

Harvey 1 38th Annual Small Satellite Conference

SSC24-IV-07

Machine Learning Models for Optimisation of Satellite Laser Communication Terminals

and Optical Space Networks

Georgia Harvey, Cameron Anderson, Murray Ireland

Craft Prospect Ltd

Suite 12 Fairfield, 1048 Govan Road, Glasgow, United Kingdom, G51 4XS; +44 (0) 7421 994 712

georgia@craftprospect.com

Rob Hunter, Afonso Nunes, Rob Stansfield

CGI IT UK Ltd

20 Fenchurch Street, 14th Floor, London, United Kingdom, EC3M 3BY, +44 (0) 2076 379 111

rob.hunter@cgi.com

ABSTRACT

Laser communication systems in optical SatCom systems are mainly used in point-to-point networks, possibly

deploying standard routing solutions which perform sub-optimally when deployed in transport and access satellite

networks. Optical signal acquisition is also affected by the changing satellite environment and atmospheric conditions.

In response, Craft Prospect and partners focused on upgrading optical systems by using machine learning (ML)

methods to improve laser communication terminals and to simplify interconnectivity of networked laser SatCom

systems. In this context we target the European OPS-SAT Versatile Optical Laboratory for Telecoms (VOLT) mission

led by Craft Prospect and the European High Throughput Optical Network (HydRON) project which benefits from

using machine learning systems.

Based on initial research and development work on enhancement of satellite free space laser communication systems

with machine learning, two use cases and their requirements were identified. Firstly, leveraging autonomic networking

principles to develop distributed ML agents for space network nodes which monitor local network state and can

autonomously make rerouting decisions on impaired links in a localised way to improve the average network

throughput. This enables links between optical ground stations (OGS) and the space network segments to quickly

switch in a smooth and responsive way without having to have multiple paths open; searches carried out for preset

alternate paths in long/overloaded flow table lists; or an over-reliance on a software defined networking (SDN)

controller. Secondly, for space segment laser terminals, development of a ML model to boost detection accuracy in

coarse acquisition in reduced signal-to-noise ratio (SNR) cases with strong background light conditions and varying

beacon intensity. This is relevant for the scenario where a LEO satellite receives an uplink signal from OGS with

strong atmospheric fluctuations or background Earth reflections and the detector is saturated. Similarly, in inter-

satellite links (ISL) where satellites are undergoing relative movement and the signal intensity rate of change is rapid,

the acquisition sensor quickly arrives in a region where SNR is low, or the sensor is saturated.

In this contribution, we present the developed ML models for these use cases and describe training techniques and

datasets. We discuss performance results from tests carried out with a network simulator with the results compared to

an SDN controller solution to demonstrate the benefits. For small network topologies, the ML solution resulted in the

throughput at the network endpoint being 16.7% higher following link degradation than the SDN controller solution.

The spatial acquisition detection errors and accuracy under different SNR conditions using the ML solution was

compared to a benchmark Centre of Gravity detection method typically used in laser terminal beacon acquisition.

Results showed that the beacon detections from the ML solution were closer in distance to the true spot than the

conventional method in low SNR conditions by over an order of magnitude, in addition to having an overall accuracy

of 97.77%.

With this we show how to enable autonomic routing in optical data, and laser terminals with improved acquisition

rates in networks for OPS-SAT VOLT and for multitudes of future interconnected laser SatCom missions.

Harvey 2 38th Annual Small Satellite Conference

INTRODUCTION

Laser communication systems in optical payloads are

often used in non-optimised satellite communication

(SatCom) systems. In response to this Craft Prospect and

partners are focused on upgrading optical systems by

using machine learning (ML) methods to improve laser

communication terminals and to simplify

interconnectivity of networked laser SatCom systems. In

this context we target the European OPS-SAT Versatile

Optical Laboratory for Telecoms (VOLT) mission led by

Craft Prospect and the European Space Agency (ESA)

High Throughput Optical Network (HydRON) project

which benefits from using machine learning systems.

The space and network segments were the focus of

examination, and this led to the down selection of two

main opportunities:

1. ML for Spatial Acquisition

2. ML for Network Management

Spatial Acquisition Use Case

This use case is based on using ML algorithms to

improve the spatial acquisition segment of the

acquisition, pointing, and tracking process (APT). The

APT process is an essential part of communication

between Laser Communication Terminals (LCTs), and

so is a key part of HydRON. Accurate beam pointing

must be established and maintained to have data

transmission with minimal losses. The method of

detection chosen for analysis for this activity was CMOS

and InGaAs camera sensors. This decision was based on

previous CPL work and expertise with APT systems.

Detection is conventionally done using traditional

computer vision (CV) algorithms, such as the Centre of

Gravity (CoG) algorithm, which identifies the incoming

laser beacon spot on the detector from its high pixel

intensity value as compared to the background details on

the detector. Accuracy and time of the conventional

solution can be affected by effects on the sensor such as

background noise and dead/hot pixel anomalies. As

such, this use case involved detection of the incoming

beacon in low Signal to Noise Ratio (SNR) conditions to

investigate if ML can be used to boost the SNR during

detection. Two main scenarios were selected for analysis

where the baseline CoG accuracy is reduced:

In Scenario 1, a low Earth orbit (LEO) satellite points

towards the Earth optical ground station (OGS) and is

receiving uplink. Strong background light can be present

on the LCT sensor from background Earth reflections

(due to Earth albedo) which reduces the uplink signal

dynamic range on the acquisition sensor and furthermore

the signal fluctuates (approximately 20dB) in power at

the receiving LCT due to atmospheric turbulence. Here

SNR boosting is of interest for improved acquisition.

