
Craig Hay 1 38th Annual Small Satellite Conference 

SSC24-IV-09 

Adaptive Raw SAR Data Compression Using Machine Learning Enhanced Block Adaptive 

Quantization 
 

Craig Hay, Cameron Anderson, Lucy Donnell, Murray Ireland 

Craft Prospect Ltd 

Suite 12, Fairfield, 1048 Govan Road, Glasgow G51 4XS, UK; +44 7421 994 712 

craig@craftprospect.com 

 

Mehrdad Yaghoobi 

School of Engineering, University of Edinburgh 

204 AGB Building, EH9 3FG, United Kingdom; +44 131 650 7185 

m.yaghoobi-vaighan@ed.ac.uk 

 

ABSTRACT 

Earth observation (EO) data plays a crucial role in climate monitoring, disaster response, asset management, and 

security, with synthetic aperture radar (SAR) data being particularly valuable. The ability of SAR to generate dense 

time series, unaffected by cloud cover or darkness, makes it ideal for monitoring applications. The commercial SAR 

sector has experienced significant recent growth, providing increasing amounts of data through advancements in 

quantity, quality, frequency, and dissemination. However, challenges in data management have emerged due to the 

volume of data captured by modern SAR instruments, surpassing satellite downlink capacities. 

The Adaptive SAR Signal Compression Through Artificial Intelligence (SARAI) project, funded by the European 

Space Agency, adopted a unique approach to solving this on-board data bottleneck by focusing on enhancing the 

effectiveness of raw data compression using machine learning (ML) models. These models make inferences based on 

statistical features in the raw complex radar signals and select optimal compression algorithms based on content 

inferred from raw SAR data. The results are used to vary the encoding bitrate within algorithms and select between 

different algorithms, conserving bandwidth and improving system performance. This innovative strategy demonstrates 

the feasibility of extracting valuable insights directly from raw SAR data, a pioneering step in satellite data processing. 

Traditionally, on-board processing of SAR data into images faces computational complexity challenges. This project's 

breakthrough lies in inferring information from data without creating SAR images and can be extended to applications 

such as target and change detection in the future. Implementing an ML model within the constrained, low-power 

computing environment of a satellite poses unique challenges. The model must be trained on representative data and 

operate effectively within these limitations. 

The initial phase of the project involved a survey of publicly available raw SAR datasets, which informed the selection 

of relevant applications and frequency bandwidths for detailed study. A subsequent analysis and trade-off of current 

SAR compression algorithms involved evaluating these algorithms against various metrics such as applicability to 

specific bands, applications and complexity measures. 

The project then assessed the feasibility and capabilities of machine learning in this context. A software prototype was 

developed to select algorithms and algorithm parameters based on statistical features of the raw data and compress 

data with different algorithms through the scene. Bit rate allocations were varied in Block Adaptive Quantization 

(BAQ) and FFT-BAQ algorithms. The results showed improvements over fixed bitrates, saving an average of 0.3 bits 

per block in the encoding, whilst maintaining similar signal-to-quantization-noise measurements in the image domain 

as the full BAQ 4-bit rate. Finally, there was an examination of hardware requirements and constraints. This was 

crucial in understanding the practical aspects of implementing ML-based compression algorithms in real-world SAR 

applications. 

In conclusion, this project has laid a foundational framework for the future integration of machine learning in raw 

SAR data compression, offering a path towards more efficient and adaptive compression techniques that can 

significantly enhance the performance of SAR systems in various applications.
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INTRODUCTION 

Synthetic aperture radar (SAR) is a sensing modality that 

is of growing interest in the SmallSat domain. From the 

first civil mission, Seasat1 in 1979, until recently, SAR 

has been the preserve of large institutional or 

government backed missions. In the recent class of ESA 

Copernicus scientific missions, the pair of Sentinel-1 

satellites has made C-band SAR with consistent global 

coverage freely available for all, spurring innovation in 

downstream applications of SAR data. 

On the platform side, new developments in semi- 

conductor materials (e.g. Gallium Nitride) have made 

compact high-power RF amplifiers possible and allowed 

the miniaturization of instrument technology. This has 

enabled a multitude of commercial companies (e.g. 

SSTL, ICEYE, Synspective, Capella, Umbra) to enter 

the SAR observation market, offering more frequent 

coverage, tasking capabilities and high-resolution 

spotlight imaging of regions of interest. Not only are 

these Small- sat operators augmenting existing services, 

but also providing new capabilities. For example, ICEYE 

“Dwell Mode” long staring spotlight2 mode, or a 

consortium led by Umbra looking at bistatic applications 

under the DARPA funded Distributed Radar Image 

Formation Technology (DRIFT) program3. 

The attraction of SAR in comparison to electro- optical 

imaging technologies is the ability to image in all-

weather and all-lighting conditions which allows 

customers to build dense time series over areas of 

interest. The deployment of constellations of spaceborne 

SAR platforms enhances this capability. SAR also offers 

some unique applications based on the physics of the 

received signal. Due to the ability to measure both 

magnitude and phase of signals at microwave 

frequencies of the EM spectrum, processing techniques 

can be applied to make measurements that are not 

possible with the radiometric measurements of electro-

optical devices. Space- based SAR interferometry is an 

application that has seen widespread use in fields like 

seismology, disaster management and topographic 

measurement. The active nature of the SAR instrument 

also allows control of the polarization of emitted signals, 

allowing the recording of the polarization behaviour of 

scatterers on the ground. From these measurements we 

can extract information such as land-use classification, 

agricultural monitoring and forest biomass estimation. 

In summary, spaceborne SAR system architectures are 

undergoing a step change in that it is becoming possible 

to deploy large constellations of satellites as opposed to 

a single instrument or pair of satellites. On larger SAR 

missions, the trend is toward electronically steerable 

active phased array antenna and multi-beam/multi-

frequency instruments. The sheer amount of data 

generated by these instruments presents a systems-level 

challenge for space- ground downlink that requires novel 

approaches to overcome. It likely will not be possible to 

simply increase downlink capacity due to satellite power 

and bandwidth constraints and the limited spectrum 

available due to radio license constraints. It is from these 

system-level motivations that the desire for more 

effective on-board compression stems. The work carried 

out in this project since the previous SmallSat conference 

in 2023 addresses this problem through the development 

of a novel on-board compression paradigm with results 

demonstrating the ability to infer image statistics from 

raw SAR data. In the following sections the raw SAR 

dataset collection and preparation survey will be outlined 

followed by the rationale for the standard compression 

algorithms that were selected. The machine learning 

(ML) solution will then be described along with the 

results that were obtained through the demonstrator. 

Finally, the hardware requirements and constraints for 

on-boarding this technology will be examined along with 

lessons learned and future work to be carried out in this 

domain. 

RAW SAR DATASET PREPARATION 

As the first stage of this work, a survey was conducted to 

collate available SAR mission data sources and find 

viable data or datasets to use in the development of on-

board data compression algorithms. 

