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ABSTRACT

The mission goal of BeaverCube II is to demonstrate autonomous on-orbit image processing and classifica-
tion using the Xilinx Versal System-On-Chip (SOC). The Versal has 400 dedicated AI engines on an FPGA-
based platform, enabling compute-intensive machine learning capabilities. While the Versal can consume
over 100 W of power, BeaverCube II will demonstrate its on-orbit function in a low-power, size-constrained
system. The system will use machine learning algorithms such as K-means clustering to autonomously assess
whether features or changes of interest are present across keyframes.

BeaverCube II has a 1U imaging payload consisting of three Commercial off-the-shelf (COTS) cameras:
two identical visible wavelength cameras (112.5 m GSD) and one LWIR camera (197.8 m GSD). Using this
imaging payload, BC II aims to demonstrate autonomous capabilities such as cloud identification, shoreline
feature recognition, and change detection. Running a high-power chip such as the Versal has demanding
thermal, structural, and power requirements; the solutions to these challenges will be described in this work.
BeaverCube II is a 3U CubeSat designed and built by the STAR (Space, Telecommunication, Astronomy
and Radiation) Lab at the Massachusetts Institute of Technology and sponsored by the Northrop Grumman
Corporation. We are targeting a Q1 2025 launch with deployment from the ISS in Q2 2025.

INTRODUCTION

CubeSats can globally monitor various ground-
based features of interest. However, bandwidth lim-
itations can make it infeasible to downlink all the
collected data in a timely manner. If the satellite
is not able to downlink a sufficient amount of data
in one pass, as is the case in many CubeSats, an
effort should be made to downselect and prioritize
data containing features of interest, while deprior-
itizing the rest. On-orbit feature identification us-
ing machine learning processors could be an effective
mechanism to implement this on bandwidth-limited
satellites.

Figure 1: BeaverCube II 3U Cubesat.

Motivation & Use-Cases

AI can aid satellite operations, from mission op-
erations to data processing to health management.
AI is helpful for tasks dealing with non-deterministic
phenomena.1 One example is identifying features of
interest in remote sensing measurements. Consider
monitoring spontaneous phenomena that may be ge-
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Figure 2: Summary of BeaverCube II hardware.

ographically and/or temporally sparse. Having an
onboard AI to identify when those phenomena oc-
cur enables the satellite to swiftly respond to the
situation. This can take many forms, such as the
satellite pointing in a different direction,2 prioritiz-
ing alerting assets about the identified target,3 or
choosing not to downlink data with little scientific
value.4

This capability is valuable for various applica-
tions related to natural disaster identification and
response. AI can be used in disaster aid for a wide
variety of events including wildfires, floods, earth-
quakes, and landslides. Improved prediction and
monitoring of these disasters allows for better de-
ployment of resources and more informed evacuation
procedures, reducing injuries and deaths.

AI is also a useful tool for wildfire detection
and tracking. Identifying fires quickly before they
grow out of control is crucial for effective wildfire
management. Although fires tend to cluster in hot
and dry parts of the world (California, Australia,
etc.) during “fire seasons,” recent changes to the
Earth’s climate and increases in human-caused wild-
fires make them more difficult to accurately mea-
sure and predict. AI-enabled orbital identification
is a highly valuable tool for quick recognition and
management of these fires. Real-time monitoring of
wildfires allows firefighters to better deploy their re-
sources, identify the potential path of the fire and
any dangerous fuel sources or settlements nearby,
and make informed decisions on evacuation routes.5

Many wildfire identification algorithms have been
designed for satellite data, including with synthetic
aperture radar6 and hyperspectral imagery.7,8 A
6U CubeSat named KITSUNE was designed to be
the first CubeSat to perform wildfire detection on-
board, utilizing a Raspberry Pi running a convolu-
tional neural network.9,10

Drones for Equitable Climate Change Adapta-
tion (DECCA) is a project led by the MIT Envi-
ronmental Solutions Initiative (ESI) in partnership
with MIT Lincoln Laboratory. Researchers are using

drone and satellite imagery of regions in Puerto Rico
and Colombia to identify patterns in terrain features
where landslides have occurred in the past. These
feature maps will be used to train machine learning
models in an effort to predict areas that are at high
risk for future landslide events. Awareness of risk
levels for any given area allows for effective evacu-
ation planning in populated areas, and can identify
the safest sites for future urbanization and develop-
ment of unpopulated areas.

