon has been detected. Then the CoG 

algorithm was used on the ROI within the bounding box 

to find the centre of the spot. The pixel distance from the 

centre of the spot detected by ML assisted CoG 

algorithm to the true spot was measured. This was then 

compared to that of the pure CoG algorithm. Overall 

accuracy of the model was also measured. 

Model accuracies were calculated using the intersection 

over union (IoU) metric and are shown in Table 2. 

Accuracy at IoU > N is the percentage of detections that 

have an IoU value greater than that ‘N’ value. 

Table 2: Average IoU and Accuracy values for the 

YOLOv3 Tiny model. 

Metric Average Maximum Minimum 

IoU of Detections 0.757 0.850 0.569 

Accuracy at IoU > 0.7 0.636 0.931 0.183 

Accuracy at IoU > 0.8 0.952 0.772 0.165 

Accuracy at IoU > 0.9 0.336 0.574 0.078 

Figure 5 shows the IoU at different SNR values. An IoU 

score of 0.7 and above is considered a positive detection 

as is standard in object detection scenarios. Accuracies 

over different SNR values are shown in 

Figure 6.  The accuracy values differ between Figure 5 

and 

Figure 6 due to different definitions of a detection. For 
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Figure 6, a detection is classified as successful if the laser 

spot exists anywhere within the bounding box therefore 

allowing the centre of gravity algorithm to be used to 

locate the spot centre. 

 

Figure 5: Average IoU and accuracy variation with 

SNR. 

Figure 6: Model accuracy variation with SNR. 

Overall, for the full SNR range tested, the average 

ML model detection accuracy was 97.77%. 

A plot comparing the ML YOLOv3 assisted CoG results 

to the pure CoG baseline algorithm for spot detection 

accuracy is shown in Figure 7. The pure CoG algorithm 

is configured with a handpicked threshold equal to 70% 

of the maximum image signal value (16bit images). The 

YOLOv3 ML model performs detection and outputs a 

detection bounding box of fixed size of 25px by 25px. 

This bounding box is treated as a region of interest over 

which the same CoG algorithm is applied to extract the 

spot centre pixel position in the ML assisted case. 

As can be seen the ML assisted algorithm detections 

outperform the pure CoG algorithm in low SNR regions 

by over an order of magnitude better detection accuracy 

(based on the distance from the true spot). The CoG 

misdetections are resultant from the noise being above 

the threshold used by the CoG. The distance from the 

true spot signal centre of the ML model is below 9px and 

averages below 5px, this is likely due to the relatively 

big bounding box pixel size (25px by 25px) used for 

detection compared to the spot size (approximately 3px 

by 3px) over which the CoG is applied and affected by 

the noise. 

For higher SNR conditions (> 3dB in the used dataset) 

the pure CoG algorithm and the ML assisted algorithm 

perform equally well which is expected as the noise 

levels are below the CoG threshold used. 
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The ML model success rate of detection per SNR from 

these results is shown by the detection accuracy in Figure 

7. As the SNR lowers for the case of high background 

noise in the test images the ML model detection accuracy 

is above 90% allowing to boost the beacon acquisition 

detection rate in low SNR conditions compared to the 

pure CoG algorithm. Overall, for the full SNR range 

tested the average ML model detection accuracy was 

97.77%. 

As discussed at the end of the Spatial Acquisition 

Training section, the dataset created on the optical test 

bench was also used for testing the robustness of the 

model to different conditions prior to the focus on the 

synthetically created data. The test compared the 

detection distance from the true spot over a whole spiral 

of the fast-steering mirror performed for different 

outgoing laser powers for a pure CoG algorithm and ML 

assisted algorithm. The CoG algorithm used a threshold 

equal to 95% of the maximum image signal value (8bit 

images). The ML model bounding box pixel size (50px 

by 50px) was used for detection. 

For a test run with 5% pixels in the image containing hot 

and dead pixel noise, it was shown that under all 

outgoing blinding laser powers the ML assisted 

algorithm can detect the incoming laser spot with an 

approximate spot distance of 8px to the true spot and 

average detection success rate of 80% for powers lower 

than 0.189mW.  