Dataset Survey 

Various historic and current SAR mission data was 

captured in a survey and analysed for suitability, with 

features, benefits and drawbacks documented. Table 1 

outlines the availability of SAR mission data at the time 

of the survey. It is worth noting that since this survey 

work was concluded in March 2023, the availability of 

raw SAR data has increased with both Umbra and 

Capella starting Open Data Programs which include raw 

data in CPHD format and can be read with the sarpy tool.  

The outcome of this was that Sentinel-1 data was 

selected within this activity for its free availability, 

worldwide coverage, good spatial and temporal 

resolution (with multi-polar data for some target areas) 

and thorough documentation. Acquisitions made in Strip 

Map Mode (SM) were specifically targeted due to the 

ease of image focusing compared to the more complex 

Interferometric Wave (IW) mode. 

Backscattering and Signal Dynamics Analysis 

A baseline source-coding algorithm for SAR raw data 

compression is the Flexible Dynamic Block Adaptive 

Quantization (FDBAQ), which is used in Sentinel-1. The 

main advantage of FDBAQ over BAQ is in using the 

adaptive quantization rate according to the local signal to 

noise ratio (SNR). To estimate the SNR, assuming 
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Table 1: Available mission data summary. 

circular complex Gaussian clutter and thermal noise, 

backscatter coefficients of the raw data blocks must be 

calculated4. To conduct this task for comparison of 

current quantization methods, and later using for the AI 

based SAR raw data compression as a conditional input, 

we can either use models which incorporate 

electromagnetic (EM) scattering models, e.g. Born 

approximation EM model, or real SAR backscatters 

data5. We selected the latter approach here for a fair 

comparison. The Sentinel-1 Strip Map Mode I/Q data, 

i.e. before range or azimuth focusing, was used to 

estimate statistics of signal, i.e. backscatters. 

The signal dynamics can be summarized as being 

affected by a combination of instrument properties, 

frequency band and by environmental factors 

Environmental and Temporal Influences 

1. Terrain Types: Impact varies across urban, 

agricultural, forest, mountainous, and desert areas. 

2. Weather Conditions: Differences in signal 

dynamics under cloudy versus clear skies. 

3. Seasonal Variations: Changes in signal 

characteristics across summer, winter, autumn, and 

spring. 

4. Diurnal Temperature Effects: Variability in signal 

due to day and night temperature differences. 

5. Forest Types: Distinct signal dynamics in 

rainforests compared to temperate forests. 

6. Urban Density: Variation between urban and 

suburban environments. 

7. Building Materials: Differences in signal reflection 

or absorption in steel/glass versus brick 

constructions. 

8. Temporal Changes: Signal variations in the same 

scene captured at various times 

Instrumentation and Methodology 

1. Polarization Effects: Exploring signal differences 

in the same scene using various polarizations (VV, 

VH, HH, HV). 

2. Temporal Captures: Repeated imaging of the same 

scene over time to observe temporal dynamics. 

Approach for Capturing Signal Dynamics 

1. Time-Period Sampling: Capturing the same scene 

across different time periods to assess temporal 

changes. 

2. Polarization Utilization: Leveraging different 

polarization modes (VV/VH/HH/HV) to enrich data 

analysis. 

Over a scene, the raw signal dynamics vary as can be 

seen with a selection of moments in Error! Reference 

source not found.. These can therefore be used to learn 

an adaptive coding scheme with different compression 

algorithms being used for distinct parts of a scene given 

the raw data statistics. 

 

Figure 1: Signal moments over a scene. 

To assess the suitability of data/dataset, a set of metrics 

were developed to both assess the SAR signal dynamics, 
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and to assess the performance of developed compression 

algorithms. It is proposed to use an approach for 

assessing performance of compression algorithms 

similar to that found in6.  

Statistical Metrics – Data Domain 

Standard statistical measures were calculated in the data 

domain. These are simple to calculate and provide some 

measure of how the data is changing pre and post 

compression. Although the raw SAR compression 

algorithms implement lossy compression, there should 

be no significant change in the overall statistics of the 

data after the compression algorithm has been applied. 

There are well-known statistical models of SAR radar 

echoes in the data domain7. These models consist of the 

following set of assumptions: 

• Complex IQ signal data, digitally sampled at e.g. 

8-bits/sample 

• Zero-mean, circular Gaussian distribution of 

complex samples 

• Small amount of saturation in analog-to-digital 

converter (ADC) 

• Low correlation between I and Q channels 

• Low intersample correlation in range and 

azimuth 

• Slowly changing variance in slant range and 

azimuth 

The I and Q signals in rectangular form follow Gaussian 

distributions with mean zero and variance dependent on 

the data. The I and the Q signals are uncorrelated. This 

holds particularly well for homogeneous scattering 

regions. IQ signals are complex valued measurements, 

so some measures need to be assessed for magnitude (I) 

and phase (Q) separately. The magnitude of the IQ 

signals therefore follows a Rayleigh distribution. 

The metrics used to assess performance in the data 

domain were: 

• Dynamic range 

• Mean (mag and phase) 

• Standard deviation (mag and phase) 

• Skewness (mag and phase) 

• Kurtosis (mag and phase) 

• Entropy (mag and phase) 

As the values of the raw data (and SLC focused images) 

are complex valued IQ signals, the polar form 

(magnitude and phase) were used to calculate these 

statistics.  

Image Quality Measures 

As well as signal statistics, image quality metrics can 

give an interpretable quantitative measure in the image 

domain. A non-exhaustive list of potential SAR image 

quality metrics is: 

• Dynamic range – ratio of brightest vs darkest 

pixel 

• Impulse response width (IRW) in both range and 

azimuth 

• Peak-to-side lobe ratio (PSLR) in range and 

azimuth 

• Image contrast – the ratio of average intensity of 

distributed clutter background (standard 

deviation of image) over the average intensity of 

no return background (mean of image). 

• Global contrast factor – A weighted sum of local 

contrasts of a range of smaller image sizes 

• Mean Squared Error – Calculate for difference in 

amplitude of the original image and post-

compression image 

• Mean Phase Error – Calculate for difference in 

phase of the original image and post-

compression image  

• Signal-to-distortion Noise Ratio – Calculate for 

difference in amplitude of the original image and 

post-compression image 

SELECTION AND TRADE-OFF OF SAR 

COMPRESSION ALGORITHMS 

An investigation and analysis of traditional algorithms 

used for SAR data compression was conducted for use in 

the selective compression algorithm. Following the 

implementation of selected algorithms, a pipeline was 

developed to create a machine learning ready dataset by 

processing raw SAR scenes with the various 

compression algorithms and deriving input features and 

target variables. 

Algorithms Survey 

The standard algorithms for SAR data compression were 

selected for comparison, these are block adaptive 

quantization (BAQ) and its variants: Entropy 

Constrained BAQ, Block Adaptive Vector Quantization, 

Flexible BAQ, etc. These improve BAQ but add 

complexity. The survey found most algorithms are based 

on an underlying statistical model and set of assumptions 

for SAR data: 

• Characteristics: 

o 8-bits/sample complex data. 

o Zero-mean, circular Gaussian distribution of 

complex samples. 

o Minimal saturation in ADC. 

o Low correlation in I and Q channels and 

intersample. 

o Variance changes slowly in slant range and 

azimuth. 
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• Model suitability: Particularly effective for 

homogeneous scattering regions. 

