
SSC24-VI-02

An Autonomous Reinforcement Learning Framework for Fault Recovery and Mission
Replanning on CubeSats

Ganesh Danke*, Rajiv Iyer*
Northeastern University

360 Huntington Ave, Boston, MA 02115
danke.g@northeastern.edu, iyer.raj@northeastern.edu

.
*all authors contributed equally

Faculty Advisor: Brian Hulbert
Northeastern University

hulbert.b@northeastern.edu

ABSTRACT
Onboard system failures during CubeSat operation can have significant consequences for mission success. Limited
resources during the development process can hamper the development and implementation of recovery systems,
increasing the likelihood of mission failures. In response, this paper establishes a reusable autonomous framework
for mission replanning in the event of an onboard system failure. Prior to launch, the framework ingests a
standardized mission plan detailing mission objectives, mission priorities, and onboard capabilities and resources.
Segmenting this information into a set of discrete tasks with completion dependencies, a reinforcement learning
approach is used to select a schedule of tasks with the greatest priority while meeting resource limitations. This
selection is scheduled into a new mission plan using a modified reinforcement learning approach. Testing this
framework on a series of simulated satellite missions, it demonstrates moderate success in adapting multi-system
failures, such as a variety of attitude control, power storage and generation, and computational faults.

INTRODUCTION
CubeSat missions have historically been prone to
failure. From 2000 to 2015, only 17.4% of 288 planned
CubeSat missions resulted in a full success, with 67.7%
of CubeSats that reached orbit experiencing some
failure. A variety of proposed factors exist to explain
the frequency of these failures, including a lack of
robust development and testing expertise, limited
budgets and resources, and ambitious mission designs.1
In a study conducted at the CalPoly CubeSat workshop,
Alanazi and Straub found that 48% of respondents
experienced tool failures, 24% experienced failures
from model usage, and the remaining 28% experienced
failures due to both factors - demonstrating that there is
diversity when it comes to errors in small satellites.
Corroborated by a survey of CubeSat developers
indicating that faster testing procedures contribute to
mission success, the ability to easily identify, predict,
and adapt to a variety of issues is crucial to reducing
mission failures.3 While some failures may be
detectable on the ground, it is notable that 62.6% of
in-flight failures occurred during the mission while the
CubeSat was previously operational, rather than an
already dead or flawed unit being launched.1 By
implementing systems which can detect these
unforeseen in-flight faults and develop recovery

strategies in real-time, mission failures can be mitigated
without placing significant additional burdens on
CubeSat developers to model and predict such faults.

A few approaches exist for the problem of CubeSat
fault detection and recovery. One such approach is
outlined by Rao - in which battery current and voltage
is used as a “root of trust” in comparison with metrics
from onboard sensors and systems on a specific
CubeSat, training a model. Divergences between
realtime values and the model, such as during onboard
failures, are flagged as anomalies, enabling the
detection of unforeseen faults in a highly flexible
manner.2 In another approach, Lobo establishes an
architecture for detecting and isolating faults on
CubeSats in which hardware redundancy is utilized,
defining this process in detail for a number of specific
onboard systems. This enables effective fault mitigation
during small-scale failures.6 While such solutions
demonstrate efficacy on real-world CubeSat systems,
they have a few key limitations. These solutions
necessitate a high degree of human involvement, with
the former requiring manual analysis and mission plan
rescheduling following fault detection, and the latter
requiring highly system specific mitigation strategies to
be implemented. The reliance on redundancy for the

Danke, Iyer 1 38th Annual Small Satellite Conference



latter approach provides minimal opportunities for
recovery during large-scale faults. Additionally, both
models focus on the short term consequences of faults
rather than the impact on longer term mission schedules
and objectives.

Given a gap in flexible autonomous recovery following
the detection of faults, the development of a
standardized, reusable framework for fault recovery
will have the greatest impact on mitigating preventable
in-flight mission failure. To ensure that fault mitigations
better address long-term mission objectives and their
interactions, this framework will take the rearrangement
of CubeSat task schedules per orbital period. Existing
scheduling work by Liang demonstrates that greedy
heuristic approaches provide greater flexibility and
scalability than dynamic programming or genetic
algorithms, albeit with some minimal reductions in
accuracy.4 Thus, this framework will take the form of a
greedy reinforcement learning algorithm, leveraging the
known mission objectives preflight to reduce real time
processing complexity during faults.

