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ABSTRACT 

Accurate attitude determination ensures precise payload sensor alignment and optimal solar panel positioning, 

enhancing data collection and power efficiency while ensuring stable orbit maintenance. The most accurate method 

of attitude determination is star tracking. Star trackers collect an image of a star field and utilize a catalog of known 

star positions to calculate the orientation of the system relative to the stars. The errors present in this method of attitude 

determination tend to be on the order of ten arcseconds or less. Using traditional collection techniques, attitude 

estimates can be provided at update rates of 1 to 10 Hz and angular velocities are typically limited to a few degrees 

per second. 

Neuromorphic cameras, also known as event cameras, detect changes in the input visible signal on a per pixel basis, 

enabling microsecond temporal resolution and significantly lower data volume. This collection method is also capable 

of operating with a significantly reduced power usage (<~0.1W) and mass (<50g) compared to traditional high-speed 

cameras.  These characteristics make neuromorphic cameras ideal candidates for autonomous navigation of small 

satellites that commonly have stricter size, weight, and power requirements. The application of neuromorphic cameras 

to autonomous navigation and localization is an active area of research. Many techniques leverage this unique dataset, 

such as Monte Carlo Localization (MCL). 

MCL is a probabilistic technique used in robotics and autonomous navigation. It employs random sampling to estimate 

a system’s position and orientation based on a known map and sensor data. Particle filters implement MCL by creating 

a dynamic model of potential states through a series of particles, which are iteratively updated and reweighted to align 

with sensor observations and refine the system's state estimate. 

ExoAnalytic Solutions utilizes a particle filter to process event camera measurements generated by the stars, 

leveraging MCL to determine the attitude of the satellite. A star catalog is used as the known map that the particle 

filter compares measurements to. This process streamlines star identification and makes it continuous which saves 

time compared to traditional approaches like pattern matching algorithms. The high update rate of the neuromorphic 

star tracker can aid autonomous navigation of small satellites by providing improved stabilization, maneuver/station-

keeping efficiency, and maneuverability. In the increasingly crowded space environment, highly accurate and 

responsive attitude determination technology is critical to ensuring a safe space environment for all operators. This 

paper presents the results of a MCL particle filter applied to simulated measurements from a neuromorphic star tracker. 

BACKGROUND 

Event Cameras 

Event cameras, also called neuromorphic cameras, are a 

recent innovation in bio-inspired technology. Put simply, 

these cameras detect only the changes in intensity on the 

sensor, similar to how biological retinas respond to 

visual stimuli. Specialized sensor circuitry implemented 

on a per-pixel level gives event cameras their uniquely 

high dynamic range, low temporal resolution, and low 

power consumption. Work completed by the University 

of Zurich, Sony Electronics, and other contributors has 

transformed a technical novelty into a powerful imaging 

technology with multiple applications across computer  

 

vision. For a full description of the internal workings of 

event camera circuitry, see [1], [2], or [3]. 

In addition to computer vision technology, event 

cameras have been applied to space technologies, most 

notably for space situational awareness (SSA). The work 

done by Astrosite in Australia has pioneered this 

application [4]. In addition, the affiliated Western 

Sydney University International Centre for 

Neuromorphic Systems (ICNS) has sent an event camera 

to the International Space Station (ISS) with interesting 

results [5]. These efforts are promising, but they have 

merely scratched the surface of what is possible with 
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event cameras for space applications. Any dynamic 

imaging problem can be effectively solved by an event 

camera. In particular, star tracking shows promise as a 

space where event cameras can contribute effectively to 

space technologies. 

Star Tracking 

Star trackers are attitude determination devices that 

typically use a camera or other imaging device to locate 

the stars and then compare these detected stars to a 

known star catalog to find the space vehicle’s 

orientation. Typical star trackers do this by collecting an 

image, processing it to find the star positions, identifying 

these stars with an identification algorithm, such as 

TETRA [6], then solving Wahba’s Problem to find the 

optimal rotation between the two coordinate frames. This 

is the attitude used for any other attitude control tasks. 