In Scenario 2, an inter-satellite link (ISL) is being

established and the two satellites with LCT are

undergoing movement towards each other or away from

each other and the intensity of the beam increases and

decreases over their fly-by. Here although no strong

background noise is expected as the LCTs are pointing

into dark space but due to the received changing beacon

power, SNR boosting is of interest for improved

acquisition due to the strong signal fluctuation rate. In

this scenario the acquisition sensor quickly ends up in a

region where SNR in the image is low or the sensor is

saturated.

This allows ML model detection accuracy to be

compared with SNR showing where the use of ML is

most effective. The results from the ML model detection

were fed into a conventional CoG algorithm to get an

enhanced output as the bounding box generated by the

model allows for the Region of Interest (ROI) to be

decreased and the centre of the spot to be better found

for tracking purposes. The combined approach was

compared with a pure CoG detection-based result.

Network Healing Use Case

The use case focused on network management was

performed in partnership with CGI, using their

experience with concepts and simulations of networks.

In HydRON, the network architecture is built on optical

links between the spacecraft and the OGS, and on optical

ISL1. In HydRON study, several routing concepts were

analysed, and preference was given to centralised routing

solutions due to the ability to maintain network routing

semantics as promptly as possible when facing the

changing network topologies. However, as the name

suggests, centralised routing solutions fully rely on the

central controller decisions to act and react to network

impairments. Thus, we see room for improved fault

management and decrease of routing reaction times if

routing devices can have a certain level or discretionary

routing decision, time and scope limited.

Optical links result in the high throughput requirements

as set out by HydRON, however optical links between

satellites and OGS can also be affected by atmospheric

conditions such as turbulence or adverse weather

conditions, which affects the requirements on optical

links to have a clear line of sight. Additionally, ISLs

could be affected by factors such as changing distances

between satellites, capabilities of different LCTs and

varying solar background conditions. These scenarios

could cause performance degradation on network links

Harvey 3 38th Annual Small Satellite Conference

and lower throughput. The conventional solution is to

handle small degradation via buffering at the network

nodes until normal operation can resume. For more

persistent outage, the SDN centralised controller

monitors network links and if it detects faulty links

through regular link probing, then it is configured to re-

route the traffic on some other path through the network

to reach the required end point. However, with a

centralised controller, this means there is a

communication overhead between nodes and the

controller, increasing the time for the throughput

reduction to be resolved.

The ML solution to improve the data-plane resilience to

outages is through implementing autonomic network

functionality8 by deploying a software application on

each switch node to monitor its links, and then analyse

the traffic to make a prediction on the link quality using

ML. This software application is known as an Agent for

this work. The Agent then determines if local re-routing

actions are required and what the best path to the end

point is based on its knowledge of the network topology

and latencies across the network. The Agent applications

can send notifications of path updates to other Agents, so

knowledge of a link degradation is shared with the nodes

neighbouring a degraded link, or within a limited local

radius. The aim is that by temporarily bypassing the

communication overhead with a controller and having

the nodes themselves perform localised re-routing, it will

allow the throughput to recover from degradation more

effectively. It also offers redundancy if connection is lost

with the controller node. The performance of the ML

Agents will be compared to that of the SDN controllers

for the same scenarios.

It is envisioned that this ML enabled network healing

functionality could fit into real use cases such as an OGS

with up to 20 space nodes in view wherein some of the

optical links are degraded with reduced throughput due

to cloud cover, atmospheric turbulence, or some

temporary obstruction like a passing aircraft. Local re-

routing capability would enable the satellite nodes to

quickly detect the degradation and perform re-routing to

maintain overall end user quality. Figure 1 is a

hypothetical illustration of this real use case; with 20

space nodes organised by LEO, medium Earth orbits

(MEO) and geostationary orbits (GEO), and dashed lines

between nodes highlighting potential links. In this

example, space node S20 needs to downlink to the OGS,

but cloud cover is impairing the link. Network healing

ML Agents would allow S20 to detect the degradation

on its link, and for the other nodes in the network to

report on their link qualities, allowing S20 route its

traffic through other satellites on the optimal path

determined by the ML. Similarly, there could be the case

of multiple OGS in view of the space segment with the

path to one OGS obstructed, wherein the local healing

solution could enable routing to another OGS, reducing

handover.

MACHINE LEARNING MODELS

Spatial Acquisition Model

The YOLOv3 Tiny model was used to perform object

detection on camera sensor images to distinguish the

incoming beacon from the noise conditions. YOLO – or

You Only Look Once – is a fully convolutional, single-

stage object detection model designed for real time

object detection. For the tiny version of YOLOv3, the

model is comprised of a feature extracting backbone of

7 convolutional layers using 3x3 kernels interspersed

with normalisation, pooling and leaky ReLU layers. This

architecture is seen in Figure 2.

Figure 1: Hypothetical illustration of real-world application of network healing use case.