• Data representation: Complex valued (I and Q), 

can be converted to polar form 

(magnitude/phase). 

• Impact of compression 

o Objective: Lossy compression should not 

significantly alter overall data statistics. 

o Statistical measures: Standard measures 

will be calculated in the data domain. 

• Conclusion 

o Simplicity and efficiency: BAQ serves as a 

simple yet effective base algorithm. 

o Future work: Exploration and 

categorization of BAQ variants for further 

optimization. 

The relationship between BAQ and its 

descendants/variants is illustrated in Figure 2 below. 

 

Figure 2: Algorithm taxonomy. 

The benefits and limitations of these algorithms were 

analysed. Trade-offs between algorithms can be made on 

grounds of implementation complexity, memory usage, 

CPU usage, hardware implementation complexity, 

patent issues. Qualitative trade-offs are outlined below in 

Table 2. 

Table 2: Qualitative trade-offs. 

Algorithm Pros Cons 

BAQ Simple to implement in 

hardware 

 

Well tested and 
understood 

Must send side 

information (block 

variances) which 

reduces the 
compression ratio 

 

Must choose a block 

size when designing 
implementation 

 

Coding delay -- must 
see whole block before 
quantizing 

 

Integer rates mean 
adjustments can only be 

made in 3dB steps in 
SQNR 

EC-BAQ Higher compression 
ratio than BAQ 

 

Non-integer code rates 
possible 

 

Extended instantaneous 
dynamic range 

 

Backward adaptive – 

quantization parameters 
are chosen based upon 

the history of past 
samples 

Increased complexity of 
entropy coder 

FFT-BAQ Further compression 

gains of 20% on BAQ 

by zeroing low 
frequency coefficients 

 

Hardware accelerated 

FFT implementations 
on modern hardware 

High computational 

load to perform FFT 
onboard 

FFT-

ECBAQ 

Further compression 

gains of 20% on 

ECBAQ by zeroing low 
frequency coefficients 

 

Hardware accelerated 

FFT implementations 
on modern hardware 

High computational 

load to perform FFT 
onboard 

Following the survey, the following algorithms were 

then implemented and analysed: 

• BAQ 

• FBAQ 

• FFT-BAQ 
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Data Labelling 

A machine learning ready dataset was created by 

compiling a set of representative data from ESA Scihub 

and generating features and target variables for training 

the machine learning model. These target variables were 

generated by applying various implemented SAR raw 

data compression algorithms to the raw data and 

focusing into images. The original and reconstructed 

images were then used to generate the target variable, 

which was going to be an error metric between the 

original and reconstructed data in the image domain. 

The steps taken to generate the training data are listed 

below 

1. Search scenes using Browser and filtering on 

Copernicus Data Space.  

2. Get Zipper URLs for selected scenes. 

3. Script downloads through API. 

4. Decode raw products using sentinel1_level0 

decoder. 

5. Compress/decompress original raw product for 

both polarizations using Python implementations 

of raw SAR compression algorithms. Save as .npy 

files. 

6. Focus original products and those reconstructed 

with each implemented compression algorithm. 

7. Split scenes into decision windows (selected for 

this activity to comprise of forty range lines). 

8. Generate machine learning features from original 

raw products and save as CSV. 

9. Generate target variables by calculating error 

metrics in image domain between original raw 

data and each set of reconstructed raw data. Save 

as CSV. 

10. Training data generation complete – CSV of 

features and target variables. 

The methodology used to generate features and metrics 

is illustrated in Figure below. The window size carried 

out in step 7 above was selected ad hoc to ensure balance 

between an unnecessary amount of switching between 

compression algorithms – which would require more 

data to be sent containing the compression algorithms 

used – and having enough variations between the 

windows to allow for beneficial algorithm selection. This 

is a parameter that requires further investigation to 

optimise the window size for training. 

he different training data that was used was made up of 

available SM targets. There is a limited selection of SM 

targets available, as it is only used operationally to 

capture small island targets where the IW swath is far too 

wide. 

 

Figure 3: ML-ready dataset construction 

methodology. 

AI/ML FEASIBILITY AND CAPABILITY 

ASSESSMENT 

After having carried out dataset curation and gaining and 

understanding of traditional algorithms used for SAR 

data compression, the feasibility of utilising ML for SAR 

data compression was explored. An initial approach was 

outlined to experiment with VAE and LSTM models and 

later revised to an approach that utilised ML to infer the 

best traditional compression algorithm choice based on 

the contents of the scene. This was defined in a problem 

statement as: 

Raw SAR data has a slowly changing variance in both 

range and azimuth for the I and Q signals. Current raw 

SAR compression algorithms compress the raw data 

blockwise, with blocks being small enough that it can be 

assumed that the variance is not changing within a block 

e.g. 128 consecutive values in range or combination of 

range and azimuth. 

The algorithms used for compression are optimal when 

blocks exhibit Gaussian statistics. Due to the nature of 

SAR backscatter this assumption holds closest to the 

truth when the scene is homogeneous. 

These statistics are caused by the constructive and 

destructive interference in reflections from random 

scattering in each range cell. These Gaussian 

assumptions do not hold when the scene is 

inhomogeneous e.g. in the presence of a point scatterer. 

Therefore, the ability to switch between compression 

algorithms based upon the contents of the scene is seen 

as advantageous. These scene contents can be inferred 

from the statistics of the backscattered signal. Machine 

learning inference can be employed to predict metrics 
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that can be mapped to the presence of “cultural clutter” 

in the scene. 

Feasibility Assessment 

This work considered the feasibility of the ML model to 

improve on traditional methods of onboard data 

compression, considering the ML model and input 

feature complexity, metrics for data quality and the 

onboard data processing pipeline. 

Simple statistical features were selected as candidate 

features for the ML model. Through testing, it was 

discovered that these simple features allowed for a well 

performing model for predicting the error in the 

reconstructed image due to the chosen raw data 

compression method. Many of the features chosen would 

already be calculated for the standard onboard 

compression algorithms, so it is feasible that these 

features or similar can be generated from the raw data 

on-the-fly at the rate of data acquisition (if necessary). 

Features investigated were: 

• Arithmetic Mean (�̅�) 

• Standard Deviation (σ) 

• Skewness – A measure of the asymmetry of the 

distribution of the given data section 

• Kurtosis – A measure of the data contained within 

the tail of the distribution as compared to a normal 

distribution 

• Normal Test – A combination of the z-scores of a 

skewness (s) and kurtosis (k) test of the form 𝑠2 +

𝑘2 which tests the null hypothesis that samples 

come from a normal distribution 

• Kolmogorov-Smirnov Test – A test of the equality 

of two distributions which tests how likely it is that 

the data sample is drawn from a normal 

distribution 

• Shapiro-Wilk Test – Another test statistic to test 

the null hypothesis that the data sample is drawn 

from a normal distribution 

Through a process of recursive feature selection, a final 

set of features was reduced to: 

1. Kolmogorov-Smirnov test, I channel, cross 

polarization 

2. Kolmogorov-Smirnov test, Q channel, cross 

polarization 

3. Kurtosis, I channel cross polarization 

4. Kurtosis, Q channel co-polarization 

5. Normal test, Q channel, Cross polarization 

6. Skewness, Q channel, co-polarization 

This number of features was selected as it maximized 

model accuracy after evaluating the best features for the 

whole range of feature numbers, as shown in Figure 4. It 

was also observed that model accuracy did not increase 

with the increasing number of features so it is preferable 

to select a smaller number of features for model 

simplicity and to reduce computational complexity when 

performing on board inference, as these features would 

have to be generated from the IQ signals on-board. 

