Utah State University

DigitalCommons@USU

Aspen Bibliography

Aspen Research

1977

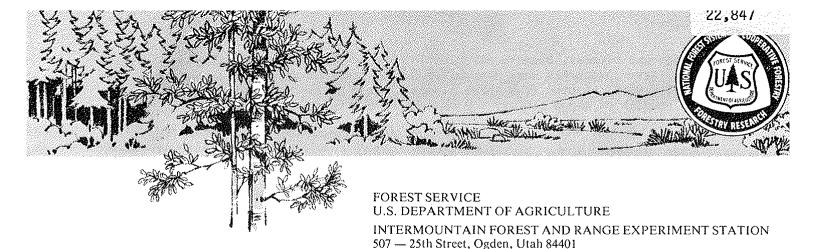
Summary of nutrient and biomass data from two aspen sites in western United States

Robert S. Johnston

D.L. Bartos

Follow this and additional works at: https://digitalcommons.usu.edu/aspen_bib

Part of the Forest Sciences Commons


Recommended Citation

Johnston, Robert S. and Bartos, D.L., "Summary of nutrient and biomass data from two aspen sites in western United States" (1977). Aspen Bibliography. Paper 4897.

https://digitalcommons.usu.edu/aspen_bib/4897

This Report is brought to you for free and open access by the Aspen Research at DigitalCommons@USU. It has been accepted for inclusion in Aspen Bibliography by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

USDA Forest Service Research Note INT-227

August 1977

DATA FROM TWO ASPEN SITES IN WESTERN UNITED STATES

Robert S. Johnston and Dale L. Bartos¹

ABSTRACT

Summary tables are presented for aboveground biomass and nutrient concentrations for 20 aspen trees (Populus tremuloides Michx.) that were sampled at two study sites in Utah and Wyoming. Trees were divided into seven components—leaves, current twigs, old twigs, deadwood (branches), branches, bark, and bole wood. Samples from each component were analyzed for nitrogen, phosphorus, potassium, calcium, sodium, magnesium, zinc, iron, and percent ash.

KEYWORDS: nutrient concentration, biomass, aspen, *Populus* tremuloides

This paper presents a compilation of aboveground biomass measurements and nutrient concentrations of three clones of aspen (*Populus tremuloides* Michx.) sampled at two study sites in Utah and Wyoming. The study is part of a comprehensive research program to investigate the dynamics and functioning of the aspen ecosystem.

Aspen has been studied extensively in the eastern United States and other parts of the world, but little work has been done on the aspen of the western United States. The current research program includes the development of a predictive model of ecosystem dynamics (Bartos 1973). Because of the lack of data, many relationships were developed by using records from other areas. The data reported in this paper were collected to validate and improve the model to make it more applicable to this region.

The authors are, respectively, Research Hydrologist and Range Scientist, located at the Intermountain Station's Forestry Sciences Laboratory, Logan, Utah. Use of trade or firm names is for reader information only, and does not constitute endorsement by the U.S. Department of Agriculture of any commercial product or service.

Aboveground biomass, biomass distribution within each tree, and major nutrients in the various tree components were determined for 20 trees of varying size and age. The trees sampled were selected from three clones located at two sites where multidisciplinary studies of aspen ecology and management are being conducted.

SITE DESCRIPTION AND METHODS

The Chicken Creek site is located at 2,400 m elevation on the Davis County Experimental Watershed, approximately 24 km northeast of Salt Lake City, Utah. The other site, Gros Ventre, is located at 2,300 m elevation on the Bridger-Teton National Forest, approximately 48 km northeast of Jackson, Wyoming. Vegetation, soils, and topography of the Chicken Creek site were described by Johnston and Doty (1972). Vegetation and topography of the Gros Ventre site were discussed by Krebill (1972) and the soils by Bare (1972).

Individual clones at each site were identified by their phenotypic characteristics. The tree samples represented the variation in size classes within the three clones.

Fourteen trees from two Chicken Creek clones were sampled in 1973. These clones are designated Chicken Creek 3 and 4. Trees ranged in age from 16 to 91 years; the mean age of trees in each clone was about 48 years. Tree heights ranged from about 4 to 18 m and diameter at breast height (d.b.h.) from 3 to 27 cm.

The six trees sampled at the Gros Ventre site in 1974 were older, ranging in age from 94 to 151 years (average age, 116 years). Tree height ranged from 6 to 20 m and d.b.h. from 14 to 36 cm.

A total tree harvest method was used to arrive at aboveground biomass. Trees were harvested in August to make certain that maximum growth had been attained. Diameter at breast height, age, and height of each tree were recorded. If the bole was divided into manageable sections, additional diameter measurements were taken at the midpoint of each section.

Trees were felled and divided into seven components (within-tree biomass)--leaves, current twigs, old twigs, branches, deadwood, bark, and bole. A "current twig" was considered to be one with leaves and an "old twig" was defined as that portion from the bud scale scars of current growth back to the previous twig. All components were weighed in the field to determine the green weight. Each part was then subsampled to determine percent dry matter for conversion to dry weights. These subsamples were ovendried at 70° C for at least 48 hours for leaves and twigs and 336 hours, or until a constant weight occurred, for wood and bark.

