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ABSTRACT

This paper introduces the Open-source Python Tool for Awareness of Spacecraft  and Analysis of Telemetry,  or
OPTASAT, software for spacecraft mission operations and planning. OPTASAT is modular and extensible,  and
incorporates multiple tools to contextualize spacecraft data. The increasing access to space is also growing the pool
of spacecraft operators. There is a need for spacecraft operations tools that are open source and accessible. The best
tools  for  modeling and understanding the situation of a  satellite  in  space  currently have high barriers  to  entry
including cost, learning curves, and complex interfaces. Missions that cost over $100M and last for years justify
hundreds of thousands of dollars for operating software and months of training for operators, but few-million-dollar,
two-year missions (as commonly found in smallsats) do not. OPTASAT includes tools to assist with planning for
beta angles, astronomical target selection, and Earth-observing sensor simulation. These tools can be used for end-
to-end planning of mission actions, from concept to test and operation of the spacecraft. Visualization of data is a
priority in the display of data in order to reduce learning curves. OPTASAT is fully open-source and adaptable, as
operators need the ability to adjust their software to tailor it to the particular parameters of their missions to suport
the wide variety  of  spacecraft  and missions that  exist  today.  In  particular,  this  paper  will  present  examples  of
astronomy missions,  Earth-observing missions,  and multi-spacecraft  coordination missions that  can be analyzed
through OPTASAT.

INTRODUCTION

Spaceflight  missions  are  becoming  smaller,  cheaper,
and more approachable  for  a wide variety  of  groups.
Teams operating spacecraft with limited resources need
to  have  software  which  will  track  the  state  of  their
spacecraft  and  help  visualize  the  past,  present,  and
future actions it may take.

The wide variety of the types of space missions being
flown  (Earth  observation,  technology  demonstrations,
astronomy, remote sensing, communications, and more)
necessitates software which is flexible and can be tuned
to  suit  the  particular  needs  of  the  operators.  The
software  should  be  approachable,  allowing users  and
operators  to  make  use  of  it  with  minimal  training.
Finally, the software should provide sufficient utilities
to users, so that they can begin immediately applying it
to their mission with minimal setup.

APPROACH

Establishing scope for satellite operational software of
this nature is crucial. We can not aim to serve all needs
for  all  space  missions.  Instead,  this  software  aims to
provide  a  wide  variety  of  capabilities  for  the  most
common types of missions. Highly specialized missions
will  likely  still  need  to  use  existing  commercial
software,  but  simpler  missions,  will  be  able  to  use

OPTASAT  to  meet  mission  objectives.  A  goal  of
OPTASAT is to reduce duplicated work by providing
teams with the basic tools they need in order to operate
their  missions,  and  minimize  the  amount  of  custom
tools which need to be created in order to manage the
day-to-day tasks of operating a small satellite mission.

OPTASAT has some intentional limitations. The first is
that it assumes that missions will be operating in low-
Earth orbit (LEO). While plotting mission trajectories
to  Mars  is  an  essential  capability  for  interplanetary
missions, these missions are still rare. This allows many
simplifications to be made. For one, the standard SGP4
propagator can be used for the evolution of orbits, and
TLE  data  is  readily  available  for  tracking  the
parameters of the mission at any given time. Another
limitation is that OPTASAT assumes missions will be
operating without propulsion. Trajectory and maneuver
planning are a crucial  component  for many missions,
but  most  small  satellites  do  not  have  propulsive
capabilities1, and therefore propulsion is not a built-in
feature of  OPTASAT. Applying these assumptions to
the  orbits  in  the  missions  simplifies  the  internal
behavior of OPTASAT, without too heavily restricting
the  breadth  of  missions  of  interest  which  can  be
supported.  This  scope  limitation  makes  development
and use of OPTASAT more approachable.
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We also make some assumptions about the capabilities
of the users of OPTASAT. OPTASAT is made to be
reconfigurable,  but  this  configuration  is  done  in  a
manner  that  requires  some  level  of  familiarity  and
comfort  in  working  with  text-based  software
configuration  management.  Additionally,  we  assume
that  operators  (as  teams,  if  not  as  individuals)  are
comfortable  modifying  Python  software,  since  they
may  need  to  write  custom  code  to  extend  the
capabilities of OPTASAT to fit their needs.