In areas with high mining activity, land subsi-
dence poses a major hazard to mine workers due
to the possibility of mines collapsing. One study
uses various deep learning methods to analyze satel-
lite imagery and identify mines in Poland with high
subsidence risk.11 This allows for mining work to be
halted so that workers are protected when a site is
deemed unsafe.

On-orbit AI can also be used to identify regions
experiencing high soil erosion. This is particularly
useful for agricultural applications, since eroded soil
results in reduced crop yields and increases food
insecurity. Researchers have analyzed soil erosion
hotspots in eastern India using techniques such as
neural networks and weighted regression.12 Identify-
ing areas in need of soil health restoration allows for
targeted intervention policies, and continued moni-
toring of those regions will indicate the effectiveness
of restorative actions so that modifications can be
made if necessary.

Flood management is typically done with
computationally intensive numerical models that
may contain many errors. This can be insufficient
for effectively warning people for evacuations and
for rescue. Utilizing orbital assets with deep learning
can help improve real-time flood warning systems13

and disaster maps.14

Another application is for ship identification
and tracking. Identifying ships that are in unautho-
rized locations is integral for combating illegal fish-
ing, oil spills, and espionage. Given the vastness of
the ocean and the relatively small size of these ships,
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Table 1: Overview of various AI accelerators used in space missions with comparison of max-
imum power and temperature.

Property Units Device

Xilinx Versal NIVIDIA Jetson AGX
Xavier

Intel Movidius Myriad
2

Type FPGA + Accelerator SBC + GPU VPU

Form Factor Chip Module Chip

Size mm 40 × 40 × 5 (package) 100 × 87 × 9 (module) 9.5 × 8 × 2 (package)

Max Power W 125 30 1.2

Temperature
Range

◦C −40 to 100 −40 to 85 −40 to 105

Space
Applications

15,16 17,18 19,20

especially when they are in unexpected locations, AI
proves to be an invaluable tool for locating them and
has been used extensively on optical satellite data.21

Semantic change detection is another valu-
able use of AI. Environmental and land cover
changes can be used to identify known or unknown
problems. This technique is often used to study
problems such as deforestation, earthquakes, flood-
ing, and urban growth. Change detection tech-
niques have been applied to multispectral satellite
images.22 The complexity with performing change
detection onboard is needing spatially and tempo-
rally matched imagery, which can be difficult for
CubeSats to attain, although missions have been de-
signed to accommodate this.23

In order solve these problems, we need to ver-
ify the capabilities of powerful hardware on orbit
to support complex AI architectures. Many proces-
sors perform well on the ground, but are not de-
signed for use in the space environment. Two of the
most successful CubeSat technology demonstration
missions are Φ-Sat-120 and Φ-Sat-2.24 Φ-Sat-1 uti-
lized a custom build of an Intel Movidius Myriad 2
EoT board with a hyperspectral camera to calculate
cloud masks. Φ-Sat-2 plans to utilize the same board
to continue to explore the limits of its orbital capa-
bilities. Technology demonstration missions such as
the Φ-Sat missions and BeaverCube II are integral
to improving our capabilities to solve problems with
increasing complexity on orbit.

AI Accelerators in Space

AI accelerators have been proposed for use in
space applications. Table 1 shows a summary of
the most frequently considered devices, the NVIDIA

Jetson AGX Xavier and the Intel Movidius Myriad
2, along with the Xilinx Versal. The key considera-
tions for on-board AI accelerators are robustness to
ionizing radiation, power consumption, and operat-
ing temperature range.