Harvey 4 38th Annual Small Satellite Conference

The skip connection in the model, where the output of an

intermediate layer is concatenated with the final output,

allows for detections of objects to be made at different

scales in an image. The input to the model is a scaled

image, normalised to the maximum pixel intensity based

on the precision of the pixel values. After passing

through the model, the outputs obtained are the

classification for objects that have been detected in the

image, the bounding boxes that contain these objects,

and confidence scores around the detections.

The YOLO model was selected primarily due to the

inference speed which is required for real time detection

and the possibility of tracking. Using optimised

hardware implementations, YOLOv3 can process over

200 frames per second (corresponding to an inference

time of 5ms)2, 3, 4. Convolutional neural networks have

been shown to have strengths in object detection tasks of

this type7.

After the bounding boxes have been detected using the

ML model, the standard Centre of Gravity algorithm is

used within the region of interest defined by the

bounding box to detect the spot itself.

Network Healing Model

The model developed for the network healing use case

was comprised of a temporal autoencoder (TAE) which

learns a low-dimensional representation of the timeseries

data with a multi-layered perceptron (MLP) to make

predictions on latency. It is a novel architecture based on

a similar model used for clustering of time series data6.

The TAE is used to learn the most important features of

the data at different temporal scales by using a

convolutional layer followed by bi-directional long

short-term memory (LSTM) layers to learn the short

term and longer-term patterns respectively. The choice

of algorithm was informed by the traffic data available

in the simulator and the need to have a quantitative

Figure 2: YOLOv3 Tiny architecture.

Figure 3: Architecture of the deep temporal regression (DTR) model. Blue blocks are used at inference.

Harvey 5 38th Annual Small Satellite Conference

model that can be used for well-informed routing

choices.

For the ML agent to be able to make decisions as to

where to re-route data, a regression model must be

developed as this allows for the prediction of a

continuous variable after training. This means the

unsupervised clustering algorithms that were originally

considered were not suitable for this problem as clusters

would require classification in post of what clusters merit

re-routing. To add label classes of link capacity means

that the model cannot learn when re-routing decisions

can be made. The concept was to use the model on a node

to use its limited view of its own node edge statistics to

predict the increase to the latency over the full path, and

so the algorithm needs to be able to learn how temporal

features of the network statistics affect the full path flow

properties. These requirements led to the development of

the deep temporal regression (DTR) model with the

architecture shown in Figure 3.

TRAINING

The chosen use cases did not have readily available

datasets for ML training. As such, datasets had to be

created as part of this activity that were suitable for the

scenarios.

Spatial Acquisition Training

The data required for training and testing were images

recorded from the camera sensor that were representative

of what would be seen during the acquisition phase. This

required the presence of several key features: the

incoming laser beacon at different intensities and

positions, and different noise conditions.

The primary dataset for this use case was generated

semi-synthetically from a source of two sets of 1000

images from an InGaAs camera sensor, provided by

ESA. The first set of 1000 grayscale images consisted

only of a very low background noise level and could

represent the ISL scenario with dark space in the

background. The second set was from the same camera,

but opened to let a higher level of light onto the sensor

and this could represent the spacecraft to OGS scenario

with the Earth in the background casting light onto the

sensor.

The source images did not include the incoming beacon

spot, so this required the addition of this feature

synthetically using Python image manipulation code.

This allowed for generation of large numbers of images

for the dataset through precise control of the beacon

features (shape, position, and intensity). Incoming

beacon spots were added using a kernel that creates a

spot in the required Airy pattern and could be adjusted to

different sizes and levels of visible ring lobes. The

primary lobe was scaled to where it was only a few pixels

across on the image, approximately 3 pixels across at its

brightest.

The initial dataset used for training consisted of two

subsets of 2000 images from both the low and high

background noise image source sets. For both noise sets

this resulted in a subset with the spot only a few pixels

across with no visible ring, and a subset with the

intensity of the spot increased until the ring was visible

over the noise. The SNR in this training dataset averaged

around 1.04dB for the high background noise images,

and around 17.596dB for the low background noise

images, with the maximum SNR at 22.839dB. SNR was

calculated using Equation 1, where ‘S’ is the highest

pixel value of the laser spot, and ‘N’ is the average pixel

value of the background noise of the full image.

𝑆𝑁𝑅 = 10 log10(
𝑆

𝑁
) (1)

From this dataset 70% of images were used for model

retraining, 10% for model validation and 20% for

functional testing (ML model inference, without the use

of a testbench). The most important part of the YOLO

model which allows for high quality object detection

with a simple network is the loss function. The loss

function is a combination of mean squared error for the

bounding box offsets; binary cross entropy for

objectness score; and sparse categorical entropy for class

prediction.

In addition to the synthetically generated dataset, another

dataset was originally created using the CPL optical test

bench which consists of the components of a CPL APT

system arranged on an optical breadboard. Using a fast-

steering mirror and optical attenuation filters, a dataset

was created that showed the incoming beacon at different

intensities and positions in different background noise

conditions, as well as in the presence of an outgoing

beacon which created blinding effects on the sensor.

Various camera conditions were also included, showing

levels of dead and hot pixels. Another version of the

same ML model was trained and tested on this dataset.

However, the use of the optical test bench for

performance testing was deemed to be too far from real

conditions in terms of accuracy and relevance, so this

dataset was subsequently used to only reinforce the

adaptability of the ML model to different conditions for

training instead of specific performance results.

The synthetically created dataset was the primary source

for performance training and testing.