Using  an  interpreted  language  like  Python  means
sacrificing  performance  when compared  to  C/C++ or
modern alternatives like Rust. However,  with modern
computer  hardware,  performance  is  often  not  as
precious a resource as previously, and the decision is
based on prioritizing the needs and abilities of the users.
Python is  a  language that  students  today are  broadly
familiar with, and one that a large number of aerospace
engineers  are  capable  of  writing  code  in.  Given  that
OPTASAT  will  be  used  on  aerospace  missions,  we
assume  that  the  users  are  engineers  who  are
comfortable  writing  software,  as  opposed  to  being
software  engineers  who  may  have  more  experience
with  low-level,  systems-oriented  languages.  Using
Python expands our pool of users who will be able to
understand and make changes to the software.

Customization by the user is supported on three levels.
The  first  level  is  that  the  user  interface  is  fully
customizable. The user chooses which controls will be

in which part  of  the screen,  and can resize graphical
elements  according  to  their  priorities.  Options  which
are less often used can be placed behind menus, while
key controls can be placed in permanent positions in the
window.  This  level  of  configuration  is  done  through
modification  of  a  JSON (JavaScript  Object  Notation)
file2. The second level of customization is the fact that
OPTASAT  supports  the  creation  of  custom  user
interface  modules,  which  will  present  mission
information to  the  user  in  whatever  format  they find
useful  and  intuitive.  Third,  customization  is  limitless
due to OPTASAT being free and open-source software,
meaning that users are able to adapt any portion of the
software to fit their needs.

OPTASAT LIBRARIES AND INTERFACES

OPTASAT  is  written  strictly  in  Python,  with  the
assistance of some external libraries.

Running OPTASAT from a fresh installation of Ubuntu
24.04  requires  simply  cloning  the  source  code
repository, and installing seven Python libraries. These
include  PyQT5,  PyQTGraph,  and  PyOpenGL (all  for
graphics), Skyfield3 (an astronomy-focused library, with
additional  capabilities  for  satellite  orbit  propagation),
Matplotlib  and  Pandas  (for  data  management  and
plotting),  and  LightStreamer  (for  loading  the  ISS
telemetry stream, to demonstrate live data display). The
latest  (at  time  of  writing)  versions  of  all  of  these
libraries are supported.
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Figure 1: An example of an OPTASAT window in-use, with annotations for some of the visible elements of
the interface



OPTASAT  consists  of  an  interface  which  collects
individual  modules,  each  of  which  is  a  dedicated
Python file for performing a given task. For example,
one  Module  exists  which  shows  the  location  of  the
satellite  on  a  map.  This  is  known  as  the  “Mapdot”
module. The modules structure is described in further
detail in Section 4.

OPTASAT is able to take input from any arbitrary data
source.  An  example  is  provided  which  will  load  the
public Lightstreamer-based data feed of telemetry data
points  from  the  International  Space  Station.
Equivalently,  users  could  use  a  ground  station  radio
over a software serial port to receive data directly from
their  spacecraft,  or  use  any  other  type  of  data  feed.
OPTASAT also automatically fetches TLE data for any
spacecraft  that  the users  are  interested in,  along with
caching these files and updating them as they become
stale.

Configuration  of  an  OPTASAT  installation  is
performed through the use of JSON text files. The text
file encompasses all of the variables needed to describe
the behavior of OPTASAT. This means that users can
exchange these files with each other in order to share
their interfaces. The JSON files describe the layout of
every module in the window, as well as any parameters
such as what satellite to plot on a given graph, or the
field  of  view  of  a  satellite’s  sensors.  In  normal
operation, a user will never have to write Python code,
and can use the JSON interface to adjust the parameters
of any modules they have. Python programming is only
needed if the underlying functionality of modules is to
be changed,  or if the user wishes to create their own
modules.