The Intel Movidius Myriad 2 has flown on
both Φ-Sat-120 and now on CogniSat-6.19 It is a
vision processing unit (VPU) optimized for edge ap-
plications consuming a maximum of 1.2 W and in
a form factor small enough to be placed in conven-
tional CubeSat designs. Since the device is a VPU, it
is not independent and likely requires control from
a separate processor. The extremely wide operat-
ing temperature range makes the device amenable
to CubeSats that may not have sophisticated ther-
mal management techniques.

The NVIDIA Jetson AGX Xavier is a sin-
gle board computer (SBC) module with an onboard
NVIDIA Tegra chip featuring both ARM cores and
a GPU. The Jetson AGX Xavier module is in a
form factor that is more difficult to place inside
a CubeSat due to its major dimension of 100 mm.
While smaller versions of the Jetson Xavier family
exist such as the Jetson Nano, only the Jetson AGX
Xavier comes in an Industrial version with error
checking and correction (ECC) built in, which helps
mitigate against ionizing radiation-induced single
event upsets (SEUs).18 Due to its design as a single
board computer rather than a peripheral, the Jetson
can independently perform tasks and thus support
the main flight computer, or even operate in lieu of
one. Additionally, the Jetson can directly connect
to MIPI and USB devices, such as cameras, and in
this case would not require another device feeding it
significant amounts of data.

The Xilinx Versal devices operate on a com-
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pute platform that integrates FPGA fabric with
hard IP for CPUs, GPUs, and AI accelerators in
a single chip solution. Many space missions already
utilize FPGAs for applications such as communica-
tions, which makes the Versal series a reasonable
option for many space mission designs that seek to
incorporate edge computing capabilities. While it
consumes the most power out of all the other ac-
celerators considered in Table 1, it is also the most
configurable, with many power domains able to be
shut off entirely, allowing the device to be flexible to
different implementations.

Mission Requirements & Con-Ops

BeaverCube II is a technology demonstration
mission showing the use of the AMD Xilinx Versal
SoC for on-orbit image analysis on a CubeSat.25,26

The CubeSat is primarily made up of COTS com-
ponents, significantly reducing the mission develop-
ment costs.

Machine learning techniques have been previ-
ously analyzed and implemented onboard Cube-
Sats.1,24 Additionally, the use of the Versal SoC
for space-based ML has also been discussed.15,16

BeaverCube II will explore the intersection between
these two regimes.

BeaverCube II has the following primary objec-
tives:

• Demonstrate the successful operation of the
Versal SoC on orbit on a CubeSat

• Demonstrate onboard AI-algorithms using the
Versal SoC on orbit.

For the purpose of demonstrating the use of in-
orbit AI on the Versal SoC, K-means and Random
Forest methods will be used to identify cloud-cover
on images captured by the imaging payload. These
algorithms were previously tested on-board ESA’s
OPS-Sat Mission.4

As a technology demonstration, the onboard ma-
chine learning techniques applied to captured images
serve as a proxy for on-orbit computation. This can
inform future missions with a better equipped ADCS
and imaging system for which remote sensing feature
identification is the primary goal. The main objec-
tive is to demonstrate that conducting such an anal-
ysis on orbit is feasible and valuable with a Versal
SoC on a CubeSat, even though the collected data
for this particular mission may not necessarily be of
direct scientific value on their own.

BEAVERCUBE II DESIGN

Payloads

BeaverCube II hosts two distinct payloads which
work together to achieve the mission goal of demon-
strating Versal Operation on orbit. These include
an imaging payload consisting of 3 cameras and a
compute payload consisting of the Versal SOC and
Carrier board.

Imaging Payload

The BeaverCube II Imaging payload consists of
two Visible wavelength cameras and one LWIR cam-
era.27 Both cameras are COTS components which
can be interfaced with through USB. All 3 cameras
are connected directly to a Raspberry Pi-3 which
controls their operations and stores captured images.
Specifications for the cameras can be found in Table
2.

