
SSC24-X-08

OPTASAT: An Open-Source, Flexible Software Framework for Small Satellite Operations

Thomas Murphy, Kerri Cahoy
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology

77 Massachusetts Avenue, Cambridge, MA, 02139
tjmurphy@mit.edu

ABSTRACT

This paper introduces the Open-source Python Tool for Awareness of Spacecraft and Analysis of Telemetry, or
OPTASAT, software for spacecraft mission operations and planning. OPTASAT is modular and extensible, and
incorporates multiple tools to contextualize spacecraft data. The increasing access to space is also growing the pool
of spacecraft operators. There is a need for spacecraft operations tools that are open source and accessible. The best
tools for modeling and understanding the situation of a satellite in space currently have high barriers to entry
including cost, learning curves, and complex interfaces. Missions that cost over $100M and last for years justify
hundreds of thousands of dollars for operating software and months of training for operators, but few-million-dollar,
two-year missions (as commonly found in smallsats) do not. OPTASAT includes tools to assist with planning for
beta angles, astronomical target selection, and Earth-observing sensor simulation. These tools can be used for end-
to-end planning of mission actions, from concept to test and operation of the spacecraft. Visualization of data is a
priority in the display of data in order to reduce learning curves. OPTASAT is fully open-source and adaptable, as
operators need the ability to adjust their software to tailor it to the particular parameters of their missions to suport
the wide variety of spacecraft and missions that exist today. In particular, this paper will present examples of
astronomy missions, Earth-observing missions, and multi-spacecraft coordination missions that can be analyzed
through OPTASAT.

INTRODUCTION

Spaceflight missions are becoming smaller, cheaper,
and more approachable for a wide variety of groups.
Teams operating spacecraft with limited resources need
to have software which will track the state of their
spacecraft and help visualize the past, present, and
future actions it may take.

The wide variety of the types of space missions being
flown (Earth observation, technology demonstrations,
astronomy, remote sensing, communications, and more)
necessitates software which is flexible and can be tuned
to suit the particular needs of the operators. The
software should be approachable, allowing users and
operators to make use of it with minimal training.
Finally, the software should provide sufficient utilities
to users, so that they can begin immediately applying it
to their mission with minimal setup.

APPROACH

Establishing scope for satellite operational software of
this nature is crucial. We can not aim to serve all needs
for all space missions. Instead, this software aims to
provide a wide variety of capabilities for the most
common types of missions. Highly specialized missions
will likely still need to use existing commercial
software, but simpler missions, will be able to use

OPTASAT to meet mission objectives. A goal of
OPTASAT is to reduce duplicated work by providing
teams with the basic tools they need in order to operate
their missions, and minimize the amount of custom
tools which need to be created in order to manage the
day-to-day tasks of operating a small satellite mission.

OPTASAT has some intentional limitations. The first is
that it assumes that missions will be operating in low-
Earth orbit (LEO). While plotting mission trajectories
to Mars is an essential capability for interplanetary
missions, these missions are still rare. This allows many
simplifications to be made. For one, the standard SGP4
propagator can be used for the evolution of orbits, and
TLE data is readily available for tracking the
parameters of the mission at any given time. Another
limitation is that OPTASAT assumes missions will be
operating without propulsion. Trajectory and maneuver
planning are a crucial component for many missions,
but most small satellites do not have propulsive
capabilities1, and therefore propulsion is not a built-in
feature of OPTASAT. Applying these assumptions to
the orbits in the missions simplifies the internal
behavior of OPTASAT, without too heavily restricting
the breadth of missions of interest which can be
supported. This scope limitation makes development
and use of OPTASAT more approachable.

Murphy 1 38th Annual Small Satellite Conference

We also make some assumptions about the capabilities
of the users of OPTASAT. OPTASAT is made to be
reconfigurable, but this configuration is done in a
manner that requires some level of familiarity and
comfort in working with text-based software
configuration management. Additionally, we assume
that operators (as teams, if not as individuals) are
comfortable modifying Python software, since they
may need to write custom code to extend the
capabilities of OPTASAT to fit their needs.