FRAMEWORK DESIGN
Overview

The fault detection framework is based around the
training and development of two reinforcement learning
models based on the initial mission plan of the CubeSat,
autonomously generating a new mission schedule
during a fault. From the initial mission plan, the first
model selects an optimal subset of tasks: prioritizing
mission-critical tasks that fit into time and onboard
resource restrictions. Subsequently, the second model
assembles these tasks into a new mission plan , aligning
as close as possible with target times and locations.
These models are trained in tandem, ingesting a series
of simulated faults applied upon the initial mission
plan. For the purposes of the initial development of the
framework, tasks are considered to be independent and
faults consist of reductions to the resources of various
onboard systems. This approach utilizes a technique of
model caching, enabling the usage of known mission
and system information to decrease the computational
strain of running the framework during a fault, rather
than performing this calculation entirely at runtime. By
eliminating having to relearn tasks and retrain the
model post-development, the ease and speeds of fault
response and adaptation are greatly enhanced. The
following diagram illustrates the analysis and training
pipeline utilized to generate these reinforcement
learning models before flight, and their application
following an onboard fault during a mission.

Figure 1: Framework Design

Figure 2: Framework Response

Initial Mission Plan

A standardized initial mission plan is utilized as the
basis for the fault recovery strategy. This ensures that
sufficient information regarding onboard capabilities
and mission objectives is provided to generate viable
and optimal task schedules. To support both human
configurability and automated processing and
generation, this mission plan will be structured as a
YAML document representing a single orbital period. It
consists of two primary sections: a description of
onboard systems and their resource limitations, and a
sequential schedule of mission objectives and their

Danke, Iyer 2 38th Annual Small Satellite Conference



resource dependencies. Onboard systems are defined
using a name and a series of parameters describing the
available resources on the system and applicable
limitations. For example, a magnetorquer may have
limitations on maximum current draw. Mission
objectives are defined using a name, the system(s) it
utilizes, the quantity of resources utilized on these
systems, the location or time frame in which an
objective must be completed if applicable, the duration
of time required to complete the objective, and the
priority of an objective. For example, a communication
task may need to be completed over a ground station at
a specific time, whereas a systems diagnostic check can
be conducted at any point. Combined, this information
describes the resources available to the satellite in ideal
conditions and how they are utilized throughout the
mission.

Figure 3: Basic Mission Plan Configuration

To quantify the optimality of a particular schedule, the
priority of tasks and objectives is defined by a
numerical weightage. For simplicity, this weightage
uses a scale from 1 to 10, with 1 indicating lowest
priority and 10 indicating highest priority. This priority
value is used as the basis for the reward scheme utilized
in the reinforcement learning approach, influencing the
generated schedule. A schedule is considered to be
more optimal than another if it has a higher total
weightage while respecting the resource and capability

limitations of the CubeSat. In ideal conditions, the
initial schedule is considered to be the most optimal
schedule as it contains all desired tasks - though
realistically, there are limitations. This system provides
greater flexibility in mission replanning, compared to a
strictly ordered hierarchy of tasks, by enabling a greater
variety of valid task combinations.

Task Classification

The initial mission plan is processed into a series of
atomic tasks, with their respective system and resource
requirements, weightages, and completion conditions.
For example, a larger mission objective of taking a
photograph at the periapsis of the orbit may be broken
down into the tasks of detumbling, extending solar
panels, using the attitude control systems to orient the
camera to be nadir-facing, and finally taking a picture.
Tasks are then further segmented into tasks with strict
location and/or time dependencies, and general tasks
without these dependencies.

Tasks with these dependencies must be completed at a
particular location or time in orbit to be considered
successful. An example of such a task is taking a
photograph of the earth at the apoapsis of an orbit,
using a long exposure time. Starting this task too late or
too early fails the necessary criteria of being at
apoapsis; thus, if such a task is included in a
rescheduling, it would always be placed as close as
possible to its target time or location. Non-dependent
tasks can be executed at any point in orbit. An example
of such a task is having to perform an intensive photo
compression task that takes 30 minutes to complete - it
takes up a portion of the schedule but does not require a
specific time or location. These tasks can be flexibly
moved within the mission schedule, but may occupy an
extended period of time. Overall, tasks must be
scheduled such that they do not conflict or overlap with
one another.