 

Figure 4: R2 score against number of features 

showing the optimal feature number. 

Notes on the machine learning model implementation are 

shown below. 

• Application Scope: The algorithm selector is not 

specialized for applications like polarimetry or 

interferometry. 

• Final Output: Aimed at optimizing the Synthetic 

Aperture Radar (SAR) Single Look Complex 

(SLC) image. 

Target Variables for Image Evaluation 

• Initially Considered: Phase Error, Mean 

Squared Error (MSE), Error dB, Signal-to-

Distortion Ratio (SDNR). 

• Selected Metrics: MSE and SDNR were chosen 

for their general applicability. 

𝑀𝑆𝐸 =
1

𝑀𝑁
Σ𝑥=1

𝑀 Σ𝑦=1
𝑁 (𝑔(𝑥, 𝑦) − 𝑓(𝑥, 𝑦))

2
              (1) 

Where 𝑔(𝑥, 𝑦) and 𝑓(𝑥, 𝑦) are the original and 

reconstructed 𝑀 × 𝑁 images respectively. 

𝑆𝐷𝑁𝑅 = 10 log10 [
Σ𝑥=1

𝑀 Σ𝑦=1
𝑁 𝑔(𝑥, 𝑦)2

Σ𝑥=1
𝑀 Σ𝑦=1

𝑁 (𝑔(𝑥, 𝑦) − 𝑓(𝑥, 𝑦))
2] (2) 
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Table 3: ML models considered and their preliminary results. 

Model Pros Cons 
Testing 

Hyperparameters 
𝑹𝟐 

K-Nearest 

Neighbours 
• Inherently multi-output 

• High predictive power 

• Easily interpretable output 

• Well suited to regression 

problems 

• Requires the storage of training data 

for predictions 

• Can be computationally expensive and 

slow to predict for large datasets 

• N-neighbours = 5 

• Weights = uniform 

• Algorithm = Ball 

Tree with leaf size 

of 30 

• Distance metric = 

Euclidian 

0.864 

Decision Tree • Inherently multi-output 

• Less data preparation required – 

although in this case, data is 

required to be standardized to 

compare statistics 

• Can be used to identify the 

most important features and 

down select 

• Easily interpretable output 

• Prone to overfitting with reduction of 

training set error at the expense of test 

set error – solved through pruning and 

constraining parameters of the model 

• Can become complex to calculate 

predictions as tree grows leading to 

longer training times also 

• Split quality metric 

= Squared error 

• Max depth = None 

• Minimum samples 

to split a node = 2 

• Minimum samples 

to be a leaf = 1 

• Maximum features 

to look for best split 

= None 

• Maximum leaf 

nodes = None 

 

0.801 

Support 

Vector 

Regression 

• Scales well to high dimensional 

data 

• Less risk of over-fitting 

compared to other models 

• Can solve complex problems 

with appropriate kernel function 

selection 

• Not inherently multi-output so requires 

a wrapper so handle this 

• Longer training time compared to the 

other algorithms 

• Difficult to choose appropriate kernel 

• Kernel = Radial 

Basis Function 

• Gamma = 

1/(number of 

features * variance 

in features) 

• C = 1 

• Epsilon = 0.1 

0.268 

Linear 

Regression 
• Inherently multi-output 

• Simple implementation and 

short training time 

• Not computationally complex 

in predictions 

• Assumes a linear relationship between 

independent and dependent variables 

so cannot handle more complex 

relationships 

• Outliers have a significant impact on 

the regression 

 

0.729 

Rationale for Chosen Metric 

• Advantage of SDNR Over MSE: 

o MSE Limitations: Does not specify if errors 

are many and small or few and large; strongly 

influenced by intensity scaling, making it 

unreliable for comparing different scenes. 

o Impact on ML Model: The reliance on 

standardized data in ML reduces MSE's 

effectiveness as a predictive metric. 

o SDNR Benefits: Offers a more 

comprehensive and reliable measure, 

overcoming MSE's shortcomings; normalises 

the MSE to form a more global measure of 

error. 

• Metric Selection Conclusion: SDNR is preferred 

for its ability to provide a more accurate and 

consistent measure of image quality across various 

scenes, making it a more suitable target for the 

algorithm selector in SLC image processing. 

• Purpose: Predict the "expected error" (SDNR) for 

various compression algorithms upon analysing 

raw data. 

• User and System Requirements: Incorporate 

user-defined factors and system tolerances. 

Machine Learning Dataset Creation 

• Image Sets: Included raw original data, focused 

original, and data compressed using BAQ2, BAQ3, 

BAQ4, FFTBAQ2, FFTBAQ3. 

• Segmentation: Data split into forty range line 

decision windows for applying a single 

compression algorithm. 
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Figure 5: Predictions against the true metric values for all compression methods.

• Feature Calculation: 

o From raw data: Features described in 

Section Error! Reference source not 

found. calculated for regions of forty range 

lines. 

o From focused images: SDNR values 

calculated for corresponding forty range line 

windows. 

• Dataset Composition: Combined features and 

SDNR values form the full dataset for ML 

predictor model training. 

Conclusion 

• ML Model Objective: To train a model that can 

predict the SDNR for different compression 

algorithms based on raw SAR data features. 

• Importance of SDNR: Chosen as the primary 

metric due to its robustness in evaluating the 

quality of compressed images across varied scenes. 

Several models were then assessed for implementation. 

Trade-offs for the models that were under consideration 

are shown in Table 3Error! Reference source not 

found.. This shows the pros and cons of the different 

models alongside an initial accuracy score chosen to be 

the coefficient of determination (R2). 

Selecting the two best initial scoring models (decision 

tree and k-nearest neighbours), initial model results are 

shown in the next subsections. Also detailed are the 

hyperparameter grid searches that were carried out for 

these models, as well as feature down-selection using 

recursive feature elimination. 

Decision Tree Results 

Described here are the results from the Decision Tree 

predictor method. Figure 5 displays the predicted values 

against the true values that were previously calculated as 

part of the test dataset. A dotted line shows perfect 

predictions. Accuracy of the predictions is 0.974 in the 

𝑅2 score and 1.09 in mean squared error over the test 

dataset. 

A grid search was carried out to avoid model overfitting 

with a parameter grid focusing on tree depth and how the 

tree is split. The final parameters selected were: 

• Maximum tree depth = 15 

• Minimum number of samples required to be left at 

a leaf node = 2  

• Minimum samples required to split an internal 

node is five. 