Initially, 100 percent of the leaves, current twigs, and old twigs from several trees were separated in the field. After this, a small portion of the total twig and leaf components was sampled to conserve time. The calculated percentages were used to convert the total weight into appropriate parts.

Two hundred leaves were randomly selected from each tree to determine leaf area using a Lambda portable area meter. The total tree leaf area was then obtained by multiplying the mean leaf area by the calculated number of leaves per tree (total leaf weight divided by the average leaf weight).

All dried samples from the various tree parts were ground to pass through a 20-mesh screen and then subsampled for nutrient determinations. Each sample was analyzed for total nitrogen by the Kjeldahl method, phosphorus, potassium, calcium, sodium, magnesium, zinc, iron, and percent ash on a dry weight basis. Metals were analyzed by atomic absorption techniques, but other elements were analyzed according to Chapman and Pratt (1961). All determinations were made in the Soils Laboratory at Utah State University, Logan, Utah.

RESULTS

Biomass Distribution

Appendix table 1 summarizes individual tree characteristics, and related biomass measurements.

Graphical presentation of the distribution of aspen tree biomass among the seven components for each of the clones is shown in figure 1. These data are expressed as a

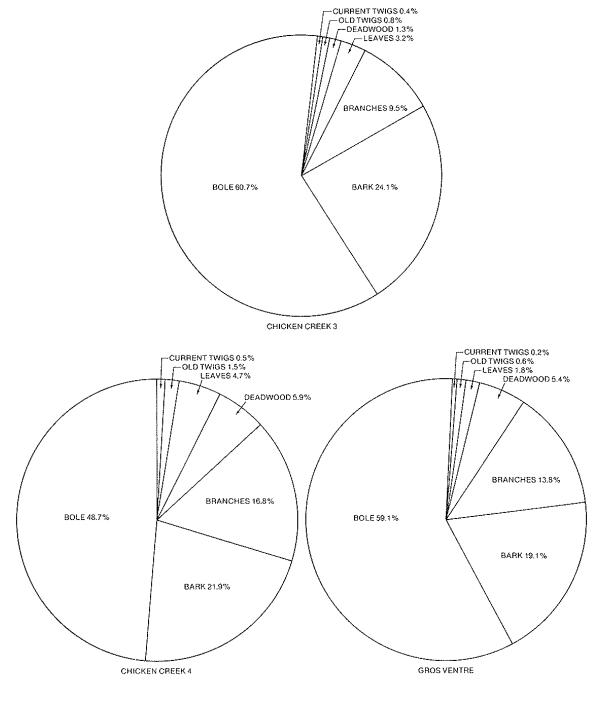


Figure 1.--Distribution of aspen tree biomass among seven components expressed as a percentage of the total weight.

percentage of total weight. The major portion of aboveground biomass is contained in the bole, the next largest portion in the bark, and the third largest in the branches. Leaves and current growth average 4 percent of the biomass.

Equations were developed to show the relationship between d.b.h. and total above-ground biomass for each of the study areas (fig. 2). The R^2 values were 0.997 for each curve. A single equation was developed for the Chicken Creek area by using pooled data from the two clones.

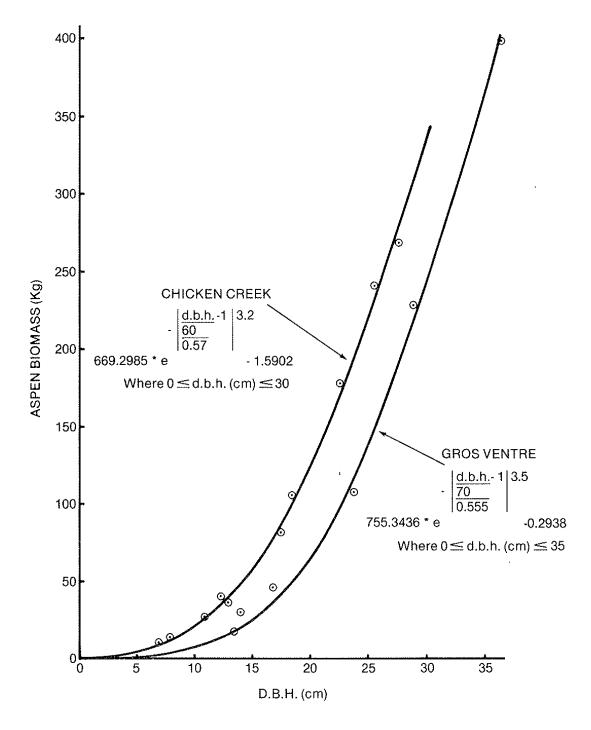


Figure 2.--Original data, predictive equation, and fitted curve for total aspen biomass for Chicken Creek and Gros Ventre Study sites.

