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Figure 1: Hyperpsectral Destriping. We present Hyperspectral Diffusion, a technique that
can denoise or destripe satellite hyperspectral data cubes. We demonstrate results from real
collected data from the EnMAP hyperspectral satellite mission1,2 which is analogous to images
we expect to be captured from our FINCH satellite. Best viewed with color and zoom.

ABSTRACT

Satellite remote sensing missions have gained popularity over the past fifteen years due to their ability to
cover large swaths of land at regular intervals, making them ideal for monitoring environmental trends. The
FINCH mission, a 3U+ CubeSat equipped with a hyperspectral camera, aims to monitor crop residue cover in
agricultural fields. Although hyperspectral imaging captures both spectral and spatial information, it is prone
to various types of noise, including random noise, stripe noise, and dead pixels. Effective denoising of these
images is crucial for downstream scientific tasks. Traditional methods, including hand-crafted techniques
encoding strong priors, learned 2D image denoising methods applied across different hyperspectral bands,
or diffusion generative models applied independently on bands, often struggle with varying noise strengths
across spectral bands, leading to significant spectral distortion. This paper presents a novel approach to
hyperspectral image denoising using latent diffusion models that integrate spatial and spectral information.

1University of Toronto Aerospace Team is a student group affiliated with The University of Toronto, Toronto, Canada.
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We particularly do so by building a 3D diffusion model and presenting a 3-stage training approach on real
and synthetically crafted datasets. The proposed method preserves image structure while reducing noise.
Evaluations on both popular hyperspectral denoising datasets and synthetically crafted datasets for the
FINCH mission demonstrate the effectiveness of this approach.

Our code can be found at github.com/utat-ss/FINCH-destriping

1 INTRODUCTION

The FINCH spacecraft3,4 (Field Imaging
Nanosatellite for Crop residue Hyperspectral map-
ping) represents a significant advancement in the
field of agricultural monitoring via remote sensing
technologies. Currently under development by the
University of Toronto Aerospace Team’s Space Sys-
tems division, this 3U+ CubeSat is designed to pre-
cisely estimate the percentage of crop residue cover
across Canadian agricultural fields employing ad-
vanced spectral unmixing techniques facilitated by its
onboard hyperspectral remote sensing payload. The
spacecraft integrates a pushbroom sensor5,6, necessi-
tating a robust data processing pipeline to transform
raw spectral data into scientifically usable informa-
tion.

Hyperspectral imaging has been pivotal in re-
mote sensing, providing detailed spectral information
across a plethora of contiguous bands, and enabling
precise analysis of the Earth’s surface or, in the
case of the FINCH mission, crop residue mapping.
This technology continues to become more accessible
as an “image-based acquisition tool for physically
meaningful measurements”7. Hyperspectral denois-
ing, critical to ensuring that hyperspectral data is
scientifically useful, has undergone significant evolu-
tion over the years, moving from traditional image-
processing techniques8,9 to advanced deep-learning
approaches10–14. However, the deployment of hyper-
spectral sensors, such as the pushbroom sensor5,6

aboard FINCH, introduces inherent challenges, no-
tably the presence of striping and random noise15,16.
Striping noise, which results in linear distortions
along the sensor’s scanning direction, is akin to arti-
facts observed in other hyperspectral satellites like
EO-1 Hyperion17. This type of noise, if unaddressed,
can severely compromise the spatial and spectral in-
tegrity of the data8–10,18, rendering it less reliable
for scientific analysis. The removal of striping noise,
caused by the operation of the push-broom sensor, is
particularly relevant for FINCH, where stripes can
compromise both the spatial and spectral integrity
of the data collected.

Addressing the striping noise challenge is criti-
cal for performing any science on images from the
FINCH mission. We present a 3D hyperspectral dif-

fusion model designed to effectively mitigate striping
noise. We particularly do so by building a 3D dif-
fusion model and perform a 3-stage training. We
train our approach on real and synthetic data. We
also compare our approach with existing denoising
models, where we find that our approach not only
demonstrates superior performance in destriping on
satellite images but also shows potential for broader
inpainting applications within remote sensing.