 

Figure 6: Predictions from decision tree algorithm 

over a scene for lowest bit rate BAQ. 
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Figure 7: Predictions from decision tree algorithm 

over a scene for lowest bit rate FFTBAQ. 

The above figures show scatter plots of the true SDNR 

values with the decision tree predictions plotted on top. 

These are taken over a full scene which in this case is 

from Houston showing the SDNR for the co-

polarisation. The spikes seen in the data are mis-

predictions from the machine learning model where the 

model may still be overfitting to the training data. 

Although these may cause single range windows to be 

compressed with a non-optimal compression algorithm, 

the model accuracy over the whole scene will ensure that 

the correct compression algorithm will be chosen most 

of the time thus incurring the benefit of using the ML 

based approach. These predictions could be improved by 

increasing the amount of training data with a wide range 

of clutter in the scenes allowing the entire range of input 

space to be seen by the model. It is also yet to be 

investigated if the size of the range line window would 

affect the accuracy of the model, as there could be range 

lines in these windows which are dominating the average 

used for the feature vector and thus causing 

misdetections. 

Decision Module Design 

To be able to select the correct compression algorithm, a 

post-processing step was implemented to combine the 

output of the ML model and user defined parameters 

such as the error threshold, the desired bit rate and 

computational complexity weightings. This was done 

with the aim of achieve a quantization error that is equal 

to or less than a user defined threshold while minimising 

the bitrate or computational complexity of the 

compression. The effects of compression are negligible 

if the SDNR is equal to 25dB, so this is defined as the 

maximum SDNR value corresponding to ‘perfect’ 

compression. Bitrate and computational complexity 

weightings are used to set an order of preference of 

algorithms to be selected, depending on the given use 

case. To achieve the desired bitrate, logic was 

implemented to simply choose the lowest bitrate 

algorithm that meets the SQNR threshold. In this way, 

the bitrate is kept to a minimum within the integer bitrate 

choices available. 

Performance Assessment 

Testing was conducted to assess the compression 

performance gains when using the ML enabled decision 

module. Results from the ML solution are presented 

below and compared with those gained when using only 

traditional algorithms. For this test, an Aurora scene was 

used at an unseen time with a different ground track from 

the training data, also using HH/HV polarisation. 

Test Scene 1 – Aurora 

For the initial test, an Aurora scene was used at an unseen 

time with a different ground track from the training data, 

also using HH/HV polarisation as opposed to the training 

data which was a VV/VH acquisition. 

Scenario 1 – error threshold 

The aim of this test was to show that the predictor and 

decision function could switch algorithm whilst 

maintaining an overall SDNR figure above the set 

threshold. It would also give an indication of where and 

how switching would occur, with the initial hypothesis 

that the algorithm would switch to lower bitrates in area 

with: 

• Error threshold = 15dB 

• Complexity weight = 0 

• Bit-rate weight = 0 

The average bit rate and corresponding SDNR values are 

shown in Table 4 with the decision boundaries shown 

overlaid on the scene in Figure 8. In this Figure, it is seen 

that, over the cultural clutter of a city where there are 

more backscattering present, the machine learning 

approach selects the BAQ4 algorithm to maintain the 

accuracy of the reconstructed image. This then changes 

to the BAQ3 algorithm over the fields where the same 

accuracy can be maintained while using less bits to 

encode the data. 

Scenario 2 – weighted bitrate 

Using this same Aurora scene, the scenario of a 

constrained bitrate was tested. This scenario was 

designed to demonstrate the decision function meeting 

multiple constraints, with a minimum error threshold to 

be maintained whilst keeping the average bitrate below a 

certain level. This was designed to exercise the use of 

more computationally complex algorithms which could 

meet these dual constrains of minimising both error and 

bitrate whilst trading off on increased computation. The 

decision function parameters were set to: 



Craig Hay 11 38th Annual Small Satellite Conference 

Table 4: SDNR and bitrate results comparing single 

compression algorithms to the ML-based approach. 

 Cross Polarization Co-Polarization 

SDNR Bitrate SDNR Bitrate 

ML 
Approach 

24.24 3.68 20.22 3.69 

BAQ3 13.88 3 16.3 3 

BAQ4 25.10 4 24.44 4 

 

Figure 8: Scene showing which compression 

algorithms are selected over different regions. It is 

seen that over regions with cultural clutter, the 

BAQ4 algorithm is used whereas when there are 

only fields the less accurate BAQ3 is used to achieve 

the same SDNR. 

The decision function parameters were set to: 

• Error threshold = 15dB  

• Complexity weight = 0   

• Bit-rate weight = 4.5 

This indeed causes the decision module to penalise 

higher bit-rate algorithms in favour of the lower bitrates. 

This also highlights the use of the FFTBAQ algorithms 

being used as they can achieve a higher accuracy whilst 

maintaining a lower bitrate, although this comes at the 

cost of higher computational complexity. Where 

FFTBAQ was used here, it was predicted to still meet the 

set error threshold of 15dB whereas BAQ2 was not. 

 

Figure 9: Scene showing the compression algorithm 

selections when the decision was weighted towards 

lower bitrate use. The higher bitrate is allocated to 

the regions with most cultural clutter. 

Test Scene 3 – Saint Helena 

This island scene was selected to test as an unseen region 

which acts as a simple and clear demonstration of the 

selection method.  

The parameters used for this test were: 

• Error threshold = 18dB  

• Complexity weight = 0   

• Bit-rate weight = 0 

Since this scene contains a large amount of ocean with 

an island in the middle, it would be preferential to have 



Craig Hay 12 38th Annual Small Satellite Conference 

a compression scheme which compresses the ocean with 

less bits and is able to detect the island when it occurs 

and compress this with a larger number of bits, which is 

what is observed in the Figure below. It is seen though 

that the selection of BAQ4 at the right-hand side of this 

scene is due to ocean current that can be seen in the VV 

and VH dB image causing greater backscattering and 

thus a higher bit rate selection. 

 

Figure 10: Island scene again showing the higher 

bitrate being selected for the island to maximise the 

accuracy whilst minimising the bitrate for data 

transmission. 

HARDWARE FEASIBILITY 

This review explored advancements in on-board 

processing for small satellite (SmallSat) scale SAR 

missions, focusing on the emerging NewSpace sector. 

The trend in these SAR satellite systems is shifting 

towards deploying large constellations, enhancing 

robustness, reliability, and performance, including faster 

tasking and data delivery. These constellations allow for 

immediate analysis and re-tasking of subsequent 

satellites for targeted imaging. SAR platforms, 

particularly SmallSats, face challenges due to heavy duty 

cycling, with limited duty cycles significantly impacting 

operation. Synspective's data8 indicates typical duty 

cycles of 5-10% per orbit. Increasing satellite numbers 

can alleviate this, but also imposes higher demands on 

ground station infrastructure. The active radar sensors in 

SAR platforms require substantial power for imaging, 

leading to significant heat generation and thermal 

management challenges on these resource-limited 

platforms. Efficient data handling is crucial, given the 

high data acquisition rates. Enhancing on-board data 

compression can address these challenges by reducing 

storage and downlink needs. Potential advancements 

include prioritizing data for downlink, satellite tasking 

based on extracted information, and change detection, 

leveraging advancements in on-board data processing 

and compression capabilities. 