Using an interpreted language like Python means
sacrificing performance when compared to C/C++ or
modern alternatives like Rust. However, with modern
computer hardware, performance is often not as
precious a resource as previously, and the decision is
based on prioritizing the needs and abilities of the users.
Python is a language that students today are broadly
familiar with, and one that a large number of aerospace
engineers are capable of writing code in. Given that
OPTASAT will be used on aerospace missions, we
assume that the users are engineers who are
comfortable writing software, as opposed to being
software engineers who may have more experience
with low-level, systems-oriented languages. Using
Python expands our pool of users who will be able to
understand and make changes to the software.

Customization by the user is supported on three levels.
The first level is that the user interface is fully
customizable. The user chooses which controls will be

in which part of the screen, and can resize graphical
elements according to their priorities. Options which
are less often used can be placed behind menus, while
key controls can be placed in permanent positions in the
window. This level of configuration is done through
modification of a JSON (JavaScript Object Notation)
file2. The second level of customization is the fact that
OPTASAT supports the creation of custom user
interface modules, which will present mission
information to the user in whatever format they find
useful and intuitive. Third, customization is limitless
due to OPTASAT being free and open-source software,
meaning that users are able to adapt any portion of the
software to fit their needs.

OPTASAT LIBRARIES AND INTERFACES

OPTASAT is written strictly in Python, with the
assistance of some external libraries.

Running OPTASAT from a fresh installation of Ubuntu
24.04 requires simply cloning the source code
repository, and installing seven Python libraries. These
include PyQT5, PyQTGraph, and PyOpenGL (all for
graphics), Skyfield3 (an astronomy-focused library, with
additional capabilities for satellite orbit propagation),
Matplotlib and Pandas (for data management and
plotting), and LightStreamer (for loading the ISS
telemetry stream, to demonstrate live data display). The
latest (at time of writing) versions of all of these
libraries are supported.

Murphy 2 38th Annual Small Satellite Conference

Figure 1: An example of an OPTASAT window in-use, with annotations for some of the visible elements of
the interface

OPTASAT consists of an interface which collects
individual modules, each of which is a dedicated
Python file for performing a given task. For example,
one Module exists which shows the location of the
satellite on a map. This is known as the “Mapdot”
module. The modules structure is described in further
detail in Section 4.

OPTASAT is able to take input from any arbitrary data
source. An example is provided which will load the
public Lightstreamer-based data feed of telemetry data
points from the International Space Station.
Equivalently, users could use a ground station radio
over a software serial port to receive data directly from
their spacecraft, or use any other type of data feed.
OPTASAT also automatically fetches TLE data for any
spacecraft that the users are interested in, along with
caching these files and updating them as they become
stale.

Configuration of an OPTASAT installation is
performed through the use of JSON text files. The text
file encompasses all of the variables needed to describe
the behavior of OPTASAT. This means that users can
exchange these files with each other in order to share
their interfaces. The JSON files describe the layout of
every module in the window, as well as any parameters
such as what satellite to plot on a given graph, or the
field of view of a satellite’s sensors. In normal
operation, a user will never have to write Python code,
and can use the JSON interface to adjust the parameters
of any modules they have. Python programming is only
needed if the underlying functionality of modules is to
be changed, or if the user wishes to create their own
modules.

MODULARITY

A wide selection of modules are provided, to provide a
basic set of functions for a generic space mission. The
provided set of basic modules can support a large
number of examples of what can be done within the
OPTASAT framework, such that anyone who wants or
needs to create a new module can pull portions of
working code into their new module. For example, we
provide a module which demonstrates three-
dimensional plotting through PyQTGraph’s OpenGL
interface to model an orbit around the Earth, with the
equator and axis drawn. We also demonstrate how to
embed Matplotlib plots within a module, allowing users
who may already have tools producing Matplotlib-
based output to easily integrate these into the
OPTASAT framework. Table 1 shows a full list of all
modules included in the current (at time of writing)
version of OPTASAT. Further sections will discuss a
selection of modules in detail.