As the powers of the outgoing blinding laser increased 

beyond 0.189mW the ML model detection rate decreases 

to an average of 75% and the distance from the spot 

varies up to 35px. Nevertheless, the ML model detection 

of the spot outperforms the pure CoG algorithm on all 

outgoing blinding laser powers used. 

The inclusion of these additional test results showcases 

the versatility of the chosen machine learning model to 

different optical conditions.  

Network Healing Testing 

The aim of performance testing was to analyse the 

performance of the ML Network Healing Agents in the 

act of rerouting traffic in the presence of a single network 

fault. Then the performance will be compared to that of 

an SDN intent-based controller in the same scenarios. 

The Agents were deployed on each node in a created 

network topology in the CGI network simulator. For 

verification, they were configured to log collected traffic 

statistics, ML inferences, new path decisions, 

notifications sent and received, and any commands to 

update the flow rules on the switches. The throughput at 

the final node was also recorded to analyse the impact of 

throughput reductions on the traffic. 

As with the training stage, different combinations of the 

network parameters were used to create scenarios for 

testing. The test procedure is as follows: 

1. Configure network simulator and ML Agents. 

Figure 7: Pixel distance to the true spot centre (0.5px) for different SNR levels from the final test 

dataset when the CoG algorithm is used and when the ML model assisted algorithm is used. Note 

that some of the spot SNR levels are very close and as such are merged into a single data point. 
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2. Begin the test scenario. 
3. Initiate degradation on specified link after 30 

seconds of initial operation. 
4. End simulation after 30 seconds of link 

degradation.  
5. Repeat for all test scenarios.  

The test scenarios were based on starting throughput, 

reduced throughput, and network topology. Table 3 

shows the combinations of throughputs. These levels 

were chosen to give a wide spread of levels to analyse 

without requiring a large amount of time to be spent on 

generation of the test scenarios on the simulator. Each 

combination of throughputs will be performed once for 

each topology, giving 24 sets of results for both the ML 

and conventional SDN controller solution. 

Table 3: Combinations of starting and reduced 

throughputs for performance testing. 

Starting 

Throughput 

Reduced 

Throughput 

Starting 

Throughput 

Reduced 

Throughput 

2MBps 0.1MBps 1MBps 0.1MBps 

0.5MBps 0.5MBps 

1MBps 0.8MBps 

1.3MBps 0.5MBps 0.05MBps 

1.6MBps 0.1MBps 

0.25MBps 

0.4MBps 

Different topologies were selected for the purposes of 

observing network behaviour in different conditions. 

The topologies varied in complexity and number of 

nodes. Figure 8 and Figure 9 show the chosen topologies. 

 

Figure 8: Topology 1 used for testing. Four switches 

with links shown. Red link represents link to have 

throughput reduced. 

 

Figure 9: Topology 2 used for testing. Ten switches 

with links shown. Red link represents link to have 

throughput reduced.  

The small topology shown in Figure 8 was chosen to 

observe the rerouting behaviours in a controlled and 

simple environment and get an initial impression of 

network behaviour when switching paths. The larger 

topology shown in Figure 9 has numerous links from 

each node. The larger network means that the ML Agent 

decisions can be analysed in a more complex 

environment with more alternative routing paths. 

The chosen topologies are not representative of a full or 

real satellite constellation but represent a meaningful 

subset scenario, whereby an OGS with up to 20 satellites 

in view (as shown in Figure 1) may have cloud cover or 

other atmospheric interference blocking connection to 

some of those satellites. The ML enabled network 

switching could then be used to divert traffic from the 

satellite that needs to make connection with the OGS, to 

an intermediary satellite that does have clear view of the 

OGS to enable uplink/downlink as quickly as possible. 