VIS Camera IR Camera

Model Balluff
CA-IGC

Boson FLIR
640

Wavelength 390 nm to
700 nm

8 µm to 14 µm

Bit Depth 10 bit 8 bit

Resolution 752 × 480 640 × 512

FoV 30◦ 24◦

Focal Length 16 mm 18 mm

GSD 112.5 m/pixel 197.8 m/pixel

Table 2: Imaging Payload Camera Specifica-
tions

Versal SoC & Carrier Board

The Versal SoC is a compute platform based on
an Field Programmable Gate Array (FPGA) fab-
ric that hosts 400 AI engines, enabling it to perform
complex machine-learning tasks. However, this plat-
form is extremely resource-intensive, with the poten-
tial to consume over 125 W of power. This level of
power consumption and heat dissipation is difficult
to manage on a CubeSat platform. Therefore, the
Versal will be limited to consuming 25 W of power,
which may limit us to using only 100 of the 400 AI
cores. Additionally, the reference design specified
by AMD occupies a 25 cm × 20 cm area and weighs
1 kg, which exceeds the size and mass budget con-
straints of our CubeSat. Consequently, the Versal
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Figure 3: Illustration of BeaverCube II ConOps

Carrier Board had to be designed to be as minimal
as possible to fit within CubeSat constraints.

Images are sent to the Versal from the Raspberry
Pi via USB. The Versal will process the images us-
ing a pre-trained ML model, and send results back
to the Raspberry Pi. These results, along with the
original images, will be downlinked to our ground
station during the next satellite pass.

Communications

BeaverCube II is equipped with two radios: the
Lithium Radio and the NSL Eyestar S4. The sec-
ond radio adds redundancy to the system and re-
duces the risk of loss of contact with the satellite.
MIT will utilize a UHF ground station on campus
to communicate with the satellite.

Parameter Units Downlink Uplink

Bit Rate bps 3500 3500
Frequency MHz 401.5 450.1

EIRP dBW 0.5 32.3
Required Eb/No dB 13.5 13.5

Margin dB 22.93 42.18

Table 3: Radio Link Specifications

Power

The primary design driver of the BeaverCube II
power system is the Versal SoC, which will be lim-
ited to consume 25 W when in use. The orbit average
power consumption of BeaverCube II is 12 W. The
COTS components that form the power system are
the following:

• ClydeSpace Double Deploy Solar Panels: 60
minutes after deployment from the ISS,

BeaverCube II’s solar panels will deploy. The
panels feature 7 Ultra Tripple Junction (UTJ)
cells in series each, with a total of 28 cells per
side. At maximum illumination, the cells can
provide 24 W of power in total to the space-
craft.

• ClydeSpace EPS - the Clydespace 3G FlexU
EPS interfaces with the solar panels and bat-
tery to produce 12 V, 5 V, and 3.3 V bus rails,
as well as a rail at the battery voltage.

• ClydeSpace 40 Whr LiPo battery

The satellite cycles through Nominal, Eclipse,
Image Capture, Image Process, Communication,
and ADCS power modes throughout each orbit.
Modes can also be toggled based upon either battery
status or ground command, such as the low power
contingency mode. The associated power consump-
tion and duty cycles for each power mode are listed
in Table 4.

Versal Carrier Board Design

The Versal Carrier Board contains the Versal
along with the necessary peripherals. While the ref-
erence design from AMD contains many extra de-
vices and interfaces, size constraints for the Carrier
Board limit the design to the essentials. The Car-
rier Board contains several power management ICs
(PMICs) for powering the Versal, 1 GB of DDR4
SDRAM to store image data received from the Rasp-
berry Pi, and 0.5 GB of flash memory for storing the
boot image and Linux programs. A 30-pin connec-
tor carries power from the Electronics Power System
(EPS) to the Carrier Board and transfers data be-
tween the Raspberry Pi and the Versal via USB.
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Figure 4: CubeSat Power Diagram

Table 4: Satellite Power Mode Consumption
and Duty Cycles

Power (W) Duty Cycle

Nominal Idle 9.4 30%

Eclipse Idle 8.2 50%

Image Capture 17.7 1%

Image Processing 36.2 11%

Communications 16.6 3%

ADCS 12.2 5%

Low Power 5.7 —

For our application, the Versal requires five dif-
ferent voltages: 0.7 V, 0.8 V, 1.2 V, 1.5 V, and 1.8 V.
The PMICs on the Carrier Board produce these volt-
ages by stepping down the unregulated battery volt-
age (nominally 7.4 V). All five voltage rails can-
not be turned on all at once; instead, the Versal
datasheet provides a power-up and power-down se-
quence that must be followed. Therefore, the Versal
Carrier Board also contains an MSP430 microcon-
troller that handles this sequencing and ensures that
the PMICs are enabled and disabled in the proper
order. Sufficient delay time is added in between to

ensure that each voltage rail reaches its final value
before the next rail is turned on.