Table 1: Modules included with OPTASAT

Rectangle: The most basic module. Simply displays a
colored rectangle within the interface. Primarily useful
as a starting point for creating new modules.

Time Controller: Allows the user to set the internal
simulation to a different day and time

Telemetry Grapher: Displays live telemetry data from
spacecraft in a live-updating, auto-scaling graph

Space Weather Overview: Displays the latest space
weather data pulled from NOAA Space Weather
Prediction Center

Mapdot: Displays the location of arbitrary number of
satellites on a map of the Earth, with their footprints
(area of Earth that can see the satellite) drawn, along
with the next and previous orbits. Also labels ground
stations, which are listed in JSON. Can also simulate
the area of Earth imaged by a defined satellite-
mounted imager.

Passfinder: For any ground station and satellite,
generates a list of times that the satellite will pass over
the ground station, and visually displays each as a
circle sized according to the maximum elevation of
the pass above the horizon.

Pass Polar Plot: Displays the current locations of any
satellite in the sky from the point of view of a ground
station.

3D Orbit Renderer: Displays a 3D view of the orbital
plane of a satellite, oriented against the sun, to view
the physical Beta Angle for contextualization

Follower Satellite: Generates a virtual satellite which
follows an existing satellite at a specified spacing.
Useful for planning of small constellation missions.

Ground View: Simulates the view of the Earth
through an Earth imaging sensor with a given field of
view

Starmap: Simulates the view of celestial objects for
astronomy missions

Eclipse Plot: Generates a timeline for a satellite,
indicating at all times whether it is eclipsed by Earth.

Murphy 3 38th Annual Small Satellite Conference

The use of modules allows the functionality for a given
module to be contained within a single Python file,
meaning that any given module can be integrated into
an OPTASAT configuration setup, and adjusted to the
user’s preferences. If a module is no longer used, it is
simple to remove the code for that module, and
OPTASAT will continue running. If users want to
extend the capabilities of a given module, they know
immediately where to find the code for that module,
since it will simply be in the Python file which shares
the name of the module.

Modules also aid in the onboarding process for new
users. A user does not necessarily need to know how to
operate every portion of an OPTASAT configuration in
order to be up and running. If one user is training
another, they can isolate their focus on one module at a
time, and learn each module when they are ready.

OPTASAT includes several ready-made modules to
serve purposes that are considered to be common across
many space missions. Here, we discuss several modules
to highlight the types of modules which exist in
OPTASAT.

Time Controller

The Time Controller module is a simple module, which
features a readout of the date and time of the internal
OPTASAT simulation. This module, shown in Figure 2,
provides an example of cross-module functionality,
since the user’s interaction with this module affects the
global time variable. Most importantly, the time
entered into this module is passed to the Skyfield-based
satellite propagator, and is used to propagate the TLE
for the user’s spacecraft to the specified date. The most
important use-case for this functionality is that of future
data collection planning. For example, in an Earth-
imaging mission, the Time Controller can be used to
predict the locations that the spacecraft will fly over in
the near future, and thus allow the users to plan out
their next ground targets of interest. The Time
Controller can also be used to view times in the past,
which is useful for evaluating events like telemetry
anomalies to trace their causes. This may include
determining whether a sudden temperature increase is
coincident with the spacecraft exiting eclipse, or
whether a spacecraft reset occurred while it was passing
through the South Atlantic Anomaly. The Time
Controller simply propagates the spacecraft’s current
TLE to the chosen time. Due to the limitations of TLE
files, propagations far from the current date will not be
reliable4; future development of OPTASAT will include
automatic fetching of historical TLE data, to use the
most contemporary TLE for any chosen date in the past.
All times in the Time Controller operate on Universal
Coordinated Time (UTC).