Harvey 6 38th Annual Small Satellite Conference

Network Healing Training

The datasets used for training the model were created

using the CGI network simulator which consists of a

Linux machine running Mininet. Mininet is an open-

source network emulator which can emulate switches,

hosts (data endpoints), and SDN controllers, along with

aspects of network links and data flow. The simulator

had an Open Network Operating System (ONOS)

controller application which enabled traffic control and

operated as an SDN controller. The emulated switches

were in Open VSwitch (OVS) format and have flow

tables which set the rules of which ports traffic should

flow through at any given time, and these can be altered

either by the SDN controller or by manual OVS

commands.

The required data from the network to build the datasets

are as follows:

• Switch node port statistics: bytes sent and received,

buffer backlog, errors. Viewing total bytes

sent/received over time allows patterns to be

observed in the traffic at a node. For example, a

reduction in the rate of bytes being received over

time may indicate some degradation.

• Full path flow statistics: latency, jitter, throughput.

Measuring full path latency allows patterns in

behaviour observed at a node to be compared to the

latency of the full path. For example, for the

reduction in bytes received at a port discussed

above, if there is an increase in latency at the same

moment, this confirms degradation of the link, and

not just a natural reduction in traffic flow.

Simulation runs were also performed on the simulator

with variations on the following network parameters:

starting throughput, level of throughput reduction,

pattern of throughput reduction (steps or single drop),

statistics sampling rate, simulation time and network

topology. Two topologies were used for statistics

gathering: a complex 8 node network for collecting

statistics from multiple interfaces at once, and a simple

topology of two nodes connected in a chain for mapping

link statistics to latency. Statistics were collected from

each side of network links to highlight any traffic

patterns. The simulation runs collected for training

included a range of starting throughputs and level of

throughput reduction, in addition to different patterns of

throughput reduction (single or multiple steps). The

dataset also included differentiations for distinguishing

between healthy throughput reduction (no latency

increase) and degraded link quality (latency increases as

throughput decreases). Starting throughputs varied from

100MBps to 2000MBps in 100MBps increments. In total

there was 62 simulation runs ranging from 90 to 400

second duration.

To train the DTR model, there are two loss functions that

are minimised simultaneously: the mean squared error

between the input data and the reconstructed data from

the TAE, and the mean squared error between the true

latency value and the prediction from the MLP.

Hyperparameters of the model were tuned using a grid

search to find the optimal parameters. Using the dataset

of 75,774 data points once it has been windowed which

was split 70/20/10 into training, testing, and validation

sets, an 𝑅2 score on the test set was 0.595.

Training the model also involved the development of the

software for the Agent applications. The ML Agent

software was constructed from Python code and

packaged into one program that could initialise and

monitor the function of the Agents on the CGI simulator.

The Agents can interface with the network to collect

statistics from network node ports and have a stored map

of the topology of the network. Once internal machine

learning inference and path decisions have been made,

the Agents can then enact updates to switch flow tables

using OpenVSwitch commands.

TEST SCENARIOS & RESULTS

Specific scenarios were created for the purposes of

performance testing of the machine learning models. The

test results will be described following the outline of the

test scenarios.

Spatial Acquisition Testing

Twelve simulated datasets of 500 images each were

generated specifically for performance testing this use

case: three levels of background noise (low, medium,

and high), with each noise level having four intensity

levels of the incoming beacon ranging from only the

central lobe being visible and a few pixels across to

bright central lobe and clear first ring lobe. To generate

the medium noise images, a naïve method was selected

for brevity where the high noise images had their

intensities halved and the pixels shuffled to ensure that

the images were random and simulated being drawn

from a completely new distribution. The purpose of this

was to test the performance of the model across a range

of sensor conditions.

Examples are shown of each level of background noise

in Figure 4. The spot intensities are at all at the highest

spot level for comparison in this figure, and the images

have been zoomed in to show the details of the spot. The

full images are sized at 888x888 pixels. For the datasets

these specific images belong to the average signal to

noise ratios are as follows: (1) – 15.28dB, (2) – 4.14dB

and (3) – 1.31dB.

Harvey 7 38th Annual Small Satellite Conference

Figure 4: Examples of synthetically created images

used for testing. Top left (1) – low background noise,

top-right (2) – medium background noise and

bottom-middle (3) – high background noise. All

beacon spots have been set to the highest intensity at

spot level 4.

The average SNR values for the rest of the datasets are

as follows:

Table 1: Summary of average SNR values for

synthetic datasets based on noise level and spot

intensity level.

 Low

Background

Noise

Medium

Background

Noise

High

Background

Noise

Spot Level 1 14.02dB 3.14dB 1.19dB

Spot Level 2 14.13dB 4.03dB 1.23dB

Spot Level 3 14.82dB 4.07dB 1.31dB

The datasets were put through the ML model to perform

inference which outputs bounding boxes around where

the incoming beacon has been detected. Then the CoG

algorithm was used on the ROI within the bounding box

to find the centre of the spot. The pixel distance from the

centre of the spot detected by ML assisted CoG

algorithm to the true spot was measured. This was then

compared to that of the pure CoG algorithm. Overall

accuracy of the model was also measured.

Model accuracies were calculated using the intersection

over union (IoU) metric and are shown in Table 2.

Accuracy at IoU > N is the percentage of detections that

have an IoU value greater than that ‘N’ value.