MODULARITY

A wide selection of modules are provided, to provide a
basic set of functions for a generic space mission. The
provided  set  of  basic  modules  can  support  a  large
number of  examples  of  what  can be done within the
OPTASAT framework, such that anyone who wants or
needs  to  create  a  new  module  can  pull  portions  of
working code into their new module. For example, we
provide  a  module  which  demonstrates  three-
dimensional  plotting  through  PyQTGraph’s  OpenGL
interface to model an orbit around the Earth, with the
equator and axis drawn. We also demonstrate how to
embed Matplotlib plots within a module, allowing users
who  may  already  have  tools  producing  Matplotlib-
based  output  to  easily  integrate  these  into  the
OPTASAT framework. Table  1 shows a full list of all
modules  included  in  the  current  (at  time  of  writing)
version of OPTASAT. Further sections will discuss a
selection of modules in detail.

Table 1: Modules included with OPTASAT

Rectangle: The most basic module. Simply displays a
colored rectangle within the interface. Primarily useful
as a starting point for creating new modules.

Time Controller:  Allows the user to set  the internal
simulation to a different day and time

Telemetry Grapher: Displays live telemetry data from
spacecraft in a live-updating, auto-scaling graph

Space  Weather  Overview:  Displays  the  latest  space
weather  data  pulled  from  NOAA  Space  Weather
Prediction Center 

Mapdot: Displays the location of arbitrary number of
satellites on a map of the Earth, with their footprints
(area of Earth that can see the satellite) drawn, along
with the next and previous orbits. Also labels ground
stations, which are listed in JSON. Can also simulate
the  area  of  Earth  imaged  by  a  defined  satellite-
mounted imager.

Passfinder:  For  any  ground  station  and  satellite,
generates a list of times that the satellite will pass over
the  ground  station,  and  visually  displays  each  as  a
circle  sized according  to  the  maximum elevation  of
the pass above the horizon.

Pass Polar Plot: Displays the current locations of any
satellite in the sky from the point of view of a ground
station.

3D Orbit Renderer: Displays a 3D view of the orbital
plane of a satellite, oriented against the sun, to view
the physical Beta Angle for contextualization

Follower Satellite: Generates a virtual satellite which
follows  an  existing  satellite  at  a  specified  spacing.
Useful for planning of small constellation missions.

Ground  View:  Simulates  the  view  of  the  Earth
through an Earth imaging sensor with a given field of
view

Starmap:  Simulates  the view of celestial  objects  for
astronomy missions

Eclipse  Plot:  Generates  a  timeline  for  a  satellite,
indicating at all times whether it is eclipsed by Earth.
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The use of modules allows the functionality for a given
module  to  be  contained  within  a  single  Python  file,
meaning that any given module can be integrated into
an OPTASAT configuration setup, and adjusted to the
user’s preferences. If a module is no longer used, it is
simple  to  remove  the  code  for  that  module,  and
OPTASAT  will  continue  running.  If  users  want  to
extend the capabilities of a given module,  they know
immediately  where  to  find the code for  that  module,
since it will simply be in the Python file which shares
the name of the module.

Modules  also  aid  in  the  onboarding  process  for  new
users. A user does not necessarily need to know how to
operate every portion of an OPTASAT configuration in
order  to  be  up  and  running.  If  one  user  is  training
another, they can isolate their focus on one module at a
time, and learn each module when they are ready.

OPTASAT  includes  several  ready-made  modules  to
serve purposes that are considered to be common across
many space missions. Here, we discuss several modules
to  highlight  the  types  of  modules  which  exist  in
OPTASAT.