MapDot

The MapDot module, shown in Figure 2, shows the
location of the spacecraft as a dot on a map of the
world. This module allows the user to plot the location
of one or more spacecraft, and integrates with the Time
Controller to show the locations at any chosen time.
The MapDot also allows the user to specify in the
JSON configuration any ground sites of interest. These
could include communication ground stations, imaging
sites of interest, or any other location on Earth. The
MapDot also allows the user to specify sensors on their
spacecraft, which have a user-defined field-of-view
(FOV), that can then be plotted on the map. For
example, if the spacecraft has a camera with a 40
degree field of view, MapDot will simulate a 40-degree
cone being projected from the spacecraft toward Earth,
and will identify the region of Earth’s surface which is
contained within that cone by plotting points on the
map where the cone intersects. Additionally, the user
can control the orientation of the cone. By default, the
sensor is pointed in the nadir direction (directly at
Earth), but during runtime (rather than in the JSON) the
user is able to move the sensor off-nadir by whatever
angle is desired. This is presented in two axes, where
one axis is the size of the angle between the camera’s
boresight vector and the nadir direction, and the other
axis is the direction of that deviation. For example, we
can be 10 degrees off-nadir, to the southeast (at an
angle of 135 degrees). This allows mission operators to
plan their opportunities for imaging and evaluate
whether a given ground target will be accessible from a
given orbit.

StarMap

While the MapDot is useful for planning of Earth
imaging missions, the StarMap module is intended for
astronomy missions.

Murphy 4 38th Annual Small Satellite Conference

Figure 2: MapDot and Time Controller modules

The StarMap module (Figure 3) is derived from a tool
which was developed for the DeMi (Deformable Mirror
Demonstration Mission) spacecraft5. This was a 6U
cubesat operated by MIT which featured a miniaturized
space telescope for testing adaptive optics in space.
This necessitated tools which would inform the
operators of the celestial objects available for imaging.
DeMi had several priorities in object selection. These
included the preference for bright objects, the
restrictions of Sun keepout zones, the awareness of
which objects were obscured by the Earth, and more.
The initial approach for solving this problem was to
develop a weighting-based function to evaluate each
celestial object and choose the one with the highest
score, but this made it difficult to validate that the
selection was correct. Therefore, the StarMap was
developed, and later, with the development of
OPTASAT, was converted into a module rather than
being a standalone application. The StarMap is an
embedded MatPlotLib plot, meaning that users who are
familiar with MatPlotLib plotting in Python will be able
to understand its internal structure. It also provides a
strong example for any user who wishes to construct a
module consisting of a MatPlotLib plot.

The core feature of the StarMap is that it displays a map
of all the stars in the sky, over the full celestial sphere.
Every star is plotted at its location, and every star is
visible at all times. Familiar constellations like Orion
are readily visible. The stars are plotted with an
equirectangular projection6, where the right ascension
and declination are directly translated to the X and Y
coordinates on the plot. Stars are drawn with their
physical size proportional to their apparent magnitude,
causing brighter stars to be more readily visible. In the
configuration for the map, a threshold can be set, such
that only stars brighter than a given magnitude are
drawn. The star catalog is obtained from the Skyfield
library, which contains the Hipparcos star catalog.

Besides the stars, the next key element of the StarMap
is the drawing of the Earth. The Earth is rendered by
calculating the distance from the satellite to the Earth,
and then using that to derive the Earth’s angular size.
We then use the Haversine Formula to calculate points
around a circle (in spherical coordinates) which are
equidistant from the location which points from the
spacecraft to the center of the Earth. By doing this, we
map a circle onto the equirectangular projection, and
can display the distorted shape of the Earth, with the
distortion of the projection affecting the apparent shape.
In the event that the satellite is at a high latitude in
orbit, the Earth may be obscuring one of the two
Celestial Poles, in which case the Earth will stretch
across that edge of the StarMap.