MODEL I - DURATION-BASED SUBSET

Following a system fault, sufficient resources may not
exist to execute all of the tasks within the initial mission
plan. To ensure the efficacy of the fault recovery
strategy, a subset of the tasks from the initial mission
plan must be generated such that resource and time
limitations are satisfied whilst maximizing the priority
of the subset. This selection problem can be modeled as
whether or not to select some task x given the current
remaining onboard resources y, iterating over the total
set of tasks X for the current orbital period given an
initial set of resources Y. Within each iteration, the
resource cost of the current task, the current remaining

Danke, Iyer 3 38th Annual Small Satellite Conference



resources, and the priority of the task serve as concrete
metrics to the viability of selecting a particular task.

A Deep-Q neural network (DQN) was selected to
model this network due to the advantages it provides
within this context. The model performs well when
provided with a well defined action set, observation
space, and reward description such as in this task
selection problem. While other approaches may tolerate
more ambiguous specifications, the ability to rely on
these concrete definitions gives the DQN model the
added advantage of low computational costs. This
decreases training time, allowing greater agility in
development, and also makes the model suitable for
low power satellite onboard computers (OBCs).5 These
specifications are structured in an environment: a
structure that handles updating the state of the problem
following the choice made in each iteration, and
providing the model with the resultant observation.

Figure 4: The processes of a Deep-Q neural
network7

The environment for this problem was constructed as
follows. The reward scheme for task scheduling is
based solely on the priority value of the task, such that
the valid selection of higher priority tasks produces
greater rewards. The action space of this network is 1
and 0: choose to add the task to the subset, or choose
not to add the task to the subset. The observation space
is defined as an array of four integers representing the
resource cost of the current task, the priority of the
current task, the remaining quantity of the onboard
resource the task uses, and the time duration occupied
by the task. The algorithm continues iterating until a
decision of inclusion or exclusion has been made on
every task within the initial mission plan. After this end
condition is reached, the algorithm outputs a subset of
tasks taken from the initial list of specified tasks.

MODEL II - TIME-SPECIFIC SCHEDULING

After selecting a set of optimal tasks, these tasks must
be organized into a schedule with assigned start times to
produce an actionable new mission plan. The primary
objective of schedule generation is to fit all tasks from

the set into the schedule without overlap while
respecting tasks that have specific target
times/locations. This selection problem can thus be
modeled as choosing whether or not to schedule a task x
at a time y, iterating over both set X representing the
tasks to be scheduled and set Y representing the time
intervals tasks can be scheduled on. Clear metrics exist
to evaluate the efficacy of each such choice: the priority
of the current task and the proximity to the target time
(if applicable). Thus, due to the discrete action space
and well defined observation per each iteration of this
problem, a Deep-Q neural network approach is suitable
for re-application in this problem.

The environment for this network was constructed as
follows. The reward scheme for scheduling is
segmented based on the categorization of a task.
Time/location-dependent tasks affect the reward via an
exponential relationship based on the proximity of their
scheduled time to their target time - the closer the
proximity, the higher the reward. Non-dependent tasks
are rewarded their constant priority if they are
scheduled at any point. The action space provided to the
network is 1 and 0: choose to schedule the task at that
time, or choose not to schedule the task at that time.
The observation space is the same as the previous
model, with the cost of the current task, the priority of
the task, the remaining resources relevant to the task,
and the task duration. The algorithm continues iterating
until all tasks in the subset are scheduled. After this end
condition is reached, this algorithm outputs a finalized
schedule consisting of tasks mapped to specific
execution times.

SIMULATED TESTING
Methodology

An experiment-based approach was utilized to test the
efficacy of the fault recovery framework. For the
purpose of this testing, faults are represented by one or
multiple of a CubeSat’s onboard systems losing a
significant quantity of resources, such as an ADCS
system losing a propellant tank. Each experimental trial
consisted of training the framework on a randomly
generated initial mission plan. Prior to training, system
faults were randomly applied to the mission plan in
varying degrees of severity to ensure that the models
developed adequate adaptability. To test the efficacy of
the model for use in fast development and to analyze
the lower bound of its performance, only 4000 training
iterations were conducted for the two models per trial
with training taking an average of 5 minutes or less for
both of the models combined. For consistency, each
mission plan consisted of the three systems of ADCS,
power, and computation each with a numerical quantity

Danke, Iyer 4 38th Annual Small Satellite Conference



of resources, and contained 50 distinct tasks. The
framework was then tasked with rescheduling this
initial plan 30 times given a series of faults. To ensure
the reproducibility and validity of these results, 20
different trials were conducted on a Google Colab L4
GPU instance, totaling 600 individual results.