The implementation of the hyperspectral diffu-
sion destriping model within the FINCH spacecraft’s
operational schema marks a pivotal development in
remote sensing technology. By effectively address-
ing the issue of striping noise in hyperspectral data,
this model significantly improves the data quality,
thereby enhancing the reliability of remote sensing
analyses. The application of deep learning techniques
in the noise reduction process not only showcases
the model’s technical prowess but also expands the
potential for these methodologies in refining data
accuracy across various remote sensing applications.
Moreover, the scalability of this solution presents
opportunities for integration into additional satellite
systems, potentially broadening its impact on the
field.

Contributions. Our contributions can be summa-
rized as follows,

• We present a hyperspectral diffusion destriping
model to remove the various types of striping
noise that can occur within FINCH data. Our
approach can significantly enhances the quality
of data by mitigating striping noise, which is
critical for maintaining both the spatial and
spectral integrity of hyperspectral remote sens-
ing data.

• We perform comprehensive comparisons with
existing denoising models, demonstrating that
the proposed model performs favorably in re-
moving various types of synthetic and real noise
from hyperspectral data.

2 RELATED WORKS

Noise is a common issue in remote sensing im-
agery, often appearing in the form of stripes due
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to factors such as poor sensor calibration19. These
striping artifacts degrade data quality, cause poor
interpretability, and may also cause failures in image
processing and analysis systems20–29. Therefore, it is
highly valuable to develop algorithms for identifying
and correcting or at least alleviating striping noise28.
Dead pixel correction is an additional challenge in
hyperspectral images (HSI) as dead pixels can signif-
icantly affect the data quality of hyperspectral data.
Methods that detect and correct these issues ensure
the continuity of the spectral information across the
image, thereby enhancing the overall quality of the
data.

Many traditional approaches to denoising hyper-
spectral images are statistical-based methods that
have been used for denoising typical triband images.
Some of these approaches includes using wavelet
transformations26, low-rank decomposition30 , total
variation31, and sparse representation32. Although
these methods have shown some effectiveness, they
are limited by their tendency to generalize to very
specific and varying types of stripes that may occur
in the model. This generalization can make it diffi-
cult to achieve proper restoration across a multitude
of cases, leading to the creation of large, complex
statistical models that lack interpretability and are
difficult to reuse.

Machine learning approaches, particularly those
involving convolutional neural networks (CNNs),
such as HSI-DeNet33, have recently been explored for
restoring hyperspectral images. Within this context,
various approaches have been explored to achieve
the denoising task, such as decomposing the task
into multiple types of stripes34, as well as employ-
ing wavelet transforms35. Another significant ap-
proach is the Multi-scale Adaptive Feature Network
(MAFNet)36. This method is designed to handle vary-
ing noise levels and structures by adaptively learning
from the data to identify a complex mapping between
noisy and clean hyperspectral imaging37. GLCSA-
Net38, which employs a generative adversarial net-
work (GAN) as the backbone, has been developed
for describing and denoising based on deep prior
models39. It is important to note that hyperspectral
images contain low-level information, which has been
demonstrated to be present in both two-dimensional
and three-dimensional convolutional networks. This
information can serve as prior information in various
other models40.

As transformer-based architectures41 have been
explored for various applications, it is intuitive that
many have also considered using them for hyperspec-
tral image (HSI) denoising. The Mixed Attention
Network (MAN)42 proposes methods to dynamically

control the flow of information through a transformer-
based model. One problem with hyperspectral im-
ages is information imbalance among spectral-spatial
bands. By applying attention to assign importance
to skip connections and spectral bands, the model
learns to become extremely adept at interpreting
complicated hyperspectral feature spaces. The Hy-
perspectral Denoising Transformer (HSDT)43 builds
upon the idea of attentive information flow by modi-
fying the attention blocks to look directly at the full
3D spectral-spatial space. This allows the model to
generalize much better than previous models. Several
advanced deep learning models employed for tasks
such as image super-resolution and reconstruction
share various degrees of similarity with hyperspec-
tral denoising. The Spectral Enhanced Rectangle
Transformer (SERT)44 uses transformers to handle
complex noise patterns in HSIs.