The next elements shown in the StarMap are the Sun
and Moon. These are useful for awareness, and can also
have keepout zones associated with them, configured
by JSON. Because the StarMap also responds to the
Time Controller module, users can also put in the date
of a Solar Eclipse to see the Moon cover the Sun, which
is a useful confirmation of functionality. More
importantly, the Sun and Moon are also useful for
evaluating when either is being shadowed by the Earth,
which is beneficial for avoiding stray light, and having
extra assurance that the telescope will not point at the
Sun, including inadvertently passing by the Sun when
slewing attitude from one imaging target to another.
The StarMap also calculates and renders the current
phase of the Moon by applying a calculated shadow
mask over the image used for the Moon.

The StarMap allows specification of arbitrary keepout
zones, which may be configured to any desired angle,
and can either be located around an object (especially
the Sun or Moon), or located at an arbitrary stellar
location if needed. This allows users to identify which
stellar objects remain available for imaging.

Finally, the StarMap shows a cross at the location in the
sky which is represented by the vector pointing from
the center of the Earth to the spacecraft. Equivalently,
this is the vector pointing from the spacecraft directly
away from the Earth. Any stellar target near this cross
will maximize the avoidance of any effects of
Earthshine. This cross also heavily aids with keeping
track of the location of the spacecraft as it moves
through its orbit, and works as a useful anchoring point
for the user to contextualize what is shown in the
StarMap.

Orbit Renderer

The 3D orbit renderer displays a full 3D view of the
Sun, Earth, and the spacecraft, and allows the user to
move the virtual camera around arbitrarily. One of the

Murphy 5 38th Annual Small Satellite Conference

Figure 3: The StarMap module, displaying the stars,
the Sun and Moon, and the region of sky obscured

by Earth.

most useful purposes of this module is to allow the
viewing of solar beta angles. While the equations are
straightforward to calculate a beta angle, telling an
operator “Our current beta angle is 55 degrees”
generally is not helpful for understanding the mission-
level implications of that value. By displaying the beta
angle on a physically viewable Earth, and especially by
allowing the rotation of the camera for a full 3D view
(as opposed to textbooks which show a 2D drawing and
attempt to show the relationship between 3D vectors), it
becomes more straightforward to understand the state
of the illumination of the spacecraft. While OPTASAT
is primarily intended for spacecraft operations, this
module also helps to illustrate the educational value that
may be obtained by transforming spacecraft state
information into tangible, visualized interpretations for
analysis by humans. Showing a real example may be
highly useful in a classroom environment.

Pass Finder

The Pass Finder module (Figure 5) identifies when a
particular satellite will be flying over the user’s
specified location. The primary use case for this module
is for identifying opportunities for communication with
the satellite from the location of a given ground station.
The Pass Finder will calculate the overflight
opportunities, and importantly, will classify them in
terms of their quality. It is rare for a satellite to fly
directly overhead of any ground station location, and

therefore some passes are of higher quality than others.
A pass which consists of the satellite rising 5 degrees
above the horizon is much less desirable than one that
rises 80 degrees above the horizon. The maximum
elevation of a pass acts as a metric for the quality of the
pass.

In the Pass Finder, each pass is displayed as a circle.
The location of each circle corresponds to the time and
day of the pass. Each day is a vertical strip of time,
labeled along the X axis. Along the Y axis, each day
progresses from top to bottom, with noon directly
across the middle. This arrangement resembles many
popular calendar software tools. Each circle is
displayed to indicate the maximum elevation of the
pass, which is indicated in three different ways. First,
the numerical value of the maximum elevation is
displayed on each circle. Second, each circle is sized
proportionally to the maximum elevation. Third, each
circle is colored (using the Inferno color map) to
indicate the quality of the pass, with the highest quality
being light yellow. This way, it is easy to identify the
highest-quality passes at a glance. This display also
indicates trends in passes. In the Pass Finder results of
Figure 5, we can see that passes get earlier in the day as
time goes on, which can be a useful point of context for
pass planning. We can also see that, for this ground
station (MIT), in this orbit (the International Space
Station), there are usually a total of about 6 passes per
day, of which one or two are of high quality. Knowing
these properties of an orbit is useful for mission
planning prior to launch, as it allows operators to form
an expectation for what level of access will be available
to their satellite.