Time Controller

The Time Controller module is a simple module, which
features a readout of the date and time of the internal
OPTASAT simulation. This module, shown in Figure 2,
provides  an  example  of  cross-module  functionality,
since the user’s interaction with this module affects the
global  time  variable.   Most  importantly,  the  time
entered into this module is passed to the Skyfield-based
satellite propagator, and is used to propagate the TLE
for the user’s spacecraft to the specified date. The most
important use-case for this functionality is that of future
data  collection  planning.  For  example,  in  an  Earth-
imaging mission, the Time Controller  can be used to
predict the locations that the spacecraft will fly over in
the near future,  and thus allow the users  to plan out
their  next  ground  targets  of  interest.  The  Time
Controller can also be used to view times in the past,
which  is  useful  for  evaluating  events  like  telemetry
anomalies  to  trace  their  causes.  This  may  include
determining whether a sudden temperature increase is
coincident  with  the  spacecraft  exiting  eclipse,  or
whether a spacecraft reset occurred while it was passing
through  the  South  Atlantic  Anomaly.  The  Time
Controller  simply  propagates  the  spacecraft’s  current
TLE to the chosen time. Due to the limitations of TLE
files, propagations far from the current date will not be
reliable4; future development of OPTASAT will include
automatic fetching of  historical  TLE data,  to  use  the
most contemporary TLE for any chosen date in the past.
All times in the Time Controller operate on Universal
Coordinated Time (UTC).

MapDot

The  MapDot  module,  shown in  Figure  2,  shows  the
location  of  the  spacecraft  as  a  dot  on  a  map  of  the
world. This module allows the user to plot the location
of one or more spacecraft, and integrates with the Time
Controller  to  show the  locations at  any  chosen  time.
The  MapDot  also  allows  the  user  to  specify  in  the
JSON configuration any ground sites of interest. These
could include communication ground stations, imaging
sites  of  interest,  or  any other  location  on Earth.  The
MapDot also allows the user to specify sensors on their
spacecraft,  which  have  a  user-defined  field-of-view
(FOV),  that  can  then  be  plotted  on  the  map.  For
example,  if  the  spacecraft  has  a  camera  with  a  40
degree field of view, MapDot will simulate a 40-degree
cone being projected from the spacecraft toward Earth,
and will identify the region of Earth’s surface which is
contained  within  that  cone  by  plotting  points  on  the
map where the cone intersects.  Additionally,  the user
can control the orientation of the cone. By default, the
sensor  is  pointed  in  the  nadir  direction  (directly  at
Earth), but during runtime (rather than in the JSON) the
user is able to move the sensor off-nadir by whatever
angle is desired. This is presented in two axes, where
one axis is the size of the angle between the camera’s
boresight vector and the nadir direction, and the other
axis is the direction of that deviation. For example, we
can  be  10  degrees  off-nadir,  to  the  southeast  (at  an
angle of 135 degrees). This allows mission operators to
plan  their  opportunities  for  imaging  and  evaluate
whether a given ground target will be accessible from a
given orbit.

StarMap

While  the  MapDot  is  useful  for  planning  of  Earth
imaging missions, the StarMap module is intended for
astronomy missions.
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Figure 2: MapDot and Time Controller modules 



The StarMap module (Figure 3) is derived from a tool
which was developed for the DeMi (Deformable Mirror
Demonstration  Mission)  spacecraft5.  This  was  a  6U
cubesat operated by MIT which featured a miniaturized
space  telescope  for  testing  adaptive  optics  in  space.
This  necessitated  tools  which  would  inform  the
operators of the celestial objects available for imaging.
DeMi had several  priorities in object  selection. These
included  the  preference  for  bright  objects,  the
restrictions  of  Sun  keepout  zones,  the  awareness  of
which objects were obscured by the Earth,  and more.
The initial  approach  for  solving  this  problem was  to
develop  a  weighting-based  function  to  evaluate  each
celestial  object  and  choose  the  one  with  the  highest
score,  but  this  made  it  difficult  to  validate  that  the
selection  was  correct.  Therefore,  the  StarMap  was
developed,  and  later,  with  the  development  of
OPTASAT, was  converted  into a  module rather  than
being  a  standalone  application.  The  StarMap  is  an
embedded MatPlotLib plot, meaning that users who are
familiar with MatPlotLib plotting in Python will be able
to understand its  internal  structure.  It  also provides a
strong example for any user who wishes to construct a
module consisting of a MatPlotLib plot.