Nutrient Analyses

All nutrient analyses for the 20 trees are summarized in appendix tables 2-8. Each table lists nutrient concentrations of each tree for a single component part. Nutrient concentrations in the bark and bole components of small trees are listed as a single entry. In large trees, these components were divided into several sections and the nutrient concentration of each section is presented.

Total content of each element per tree or component can be derived by multiplying the elemental concentration by the corresponding dry weight of the component to provide a weighted value.

Ģ

PUBLICATIONS CITED

Bare, H. H.

1972. Soils report; proposed breakneck burn area - Teton National Forest - Gros Ventre District. 4 p. USDA For. Serv., Intermt. Reg. Ogden, Utah.

Bartos, D. L.

1973. A dynamic model of aspen succession, <u>In:</u> IUFRO biomass studies, p. 11-25. Univ. Maine Press, Orono. 532 p.

Chapman, H. D., and P. F. Pratt.

1961. Methods of analysis for soils, plants, and waters. 509 p. Univ. Calif.-Davis, Div. Agric. Sci.

Johnston, R. S., and R. D. Doty.

1972. Description and hydrologic analysis of two small watersheds in Utah's Wasatch Mountains. USDA For. Serv. Res. Pap. INT-127, 53 p. Intermt. For. and Range Exp. Stn., Ogden, Utah.

Krebill, R. C.

1972. Mortality of aspen on the Gros Ventre elk winter range. USDA For. Serv. Res. Pap. INT-129, 16 p. Intermt. For. and Range Exp. Stn., Ogden, Utah.

APPENDIX

 ${\it Table 1.--Summary of individual tree\ characteristics\ and\ related\ biomass\ measurements}$

	.B.H. : em	Height:	: Age : : at d.b.h. : I	Leaf area	: Leaves :	4	_					: Weight
	em	277			- HOUVED	twigs	: twigs:	Branch	: wood	: Bark	Bole	: total
		m		cm ²				- kg -				~
					Chic	ken Cree	k 3					
1	7.9	8.6	27	53,116	0.416	0.034	0.162	1.404	0.150	3.503	8.555	14.224
2	10.9	10.4	30	132,096	1.197	.078	.260	3.240	.202	7.056	14.319	27.352
3	3.3	4.0	25	6,277	.048	.003	.019	.058	,007	. 468	1.146	1.749
4	3.0	4.8	16	19,608	.129	.031	.015	.095	.073	. 371	.957	1.671
5	27.4	17.1	91	344,802	4.466	.330	1.266	39.840	5.088	61.627	157.028	269.645
6	18.3	16.0	71	89,308	1.170	.113	.235	8.880	. 564	25.690	68.719	105.371
11	22.3	17.7	71	330,476	3.662	. 264	(2)	22.021	.846	39.882	111.846	178.521
					Chic	ken Cree	k 4					
7	25,4	11	88		4,494	.507	1,120	55.220	35.250	46.262	99.173	242.03
	17.3	8.5	60	196,803	1.641	.198	.516	16.128	6.080	19.130	38.546	82.24
9	12.7	8.6	50	- -	<	2.001-	>	5.170	2.280	8.827	18.316	36.60
10	12.2	8.7	51	188,729	1,425	.174	.624	6.985	2.426	8.613	20.524	40.77
12	3.8	3.8	29	23,820	.168	.015	.058	.217	.133	.609	1.390	2.59
13	6.9	5.8	31	51,615	.782	.103	.260	1.925	.079	1.982	5.589	10.72
14	4.3	3.8	29	29,463	.240	.017	.053	. 560	.053	.787	1.514	3.22
					Gı	ros Ventr	e					
1	23.6	10.4	¹ 167 (200)	332,866	2.440	. 200	.758	25.264	5,202	22,490	51.033	107,39
2	28.7	16.0	104	329,140	3.158	,501	1.732	26.827	5.090	39,650	151.507	228.46
3	16.8	11.7	99	92,418	.741	.063	.235	4.104	2.108	8.828	29.364	45,44
4	36.0	20,4	143	459,178	3.547	.876	1.392	72.620		64.647	238.365	399.74
	14.0	12.0	71 (100)	82,398	. 568	.070	.266	3.440	2.858	4.168	19.134	30.50
6	13.5	6.3	30 (80)	54,007	.449	.046	.104	1.651	1.220	4.849	9.526	17.84

 $^{^{1}\ \}mathrm{Age}$ to heartrot - estimated age in parentheses.