Typically, star trackers are paired with other relative 

attitude measurement systems, such as gyroscopes. 

Together these sensors provide a complete picture of the 

attitude dynamics of the space vehicle. An example of a 

star tracker for a small satellite is shown in Figure 

1Figure 1. 

 

Figure 1: arcsec’s Sagitta Star Tracker [7] 

A simplified understanding of star tracking is that a star 

tracker is comparing the measured star positions to a set 

of known possible star positions. This broader view 

opens other potential methods for solving the celestial 

navigation problem, such as Monte Carlo Localization. 

Monte Carlo Localization 

Robotics and autonomous systems require accurate 

positioning and pose information to successfully 

complete many tasks. That can be as simple as basic 

obstacle avoidance or complex simultaneous localization 

and mapping (SLAM) of unknown scenes. MCL is an 

approach to estimating a robot or other autonomous 

system’s position and pose in a known environment. The 

system takes measurements and compares them to a 

known map of the environment. The simplest example is 

a robot navigating a series of rooms while having some 

distance measuring sensor to determine the distance to 

walls. By providing these measurements over time while 

moving through the room, the robot can refine its 

estimate of its position and pose relative to the known 

map. This example is discussed and shown in Figures 2-

5. MCL uses a particle filter, a Markov Chain Monte 

Carlo (MCMC) estimation method, to estimate the 

position and pose of the system. Particle filters are well 

known state estimation techniques that expand upon 

classical filtering methods, such as Kalman filters, by 

approximating the state’s probability density function 

with a discrete set of particles, shown in Equation 1. 

𝑝(𝑥) ≈ ∑ 𝑤𝑖(𝑥 −  𝑥𝑖)𝑁𝑠
𝑖=1  (1) 

The steps in an MCL algorithm are as follows: 

Initialization: 

Figure 2 shows a notional robotic system in a room with 

an initial particle distribution for an MCL algorithm. The 

particles are initially drawn from a uniform distribution 

across all possible positions in the room. This is because, 

with no a priori information, a uniform distribution is the 

most reasonable assumption. In more complicated 

problems or scenarios where additional information is 

available, the initial particle distribution can be modified 

to reflect the most representative prior.  

 

Figure 2: Initial Uniform Particle Distribution, 

Large Dot Represents Truth Position 

Predict: 

Next the model predicts forward in time based on the 

assumed system dynamics. Each particle has a state that 

is propagated forward to the next update time. This is 

shown in Equation 2.  
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𝒙𝑘 = 𝑓𝑘(𝒙𝑘−1) + 𝒗𝑘−1 (2) 

fk represents whatever system dynamics best models the 

evolution of the system over time. vk-1 is the assumed 

process noise to account for the inaccuracies present in 

the system dynamics model.  The method of propagation 

depends on the system dynamics modeled and the 

associated assumptions. The toy problem illustrated in 

Figure 2 and Figure 3 assumes a constant position for 

ease of visualization. 

Measure and Update: 

Once the expected state of the particles is determined by 

prediction, a measurement is obtained from the system’s 

sensors. 

𝒛𝑘 = 𝒉𝑘(𝒙𝑘) + 𝒏𝑘 (3) 

zk represents the measurement received, hk is the 

measurement function, and nk is the measurement noise. 

The selection and design of the measurement function hk 

is critical for the creation of high-quality filtering 

algorithms. Further discussion of measurement functions 

is found in the Approach section of this paper.  Figure 3 

illustrates a measurement from the toy robot localization 

problem. The robotic system measures the distance to the 

walls. Since MCL assumes that the map of the 

environment is known, in this case that the layout of the 

walls is known, this set of distance measurements can be 

simply compared to the distance measurements that 

would be expected to be measured by the system if it was 

located at the particle’s position. 

 

Figure 3: System Takes a Distance Measurement 

This comparison is mapped to a probability distribution 

that gives the likelihood a particle state is the truth state. 