Recently, diffusion has been used in various
tasks, such as denoising45–49, generating images from
text50–53, and inpainting54. These methods have also
spread to hyperspectral image denoising. Models
such as SpectralDiff55 have used diffusion as an ap-
proach to denoise hyperspectral images. However, it
is essential to recognize that it uses 2D convolutions
instead of 3D. With the three-dimensional nature
of hyperspectral images, where multiple bands can
provide cross-information of the noise in the image,
it is possible to fully exploit the 3D data in service
of the denoising task. This could involve developing
models that can simultaneously leverage information
across all bands, improving the overall destriping
and denoising performance by utilizing the inherent
spectral correlations present in hyperspectral images.
In this work, we propose a 3D diffusion model to
tackle this problem.

3 PRELIMINARY: DIFFUSION MODELS

Diffusion models45,56,57 are a class of generative
models that iteratively transform noise into struc-
tured data through a sequence of denoising steps.
Unlike traditional generative models that directly
model the data distribution, diffusion models utilize
a forward and backward diffusion process to gener-
ate data. Specifically, the forward diffusion process
gradually adds noise to the input data over a series
of time steps, creating increasingly noisy versions of
the data. Given an initial data point x0, the forward
process produces xt by adding Gaussian noise in t
discrete steps:

q(xt|xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
, (1)
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Figure 2: Our method trains a 3D diffusion model across 3 stages to perform destriping on
hyperspectral satellite images like the ones that would be captured by FINCH.

where βt is a variance schedule that controls the
amount of noise added at each step. The backward
diffusion process, also known as the denoising process,
reverses this noising process. It aims to reconstruct
the original data from the noisy versions. This is
achieved by training a neural network ϵθ to predict
the noise added at each step. The model is trained to
minimize the difference between the predicted noise
and the actual noise added in the forward process,
often using a mean squared error loss:

Ex0,t,ϵ∼N (0,I)

[
∥ϵ− ϵθ(xt, t)∥22

]
, (2)

where xt is the noisy image at time step t, and ϵ
is the added Gaussian noise. During inference, the
model starts with a random noise xT and iteratively
denoises it using the trained model ϵθ, producing a
data sample x0 that resembles the training data.

4 METHODS

We next describe our approach to train our dif-
fusion model (Section 4.1) and create the synthetic
training data (Section 4.2).

4.1 Training the Diffusion Model

Following recent progress in generative mod-
els45,51,56,57, we build a 3D diffusion model for hyper-
spectral image destriping that operates on 32×32×32
occupancy grids of hyperspectral images. To do
so, we adopt a three-stage training approach, which
we describe. Initially, we adapt a U-Net architec-
ture, previously employed for the Pavia University58

dataset’s 2D image segmentation, to support 3D

hyperspectral input. This adaptation includes an ex-
pansion of the model’s convolutional layers to process
an additional spectral dimension, thus accommodat-
ing the intricate characteristics of hyperspectral im-
ages. Subsequently, the model undergoes a denoising
training phase using the ICVL-HSI32 dataset, which
reflects diverse real-world noise conditions, excluding
satellite hyperspectral imagery. The final stage in-
volves fine-tuning our model on a synthetic dataset
derived from multiple hyperspectral scenes, ensuring
robust performance across various spectral scenarios.
We illustrate this in Figure 2.

Stage I. We start by first reconfiguring a U-Net
trained on the Pavia University dataset58 for image
segmentation. We expand the underlying convolu-
tional layers by adding a channel and modifying
the weights denoted as W2D ∈ Rm×n×cin×cout , into
weights for the new network with an additional chan-
nel denoted as, W3D ∈ Rm×n×l×cin×cout . We do so
by replicating 2D filters to expand into the spectral
domain by averaging these filters across the addi-
tional spectral dimension,

W3D[:, :, k, :, :] =
1

l

l∑
i=1

W2D
:,:,:,:,

∀k ∈ 1, ..., l,

(3)

where l represents the number of spectral lay-
ers. This transformation allows us to incorporate the
essential spectral information for processing hyper-
spectral images.