Using smaller topologies in the testing goes towards 

addressing this scenario. To scale to a real constellation 

would also require more complex simulation and 

datasets. The subset scenario also enables the 

showcasing of the ML switching technology as a 

potential mitigation for the use of protected switching 

(another form of network redundancy) which can 

penalise network performance. 

The main metrics for performance analysis are average 

throughput after fault injection and reaction time. 

Average throughput is the average of the bytes received 

per unit time at the final interface between fault injection 

and end of the simulation run. Reaction time pertains to 

the time between when throughput reduction was 

initiated, and the time that an ML Agent or the SDN 

controller makes some actionable routing decision. 

Reaction time is measured to gauge the responsiveness 

of the ML Agents as compared to the conventional SDN 

controller solution. The smaller topology will be 

compared to the larger topology for the ML solution and 

the conventional solution.  

The results for average throughput after fault injection 

for topology 1 are shown in Figure 10 and Figure 11. 

Figure 10 shows the average throughput results for the 

starting throughputs of 1MBps and 2MBps. Figure 11 

shows the results for starting throughput of 0.5MBps. 

The average throughput after fault injection is higher on 

average for the ML Agents than it is for the SDN 

Controller.  

Across all test scenarios for topology 1, the throughput 

in the ML Agent scenario after the fault was injected was 
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an average of 456801.52 +/- 776.64 Bps higher than in 

the SDN controller scenario giving a percentage increase 

of 16.7%. 

 

Figure 10: Average throughput after bandwidth 

limitation for ML agent response and SDN 

controller response. Grouped by starting 

throughput (1MBps and 2MBps) and percentage 

reduction in bandwidth. Topology one used. ML 

Agent performance improvement increases as 

percentage drop in bandwidth increases. 

 

Figure 11: Average throughput after bandwidth 

limitation for ML agent response and SDN 

controller response. Grouped by starting 

throughput (0.5MBps) and percentage reduction in 

bandwidth. Topology one used. 

The results for the starting throughput of 0.5MBps were 

separated out into Figure 11 as different behaviour was 

observed. The previous pattern of increasing throughput 

reduction resulting in decreasing average throughput in 

the SDN controller scenarios can be observed only in the 

first two datapoint sets. For throughput reduction of 80% 

and 90% it can instead be seen that one example is due 

to a simulation run where the SDN controller recovered 

from the fault, but the ML Agent failed, and the other is 

where both recovered but the average throughput was 

higher for the SDN controller after the fault was 

introduced. 

Figure 12: ML Agent response to throughput throttling (orange dashed vertical), with Agent decision 

marked (purple dashed vertical), and the different switch statistics responses highlighted. Topology one 

used. 
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For reaction time for topology 1, across all tests the ML 

Agents responded 39.2% faster than the SDN controller, 

average response time was 6.245s, and the fastest Agent 

response was 1.956s. 

For 2MBps starting throughput and throughput then 

reduced to 0.1MBps and 0.5MBps the ML Agents 

responded in 5.685s and 8.464s respectively, whereas 

the SDN controller did not. For throughput reduced to 

1MBps, 1.3MBps and 1.6MBps there was no response 

from either solution. For 1MBps starting throughput and 

throughput then reduced to 0.1MBps the Agent re-routed 

in 2.753s, with no response from the SDN controller. For 

throughput reduced to 0.5MBps and 0.8MBps there was 

no response from either solution. Finally, for 0.5MBps 

starting throughput and throughput then reduced to 

0.25MBps and 0.4MBps only the Agents responded, 

with reaction times of 19.169s and 2.664s respectively. 

For throughput reduced to 0.1MBps, the Agents re-

routed in 3.024s, with the SDN controller re-routing in 

10.856s. For throughput reduced to 0.05MBps, the 

Agents re-routed in 1.956s, with the SDN controller re-

routing in 8.013s. 

Figure 12 shows a timeseries plot over the run for 2MBps 

starting throughput and throughput reduced to 0.5MBps. 