Baseline Hardware Architecture 

In this section, a short case study for a potential future 

target system is presented. The target system is 

NovaSAR-S, which is an S-band SAR SmallSat owned 

and operated by Surrey Satellite Technology Limited 

(SSTL). NovaSAR provides a suitable candidate for 

comparing a runtime compression mode with an offline 

compression operating mode, as it currently operates 

runtime compression and SSTL are actively exploring 

offline on-board payload data processing architectures. 

One such project is the InCubed funded Flexible 

Intelligent Payload Chain (FIPC) where SSTL partnered 

with Craft Prospect Ltd and University of Surrey as 

application developers for an offline on-board processor 

designed to integrate the platform to process data from 

optical EO payloads. 

The NovaSAR SAR instrument is based on the Airbus 

DS New Instrument Architecture (NIA)9. Regarding its 

physical attributes, the NIA Back-End unit weighs 11kg 

and consumes 50W of DC power. Inside of the NIA 

Central Electronics we are most interested in the 

Digitiser module as this is where the compression 

functionality currently sits. In fact, this is where all 

digitization and packetization functions are performed. 

The Digitiser samples the RF signals with a 12-bit ADC 

and encompasses all necessary digital signal processing 

and data handling for the receive chain. These steps 

performed on the digitised data are: 

1. Digital down-conversion 

2. Flexible L/M decimation filtering 

3. Data compression options (2.5, 3, 3.5, 4, 4.5, 

and 5-bit Block Adaptive Quantisation) 

4. Packetisation as per CCSDS standards 
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5. Datation features including time stamp, PRI 

count, packet count, Mode ID, PRI ID, etc. 

6. Buffering and output to a high-rate data 

interface 

An architecture diagram is shown in Figure 11. The 

details of the Digitiser FPGA can be viewed in larger 

scale in Figure 12. This module implements most of the 

required functionality on the Xilinx Virtex 5 (XQR5V) 

FPGA. The NIA also includes a highly flexible Chirp & 

Timing Generator (CTG) Module incorporating another 

Virtex 5. 

 

Figure 12: Digitiser architecture. 

It can be seen from the Digitiser architecture that the I 

and Q signal data has been multiplexed into I even, I odd, 

Q even, Q odd streams of samples. This suggests that the 

decimation and BAQ compressors have been 

implemented in parallel to increase throughput. 

The referenced thesis11 demonstrates the efficient 

implementation of the Block Adaptive Quantization 

(BAQ) algorithm on FPGA hardware, leveraging 

MATLAB/Simulink, Xilinx System Generator, and 

Xilinx ISE. This approach, utilizing a Xilinx Virtex-4 

FPGA, proved more efficient than a full VHDL 

implementation, enabling rapid development and 

verification of hardware prototypes for on-board 

compression. The FPGA's low resource utilization, using 

only 3% of available logic slices and 34% of block 

RAMs (mostly for test data), indicates substantial 

capacity for more complex or multiple data compression 

algorithms. This efficiency is further evidenced in the 

NIA Digitiser case study, showing that most digital 

functions of a radar backend can be integrated onto a 

single chip. This FPGA-based approach is promising for 

real-time SAR data processing, allowing for advanced 

processing capabilities with efficient hardware resource 

management. 

Runtime compression operating mode 

To implement a runtime operating mode, an estimate of 

the data to be processed is required to estimate the 

required throughput of any additional processing. This is 

Figure 11: NIASAR-X payload NIA central electronics block diagram10. 
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a function of pulse repetition frequency (PRF) and range 

line length. The PRF is mission and system design 

dependent and varies based on satellite mode. A higher 

PRF typically corresponds to a narrower swath and 

greater azimuth resolution and vice-versa. 

For Sentinel-1 SM, the PRF in SM is approximately 

1500Hz. This results in 1500 range lines, each consisting 

of thousands of IQ pairs, being generated per second at 

the radar backend. These are typically 8/10/12-bit pairs 

of values depending on the ADC and digitization 

strategy. For a range line with around twenty thousand 

range bins, as is the case in Sentinel-1 SM, this gives a 

requirement of: 

Range lines x IQ x ADC bits x range line length 

1500 x 2 x 10 x 20000 = 480Mbps 

For NovaSAR-1 the PRF varies between 5000-7000Hz. 

For an example in ScanSAR mode (shown in 13) with 

PRF 5302Hz and range line length 1117 this gives a data 

rate: 

5302 x 2 x 12 x 1117 = 142Mbps 

These are both high bitrates to service in real-time 

 

Figure 13: NovaSAR acquisition parameters12. 

The main issue with the runtime compression mode is 

that most SAR satellite system architectures have the 

onboard compression sitting somewhere in the radar 

backend. For instance, SSTL’s NovaSAR-1 contains a 

Digitiser module that carries out analogue-to-digital 

conversion of the RF signal, through multiple processing 

functions, to packetization with CCSDS format packets 

ready for transfer through high-speed serial to “data-

recorder” and onward to downlink. This means that to 

modify this system to include ML-driven on-board 

compression, it would be the Digitiser module that would 

have to be modified. 

To run inference before compression, suitable buffering 

would have to be in use. It is likely that this buffering 

would encompass the previous, current and next set of 

range lines to be processed. One buffer would be filled 

by the active sampling of the ADC, another with the data 

to run inference on, and another with the data being 

worked on for compression. With the chosen inference 

window of forty range lines, this equates to: 

N range lines x range line length x IQ bytes x N 

buffers 

40 x 20000 x 2 x 3 = 4.8e6 bytes = 4.8MB 

The current window to completely process the data held 

in a buffer would be, in the case of Sentinel-1 Strip Map 

mode with a PRF of around 1500Hz: 

Window = range_lines_per_window / 

range_lines_per_second 

Window = 40 / 1500 = 26.67ms 

This kind of analysis would need to be repeated for the 

target mission and clearly a different range line window 

would be chosen for NovaSAR. 

The main advantage of the runtime compression 

configuration is that no additional mass memory is 

required in the architecture to store SAR data that needs 

to be worked on by the inference engine. As most of the 

digitization functions are implemented on a single (albeit 

large) FPGA, the question remains whether there is 

adequate FPGA resource remaining to implement the 

feature generation, inference and algorithm selection 

steps, as well as multiple SAR compression algorithms. 

Offline Operating Mode 

Addressing the challenges of implementing an offline 

processing mode in SAR satellite systems involves 

significant architectural changes, particularly in data 

compression within the radar backend. Currently, these 

systems typically have a bypass mode that avoids data 

compression, but this approach requires substantial mass 

memory to store uncompressed data from the ADC. For 

example, the SSTL Digitiser not only compresses but 

also processes data up to packetization for downlink, 

necessitating correctly sized mass memory for real-time 

buffering. A modification could involve constantly 

running the compressor in bypass mode and directly 

packetizing data into mass memory, though this would 

demand significantly more storage space. Another 

innovative approach under consideration is using a 

compressed data format (like BAQ4) as the standard. 