The results of these trials, and thus the quality of the
resulting schedules, was analyzed by measuring how
close the reward of the generated plan is to the reward
of the most optimal schedule (generated via a top-down
dynamic programming approach) for the associated
initial plan and system fault. For example, if the
framework outputs a schedule with a priority of 80
points but the optimal schedule has 100 points, the
efficacy of the framework in that instance is 80%. Thus,
close scores would indicate that the model was effective
at calculating the optimal solution, whereas distant
scores would indicate that the model performed poorly
at this task. Other metrics, such as the variability of the
results in relation to the severity of the fault, and the
speed of the framework in comparison to a dynamic
programming approach are analyzed to extract potential
insight into the specific failings of the model, as well as
some potential ways to address them. These metrics,
used in conjunction, provide a sufficient analysis of the
effectiveness of our solution alongside avenues for
improvement.

Results

After performing 20 trials of fault recovery, the results
were analyzed as previously described to determine the
efficacy of the framework. Across 600 schedules, the
mean and median efficacy were 72.73% and 77.91%,
with 170 instances of the framework generating the
optimal schedule. The standard deviation and
interquartile range of this distribution is 26.84% and
46.18% respectively. These results indicate that while
the framework is moderately effective at generating the
optimal solution even with minimal training, there are
instances in which it generates schedules of very poor
quality. In one instance, the schedule generated by the
framework had 0% of the efficacy of the optimal
solution. In a real world mission, this scenario would
effectively constitute a failure. This distribution is
illustrated by the following histogram, which
demonstrates the leftwards skew of the distribution.

Figure 5: Efficacy of Generated Schedules

A potential explanation for such results is the low
number of iterations used in the training process for the
two models combined with a suboptimal observation
specification for the second model. Thus, the second
model would require a greater number of training
iterations in order to achieve the desired level of
generalizability. This premise is supported by an
analysis of fault severity in comparison to model
efficacy as a similarity score. The following figure
maps raw fault severity, the total difference in onboard
resources between the initial mission plan and a
simulated fault across all systems, against the efficacy
of the schedule generated following that fault.

Figure 6: Fault Severity vs. Efficacy

As demonstrated by the best fit line, which has a
r-squared value of 0.6%, there exists a low degree of
correlation between the severity of a fault and the
ability of the framework to effectively address such a
fault. In comparison, the first model has a mean
efficacy of 96.46% with a standard deviation of 7.97%,
indicating that it was more effective at utilizing the

Danke, Iyer 5 38th Annual Small Satellite Conference



training data to develop an effective policy irrespective
of fault severity. Thus, by changing the observation
specification and iteration structure of the second
model, it may be possible to improve the overall
efficacy of the framework. This could include
implementing the distance from the target time of the
current task within the observation spec, or changing
the scheduling strategy to always force location
dependent tasks to occur at the target times.

To determine the real-time effectiveness of the
framework, the speed of its schedule generation was
compared against that of the optimal DP solution. The
runtime of the framework had a mean of 0.65 seconds
with a standard deviation of 0.07 seconds, while the
runtime of the DP approach had a mean of 4.77 seconds
and a standard deviation of 2.12 seconds. This
demonstrates that the model caching technique used in
the design of the framework is effective at reducing the
real-time runtime. The measurable variation for both
approaches can be explained by the variable number of
tasks which are selected for the final schedule: less
tasks to schedule results in a faster time to schedule
them. The larger variability of the DP approach can be
attributed to its inherent poor scalability, as its runtime
is impacted equally by the number of tasks, and the
resource capacities of the system following a fault. In
comparison, the framework is largely only impacted by
the number of tasks, which controls the number of
iterations the DQN model completes.