1We were unable to reproduce results from most of the methods and we take metrics directly from the papers.
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Table 1: Results on Real Data. We report the PSNR, SSIM, SAM, and LPIPS metrics for
different models1. The best , second best , and third best results for each metric are color
coded.

Modification Model PSNR ↑ SSIM ↑ SAM ↓ LPIPS ↓

-

GRN-HSI59 40.58 0.9840 0.0730 -
Deep HS Prior 3D40 23.24 0.8520 9.9100 -

MAFNet37 42.15 0.9630 0.0290 -
SERT60 43.68 0.9969 1.9700 -
HSDT61 44.69 0.9940 0.0380 -
MAN42 43.44 0.9890 0.0440 -

Ours (HSI-Diffusion) 39.2274 0.8817 0.0423 0.2214

Non-i.i.d
Gaussian Noise
w/ σ ∈ [0, 15]

BM4D62 44.39 0.9683 0.0692 -
MTSNMF63 45.39 0.9592 0.0845 -
LLRT64 45.74 0.9657 0.0832 -

NGMeet65 39.63 0.8612 0.2144 -
LRMR66 41.50 0.9356 0.1289 -

FastHyDe67 48.08 0.9917 0.0404 -
LRTF L0

68 43.41 0.9315 0.0570 -
E-3DTV69 46.05 0.9811 0.0560 -
T3SC70 49.68 0.9912 0.0486 -

MAC-Net71 48.21 0.9915 0.0387 -
NSSNN72 49.83 0.9934 0.0302 -
TRQ3D73 46.43 0.9878 0.0437 -
SST74 50.87 0.9938 0.0298 -

SSRT-UNET75 52.12 0.9950 0.0225 -
SSUMamba76 51.34 0.9946 0.0256 -

Ours (HSI-Diffusion) 38.3892 0.9864 0.0474 0.2274

Stage II. We now train the model from Stage I for
denoising on the ICVL-HSI dataset32. The ICVL-HSI
dataset32 provides a variety of real-world scenarios
reflective of common noise patterns in hyperspectral
imaging. However, this dataset does not include
any satellite hyperspectral images. We introduce
this step to perform large-scale pre-training since our
synthetic dataset is very small in size and is sam-
pled from only 7 hyperspectral datacubes. During
this stage, we train the network as a 3D denoising
diffusion model with the objective,

Ldenoise(θ) = EX,N

[
|ϵθ(Xnoisy, t)−N|22

]
, (4)

where Xnoisy = Xclean +N and N ∼ N (0, σ2I).

Stage III. We now fine-tune the model from Stage
II using a synthetic dataset derived from the Hy-
perspectral Remote Sensing Scenes database58 com-
prised of the Indian Pines77, Salinas58, Pavia Cen-
tre58, Pavia university58, Cuprite58, KSC58, and
Botswana58 datasets. We describe the creation of

this synthetic dataset in Section 4.2. We fine-tune
the 3D denoising diffusion model from stage II using
the following objective,

Lfine-tune(θ) = EX,N

[
|ϵθ(Xnoisy, t)−N|22

]
. (5)

4.2 Creating Synthetic Data

Given the absence of real striped hyperspectral
satellite data, we devise a method to synthesize such
data for model training. This approach is essential
for our denoising models, which rely on accurately
replicating and subsequently removing common ar-
tifacts like stripes from hyperspectral images. Our
methodology begins with ground-truth hyperspectral
cubes which are free from any artifacts, providing a
clean baseline from which noise can be methodically
introduced.

To emulate realistic stripe noise, we introduce
Gaussian noise stripes to the clean hyperspectral
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Table 2: Results on Synthetic Data. We report the PSNR, SSIM, SAM, and LPIPS metrics for
various methods tested on synthetic datasets for the FINCH mission. The best , second best ,

and third best results for each metric are color coded.