Table 2.--Nutrient concentration for the leaf component for 20 aspen trees

Tree No.	: : :	p	: : Na	: : K	: ; Ca	: Mg	: : Fe	: : : : : : : : : : : : : : : : : : :	Ash
				µg/g	7				%
					n Creek 3				
1	25,250	1,500	36	9,850	10,750	2,700	77.5	180	5.58
2	23,850	1,700	37.5	9,750	13,050	2,500	62.5	148.5	5.78
3	25,000	1,650	44.5	9,350	14,800	3,200	80	99.5	5.99
4	27,750	2,500	38.5	10,100	14,500	2,950	90	165	6.45
5	23,400	1,400	49	7,900	10,550	2,250	100	122.5	5.00
6	21,250	1,350	42	9,700	10,300	2,100	165	89	5.41
11	23,050	1,550	43.5	9,050	10,800	2,400	157.5	97	5.27
				Chicke	n Creek 4				
7	23,700	1,650	46	10,600	11,650	2,100	100	60	5.76
8	23,400	1,550	46.5	9,900	11,950	2,300	65	71.5	5.57
9									
10	23,900	1,500	45.5	11,200	11,400	2,150	107.5	60.5	5.74
12	22,300	1,500	65.5	9,600	13,000	3,150	125	63.5	6.15
13	23,900	1,700	49.5	10,050	13,250	2,450	172.5	65	6.47
14	20,500	1,700	60	15,450	11,400	1,950	115	66	6.80
				Gros	Ventre				
1	24,650	1,950	26	9,200	9,850	3,300	51.5	90.5	5.10
2	26,250	2,200	27	15,250	8,050	1,750	68.5	77.5	5.67
3	26,850	2,200	23	13,450	9,250	2,950	52	80.5	5.74
4	29,000	2,300	23.5	18,500	12,550	2,500	72.5	115	7.43
5	30,250	2,450	39	18,850	13,300	3,250	66	141	8.31
6	26,000	2,100	21	15,350	9,350	2,050	71.5	101	5.79

 $^{^{\}rm 2}$ Old twigs included with branches on tree 11.

 ${\it Tablc 3.--Nutrient\ concentration\ for\ the\ current\ twig\ component\ for\ 20\ aspen\ trees}$

rec	:	:		:		:		:		;		:		:		:	
No.	: N	:	Р	:	Na	:	K	:	Ca	:	Mg	;	Fe	:	Zn	:	Ash
							µg	g/g -		<u></u>					<u>-</u>		%
							Chic	ken (reek 3								
1	11,900		1,650		50.5	(6,650		12,050		2,450		34.5		156.5		5.07
2	11,450		1,600		54.5		600		13,700		1,900		33		121.5		5.15
3*	11,150		1,600		41.5	(900		10,050		1,800		37.5		96		4.26
4*	11,150		1,600		41.5	(,900		10,050		1,800		37.5		96		4.26
5	11,350		1,500		53		650		12,950		2,050		44.5		129.5		4.50
6	12,100		1,550		52	5	,850		12,350		1,900		78		85.5		4.90
11	11,400		1,700		42	5	,400		13,700		2,150		47		95		5.18
							Chic	ken (Creek 4								
7	10,700		2,050		60	(,400		11,950		2,100		53.5		82		4.89
8	10,900		1,850		53	(,400		11,750		2,250		48.5		94		4.67
9																	
10	10,750		1,750		61	(,800		13,350		2,350		46		85.5		5.17
12	11,100		2,350		68.5	(850		11,150		3,100		48		88		4.72
1.3	9,950		1,850		55.5	6	,050		12,150		2,300		63.5		83		4.75
14	11,300		2,350		66	7	7,750		13,750		2,500		55		96		4.75
							G1	os Vo	entre								
1	10,300		1,800		34	ŗ	,400		10,050		1,900		29.5		92		3.93
2	9,900		2,000		44	6	450		9,100		1,050		38		73		4.04
3	11,800		2,150		43	6	600		9,650		2,200		30.5		91		4.15
4	10,650		2,000		24	8	450		8,700		1,200		37.5		73		4.15
5	13,400		2,600		28		,400		10,400		1,550		28.5		90		4.92
6	9,350		2,000		39	7	950		10,650		1,450		60.5		108		4.70

^{*} Trees 3 and 4 were combined for nutrient analysis.

Table 4.--Nutrient concentration for the old twig component for 20 aspen trees

Mg : Fe : Zn : Ash
 %
450 35 135.5 5.00
300 27.5 112 5.94
300 35 97.5 5.24
300 35 97.5 5.24
250 47 110 5.03
300 51 77 5.23
350 36 66 4 . 17
700 39.5 65.5 4.26
700 35.5 61 4.78
150 30.5 55.5 3.58
700 34.5 53 4.07
550 55 66.5 3.54
350 42.5 92.5 3.78
750 54 78.5 4.27
250 49 89.5 3.75
900 31 76.5 3.79
200 42 87.5 4.16
100 46 83 4.28
33323 - 37 - 7175 - 37292

 $^{^{\}star}$ Trees 3 and 4 were combined for nutrient analysis.