Figure 7: Framework Runtime vs. DP Runtime

FUTURE ADDITIONS

There are several opportunities for the further
expansion of the fault recovery framework. Support for
more complex inter-task interactions can be
implemented. This may include handling intricate task
dependencies that form a directed acyclic graph, and
injecting new tasks, such as rotating the CubeSat to
increase solar panel energy generation as needed, to
improve mission outcomes. A greater spectrum of faults
could also be supported, including faults which are
temporary and repairable, such as the loss of data that
must then be recomputed, and faults which increase the
time required to complete a certain task, such as
decreasing the maximum thrust of onboard thrusters.
These improvements would allow the framework to
better handle the intricacies of difficult, real-world
CubeSat missions and their associated objectives.
Additionally, the framework could be implemented on a
physical CubeSat system, with functional systems such
as attitude control and power management. The
framework could be paired with a fault detection
system to react to actual onboard failures, while also
managing resource utilization to allow for the
scheduled mission tasks to execute. Publishing this
implementation would allow for CubeSat teams to
directly adopt the framework for their own designs and
mission plans, supporting the initial objective of
creating a reusable and adaptable method for recovering
from onboard faults.

To further optimize scheduling within the fault recovery
framework, tasks from the initial mission schedule
could be intelligently merged and rearranged when
doing so improves efficiency, and does not interfere
with mission objectives. For example, separated
communication tasks can be batched to reduce repeated
overhead. This initial optimization would increase the
resource and time consumption of the initial mission
plan, potentially allowing for a greater subset of
mission objectives to be preserved during fault
recovery.

CONCLUSION

Onboard failures serve as a significant problem for
CubeSat missions, exacerbated by the difficulty of
predicting and reacting to the vast variety of possible
failures. While current approaches to solutions exist,
they are quite human dependent, lack sufficient
generalizability, and focus on the short term. The
autonomous fault recovery framework described in this
paper demonstrates moderate effectiveness for
development and deployment within real-world
CubeSat systems to solve these issues. It demonstrates

Danke, Iyer 6 38th Annual Small Satellite Conference



moderate effectiveness in schedule rearrangement
across a wide range of simulated mission plans and
faults with a 22% median margin of error across 20
simulated trials, and only a 3.54% margin of error for
task selection. Further modifications to the model
architecture and training process, such as refining the
observation space and changing the iteration structure
of the DQN environment, may improve the accuracy
and increase consistency.

Overall, this framework lays the foundation for the
usage of AI systems to enhance the robustness and
autonomy of CubeSat operations. By reducing human
dependency while exhibiting strong generalizability
across diverse scenarios, this approach represents a
pathfinder toward more capable autonomous fault
management for future missions - especially crucial as
CubeSats continue to increase in complexity and
ambition. Such technologies enable reliable,
cost-effective exploration and utilization of space.
Importantly, making these autonomous fault recovery
capabilities available as an accessible resource has the
potential to democratize access to space missions for
teams with limited personnel and budget constraints,
allowing them to leverage AI for enhancing the
resilience and autonomy of their CubeSat systems and
make their ventures into space.

References
1. Swartwout, M, “CubeSats and Mission

Success: A Look at the Numbers,” 2016
CubeSat Developers’ Workshop, Cal Poly, San
Luis Obispo, CA, April 2016.

2. Rao, J., Pace, J., Williams, J., Mackey, R., He,
L., Menegazzo, C., “A Reusable Framework
for Fault Detection and Isolation in Small
Satellites,” 2023 Small Satellite Conference,
Utah State University, Logan, UT, August
2023.

3. Alanazi, A., Straub, J., “Statistical Analysis of
CubeSat Mission Failure,” 2018 Small
Satellite Conference, Utah State University,
Logan, UT, August 2018.

4. Liang, J., Zhu, Y., Luo, Y., Zhang, J., Zhu, H.,
“A precedence-rule-based heuristic for satellite
onboard activity planning,” Acta Astronautica
178, January 2021.

5. Mnih, V., Kavukcuoglu, K., Silver, D., et al,
“Human-level control through deep

reinforcement learning,” Nature 518, February
2015.

6. Lobo, J.S., Ghiglino, P., Escobedo, S.L., Rivo,
M.S., “Design of a Model-Based Failure
Detection Isolation and Recovery System for
Cubesats,” 8th European Conference for
Aeronautics and Aerospace Sciences
(EUCASS), July 2019.

7. Asiri, M.Y., “Novel Multipath TCP Scheduling
Design for Future IoT Applications,” Deakin
University, Australia, October 2023.

Danke, Iyer 7 38th Annual Small Satellite Conference