The core feature of the StarMap is that it displays a map
of all the stars in the sky, over the full celestial sphere.
Every star  is  plotted at  its  location, and every  star  is
visible at  all  times. Familiar constellations like Orion
are  readily  visible.  The  stars  are  plotted  with  an
equirectangular  projection6,  where  the right ascension
and declination are directly translated to the X and Y
coordinates  on  the  plot.  Stars  are  drawn  with  their
physical size proportional to their apparent magnitude,
causing brighter stars to be more readily visible. In the
configuration for the map, a threshold can be set, such
that  only  stars  brighter  than  a  given  magnitude  are
drawn. The star catalog is obtained from the Skyfield
library, which contains the Hipparcos star catalog.

Besides the stars, the next key element of the StarMap
is the drawing of the Earth. The Earth is rendered by
calculating the distance from the satellite to the Earth,
and then using that to derive the Earth’s angular size.
We then use the Haversine Formula to calculate points
around  a  circle  (in  spherical  coordinates)  which  are
equidistant  from  the  location  which  points  from  the
spacecraft to the center of the Earth. By doing this, we
map a circle  onto the equirectangular  projection,  and
can display the distorted shape of the Earth,  with the
distortion of the projection affecting the apparent shape.
In  the  event  that  the satellite  is  at  a  high latitude  in
orbit,  the  Earth  may  be  obscuring  one  of  the  two
Celestial  Poles,  in  which  case  the  Earth  will  stretch
across that edge of the StarMap.

The next elements shown in the StarMap are the Sun
and Moon. These are useful for awareness, and can also
have keepout  zones  associated  with them,  configured
by JSON.  Because  the  StarMap also responds  to  the
Time Controller module, users can also put in the date
of a Solar Eclipse to see the Moon cover the Sun, which
is  a  useful  confirmation  of  functionality.   More
importantly,  the  Sun  and  Moon  are  also  useful  for
evaluating when either is being shadowed by the Earth,
which is beneficial for avoiding stray light, and having
extra assurance that the telescope will not point at the
Sun, including inadvertently passing by the Sun when
slewing  attitude  from one  imaging  target  to  another.
The  StarMap  also  calculates  and  renders  the  current
phase  of  the  Moon by applying  a  calculated  shadow
mask over the image used for the Moon.

The StarMap allows specification of arbitrary keepout
zones, which may be configured to any desired angle,
and can either be located around an object (especially
the  Sun  or  Moon),  or  located  at  an  arbitrary  stellar
location if needed. This allows users to identify which
stellar objects remain available for imaging.

Finally, the StarMap shows a cross at the location in the
sky which is represented by the vector pointing from
the center of the Earth to the spacecraft. Equivalently,
this is the vector pointing from the spacecraft directly
away from the Earth. Any stellar target near this cross
will  maximize  the  avoidance  of  any  effects  of
Earthshine. This cross  also heavily aids with keeping
track  of  the  location  of  the  spacecraft  as  it  moves
through its orbit, and works as a useful anchoring point
for  the  user  to  contextualize  what  is  shown  in  the
StarMap.

Orbit Renderer

The 3D orbit renderer displays a full 3D view of the
Sun, Earth, and the spacecraft, and allows the user to
move the virtual camera around arbitrarily. One of the
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Figure 3: The StarMap module, displaying the stars,
the Sun and Moon, and the region of sky obscured

by Earth.



most  useful  purposes  of  this  module  is  to  allow the
viewing of solar beta angles.  While the equations are
straightforward  to  calculate  a  beta  angle,  telling  an
operator  “Our  current  beta  angle  is  55  degrees”
generally is not helpful for understanding the mission-
level implications of that value. By displaying the beta
angle on a physically viewable Earth, and especially by
allowing the rotation of the camera for a full 3D view
(as opposed to textbooks which show a 2D drawing and
attempt to show the relationship between 3D vectors), it
becomes more straightforward to understand the state
of the illumination of the spacecraft. While OPTASAT
is  primarily  intended  for  spacecraft  operations,  this
module also helps to illustrate the educational value that
may  be  obtained  by  transforming  spacecraft  state
information into tangible, visualized interpretations for
analysis by humans. Showing a real  example may be
highly useful in a classroom environment.