Method Pavia WDC

PSNR SSIM SAM LPIPS PSNR SSIM SAM LPIPS

BM4D62 25.0946 0.6944 0.2325 - 24.5261 0.5675 0.2198 -
LRMR66 31.3789 0.8760 0.1746 - 31.3062 0.8015 0.1255 -
LRTV78 33.5149 0.9078 0.1566 - 32.7237 0.8561 0.0939 -
LRTF-DFR79 33.3251 0.9286 0.1062 - 33.5054 0.9059 0.0668 -
SSLR-SSTV23 35.9781 0.9674 0.0860 - 34.6840 0.9494 0.0806 -
Ours (HSI-Diffusion) 38.9210 0.9789 0.0923 0.1531 36.2172 0.9473 0.0928 0.2213

data. The stripe noise is generated as follows,

Si(x, y, z) = G(0, σ2) · intensity factor(i), (6)

where G(0, σ2) represents a Gaussian noise
matrix with mean 0 and variance σ2, and
intensity factor(i) denotes the stripe intensity for
the i-th band. The stripe intensity is calculated as
a percentage of the dynamic range of each spectral
band, which varies from 0.1% to 5%. Specifically,
intensity factor(i) is determined by,

intensity factor(i) = max (0.001, stripe intensity

− 0.05 + U(0, 0.1) ) ,
(7)

where stripe intensity is sampled from a uniform
distribution U(0.01, 0.3) initially, and U(a, b) repre-
sents a uniform random variable between a and b.
Based on the stripe frequency and with uniform prob-
ability, columns are randomly selected for striping.
These stripes are fragmented across the column, with
the number of fragments following a uniform distri-
bution. In addition, the stripes can vary in size and
may not extend throughout the column, and the size
is also uniformly distributed. Each band will have
stripes generated with this method.

Following the introduction of synthetic stripe
noise, we sample 32× 32× 32 cubes from the larger
hyperspectral images. These cubes are randomly
sampled across spatial and spectral dimensions to
ensure variability in training data, thus preparing the
model to handle a wide range of real-world scenarios.

To generate additional data, we also use augmen-
tation techniques such as CutMix80 and Mixup81,
which we apply specifically in the frequency bands
of the hyperspectral cubes. For each sampled hy-
perspectral cube, we apply the frequency-specific

augmentation as follows:

X(f)
aug = λX

(f)
1 + (1− λ)X

(f)
2 , (8)

where f indicates the frequency band, X
(f)
1 and X

(f)
2

are two randomly chosen hyperspectral cubes, and λ
is sampled from a Beta distribution, Beta(α, α) for
CutMix and a uniform distribution U(0, 1) for Mixup.
Here, α is a hyperparameter to adjust the amount of
mixing.

5 EXPERIMENTS

We also perform experiments to assess the perfor-
mance of our model. We perform experiments on the
ICVL-HSI32 dataset where we evaluate our method
on performing denoising. Many modern approaches
evaluate on the ICVL dataset32 by adding a synthetic
Gaussian noise and we evaluate our model on this
benchmark too to compare our approach with other
models. While we present these results for complete-
ness, performing well on the ICVL dataset32 is not a
goal of this work, as our method aims to solely per-
form well on satellite hyperspectral images. We also
evaluate our method on our synthetic dataset created
with the approach outlined in Section 4.2 on remote
sensing hyperspectral images. Furthermore, we also
evaluate our method on the EnMAP datacube in the
region that our FINCH mission would image that is
thus comparable to our satellite’s destriping needs.

All of our final code was optimized for a 1 x A100-
80 GB GPU. For our Diffusion model, we trained our
model for 30K steps per stage with a batch size of 32
on the 32× 32× 32 resolution. We use the Adam op-
timizer kingma2017adam with β1 = 0.9, β2 = 0.999,
and ϵ = 10−8 with an initial learning rate of 10−4.
We use cosine decay for the learning rate. We use
the same optimization setup throughout all of our
stage, however, we scale the learning rate according
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Figure 3: Qualitative Results. We present striped (Row 1) and the corresponding destriped
bands produced from our methods (Row 2) from the EnMAP1,2 image of FINCH’s imaging
site, with stripes added as described in Section 4.2. From left to right, the images correspond
to bands 100, 124, 148, 172, 196, and 220. Best viewed with zoom.

to our dataset size for each of the stages.