Each switch is highlighted, and the times of throughput 

reduction and Agent response are marked on the 

timescale. The initial path of S2 to S4 can be observed 

prior to the throughput throttling (marked by the orange 

dashed vertical line). In the plot, throughput is measured 

via the bytes received at a switch per unit time. The 

reduction in throughput in the S2-S4 path is observed in 

the signals and then the ML Agent makes a routing 

decision following its inference of the statistics being 

received (marked by the purple dashed vertical line). The 

time between throughput throttle and ML Agent routing 

decision is less than 6 seconds. Following the routing 

decision, the blue S2 signal drops to zero and the signal 

on S3 instead begins to ramp up, indicating a change in 

flow rules for a new S3-S4 path. The gap between S2 

dropping and S3 starting is attributed to an artifact of 

how the flow rules are being implemented. The sharp 

increase in the throughput signals of both S3 and S4 is 

attributed to the buffers on the switches sending data 

being emptied quickly as the route is re-established 

following the switch. After approximately 6 seconds, the 

buffers return to normal, and the updated route can be 

observed at the original throughput level. 

For topology 2, the results for average throughput after 

fault injection are shown in Figure 13 and Figure 14. For 

starting throughput level of 2MBps in Figure 13, the first 

3 datapoints indicate that there is no response from the 

ML Agents as the results are the same as the SDN 

controller. Datapoints 4 and 5 show improvement in the 

average throughput over the SDN controller, which is 

following a steady downward trend. However, compared 

to Figure 10, the average throughput increase for ML 

Agent response over SDN controller response is lower 

than for the smaller topology. The same is true for the 

starting throughput of 0.5MBps, which only sees 

improvement in the fourth datapoint. This indicates the 

ML Agent currently is not performing as well in the 

larger topology. 

 

Figure 13: Average throughput after bandwidth 

limitation for ML agent and SDN controller. 

Datapoints are grouped by starting throughput 

(0.5MBps and 2MBps) and percentage reduction in 

bandwidth. Topology two used. 

 

Figure 14: Average throughput after bandwidth 

limitation for ML Agent response and SDN 

controller response. Datapoints are grouped by 

starting throughput (1MBps) and percentage 

reduction in bandwidth. Topology two used.  
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Figure 14 shows that for a starting throughput of 1MBps, 

no single data point had improvement over the SDN 

controller response. However, from analysis of the log 

files recorded by the Agents, for the 50% and 70% drops 

in throughput, the Agents did detect the degradation. The 

issue instead lies with the re-routing path selection, as 

the larger number of possible routes in the larger network 

is causing the Agent to not calculate the shortest path 

correctly in these cases. This shows that the ML model 

used to detect the degradation in network link quality is 

performing better than can immediately be seen in the 

throughput plots, and that improvements could come 

from updating the path selection algorithm for larger 

networks. 

An example of this is seen in Figure 15 which shows an 

excerpt from the Agent log on switch S5 during the test 

with 1MBps starting throughput with 50% throughput 

drop. It can be seen from the successive statistics 

windows that from one timestep to the next the Agent 

recognises an increase in latency resulting in a larger 

latency weight for the graph. However, the same path is 

calculated after the latency increase. 

 

Figure 15: Excerpts from Agent log files showing 

detection of increase in latency with no path update. 

Information shows successive timesteps, an increase 

in the latency parameter in double square brackets, 

and the same path before and after the latency 

increase. 

Overall, across all the datasets the ML Agents had an 

average throughput of 72.9 +/- 0.406 kBps higher than 

the SDN controller tests which translates to an increase 

of 12.21%. This is a smaller average increase than for the 

results for the smaller topology, but it does still show an 

improvement over the SDN controller’s performance. 

Reaction time results on topology 2 show that across all 

tests the ML Agents responded 14.3% faster than the 

SDN controller, average response time was 12.858s, and 

the fastest Agent response was 5.078s. 

2MBps starting throughput tests the following reaction 

time responses were recorded: for reduced throughputs 

of 0.1MBps and 0.5MBps the ML Agents responded in 

19.653s and 5.078s respectively, whereas the SDN 

controllers did not respond. The 0.1MBps datapoint was 

significantly slower than its counterpart in the topology 

1. For reduced throughputs of 1MBps, 1.3MBps and 

1.6MBps there was no response from the Agents or the 

SDN controllers. 