Here, a machine learning system would read data out 

from mass memory and evaluate if the data can be further 

compressed without notable loss in image quality. This 

method could potentially eliminate the need for a bypass 

mode, as data would be decompressed and recompressed 

at a lower bitrate when feasible, thus reducing the mass 

memory requirements. However, this approach raises 
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uncertainties regarding mass memory layout or 

fragmentation and the simplicity of depacketization, as 

data are packetized following CCSDS standards by the 

radar backend. These considerations highlight the 

complexity of integrating advanced data compression 

techniques into existing SAR satellite architectures. 

The hardware architecture for a system supporting 

multiple compression algorithms, such as BAQ, presents 

an intriguing design challenge. For each BAQ bitrate, a 

corresponding lookup table of quantization thresholds 

must be stored, with the number of values ranging from 

three for 2-bit BAQ to fifteen for 4-bit BAQ. If standard 

deviation calculations and data normalization can be 

conducted on-board, these tables can remain compact. 

Alternatively, storing a lookup table for each possible 

standard deviation (within a margin of error) could 

eliminate the need for on-board block normalization, 

trading computation for storage—a classic space/time 

complexity decision that can be left to the hardware 

designer. 

These tables could also be utilized for the FFT-BAQ 

quantization process, with modern FPGAs capable of 

accelerating FFT operations. A key consideration is 

whether each compression algorithm should be 

implemented on separate boards, which can be 

individually powered on and off. This decision impacts 

the benefits of the scheme, especially in terms of power 

savings and computational complexity. If all algorithms 

are implemented on the same FPGA, it becomes crucial 

to assess the power-saving benefits of the scheme. 

Preliminary research indicates that strategies like clock 

gating could significantly reduce the FPGA's dynamic 

power usage13, though the overall impact on the power 

consumption of the Digitiser remains uncertain. This 

complexity underscores the need for careful design 

considerations in developing efficient and effective 

compression systems for satellite hardware. 

When considering hardware for space applications, 

several critical factors must be assessed, including space 

environmental effects, device size, weight, power 

(SWaP) requirements, system-level integration, and data 

processing throughput. The choice between radiation-

hardened by design (RHBD), radiation tolerant (RT), or 

commercial off-the-shelf (COTS) devices depends on 

these factors, along with the platform’s power budget, 

total mission cost, and risk tolerance. RT and COTS 

devices often provide better performance per watt 

compared to RHBD devices, but there is a trade-off 

between radiation hardness and capability, as devices 

with larger process nodes are less susceptible to 

radiation-induced Single Event Upsets (SEUs). 

Newer COTS devices, which are smaller and more 

efficient, are increasingly being adapted for space 

environments. They offer significant performance 

improvements, particularly in accelerating machine 

learning workloads on edge devices, making them 

suitable for small satellite power budgets. Examples 

include the Xilinx Ultrascale+ MPSoC and Intel Myriad 

X. These advancements are complemented by device-

specific tools like Intel OpenVINO and Xilinx Vitis AI, 

which facilitate the integration of trained models onto 

these platforms. The maturity and extensive user base of 

COTS development tools are also advantageous. 

The choice of specific devices for future demonstrations 

will be influenced by the processing system architecture, 

derived from the reference data processing architecture. 

Devices with native fault-tolerance, such as RHBD with 

integrated error-checking, require less system-level fault 

tolerance. Conversely, less mature devices like the 

Myriad X VPU necessitate more robust system-level 

fault mitigation strategies, including advanced fault 

detection, isolation, recovery (FDIR) systems, and 

potentially component duplication or triplication. This 

selection process underscores the balance between 

leveraging advanced capabilities of newer devices and 

ensuring reliability and resilience in the challenging 

space environment. 

Feasibility of Implementing Inference Functionality 

The raw data would have to be processed on-board into 

the features required for the ML model. In developing 

hardware solutions for on-board satellite data processing, 

the implementation of higher order statistical tests may 

pose challenges. If these tests prove difficult to 

implement, exploring less optimal feature sets, or 

reducing compute and memory requirements through a 

data sampling scheme, could be a viable alternative. 

These features, initially chosen using recursive feature 

elimination from a broad range of options, highlight the 

need for close collaboration between the hardware 

implementation and machine learning teams. This 

collaboration is essential to find a balance between 

feature selection and the constraints of on-board 

hardware. 

To enhance the throughput of BAQ based algorithms, 

several well-documented methods can be employed, 

albeit with some impact on the accuracy of the optimal 

quantizer. For instance, calculating the mean absolute 

value instead of standard deviation can speed up 

computations, as it avoids the need for slow square root 

calculations. Also, quantizing the allowable values of 

mean absolute and using a look-up table (LUT) for 

threshold and reconstruction values can significantly 

boost throughput. This approach also reduces the data 

size for transmission: using an 8-bit value for the LUT 

entry instead of a 32-bit floating point value for each 

mean absolute value. This not only improves throughput 

but also reduces the overhead of side information for 

each block, thereby increasing the compression ratio. 

These techniques are relevant for both BAQ and FFT-

BAQ algorithms, given that FFT-BAQ is an extension of 
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BAQ with additional preprocessing steps. This strategy 

of modifying algorithmic approaches to meet hardware 

limitations is crucial for optimizing data processing in 

space missions. 

Onboard inference could be implemented on FPGA 

using tools like Vitis AI. Now that we have shown that 

inference of SDNR in the image domain is possible from 

features derived from statistics in the raw data domain, a 

neural network (as a universal function approximator) 

could be trained to map these features to SDNR. Neural 

networks have a well-trodden path to implementation on 

hardware and there are toolchains available for further 

optimization of the onboard implementation e.g. weight 

quantization, connection pruning. 

The output format could use an existing part of the 

CCSDS header to encode which compression algorithm 

has been used to encode each block. Something to 

highlight is that an algorithm chooser breaks the 

determinism that was there for downlink. The ground 

station no longer knows the exact size of the data to be 

downlinked before operations commence as there is no 

link between uplinked commands to make specific 

acquisitions and a determined compression rate (e.g. all 

acquired data compressed with BAQ4). 

The models and algorithms developed under this 

Activity shall be further developed with collaboration 

with industry partners, with the aim being to demonstrate 

improvements on an in-orbit demonstrator mission. 

The software implementation or future hardware 

implementation could be licensed to instrument 

developers. Collaboration with instrument developers 

would allow tuning for pre-processing and throughput 

requirements, new instruments to meet throughput 

constraints of onboard data buses, and tight integration 

with their interfaces and data formats. This would be in 

a runtime mode configuration. 

A more realistic short-term goal is to integrate a software 

implementation or future hardware implementation with 

a platform manufacturer on a payload data processor, 

where the aim would be to reduce downlink reducing 

downlink constraints on the platform. 

FUTURE WORK 

The outcomes of this Activity lend themselves to a range 

of future work both as extensions of the work completed 

during the project and as new areas of investigation. 

Offline Compression Implementation 

An aim of the hardware roadmap development was to 

compare two approaches to the hardware architecture, 

runtime compression versus offline compression. 

NovaSAR-S was considered in the study as a potential 

future target hardware system and provided a good 

candidate for comparing a runtime compression mode 

with an offline compression operating mode, as it 

currently operates runtime compression. 