Out of all the rails, the 0.7 V rail carries by far
the most current, since it is responsible for powering
the programmable logic and AI cores. Even when us-
ing only 100 of the Versal’s 400 AI cores, we estimate
a maximum current of 23.5 A on the 0.7 V rail, based
on results from AMD’s Power Design Manager tool.
Carrying this large amount of current requires care-
ful routing to minimize voltage drop across the PCB
traces and to avoid overheating. The 0.7 V power
trace is made as wide as possible, and is routed on
two layers of the PCB using 2 oz. copper thickness.
In addition, the 0.7 V PMIC has sense inputs that
are Kelvin connected to the point-of-load at the cen-
ter of the Versal, ensuring the voltage drop across
the power traces does not affect the voltage output.

Routing the high-speed digital signals of DDR4
RAM also presents a challenge. These high-speed
signals must be treated as transmission lines, so they
require an adjacent ground plane for a tightly cou-
pled return current path. These signals also have
strict impedance requirements: the single-ended sig-
nals require an impedance of 50 Ω±10 %, and the dif-
ferential signals require an impedance of 90 Ω±10 %.
These impedances can be controlled by adjusting the
trace width, trace spacing, the board dielectric ma-
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Figure 5: Versal Carrier Board High-Level Schematic

terial, and the distance to the adjacent ground plane.
In addition, there are timing skew limits among dif-
ferent groups of RAM signals; for example, maxi-
mum allowed timing skew between any data line and
the data strobe signal is ±100 ps. Timing skew can
be minimized by tuning the length of the traces and
by limiting the use of vias, which add timing delay
and parasitic inductance.

Thermal Considerations

While we will restrict the Versal chip’s power in-
take to 25 W down from the full 125 W it could con-
sume, this still poses a significant thermal challenge
for a CubeSat. We implement a heatsink that in-
terfaces through a thermal paste at the surface of
the processor package. The heatsink is comprised
of 0.5 kg of aluminum, acting as a thermal capacitor
for the chip. It has a flat face with a high emissivity
coating pointed downwards out of the CubeSat to
dissipate the heat generated. The heatsink and Ver-
sal Carrier Board are mechanically isolated from the
rest of the satellite board stack in order to prevent
board bend from additional screw torque stress. The
heatsink is also thermally connected to the space-
craft external chassis to increase heat dissipation.

The designed heatsink, while enabling the Ver-
sal to output 25 W of power, cannot dissipate that
power quickly enough to allow the Versal to run for
long periods of time. Thus, processes designed to be
run on the Versal must be completed before the chip
reaches 50 ◦C, which we estimate will take 10 min-
utes of operation at 25 W. At that point, the Versal
will throttle until its operation is complete.

Software Con Ops

BeaverCube II utilizes both an STM32 microcon-
troller and a Raspberry Pi. The STM32 software is
responsible for the CubeSat’s flight critical opera-
tions, while the Raspberry Pi controls the payloads.
The STM32 performs the deployment of the antenna
and solar panels, beaconing, detumbling, and ther-
mal regulation. The STM32 receives ground com-
mands from the radio and either handles the com-
mand or forwards it to the Pi, with all commands
verified by checksum before execution. The STM32
is connected to most of the spacecraft peripherals
including the GPS, battery, and IMUs, and it peri-
odically sends peripheral telemetry to the Pi to be
stored.