More modules are available with OPTASAT (see Table
1), and the wide variety of provided modules is
intended to provide enough material for users to create
their own modules and have enough examples to

Murphy 6 38th Annual Small Satellite Conference

Figure 4: 3D orbit renderer, showing:
Orange - the axis of the Earth, with labeled poles

Green - the Equator
White - the sun-pointing vector

Red - the ISS orbit, its normal vector (to the upper
left), and the sun vector projected onto its plane (to

the upper right). The beta angle is the angle between
this vector and the sun vector.

Figure 5: An example of the output of the Pass
Finder module

confidently understand how to interface with the rest of
OPTASAT. Development of an explicit Application
Programming Interface (API) is a crucial element of
future work.

APPLICATION CASE STUDY: CLICK

CLICK7 (CubeSat Laser Infrared CrossLinK Mission) is
a mission to perform communications between two 3U
CubeSats using an infrared laser link. CLICK-A flew in
2020 and demonstrated successful optical downlink
from a single spacecraft to an optical ground station.
The dual-spacecraft mission of CLICK-B and CLICK-
C will be launching in 2025.

A key task in planning for operations of CLICK-B/C is
that the operators need to determine the nature of
ground radio communication with the two spacecraft.
The problem can be summarized by asking “If the two
spacecraft are some number of kilometers apart, what
will our communication opportunities with the two of
them look like?”. Most importantly, the operators need
to establish whether communication with the two
spacecraft can happen simultaneously with a single
antenna, or whether a ground antenna will have to pick
one or the other to communicate with.

In order to visualize the dynamics of a pass with a pair
of satellites, an OPTASAT configuration was built to
simulate two spacecraft in LEO passing over a ground
station. This configuration is shown in Figure 6. As a
stand-in for CLICK-B and CLICK-C, we use the ISS as

the “leader” satellite, and we use the Follower Satellite
module to generate a satellite which follows the ISS, at
whatever time or distance separation is needed (the time
and distance are connected through the orbital velocity).
In this screenshot, we have set the follower to lag 250
kilometers behind the ISS. We used the Pass Finder
module (in the upper right) to select an arbitrary
upcoming pass, and this moved the simulation time to
the start of the pass. In the screenshot, the Pass Finder
appears slightly cluttered, but this is because it is
currently in a minimized format. Selecting the grey
button in the upper left of the module will minimize the
large map view, and will expand the Pass Finder to fill
the large central area of the configuration.

Once a pass is selected and being viewed, we can use
the Time Controller module to shift time between the
beginning and end of the pass, to see the motion of the
satellites. Alternatively, we can simply let the Time
Controller run, and watch the pass at real-life speed. In
the black box in the lower right, we use the Pass Polar
Plot module to view the positions of the two satellites
(ISS in red, follower in green) as they appear from the
perspective of an observer, and the track that they are
following throughout the pass. The five modules in this
configuration work closely together in order to give a
cohesive understanding of the dynamics of a dual-
satellite mission. This example illustrates some of the
capabilities of OPTASAT and the useful ways modules
can be combined.

Murphy 7 38th Annual Small Satellite Conference

Figure 6: A configuration for modeling the dynamics of the CLICK mission

FUTURE WORK

While the groundwork has been laid for OPTASAT, it
remains an ongoing software development project, and
there have been several improvements identified which
will be addressed in the future.

OPTASAT will need the capability to obtain the most
relevant historical TLE for a given date in the past.
While it is mathematically possible to propagate a
current TLE to any date in the past, the accuracy
quickly suffers, and therefore it would be very useful to
be able to dynamically change which TLE to use for
modeling based on the selected date. Because the focus
for OPTASAT is active current operations, the current
TLE has been sufficient so far for the primary use case.