For the 1MBps starting throughput tests there were no 

tests where the ML Agent reacted with routing decisions. 

Finally, for the 0.5MBps starting throughput tests the 

following reaction time responses were recorded: For the 

0.05MBps reduction level, the reaction time was 

13.844s. The SDN controller did not respond. For all 

Figure 16: ML Agent response to throughput throttling (orange dashed vertical), with Agent decision marked 

(purple dashed vertical), and the different switch statistics responses highlighted. Topology two used. 
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other examples there was no response from either ML 

Agent or SDN controller.  

Compared to the reaction time results for 0.5MBps 

starting throughput for Topology 1, the performance is 

worse for the larger topology. Though this example also 

shows that the SDN controller did not respond to any of 

the throughput reductions whereas in the smaller 

topology examples it responded to the 0.05MBps and 

0.1MBps reduction levels. This indicates that while the 

ML Agents are struggling more with the larger topology, 

they are still an improvement over the intent based SDN 

controller. 

Figure 16 is an example of successful switching 

behaviour in the larger topology for the 2MBps to 

0.5MBps throughput scenario. The original path in this 

scenario was S0 (host 1) – S1 – S5 – S9 (host 2), and the 

plot shows the throughput via received bytes at S1, S5, 

and S9. Five seconds after the throughput is reduced, the 

ML Agent recognises this degradation and makes a 

routing decision, marked by the purple dashed vertical 

line. The path decision made by the ML Agent is to S0 – 

S2 – S8 – S9. This can be seen in the plot as the signal 

lines for S1 and S5 drop to zero, and the signal for S9 

ramps up as the buffers empty as the path is re-

established and then returns to the original level. 

CONCLUSIONS  

To summarise, the aim of this activity was to 

demonstrate ML models that begin to tackle specific 

challenges in OCS, highlight the advantages ML can 

bring and analyse the feasibility of their use in these 

systems. 

Over the two use cases which have been discussed 

throughout this document, there were several successes 

that can be taken forward and developed into technology 

ready to be used in an OCS which are summarised 

below.  

It has been shown that machine learning can be used to 

improve signal acquisition when using pixel array 

detectors by reducing the region of interest over which 

to apply the CoG algorithm. These results need further 

exploring but it has been demonstrated that, at SNR 

values between 1-1.5dB, the ML assisted acquisition 

method shows an improvement of over an order of 

magnitude compared to a standard CoG method.  

For the network healing use case with ML network 

Agents, improvements were seen in the overall 

throughput at the end point of the network when 

compared to a COTS SDN controller. This is a beneficial 

outcome as it means that the quality of service for the 

end user will be improved when using the ML agents to 

reroute traffic around a compromised link. This end user 

service would also be improved through the 

improvement of reaction time when using the ML 

agents. The agents were able to react to the fault in the 

network in less than 10 seconds and in some cases less 

than 5 allowing for this improved end user service. 

The main challenges in this activity were associated with 

the development of custom datasets, and the availability 

of relevant test benches, specifically for optical data. 

Future work for the networking use case could start with 

production of higher fidelity synthetic data through 

simulation of a larger network with more realistic fault 

injection. Through this, the impact of the ML solution 

could be better measured when considering OGS 

handover. For spatial acquisition, synthetic datasets 

could be further developed, or real optical data could be 

incorporated. This would then lead to tests combining 

the use cases, through the creation of a simulator test 

bench that combines networking and optical 

communication.  

Despite these challenges, the results of this feasibility 

activity have shown that there is a place for the use of 

machine learning in networked optical communications 

systems. A system that applies machine learning in both 

areas effectively would enable efficient and accurate 

acquisition of the optical ground station signal and 

optimal routing of traffic to the ground, effectively 

maximising the time connected to the ground during an 

available downlink window. 
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