5.1 Quantitative Results

We demonstrate our results on the ICVL-HSI
dataset32 in Table 1 and our results on the syntheti-
cally crafted satellite hyperspectral images in Table 2.
We evaluate our method and other approaches based
on the PSNR, SSIM, spectral angle mapper (SAM)83,
and LPIPS84 metrics which are commonly used to
evaluate denoising. While our method is unable to
perform well on the ICVL-HSI dataset32 we report
these for completeness and not as the focus of our
results. We demonstrate that our approach beats
state-of-the-art approaches on the synthetic dataset.

5.2 Qualitative Results

We present qualitative results on the EnMAP dat-
acube1,2 from the region that would be imaged by
our FINCH mission in Figure 3 and Figure 4. These
images appear consistent with the original images
and maintain scene data such as field boundaries,
which are important for the FINCH mission. Of crit-
ical importance to the FINCH mission is that the
destriped images visually appear to maintain similar
intensity values to their striped counterparts (besides
the striping artifacts). This suggests that our model
preserves spectral information which is critical for
achieving FINCH’s mission of crop residue mapping.

Of note for the FINCH mission is the PSNR that
our model achieved on the task of destriping remote
sensing data. The PSNRs of 36 and above are well
above the FINCH mission’s requirement of a SNR of
30 for performing scientific retrieval3.

6 DISCUSSION AND CONCLUSION

We introduce a 3D diffusion model specifically
tailored for hyperspectral remote sensing data from
the FINCH spacecraft. We train the model on widely
available hyperspectral data and fine-tune the train-
ing with remote sensing data synthetically striped to
prepare the model for the task of destriping FINCH
data. We observe favorable results in the task of
destriping hyperspectral remote sensing data.

Limitations. The model has not been trained or
tested on actual FINCH data, so we cannot be certain
of how it will perform on said data. The model will
likely need fine-tuning once FINCH data becomes
available for several reasons: we expect FINCH data
to have a much lower spatial resolution and larger
swath width than existing datasets, and we expect
that FINCH’s spectral range and spectral resolution
may be different from many of the publicly available
datasets. Regarding the spatial resolution and swath
width, we can expect that FINCH data may present
different features or the same features at different
scales than existing hyperspectral datasets. This may
require a degree of retraining in our model. Simi-
larly, regarding the spectral range and resolution,
since many of the publicly available remote sensing
datasets may cover spectral ranges that only partly
overlap with FINCH’s spectral range, we may see
spectral features in FINCH data that were not seen
during training or said features may appear at a
resolution that was not seen during training. This
last limitation is particularly relevant for the FINCH
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Figure 4: Qualitative Results. We present striped (Row 1) and the corresponding destriped
(Row 2) bands from the EnMAP1,2 image of FINCH’s imaging site, with stripes added as
described in Section 4.2. From top left to bottom right, the images correspond to bands 100,
124, 148, 172, 196, and 220. We present them in the Viridis82 colour scheme in this figure,
with intensity bars to aid the reader in understanding the image. Best viewed in color and in
conjunction with Figure 3.

mission, where accurate spectral information is criti-
cal for achieving the mission’s scientific objective, as
mentioned earlier.

Future Applications. Within the context of the
FINCH mission, there are several opportunities for
future work with this model. The small form factor
and focal length of the FINCH spacecraft and pay-
load motivate the requirement for a super-resolution
technique to improve the spatial resolution of FINCH
data for tasks such as georeferencing and imaging site
identification. Additionally, different types of noise,
such as dark current noise, may require more sophis-
ticated machine learning-based denoising approaches,
depending on the precision of thermal sensors em-
ployed within the final space-ready version of FINCH.
Beyond our FINCH mission, our approach would be
very useful for denoising hyperspectral images in gen-
eral. Our hyperspectral diffusion model may lend
itself well to being applied to both of these tasks in
the future. Finally, future work could analyze and
fine-tune this model’s performance on actual FINCH
data, after FINCH has been launched and has started
operating.
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[15] Luis Gómez-Chova, Luis Alonso, Luis Guanter,
Gustavo Camps-Valls, Javier Calpe, and José
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