Table 2: Average IoU and Accuracy values for the

YOLOv3 Tiny model.

Metric Average Maximum Minimum

IoU of Detections 0.757 0.850 0.569

Accuracy at IoU > 0.7 0.636 0.931 0.183

Accuracy at IoU > 0.8 0.952 0.772 0.165

Accuracy at IoU > 0.9 0.336 0.574 0.078

Figure 5 shows the IoU at different SNR values. An IoU

score of 0.7 and above is considered a positive detection

as is standard in object detection scenarios. Accuracies

over different SNR values are shown in

Figure 6. The accuracy values differ between Figure 5

and

Figure 6 due to different definitions of a detection. For

Harvey 8 38th Annual Small Satellite Conference

Figure 6, a detection is classified as successful if the laser

spot exists anywhere within the bounding box therefore

allowing the centre of gravity algorithm to be used to

locate the spot centre.

Figure 5: Average IoU and accuracy variation with

SNR.

Figure 6: Model accuracy variation with SNR.

Overall, for the full SNR range tested, the average

ML model detection accuracy was 97.77%.

A plot comparing the ML YOLOv3 assisted CoG results

to the pure CoG baseline algorithm for spot detection

accuracy is shown in Figure 7. The pure CoG algorithm

is configured with a handpicked threshold equal to 70%

of the maximum image signal value (16bit images). The

YOLOv3 ML model performs detection and outputs a

detection bounding box of fixed size of 25px by 25px.

This bounding box is treated as a region of interest over

which the same CoG algorithm is applied to extract the

spot centre pixel position in the ML assisted case.

As can be seen the ML assisted algorithm detections

outperform the pure CoG algorithm in low SNR regions

by over an order of magnitude better detection accuracy

(based on the distance from the true spot). The CoG

misdetections are resultant from the noise being above

the threshold used by the CoG. The distance from the

true spot signal centre of the ML model is below 9px and

averages below 5px, this is likely due to the relatively

big bounding box pixel size (25px by 25px) used for

detection compared to the spot size (approximately 3px

by 3px) over which the CoG is applied and affected by

the noise.

For higher SNR conditions (> 3dB in the used dataset)

the pure CoG algorithm and the ML assisted algorithm

perform equally well which is expected as the noise

levels are below the CoG threshold used.

Harvey 9 38th Annual Small Satellite Conference

The ML model success rate of detection per SNR from

these results is shown by the detection accuracy in Figure

7. As the SNR lowers for the case of high background

noise in the test images the ML model detection accuracy

is above 90% allowing to boost the beacon acquisition

detection rate in low SNR conditions compared to the

pure CoG algorithm. Overall, for the full SNR range

tested the average ML model detection accuracy was

97.77%.

As discussed at the end of the Spatial Acquisition

Training section, the dataset created on the optical test

bench was also used for testing the robustness of the

model to different conditions prior to the focus on the

synthetically created data. The test compared the

detection distance from the true spot over a whole spiral

of the fast-steering mirror performed for different

outgoing laser powers for a pure CoG algorithm and ML

assisted algorithm. The CoG algorithm used a threshold

equal to 95% of the maximum image signal value (8bit

images). The ML model bounding box pixel size (50px

by 50px) was used for detection.

For a test run with 5% pixels in the image containing hot

and dead pixel noise, it was shown that under all

outgoing blinding laser powers the ML assisted

algorithm can detect the incoming laser spot with an

approximate spot distance of 8px to the true spot and

average detection success rate of 80% for powers lower

than 0.189mW.

As the powers of the outgoing blinding laser increased

beyond 0.189mW the ML model detection rate decreases

to an average of 75% and the distance from the spot

varies up to 35px. Nevertheless, the ML model detection

of the spot outperforms the pure CoG algorithm on all

outgoing blinding laser powers used.

The inclusion of these additional test results showcases

the versatility of the chosen machine learning model to

different optical conditions.

Network Healing Testing

The aim of performance testing was to analyse the

performance of the ML Network Healing Agents in the

act of rerouting traffic in the presence of a single network

fault. Then the performance will be compared to that of

an SDN intent-based controller in the same scenarios.

The Agents were deployed on each node in a created

network topology in the CGI network simulator. For

verification, they were configured to log collected traffic

statistics, ML inferences, new path decisions,

notifications sent and received, and any commands to

update the flow rules on the switches. The throughput at

the final node was also recorded to analyse the impact of

throughput reductions on the traffic.

As with the training stage, different combinations of the

network parameters were used to create scenarios for

testing. The test procedure is as follows:

1. Configure network simulator and ML Agents.

Figure 7: Pixel distance to the true spot centre (0.5px) for different SNR levels from the final test

dataset when the CoG algorithm is used and when the ML model assisted algorithm is used. Note

that some of the spot SNR levels are very close and as such are merged into a single data point.

Harvey 10 38th Annual Small Satellite Conference

2. Begin the test scenario.
3. Initiate degradation on specified link after 30

seconds of initial operation.
4. End simulation after 30 seconds of link

degradation.
5. Repeat for all test scenarios.

The test scenarios were based on starting throughput,

reduced throughput, and network topology. Table 3

shows the combinations of throughputs. These levels

were chosen to give a wide spread of levels to analyse

without requiring a large amount of time to be spent on

generation of the test scenarios on the simulator. Each

combination of throughputs will be performed once for

each topology, giving 24 sets of results for both the ML

and conventional SDN controller solution.