In addition to storing telemetry, the Raspberry
Pi controls the cameras and the Versal. Images can
be taken on command, or can be scheduled in ad-
vance. The Pi sends images to the Versal for anal-
ysis if the CubeSat state can support the use of the
Versal, namely that thermal conditions are within
bounds and energy is available. All data that is
managed by the Pi (stored telemetry, images, Versal
image analysis results, etc.) is packetized and sent
to the STM32 to be downlinked upon request.
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EVALUATING THE UTILITY OF AI PRO-
CESSORS ON CUBESATS

When evaluating the practical utility of a ma-
chine learning processor on orbit, there are several
mission-specific factors to consider. Here, a few of
these factors will be discussed as examples of the
trades that would need to be conducted to justify
the use of AI.

Data Budget Considerations

When using a machine learning processor to
downselect data, the first consideration is what pro-
portion of data is desirable. When searching for
features with unknown spatial and temporal occur-
rences, a default strategy is to collect large amounts
of data to ensure comprehensive coverage and in-
crease the probability of capturing that feature.
However, because most systems are bandwidth-
limited, downselection is crucial. If features have
predetermined locations (e.g. a region known to
have various ships) but with unknown sub-feature
characteristics (e.g. specific types of ships), the oc-
currence of these sub-features would pose a similar
constraint. In either case, an autonomous machine
learning downselection process would shift the data
acquisition bottleneck from the link budget to the
system’s onboard storage, which is often less con-
strained and simpler to design around.

Once the feature occurrence proportion is estab-
lished, the satellite’s downlink budget must be con-
sidered. CubeSats are limited by the number of ac-
cessible ground stations. For a CubeSat with a single
ground station, there is at most one window of op-
portunity per orbit to downlink data. The frequency
and duration of each pass, which depends on the
orbital parameters of the CubeSat, determine the
amount of data that must be downlinked per pass
to prevent a backlog. To plan for this, it is essential
to consider both the frequency of occurrence of the

feature of interest and the volume of data generated
by each captured image. If the feature occurrence
rate is extremely low, the false-positive rate of the
feature identification algorithm may exceed the ac-
tual occurrence rate. In this case, the downlinked
data will contain a large number of false positives,
potentially making these false positives the driving
constraint in the link budget requirement.

Even if the data collection rate (arrival rate) is
less than the downlink rate (service rate), variations
in either parameter can cause a queue. Instabilities
in service and arrival times can significantly increase
the length of this queue, thereby increasing the time
between data collection and data downlinking. Us-
ing a machine learning processor to either decrease
the arrival rate through downselection or as-
sign downlink priorities to the queue based on
the likelihood of containing features of interest is
desirable.

Design Complexity Considerations

When designing a CubeSat mission with an AI
processor, one must evaluate whether the additional
design complexity associated with their implemen-
tation is worth the return. This complexity stems
from a number of factors. AI processors can have
high power consumption, so great care must be taken
with the power infrastructure design for the overall
mission. Higher power requirements come with in-
creased thermal requirements, which are not be triv-
ial to deal with on a CubeSat.

The resources spent in developing a system to
accommodate a powerful AI processor may be bet-
ter spent on other aspects that could also help yield
desirable results, such as increasing the radio and
ground station throughput. Additionally, depend-
ing on the AI algorithm of choice, a dedicated AI
processor may not be required at all, and one could
substitute it for a simpler traditional processor with
established space development heritage.1

FUTURE WORK

One of the primary constraints that limit the
utility of the Versal SoC on BeaverCube II are the
power and thermal requirements. This is an area
that could be improved upon without sacrificing the
CubeSat form factor.

This work focuses on primarily the use of a pre-
trained dataset for onboard analysis. However, it is
feasible to consider in-situ model training as well,
either using unsupervised techniques or by leverag-
ing a deterministic methodology to do autonomous
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labeling.
While we discuss the use of machine learning pro-

cessors on imaging CubeSats, alternative applica-
tions will likely require their own in-depth analyses
to evaluate the associated utility and design trades.

The BeaverCube II CubeSat is currently under-
going continued subsystem development and testing.
It is currently scheduled to be deployed from the ISS
NanoRacks deployer in Q2 of 2025.
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