Table 5.--Nutrient concentration for the branch component for 20 aspen trees

	. :		:	:	;	:	:	:	:
Tree No.	; N :	P	: Na	: к	: <u>Ca</u>	: Mg	: Fe	: Zn	: Ash
					- ug	. .			_ %
				Chic	cken Creek 3	5			
				0					
1	5,050	600	51	3,050	14,850			119	4.72
2	5,150	650	46.5	2,650	16,050			122.5	4.9
3*	6,050	850	66	3,250	16,100	0 1,350		94.5	5.1
4*	6,050	850	66	3,250	16,100	0 1,350		94.5	5.10
5	5,150	550	55	3,000	16,65			115	4.0
6	5,600	500	54.5	3,000	20,30			84	6.1
11	5,100	550	55.5	2,600	17,15	0 1,000	21.5	85	5.3
				Chi	cken Creek	A			
				CHI	CKCH CLCCK	•			
_	5 000	700	77	3,050	13,00	0 1,100) 15	76.5	4.3
7	5,900	700	99	3,200	•			78	4.7
8	5,700	700		5,200					
9	 	700	64	3,650	14,50	0 1,400	22	63	4.6
10	5,900	700	67	3,000	,		0 17	55	4.4
12	5,700	650	58.5	2,650			0 54	69.5	5.1
13 14	5,050 5,950	750	75.5	3,300			0 27.5	68	4.9
				G	iros Ventre				
			24	2 (**	9,90	00 1,05	0 42.5	78	3.5
1	3,700	700		2,650			-	75.5	3.0
2	4,850	650		3,700 2,800			-	80	3.3
3	3,950	750		,		-	•	78.5	2.9
4	4,600	800		3,700 2,800			-	5 86	3.3
5	3,750	600		3,650			-	84	3.7
6	4,350	650	37	3,030	, , , , , , , , , , , , , , , , , , , ,	,,,			

^{*} Trees 3 and 4 were combined for nutrient analysis.

Table 6.--Nutrient concentration for the dead wood component for 20 aspen trees

		•		:	:	;	:	:		:	:
Tree No.	: N	:	P	: Na	: к	: Ca	: M	g :	Fe	: Zn	: Ash
NO.										=	. %
						. ug = = =					
					Chick	en Creek 3					
			200	134	1,400	15,450	8	50	154	114.5	4.89
1	4,60		200 550	96.5	2,650	20,700		00	55	113	6.54
2	4,30			68.5	1,900	11,800		00	30.5	75.5	3.70
3*	4,40		200	68.5	1,900	11,800		00	30.5	75.5	3.70
4*	4,40		200	132.5	950	16,400		'00	78	93.5	4.77
5	3,70		150	84	1,750	11,950		00	36.5	86	2.68
6	3,89		200 100	79.5	1,500	19,300		50	36	74	4.76
11	3,40	00	100	15.5	1,500	,					
					Chic	ken Creek 4					
			7.50	86	750	13,850) :	700	178	64	4.25
7	4,3		150	80	750	11,450		350	193	62.5	3.50
8	4,3		200								
9		-	100	81	500	10,250)	500	195	60	3,17
10	4,1		100	92	1,050	13,900		000	129.5	55	3.29
12	4,6		200 400	153.5	2,200	16,400		100	46	50	4.96
13	6,1		100	71.5	450	9,750		450	106	45.5	2.84
14	4,5	50	100	/1.5		- /					
					Gr	os Ventre					
					950	12,70	0	850	85	89	3.90
1	3,1		200	57	1,000	8,45	~	500	139	65.5	2.7
2	2,9		250	49	500	4,85	~	450	314	47	2.1
3	3,0		250	57	700	6,80		550	192.5	57.5	2.3
4		900	200	45.5	600	5,80		550	116.5		2.1
5		500	200	64.5		7,60		500	147	64	2.6
6	3,0)50	200	64	1,100	1,00	V				

^{*} Trees 3 and 4 were combined for nutrient analysis.

Table 7.--Hutrient concentration for the bole component by section for 20 aspen trees