OPTASAT will need an explicit Application
Programming Interface (API) to be developed. To date,
the program has been made by a single individual who
is directly familiar with all the internal structures, but if
the intent is for more users to be able to make modules
which will integrate with the rest of OPTASAT, they
will highly benefit from text-based descriptions of how
to use the software and construct the desired interfaces.
For the time being, it is hoped that the provided
example modules will be enough for users to get their
custom modules up and running.

User testing is a key future goal for OPTASAT. While
the needs of users have been anticipated based on
personal experience, assumptions have been made
about the needs and abilities of the operators.

Using OPTASAT in operation of a flight mission is a
major future goal. Using the software on a real mission,
no matter how simple, will be beneficial for proving the
usefulness of the software.

It may eventually be beneficial to extend OPTASAT’s
functionality to other planets, increasing scope to
manage changing reference frames, propulsive orbit
corrections, orbital captures, gravity assists, and
everything else that comes with interplanetary travel.
For the foreseeable future, these capabilities are out of
scope, but are not outside any technical possibilities.

Finally, it may be prudent to include security features
within OPTASAT, either to ensure that OPTASAT
itself is secure, or to manage security of the spacecraft
itself.

CONCLUSION

OPTASAT provides a flexible, approachable operations
interface for small satellites, with many of the basic
tools needed to operate a mission. Its functionality
addresses a growing need for tools for new spacecraft

operators. OPTASAT will continue to grow and be
modified to suit the shifting priorities of these
operators.

OPTASAT will be released through GitHub, under the
MIT License, which allows for any person to modify,
reproduce, and in all other ways re-distribute the
software in whatever way they want, for any use. No
attribution is required, though this paper may be cited if
a user prefers.

Acknowledgements

The authors would like to thank Dr. Mary Knapp and
Dr. Richard Linares for their help and guidance with the
development of this software.

REFERENCES

1. Lemmer, Kristina. "Propulsion for CubeSats."
Acta Astronautica 134 (2017): 231-243.

2. Bray, T. (December 2017). Bray, T (ed.). "The
JavaScript Object Notation (JSON) Data
Interchange Format". IETF.
doi:10.17487/RFC8259

3. Rhodes, Brandon. "Skyfield: High precision
research-grade positions for planets and Earth
satellites generator." Astrophysics Source Code
Library (2019): ascl-1907.

4. Kelso, T. S. "Validation of SGP4 and IS-GPS-
200D against GPS precision ephemerides."
(2007).

5. Morgan, Rachel E., et al. "On-orbit operations
summary for the Deformable Mirror
Demonstration Mission (DeMi) CubeSat."
Adaptive Optics Systems VIII. Vol. 12185. SPIE,
2022.

6. Weisstein, Eric W. "Equirectangular
Projection." From MathWorld--A Wolfram Web
Resource.
https://mathworld.wolfram.com/EquirectangularP
rojection.html

7. Serra, Paul C., et al. "CubeSat Laser Infrared
CrosslinK Mission Status." International
Conference on Space Optics—ICSO 2020. Vol.
11852. SPIE, 2021.

Murphy 8 38th Annual Small Satellite Conference

https://mathworld.wolfram.com/about/author.html
https://doi.org/10.17487%2FRFC8259
https://en.wikipedia.org/wiki/Doi_(identifier)
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc8259
https://mathworld.wolfram.com/EquirectangularProjection.html
https://mathworld.wolfram.com/EquirectangularProjection.html
https://mathworld.wolfram.com/

	OPTASAT: An Open-Source, Flexible Software Framework for Small Satellite Operations
	introduction
	Approach
	OPTASAT Libraries and Interfaces
	Modularity
	Time Controller
	MapDot
	StarMap
	Orbit Renderer
	Pass Finder

	Application case study: CLICK
	Future work
	Conclusion
	Acknowledgements

	References