Table 3: Combinations of starting and reduced

throughputs for performance testing.

Starting

Throughput

Reduced

Throughput

Starting

Throughput

Reduced

Throughput

2MBps 0.1MBps 1MBps 0.1MBps

0.5MBps 0.5MBps

1MBps 0.8MBps

1.3MBps 0.5MBps 0.05MBps

1.6MBps 0.1MBps

0.25MBps

0.4MBps

Different topologies were selected for the purposes of

observing network behaviour in different conditions.

The topologies varied in complexity and number of

nodes. Figure 8 and Figure 9 show the chosen topologies.

Figure 8: Topology 1 used for testing. Four switches

with links shown. Red link represents link to have

throughput reduced.

Figure 9: Topology 2 used for testing. Ten switches

with links shown. Red link represents link to have

throughput reduced.

The small topology shown in Figure 8 was chosen to

observe the rerouting behaviours in a controlled and

simple environment and get an initial impression of

network behaviour when switching paths. The larger

topology shown in Figure 9 has numerous links from

each node. The larger network means that the ML Agent

decisions can be analysed in a more complex

environment with more alternative routing paths.

The chosen topologies are not representative of a full or

real satellite constellation but represent a meaningful

subset scenario, whereby an OGS with up to 20 satellites

in view (as shown in Figure 1) may have cloud cover or

other atmospheric interference blocking connection to

some of those satellites. The ML enabled network

switching could then be used to divert traffic from the

satellite that needs to make connection with the OGS, to

an intermediary satellite that does have clear view of the

OGS to enable uplink/downlink as quickly as possible.

Using smaller topologies in the testing goes towards

addressing this scenario. To scale to a real constellation

would also require more complex simulation and

datasets. The subset scenario also enables the

showcasing of the ML switching technology as a

potential mitigation for the use of protected switching

(another form of network redundancy) which can

penalise network performance.

The main metrics for performance analysis are average

throughput after fault injection and reaction time.

Average throughput is the average of the bytes received

per unit time at the final interface between fault injection

and end of the simulation run. Reaction time pertains to

the time between when throughput reduction was

initiated, and the time that an ML Agent or the SDN

controller makes some actionable routing decision.

Reaction time is measured to gauge the responsiveness

of the ML Agents as compared to the conventional SDN

controller solution. The smaller topology will be

compared to the larger topology for the ML solution and

the conventional solution.

The results for average throughput after fault injection

for topology 1 are shown in Figure 10 and Figure 11.

Figure 10 shows the average throughput results for the

starting throughputs of 1MBps and 2MBps. Figure 11

shows the results for starting throughput of 0.5MBps.

The average throughput after fault injection is higher on

average for the ML Agents than it is for the SDN

Controller.

Across all test scenarios for topology 1, the throughput

in the ML Agent scenario after the fault was injected was

Harvey 11 38th Annual Small Satellite Conference

an average of 456801.52 +/- 776.64 Bps higher than in

the SDN controller scenario giving a percentage increase

of 16.7%.

Figure 10: Average throughput after bandwidth

limitation for ML agent response and SDN

controller response. Grouped by starting

throughput (1MBps and 2MBps) and percentage

reduction in bandwidth. Topology one used. ML

Agent performance improvement increases as

percentage drop in bandwidth increases.

Figure 11: Average throughput after bandwidth

limitation for ML agent response and SDN

controller response. Grouped by starting

throughput (0.5MBps) and percentage reduction in

bandwidth. Topology one used.

The results for the starting throughput of 0.5MBps were

separated out into Figure 11 as different behaviour was

observed. The previous pattern of increasing throughput

reduction resulting in decreasing average throughput in

the SDN controller scenarios can be observed only in the

first two datapoint sets. For throughput reduction of 80%

and 90% it can instead be seen that one example is due

to a simulation run where the SDN controller recovered

from the fault, but the ML Agent failed, and the other is

where both recovered but the average throughput was

higher for the SDN controller after the fault was

introduced.

Figure 12: ML Agent response to throughput throttling (orange dashed vertical), with Agent decision

marked (purple dashed vertical), and the different switch statistics responses highlighted. Topology one

used.

Harvey 12 38th Annual Small Satellite Conference

For reaction time for topology 1, across all tests the ML

Agents responded 39.2% faster than the SDN controller,

average response time was 6.245s, and the fastest Agent

response was 1.956s.

For 2MBps starting throughput and throughput then

reduced to 0.1MBps and 0.5MBps the ML Agents

responded in 5.685s and 8.464s respectively, whereas

the SDN controller did not. For throughput reduced to

1MBps, 1.3MBps and 1.6MBps there was no response

from either solution. For 1MBps starting throughput and

throughput then reduced to 0.1MBps the Agent re-routed

in 2.753s, with no response from the SDN controller. For

throughput reduced to 0.5MBps and 0.8MBps there was

no response from either solution. Finally, for 0.5MBps

starting throughput and throughput then reduced to

0.25MBps and 0.4MBps only the Agents responded,

with reaction times of 19.169s and 2.664s respectively.

For throughput reduced to 0.1MBps, the Agents re-

routed in 3.024s, with the SDN controller re-routing in

10.856s. For throughput reduced to 0.05MBps, the

Agents re-routed in 1.956s, with the SDN controller re-

routing in 8.013s.