Pass Finder

The Pass Finder module (Figure 5) identifies when a
particular  satellite  will  be  flying  over  the  user’s
specified location. The primary use case for this module
is for identifying opportunities for communication with
the satellite from the location of a given ground station.
The  Pass  Finder  will  calculate  the  overflight
opportunities,  and  importantly,  will  classify  them  in
terms of  their  quality.  It  is  rare  for  a  satellite  to  fly
directly  overhead  of  any ground station location,  and

therefore some passes are of higher quality than others.
A pass which consists of the satellite rising 5 degrees
above the horizon is much less desirable than one that
rises  80  degrees  above  the  horizon.  The  maximum
elevation of a pass acts as a metric for the quality of the
pass.

In the Pass Finder,  each pass is displayed as a circle.
The location of each circle corresponds to the time and
day of  the pass.  Each day is a  vertical  strip of  time,
labeled along the X axis. Along the Y axis, each day
progresses  from  top  to  bottom,  with  noon  directly
across  the middle.  This  arrangement  resembles  many
popular  calendar  software  tools.  Each  circle  is
displayed  to  indicate  the  maximum  elevation  of  the
pass, which is indicated in three different ways. First,
the  numerical  value  of  the  maximum  elevation  is
displayed on each circle.  Second, each circle  is  sized
proportionally to the maximum elevation. Third, each
circle  is  colored  (using  the  Inferno  color  map)  to
indicate the quality of the pass, with the highest quality
being light yellow. This way, it is easy to identify the
highest-quality  passes  at  a  glance.  This  display  also
indicates trends in passes. In the Pass Finder results of
Figure 5, we can see that passes get earlier in the day as
time goes on, which can be a useful point of context for
pass  planning.  We can  also see  that,  for  this  ground
station  (MIT),  in  this  orbit  (the  International  Space
Station), there are usually a total of about 6 passes per
day, of which one or two are of high quality. Knowing
these  properties  of  an  orbit  is  useful  for  mission
planning prior to launch, as it allows operators to form
an expectation for what level of access will be available
to their satellite.

More modules are available with OPTASAT (see Table
1),  and  the  wide  variety  of  provided  modules  is
intended to provide enough material for users to create
their  own  modules  and  have  enough  examples  to
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Figure 4: 3D orbit renderer, showing: 
Orange - the axis of the Earth, with labeled poles

Green - the Equator 
White - the sun-pointing vector

Red - the ISS orbit, its normal vector (to the upper
left), and the sun vector projected onto its plane (to

the upper right). The beta angle is the angle between
this vector and the sun vector.

Figure 5: An example of the output of the Pass
Finder module



confidently understand how to interface with the rest of
OPTASAT.  Development  of  an  explicit  Application
Programming Interface  (API)  is  a  crucial  element  of
future work.

APPLICATION CASE STUDY: CLICK

CLICK7 (CubeSat Laser Infrared CrossLinK Mission) is
a mission to perform communications between two 3U
CubeSats using an infrared laser link. CLICK-A flew in
2020  and  demonstrated  successful  optical  downlink
from a single spacecraft  to an optical  ground station.
The dual-spacecraft mission of CLICK-B and CLICK-
C will be launching in 2025.

A key task in planning for operations of CLICK-B/C is
that  the  operators  need  to  determine  the  nature  of
ground radio communication with the two spacecraft.
The problem can be summarized by asking “If the two
spacecraft  are some number of kilometers apart,  what
will our communication opportunities with the two of
them look like?”. Most importantly, the operators need
to  establish  whether  communication  with  the  two
spacecraft  can  happen  simultaneously  with  a  single
antenna, or whether a ground antenna will have to pick
one or the other to communicate with.