Tree No.	: : Section	; N	: : P	: : Na	: : K	: Ca	: : Mg	: : Fe	: : Zn	: Ash
	em				με	1/g				%
					Chicken (Treek 3				
	2.8	1,600	200	50.5	1,400	850	300	19	26	0.49
1	6.4	1,200	100	50	850	800	300	137.5	30.5	.32
	9:1	1,100	100	44	3,350	3,250	750	14.5	25	1.58
	x	1,300	133	48	1,867	1,633	450	57	27	.80
2	* ~	1,100 1,100	100 100	29.5 29.5	700 700	600 600	200 200	21 21	14.5 14.5	.25
	*	1,250	100	38.5	750	850	200	19	14.5	
3	ä	1,250	100	38.5	750	850	200	19	14.5	.35 .35
4	*	1,400	200	24	950	600	200	65.5	18.5	. 32
4	x	1,400	200	24	950	600	200	65.5	18.5	. 32
	2.5	1,750	200	36	1,000	1,400	300	70	31	. 64
	7.9	1,200	100	24	900	1,200	250	23	17.5	.45
5	15.5 20.3	1,150	100	15.5	1,850	2,400	500	24	24	.84
	20.3	1,050 1,000	100	28.5	750	900	250	21.5	14.5	. 28
	x x	1,230	65 113	11.0 23	500 1,000	1,500 1,480	200 300	24 33	17.5 21	.37
	6.1	1,450	150	73.5	1,750	850	300	36	14	.58
6	15.8	1,100	100	34.5	1,550	1,750	400	20	13.5	.71
o	19.3	900	45	20.5	650	1,100	200	18	12.5	.49
	x	1,150	98	43	1,317	1,233	300	25	13	.59
	8.8	1,200	150	17	800	1,050	200	30	12.5	.51
11	14.4	1,000	100	11	600	1,050	200	15.5	9.5	. 36
	$\frac{23.4}{x}$	800 1,000	100 117	33.5 21	450 617	450 850	150 183	17.5 21	9 10	.18
					Chicken (reek 4				
	3.3	3,250	550	35	1,500	3,950	400	41.5	32,5	1.50
7	8.8	1,600	200	15.5	900	1,300	200	26.5	11	.50
,	18.2 26.0	1,250 1,200	100	14	1,400	1,100	300	28	11	.54
	ž vieto	1,825	100 238	14 20	950 1,188	1,450 1,950	250 313	16.5 28	12 17	.43
	4.1	1,850	450	110.5	•					. 74
	6.7	1,500	200	70.5	1,150 1,000	1,550	400	27.5	15	.53
8	13.0	1,300	200	32.5	1,700	1,050 2,050	300 450	25	11.5	.53
	18.2	1,350	100	44.5	1,450	1,800	400	20 23	15 14.5	.74 .77
	x	1,500	238	65	1,325	1,613	388	24	14	. 64
	3.6	1,550	300	20.5	1,000	1,100	300	30.5	27	.50
9	10.0 14 <u>.</u> 9	1,350 1,250	150	18.5	850	1,400	250	21.5	13.5	.41
	X	1,383	100 183	14.5 18	1,000 950	1,150 1,217	250 267	21.5 25	12 18	. 49 . 47
	5.7	1,500	300	31.5	1,100					
1.0	9.1	1,400	200	33	1,350	1,000 1,000	300	50	13.5	.45
10	14.0	1,200	100	21.5	600	550	300 150	29 27.5	14	.55
	x	1,367	200	29	1,017	850	250	36	9.5 12	. 27
	2.1	1,100	300	41.5	1,050	1,200	400	107.5	17	.90
12	3.4	1,400	300	36.5	950	1,000	300	77.5	11	.54
	5.7 x	1,250 1,250	200	29.5	600	450	200	40.5	17.5	.22
			267	36	867	883	300	75	15	.55
	3.2 5.7	1,550 1,300	450 200	102 38.5	1,100	650	300	30	15.5	0.41
13	7.8	1,250	200	38.5 76	700 750	700	250	41.5	11.0	.44
	x	1,367	283	72	750 850	350 567	200 250	42.5 38	10 12	. 26 . 37
	2.7	2,300	400	20.5	1,450	500	350	71	17.5	.55
4	3.6	1,200	250	17	900	950	250	70	11.5	.41
	5.8	1,650	200	18.5	750	700	150	59	11.5	.40
	x	1,717	283	19		717	250			

(con.)

Table 7.--(con.)

Tree		:	:	:	:	;	:	:	:	:
No.	: Section	: N	; p	: Na	: к	: Ca	: Mg	: Fe	: Zn	: Ash
	cm				µ	9/9				_ %
					Gros Ven	tre				
	4.3	1,650	150	28	950	1,450	350	110	18.5	0.66
	6.4	1,250	<100	30	400	1,100	200	<4	10	.40
	13.2	1,100	100	50	500	950	300	10.5	9.5	. 39
	17.5	1,150	<100	24	350	1,150	300	10.5	10.5	.41
1	17.5	900	150	44	500	1,150	300	20.5	10	. 37
	18.8	1,200	<100	19	750	1,250	350	8.5	10.5	.45
	25.7	1,000	<100	22	350	750	200	4.5	9.5	. 31
	x	1,179	114	31	543	1,114	286	24	11	.43
	8.4	1,150	100	28	600	1,050	250	4.5	15	. 46
	17.3	1,000	<100	17	500	1,200	200	18.5	12	.46
	21.6	750	<100	25	400	1,000	200	7.5	12.5	.38
2	26.4	700	<100	23	300	1,000	200	6.5	11.5	. 38
	31.2	1,000	<100	38	450	750	100	15.5		. 33
	x	920	100	26	450	1,000	190	11	13	.40
	7.1	1,300	100	43	750	1,150	300	16	12.5	.52
	9.4	1,150	<100	26	500	1,050	300	5.5	11.5	.45
~	11.7	1,000	<100	40	350	1,150	300	17.5	9	.42
3	13.2	850	<100	18	450	1,000	300	4.5	10	.40
	16 <u>.</u> 5	950	<100	1.3	950	1,000	250	4	7	.31
	x	1,050	100	28	600	1,070	290	10	10	.42
	11.2	1,250	200	23	850	1,150	300	17.5	5 11	.55
	20.8	1,000	<100	51	550	1,150	200	8	12.5	.47
	26.7	900	100	1.0	650	1,250		9	10	.40
4	27.7	850	<100	24	450	1,300	300	24.5		.54
	30.2	800	<100	15	650	1,450		23	14.5	.53
	38.9	900	<100	33	750	1,150		10	11	.44
	x	950	117	26	650	1,242	283	15	12	.49
	4.1	1,100	200	20	700	1,300		11.9		0.40
	8.6	850	100	21	400	1,300		4.5		. 48
5	10.7	900	<100	58	500	1,350		16.5		.52
	13.2	1,300	150	22	1,250	1,850		10	15.5	.78
	x	1,038	138	30	713	1,450	350	11	15	. 55
	9.8	1,650	200	27	1,450	4,900	900	18.5		1.72
6	14.5	1,200	<100	14	1,750	4,150	850	7.5		1.49
	x	1,425	150	21	1,600	4,525	875	13	24	1.61

^{*} All sections combined.