Figure 12 shows a timeseries plot over the run for 2MBps

starting throughput and throughput reduced to 0.5MBps.

Each switch is highlighted, and the times of throughput

reduction and Agent response are marked on the

timescale. The initial path of S2 to S4 can be observed

prior to the throughput throttling (marked by the orange

dashed vertical line). In the plot, throughput is measured

via the bytes received at a switch per unit time. The

reduction in throughput in the S2-S4 path is observed in

the signals and then the ML Agent makes a routing

decision following its inference of the statistics being

received (marked by the purple dashed vertical line). The

time between throughput throttle and ML Agent routing

decision is less than 6 seconds. Following the routing

decision, the blue S2 signal drops to zero and the signal

on S3 instead begins to ramp up, indicating a change in

flow rules for a new S3-S4 path. The gap between S2

dropping and S3 starting is attributed to an artifact of

how the flow rules are being implemented. The sharp

increase in the throughput signals of both S3 and S4 is

attributed to the buffers on the switches sending data

being emptied quickly as the route is re-established

following the switch. After approximately 6 seconds, the

buffers return to normal, and the updated route can be

observed at the original throughput level.

For topology 2, the results for average throughput after

fault injection are shown in Figure 13 and Figure 14. For

starting throughput level of 2MBps in Figure 13, the first

3 datapoints indicate that there is no response from the

ML Agents as the results are the same as the SDN

controller. Datapoints 4 and 5 show improvement in the

average throughput over the SDN controller, which is

following a steady downward trend. However, compared

to Figure 10, the average throughput increase for ML

Agent response over SDN controller response is lower

than for the smaller topology. The same is true for the

starting throughput of 0.5MBps, which only sees

improvement in the fourth datapoint. This indicates the

ML Agent currently is not performing as well in the

larger topology.

Figure 13: Average throughput after bandwidth

limitation for ML agent and SDN controller.

Datapoints are grouped by starting throughput

(0.5MBps and 2MBps) and percentage reduction in

bandwidth. Topology two used.

Figure 14: Average throughput after bandwidth

limitation for ML Agent response and SDN

controller response. Datapoints are grouped by

starting throughput (1MBps) and percentage

reduction in bandwidth. Topology two used.

Harvey 13 38th Annual Small Satellite Conference

Figure 14 shows that for a starting throughput of 1MBps,

no single data point had improvement over the SDN

controller response. However, from analysis of the log

files recorded by the Agents, for the 50% and 70% drops

in throughput, the Agents did detect the degradation. The

issue instead lies with the re-routing path selection, as

the larger number of possible routes in the larger network

is causing the Agent to not calculate the shortest path

correctly in these cases. This shows that the ML model

used to detect the degradation in network link quality is

performing better than can immediately be seen in the

throughput plots, and that improvements could come

from updating the path selection algorithm for larger

networks.

An example of this is seen in Figure 15 which shows an

excerpt from the Agent log on switch S5 during the test

with 1MBps starting throughput with 50% throughput

drop. It can be seen from the successive statistics

windows that from one timestep to the next the Agent

recognises an increase in latency resulting in a larger

latency weight for the graph. However, the same path is

calculated after the latency increase.

Figure 15: Excerpts from Agent log files showing

detection of increase in latency with no path update.

Information shows successive timesteps, an increase

in the latency parameter in double square brackets,

and the same path before and after the latency

increase.

Overall, across all the datasets the ML Agents had an

average throughput of 72.9 +/- 0.406 kBps higher than

the SDN controller tests which translates to an increase

of 12.21%. This is a smaller average increase than for the

results for the smaller topology, but it does still show an

improvement over the SDN controller’s performance.

Reaction time results on topology 2 show that across all

tests the ML Agents responded 14.3% faster than the

SDN controller, average response time was 12.858s, and

the fastest Agent response was 5.078s.

2MBps starting throughput tests the following reaction

time responses were recorded: for reduced throughputs

of 0.1MBps and 0.5MBps the ML Agents responded in

19.653s and 5.078s respectively, whereas the SDN

controllers did not respond. The 0.1MBps datapoint was

significantly slower than its counterpart in the topology

1. For reduced throughputs of 1MBps, 1.3MBps and

1.6MBps there was no response from the Agents or the

SDN controllers.

For the 1MBps starting throughput tests there were no

tests where the ML Agent reacted with routing decisions.

Finally, for the 0.5MBps starting throughput tests the

following reaction time responses were recorded: For the

0.05MBps reduction level, the reaction time was

13.844s. The SDN controller did not respond. For all

Figure 16: ML Agent response to throughput throttling (orange dashed vertical), with Agent decision marked

(purple dashed vertical), and the different switch statistics responses highlighted. Topology two used.

Harvey 14 38th Annual Small Satellite Conference

other examples there was no response from either ML

Agent or SDN controller.

Compared to the reaction time results for 0.5MBps

starting throughput for Topology 1, the performance is

worse for the larger topology. Though this example also

shows that the SDN controller did not respond to any of

the throughput reductions whereas in the smaller

topology examples it responded to the 0.05MBps and

0.1MBps reduction levels. This indicates that while the

ML Agents are struggling more with the larger topology,

they are still an improvement over the intent based SDN

controller.