In order to visualize the dynamics of a pass with a pair
of satellites, an OPTASAT configuration was built to
simulate two spacecraft in LEO passing over a ground
station. This configuration is shown in  Figure 6. As a
stand-in for CLICK-B and CLICK-C, we use the ISS as

the “leader” satellite, and we use the Follower Satellite
module to generate a satellite which follows the ISS, at
whatever time or distance separation is needed (the time
and distance are connected through the orbital velocity).
In this screenshot, we have set the follower to lag 250
kilometers  behind  the  ISS.  We used  the  Pass  Finder
module  (in  the  upper  right)  to  select  an  arbitrary
upcoming pass, and this moved the simulation time to
the start of the pass. In the screenshot, the Pass Finder
appears  slightly  cluttered,  but  this  is  because  it  is
currently  in  a  minimized  format.  Selecting  the  grey
button in the upper left of the module will minimize the
large map view, and will expand the Pass Finder to fill
the large central area of the configuration.

Once a pass is selected and being viewed, we can use
the Time Controller module to shift time between the
beginning and end of the pass, to see the motion of the
satellites.  Alternatively,  we  can  simply  let  the  Time
Controller run, and watch the pass at real-life speed. In
the black box in the lower right, we use the Pass Polar
Plot module to view the positions of the two satellites
(ISS in red, follower in green) as they appear from the
perspective of an observer, and the track that they are
following throughout the pass. The five modules in this
configuration work closely together in order to give a
cohesive  understanding  of  the  dynamics  of  a  dual-
satellite mission. This example illustrates some of the
capabilities of OPTASAT and the useful ways modules
can be combined.
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Figure 6: A configuration for modeling the dynamics of the CLICK mission



FUTURE WORK

While the groundwork has been laid for OPTASAT, it
remains an ongoing software development project, and
there have been several improvements identified which
will be addressed in the future.

OPTASAT will need the capability to obtain the most
relevant  historical  TLE for  a  given  date  in  the  past.
While  it  is  mathematically  possible  to  propagate  a
current  TLE  to  any  date  in  the  past,  the  accuracy
quickly suffers, and therefore it would be very useful to
be able to dynamically change which TLE to use for
modeling based on the selected date. Because the focus
for OPTASAT is active current operations, the current
TLE has been sufficient so far for the primary use case.

OPTASAT  will  need  an  explicit  Application
Programming Interface (API) to be developed. To date,
the program has been made by a single individual who
is directly familiar with all the internal structures, but if
the intent is for more users to be able to make modules
which will integrate with the rest of OPTASAT, they
will highly benefit from text-based descriptions of how
to use the software and construct the desired interfaces.
For  the  time  being,  it  is  hoped  that  the  provided
example modules will be enough for users to get their
custom modules up and running.

User testing is a key future goal for OPTASAT. While
the  needs  of  users  have  been  anticipated  based  on
personal  experience,  assumptions  have  been  made
about the needs and abilities of the operators.

Using OPTASAT in operation of a flight mission is a
major future goal. Using the software on a real mission,
no matter how simple, will be beneficial for proving the
usefulness of the software.

It may eventually be beneficial to extend OPTASAT’s
functionality  to  other  planets,  increasing  scope  to
manage  changing  reference  frames,  propulsive  orbit
corrections,  orbital  captures,  gravity  assists,  and
everything  else  that  comes  with  interplanetary  travel.
For the foreseeable future, these capabilities are out of
scope, but are not outside any technical possibilities.

Finally, it may be prudent to include security features
within  OPTASAT,  either  to  ensure  that  OPTASAT
itself is secure, or to manage security of the spacecraft
itself.

CONCLUSION

OPTASAT provides a flexible, approachable operations
interface  for  small  satellites,  with  many of  the  basic
tools  needed  to  operate  a  mission.  Its  functionality
addresses a growing need for tools for new spacecraft

operators.  OPTASAT  will  continue  to  grow  and  be
modified  to  suit  the  shifting  priorities  of  these
operators.

OPTASAT will be released through GitHub, under the
MIT License, which allows for any person to modify,
reproduce,  and  in  all  other  ways  re-distribute  the
software in whatever way they want, for any use. No
attribution is required, though this paper may be cited if
a user prefers.
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