Table 8.--Nutrient concentration for the bark component by section for 20 aspen trees

Tree			:	:	1			: :		:
No.	Section	: N	: p	Na :	к :	Ca :	Mg	: Fe :	Zn	: Ash
	cm				µg	/g				- %
				С	hicken Creek	3				
	2.8	7,050	900	31	4,150	16,100	1,300	24	149.5	4.92
1	6.4	5,100	650	39	3,150	17,300	1,100	23	167	5.40
	9.1 x	4,150	300	33	2,150	16,100	700	18	152	4.75
	*	5,433	617	34	3,150	16,500	1,033	22	156	5.02
2	*	5,150	650	32.5	3,350	13,000	800	27.5	130.5	3.74
	x	5,150	650	32.5	3,350	13,000	800	27.5	130.5	3.74
3	* X	4,650 4,650	350 350	46.5 46.5	2,500 2,500	21,300 21,300	900 900	28.5 28.5	115.5 115.5	6.52 6.52
										0.52
4	* -	5,400 5,400	750 750	29.5 29.5	3,550 3,550	14,000	800 800	30 30	119 119	3.49
	^	3,400	730	49.3	3,330	14,000	800	30	119	3.49
	2.5	5,700	550	44.5	3,600	19,850	1,000	19	167.5	6.27
	7.9	5,400	450	43.5	2,450	21,100	1,050	14	164.5	5.36
5	15.5	4,950	400	17.0	2,100	21,300	900	18	165	4.64
	20.3 27.4	4,650 3,900	350 300	21.5 59.5	2,150	20,700	850	14.5	171	6.10
	X	4,920	410	37	2,000 2,460	17,700 20,130	600 880	17.5 17	140.5 162	5.25 5.52
	6.1	4 450	700	21	7 400	20.000	050	10	300 F	
	15.8	4,450 4,400	300 300	37 52.5	3,400 2,550	20,800 20,550	950 750	18 22	120.5 129.5	6.39 6.35
6	19.3	4,000	300	37	2,050	17,000	600	31.5	106.5	5.18
	ž	4,283	300	42	2,667	19,450	767	24	119	5.97
	8.8	5,150	450	27.5	2,350	17,100	1,050	25.5	133	4.96
	14.4	4,950	450	27.5	2,450	17,400	900	84	132.5	5.23
11	23.4	4,000	300	33	2,500	16,650	600	24	121	4.35
	x	4,700	400	29	2,433	17,050	850	45	129	4.85
				C	hicken Creek	4				
	3.3	6,550	750	50	3,800	13,650	1,100	33	107	4.41
	8.8	5,850	550	37	2,450	15,850	1,300	14.5	121	4.55
7	18.2	5,350	500	34.5	2,350	15,600	1,250	20.5	124	4.74
	26.0	5,350	450	38.5	2,500	16,100	1,200	16	137	5.01
	x	5,775	563	40	2,775	15,300	1,213	21	122	4.68
	4.1	6,100	850	49	3,200	19,600	1,800	13	149	6.39
0	6.7	5,800	600	39	2,650	18,800	1,700	23	142	5,83
8	13.0 18.2	4,800 4,250	400 350	42 42.5	1,950 2,400	18,750	1,400	28	121	5.59
	X	5,238	550	43	2,400	17,050 18,550	1,050 1,488	13.5 19	109.5 130	5.16 5.47
	7 (
	3.6 10.0	6,350 4,950	800 500	42 74.5	4,100 2,200	13,950 15,300	1,500 1,200	29.5 22	139 126.5	4.66 4.59
9	14.9	4,550	400	47	2,650	14,950	1,100	13	104.5	4.55
	x	5,283	567	55	2,983	14,733	1,267	22	123	4.60
	5.7	5,600	500	26.5	2,400	15,300	1,600	24	106.5	4.79
10	9.1	6,350	750	38.5	3,150	14,050	1,450	16.5	126.5	4.63
10	14.0	4,450	300	55.5	2,400	15,500	1,000	14	97	4.53
	х	5,467	517	40	2,650	14,950	1,350	18	110	4.65
	2.1	9,100	950	125	3,400	18,250	2,000	24	106	5.85
12	3.4	5,700	650	57	3,200	16,950	1,600	22	113.5	5.56
	$\frac{5.7}{x}$	4,850 6,550	500 700	46 76	2,400 3,000	16,250 17,150	1,150 1,583	72 39	100.5 107	5.03 5.48
	3.2 5.7	7,600 6,600	700 700	162.5 87	3,650 2,900	15,000 15,000	1,700 1,450	24.5 78	121.5 373	4.79 4.56
13	7.8	4,100	400	42	2,450	15,200	900	13	101.5	
	ž	6,100	600	97	3,000	15,067	1,350	39	199	4.48 4.61
	a ==	11,000	950	91	4,200	17,250	1,650	78	143	4.40
	2.7				7,600	11,200	13000	70	143	14 . 14 1
1.4	2.7 3.6				3,300	19.050	1,600			
14	2.7 3.6 5 <u>.</u> 8	7,000 5,000	650 500	64 45	3,300 2,400	19,050 16,450	1,600 1,100	80 58.5	135 109	4.48 4.84