Figure 16 is an example of successful switching

behaviour in the larger topology for the 2MBps to

0.5MBps throughput scenario. The original path in this

scenario was S0 (host 1) – S1 – S5 – S9 (host 2), and the

plot shows the throughput via received bytes at S1, S5,

and S9. Five seconds after the throughput is reduced, the

ML Agent recognises this degradation and makes a

routing decision, marked by the purple dashed vertical

line. The path decision made by the ML Agent is to S0 –

S2 – S8 – S9. This can be seen in the plot as the signal

lines for S1 and S5 drop to zero, and the signal for S9

ramps up as the buffers empty as the path is re-

established and then returns to the original level.

CONCLUSIONS

To summarise, the aim of this activity was to

demonstrate ML models that begin to tackle specific

challenges in OCS, highlight the advantages ML can

bring and analyse the feasibility of their use in these

systems.

Over the two use cases which have been discussed

throughout this document, there were several successes

that can be taken forward and developed into technology

ready to be used in an OCS which are summarised

below.

It has been shown that machine learning can be used to

improve signal acquisition when using pixel array

detectors by reducing the region of interest over which

to apply the CoG algorithm. These results need further

exploring but it has been demonstrated that, at SNR

values between 1-1.5dB, the ML assisted acquisition

method shows an improvement of over an order of

magnitude compared to a standard CoG method.

For the network healing use case with ML network

Agents, improvements were seen in the overall

throughput at the end point of the network when

compared to a COTS SDN controller. This is a beneficial

outcome as it means that the quality of service for the

end user will be improved when using the ML agents to

reroute traffic around a compromised link. This end user

service would also be improved through the

improvement of reaction time when using the ML

agents. The agents were able to react to the fault in the

network in less than 10 seconds and in some cases less

than 5 allowing for this improved end user service.

The main challenges in this activity were associated with

the development of custom datasets, and the availability

of relevant test benches, specifically for optical data.

Future work for the networking use case could start with

production of higher fidelity synthetic data through

simulation of a larger network with more realistic fault

injection. Through this, the impact of the ML solution

could be better measured when considering OGS

handover. For spatial acquisition, synthetic datasets

could be further developed, or real optical data could be

incorporated. This would then lead to tests combining

the use cases, through the creation of a simulator test

bench that combines networking and optical

communication.

Despite these challenges, the results of this feasibility

activity have shown that there is a place for the use of

machine learning in networked optical communications

systems. A system that applies machine learning in both

areas effectively would enable efficient and accurate

acquisition of the optical ground station signal and

optimal routing of traffic to the ground, effectively

maximising the time connected to the ground during an

available downlink window.

REFERENCES

1. ESA, “Developing Future Optical High-Capacity

Satellite Networks: Hydron (High Throughput

Optical Network)”, Available at: Developing

Future Optical High-Capacity Satellite Networks:

HydRON (High Throughput Optical Network) |

ESA CSC

2. Joseph Redmon and Ali Farhadi, “YOLOv3: An

Incremental Improvement”, Available at:

https://doi.org/10.48550/arXiv.1804.02767, 2018

3. GluonCV Toolkit, “Gluon Model Zoo

Documentation”, Available at:

https://cv.gluon.ai/model_zoo/detection.html

4. Kumar et al, “YOLOv3-Tiny: Object Detection

and Recognition using one stage improved

model”, DOI:

10.1109/ICACCS48705.2020.9074315, 2020

5. Gai et al, “An improved Tiny YOLOv3 for real-

time object detection”, In: Systems Science &

Control Engineering: an open access journal, vol.

9, no. 1, 314–321, 2021

https://connectivity.esa.int/developing-future-optical-highcapacity-satellite-networks-hydron-high-throughput-optical-network
https://connectivity.esa.int/developing-future-optical-highcapacity-satellite-networks-hydron-high-throughput-optical-network
https://connectivity.esa.int/developing-future-optical-highcapacity-satellite-networks-hydron-high-throughput-optical-network
https://connectivity.esa.int/developing-future-optical-highcapacity-satellite-networks-hydron-high-throughput-optical-network
https://doi.org/10.48550/arXiv.1804.02767
https://cv.gluon.ai/model_zoo/detection.html

Harvey 15 38th Annual Small Satellite Conference

6. Madiraju et. al., “Deep Temporal Clustering:

Fully Unsupervised Learning of Time Domain

Features”. Available at:

https://arxiv.org/abs/1802.01059, 2018

7. Mabaso et al, “Spot Detection in Microscopy

Images Using Convolutional Neural Network with

Sliding Window Approach”, In Proceedings of the

11th International Joint Conference on

Biomedical Engineering Systems and

Technologies (BIOSTEC 2018) – Volume 2:

BIOIMAGING, pages 67-74, DOI:

10.5220/0006724200670074

8. Ochoa-Aday et al, “Self-healing and SDN:

bridging the gap”, in Digital Communications and

Networks, Volume 6, Issue 3, Pages 354-368,

2020

https://arxiv.org/abs/1802.01059

	Machine Learning Models for Optimisation of Satellite Laser Communication Terminals and Optical Space Networks
	ABSTRACT
	Introduction
	Spatial Acquisition Use Case
	Network Healing Use Case

	Machine Learning Models
	Spatial Acquisition Model
	Network Healing Model

	Training
	Spatial Acquisition Training
	Network Healing Training

	Test Scenarios & Results
	Spatial Acquisition Testing
	Network Healing Testing

	Conclusions
	References