Offline compression modes were found to be the 

preferred option, at least initially as they required the 

least modification of radar backend architectures like 

Airbus DS NIA Radar Backend (as used on NovaSAR). 

This future work would explore the interfaces to the 

High-Speed Data Recorder (HSDR) required in order to 

read and write from the inference module, and how this 

would impact both the mission concept of operations and 

the satellite and ground operations. Surrey Satellite 

Technology Ltd are already actively exploring offline 

on-board payload data processing architectures. One 

such project is the Incubed funded Flexible Intelligent 

Payload Chain (FIPC) where SSTL partnered with Craft 

Prospect Ltd and University of Surrey as application 

developers for an offline on-board processor designed to 

integrate the platform to process data from optical EO 

payloads. There is potential for this architecture to be 

extended to future SAR platforms. 

Inference on Compressed Representation 

The exploration of an offline processing mode 

architecture could be combined with exploring the idea 

of working with a BAQ compressed representation of the 

data directly (e.g. BAQ4 compressed) during inference. 

This approach would have advantages for systems where 

there is a coprocessor architecture with data already 

compressed by the radar backend. The task of the ML 

system would be to decide if data could be further 

compressed without loss of quality. For parts of the data 

where this was the case, the data would be decompressed 

and then recompressed with a lower bitrate algorithm. 

Areas of exploration include how the machine learning 

model would perform whilst working with features 

derived from the compressed data as input, and how this 

impacts the HSDR, as recompressed data would be 

smaller in size than the original. 

Inference on Raw SAR for New Use Cases 

The Activity developed a machine learning ready raw 

SAR dataset and a pipeline for generating further 

datasets. This could be adapted to other applications to 

enable rapid prototyping of new machine learning 

methods in the raw SAR domain. An initially targeted 

application could be a maritime application like ship 

detection and classification, where targets are sparse 

(ships) amongst the sea of data (the ocean). Much further 

development is expected in this area. In future work, the 

demonstrated algorithms could be embedded in a more 

realistic mission concept and demonstrated in 

simulation, with requirements preferably solicited from 

stakeholders with real use cases.  
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AI Compressor 

A future project could explore the feasibility of a 

completely different approach to the problem of raw 

SAR data compression. This approach could be a pure 

learning approach, where the 

compression/decompression itself is learned by a model, 

rather than enhancing the use of existing compression 

algorithms by building on their design with a machine 

learning aspect. 

Autoencoders are deep artificial neural networks, where 

the aim during training is to reproduce the encoder input 

at their output layer. A flavour of these architectures, 

Variational Autoencoders, show great promise in image 

data compression in unsupervised learning regimes. 

Variational inference is an essential statistical learning 

technique where a distribution (such as Gaussian) is 

selected and its parameters adjusted to best match a 

target distribution, even when the target distribution is 

not exactly known. Autoencoders consist of an encoder 

and decoder as artificial neural networks, which are 

trained to learn the best encoding and decoding scheme 

by performing iterative optimisation. The output of the 

autoencoder network is compared with the input data to 

measure the error, which is then back propagated through 

the model to update the network weights in a way that 

best reduces the error. Variational autoencoders are those 

which have an encoding distribution that is regularised 

during training. Regularisation is achieved by a 

modification of the encoding and decoding process 

where the input is not encoded as a single point of data, 

but rather as a distribution over the latent (target) space.  

An approach where some preliminary exploration has 

already been done for raw SAR data compression is 

using Vector Quantized Variational Autoencoders (VQ-

VAE)14, where discrete (rather than continuous) latent 

variables are used and distributions are categorical15. 

In this approach various VQ-VAE based model 

architectures could be explored, parameters and 

performance metrics tuned to reach these goals. The 

performance could be benchmarked against the state-of-

the-art standard algorithms to evaluate the feasibility of 

AI as a solution to on-board SAR data compression. 

Within the model learning and evaluation process, the 

input would be raw SAR data and the ML model would 

aim for the highest quality approximation, with 

maximum compression ratio, as output. Outside of this 

process, the model output can be evaluated and verified 

against Single Look Complex (SLC) data to assess the 

quality of the product. 

Neural Network Inference 

The decision tree model selected in the course of this 

Activity is simple, effective and explainable. Using such 

a model is possible due to the features that can be derived 

from using knowledge of the statistics of the raw data. 

Now that we have proven that inference between the 

derived features and target variables can be successfully 

performed, we can look at other model types for on-

boarding to satellite hardware. Neural networks can 

approximate any function so are expressive enough to 

learn the relationships here. They could also be used to 

learn (potentially more effective) features, rather than 

hand engineering features.  

The tools available for implementing neural networks on 

hardware are fast advancing and provide multiple 

powerful optimizations like network weight quantization 

and architecture pruning to optimize hardware 

throughput against model inference performance. 

CONCLUSION 

The work carried out under SARAI demonstrated that 

the execution of machine learning models working on 

raw SAR data to perform predictions of reconstruction 

error in the image domain with various raw SAR data 

compression algorithms is feasible, albeit with a limited 

number of end-to-end solutions available when 

compatibility of all the elements is considered and many 

iterations of refinement required before an optimal 

solution can be found. 

The achievements in the activity have applications across 

several ESA programmes. On-board processing to 

improve onboard data compression has many benefits to 

the EOEP (Earth Observation Envelope Program) in 

terms of eliminating or reducing data bottlenecks in EO 

missions, improving on-board data management, and 

reducing operational and infrastructure costs. This also 

benefits Science and Robotic Exploration missions (such 

as future interplanetary exploration missions with radar 

payloads), as better data compression can increase the 

possible scientific return of the mission. The activity also 

developed a machine learning ready raw SAR dataset 

and a pipeline for generating further datasets, which 

could be adapted to other applications to enable rapid 

prototyping of new machine learning methods in the raw 

SAR domain. Much further development is expected in 

this area. In future work, the demonstrated algorithms 

could be embedded in a more realistic mission concept 

and demonstrated in simulation, with requirements 

preferably solicited from stakeholders with real use 

cases. The suggestions of the Hardware Roadmap, 

created under this activity, should be further assessed, 

and followed to demonstrate the scheme on 

representative flight hardware. The demonstrator should 

explicitly address compliance with requirements on end 

benefits as defined by a relevant stakeholder. 

Completion of this work to address an end user 

application on representative flight hardware is 

estimated at €250k over fifteen months. This estimate is 

based on similar projects developing hardware testbeds 

with representative simulated scenarios representative of 

flight. A flight demonstration of the developed 
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technology is a highly feasible mid-term goal. This is 

estimated at €2M total to develop flight models of an 

application demonstrator (ML technology fully 

integrated with a modified SAR instrument radar 

backend). This can then be integrated with a SmallSat 

bus and tested in-orbit. Clear requirements can be 

solicited from end users engaged through this and other 

parallel activities, resulting in a demonstration mission 

with measurable end benefits to these users. The 

compression demonstration would likely be part of a 

larger demonstrator mission. The work is estimated at 

eighteen months, using the TRL 6 milestone as a starting 

point.  
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