(con.)

Table 8 .-- (con.)

Tree	:	;	:	:	:	:	:	:	: :	
No.	: Section	: и	; p	: Na	: K	: Ca	: Mg	: Fe	: Zn	Ash
	cm				1 <i>יg/g</i> -					%
					Gros Vent	re				
	4.3	4,300	700	26	2,650	20,850	1,500	20.5	168.5	6.31
	6.4	4,050	450	26.5	2,200	23,750	1,300	14	158.5	6.95
	13.2	3,750	500	21.5	2,250	15,950	1,400	19	130.5	5.03
1	17.5	3,900	500	25	2,350	14,100	1,400	9.5	141	5,17
-	17.5	3,850	500	23.5	2,150	17,250	1,350	22.5	160	5.44
	18.8	3,400	450	17	3,000	19,300	1,250	24.5	130	6.73
	25.7	3,800	800	20.5	4,800	12,050	1,400	28.5	108.5	5.16
	ž.	3,864	557	23	2,771	17,607	1,371	20.3	142	5.83
	^	3,004	337	4.5	2,771	17,007	1,3/1	20	144	5.83
	8.4	5,950	700	26.5	3,400	8,450	900	17	131	2.90
	17.3	5,850	650	19	2,950	10,500	1,050	21	143.4	3.63
2	21.6	4,900	550	21	2,900	11,300	1,050	16	140	3.85
	26.4	4,050	600	24	3,150	12,450	900	26	136.5	4.06
	31.2	4,300	750	29	5,350	13,150	900	38.5	124	4.78
	\bar{x}	5,010	650	24	3,550	11,170	960	24	135	3.84
	7.1	4,600	600	18	3,000	16,650	1,500	14.5	134.5	5.51
	9.4	3,950	500	36	2,150	14,850	1,500	34	139.5	5.56
3	11.7	3,650	500	23	2,200	15,950	1,400	13.5	147.5	5.73
.,	13.2	3,300	350	22	1,750	20,500	1,300	13.3	146.8	6.05
	16.5	3,200	600	36	2,650	13,550	1,400	16		
	X X	3,740	510	27	2,350	16,300	1,400	18	115 137	5.19
	^	3,740	210	27	2,350	10,300	1,420	10	137	5.60
	11.2	5,700	750	19	3,350	10,250	900	20	117.5	3.51
	20.8	5,550	750	123.5	3,250	10,550	1,250	14	131	3.77
	26.7	5,600	750	20.5	3,450	12,950	1,550	1.5	144	4.64
4	27.7	4,650	650	106	3,300	12,350	1,400	32	138	4.34
	30.2	4,700	600	28	2,850	13,050	1,650	16	145.5	4.35
	38.9	4,550	750	3.1	5,000	11,700	1,900	23	121	4.94
	\ddot{x}	5,125	708	55	3,533	11,808	1,442	20	133	4.26
	4.1	5,000	1,000	27	3,650	17,550	1,600	56	158	5.72
	8.6	4,750	800	26	3,000	17,100	2,200	36	183	5.47
5	10.7	4,150	600	22.5	2,650	16,800	1,950	33.5	177.5	5.60
-	13.2	5,000	750	23	3,250	16,700	4,150	36.5	140	5.75
	x x	4,725	788	25	3,178	17,038	2,475	41	165	5.64
	9.8	5,000	500	19.5	3,050	13,900	1,100	16	181.5	4.89
6	14.5	4,100		25	3,850			22		
O	-		500			17,050	1,000		167.5	5.39
	х	4,550	500	22	3,450	15,475	1,050	1.9	175	5.14

^{*} All sections combined.

1.J. & Jessie E. Quinney Natural Resources Research Wicery Headquarters for the Intermountain Forest and Range Experiment Station are in Ogden, Utah. Field programs and research work units are maintained in:

Billings, Montana Boise, Idaho

Bozeman, Montana (in cooperation with Montana State University)

Logan, Utah (in cooperation with Utah State University)

Missoula, Montana (in cooperation with University of Montana)

Moscow, Idaho (in cooperation with the University of Idaho)

Provo, Utah (in cooperation with Brigham Young University)

Reno, Nevada (in cooperation with the University of Nevada)

☆ U.S. GOVERNMENT PRINTING OFFICE: 1977-0-777- 023-17