This allows the MCL algorithm to update the weights. 

This new weight is proportional to the probability 

calculated in the measurement function.  

𝑤𝑘
𝑖 ∝ 𝑤𝑘−1

𝑖 𝑝(𝒛𝑘|𝒙𝑘−1
𝑖 ) (4) 

The exact function which defines the proportionality 

relationship in Equation 4 depends on the measurement, 

sensors, and desired filter behavior. An illustration of 

this reweighting process is shown in Figure 4. 

 

Figure 4: Measurement Function Updates Particle 

Weights based on Likelihood of Received 

Measurement 

Resampling: 

Particle filters often have issues where the weights can 

overly weigh a small set of particles, leading to a 

collapse of performance. This has led to resampling 

algorithms that periodically determine the current 

distribution of particles and resample throughout that 

distribution. An illustration of the product of this 

resampling process is shown in Figure 5. 

 

Figure 5: Particle Distribution After Resampling 

Outputs: 

One of the advantages of the particle filter is its ability to 

model nonlinear, non-Gaussian processes and 

distributions. This also makes representing the output 

state more difficult, as the mean of a bimodal or other 

complex distribution is not as meaningful as that of a 

Gaussian distribution. For the comparisons shown in the 

results, the weighted mean of the particle states and the 

top ten highest weighted particles will be used. Other 
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more complex methods are available, but this will 

generally be acceptable for converged particle filters. 

For further in-depth information on particle filters and 

their implementation, see [8]. 

APPROACH 

To develop and test the neuromorphic star tracking MCL 

algorithm, an in-house event camera simulation is used 

to generate representative event camera data of the stars. 

The section below describes the assumptions, 

simulation, and parameters used to determine the 

performance of the neuromorphic star tracker. 

Simulation 

An in-house event camera simulation is used to generate 

data for model testing. This event camera simulation 

draws significantly from [9] and authors’ experience in 

simulating star signatures and intensities. Given input 

attitude dynamics, the model determines the star field 

that would be visible and calculates the per-pixel 

intensities of that field over the simulation time. This is 

done at a high temporal resolution to ensure that the 

space is well sampled. An example of one of these 

intensity frames is shown in Figure 6. During the 

intensity frame generation, the visible stars are limited to 

stars of visual magnitude 6 or brighter. This was 

determined by the authors’ experiments and is also 

observed by other researchers [10]. 

 

Figure 6: Intensity Frame Generated for Event Data 

Simulation 

For each pixel, a spline is calculated using the logarithm 

of the intensities viewed by that pixel over time. This 

produces a continuous per-pixel intensity simulation 

over the entire simulation time. Using this spline, the 

exact times, to microsecond resolution, of events can be 

determined. An event is determined to occur when the 

log intensity increases or decreases by a predefined 

contrast threshold. Often the positive threshold is greater 

than the negative; however, in the simulated frames used 

here, they are the same. An illustration of this event 

calculation process is shown in Figure 7. 

 

Figure 7: Event Calculation From log(Intensity) 

Spline 

Each event calculated can only occur if it is outside of 

the refractory period of the previous event. This is shown 

in Figure 77. This refractory period reflects actual event 

camera performance and can be modified within the 

simulation and via biases on commercial event cameras. 

Table 1 summarizes the inputs to the simulation. 
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Table 1: Simulation Inputs 

Name Description Units 

Initial 

Attitude 

The Right Ascension 

and Declination 

(RA/DEC) in the sky 

to start the simulation 

pointed toward. 

RA/DEC 

(radians) 

Angular 

Velocity 

The rotational 

velocity of the space 

vehicle. 

Radians/second 

Field of 

View 

(FOV) 

The angle describing 

the cone viewable by 

the event camera. 

Degrees 

Resolution The number of pixels 

in each axis. 

Pixels 

Positive 

Contrast 

Threshold 

The relative change 

needed to produce a 

positive event. 

Percent 

Negative 

Contrast 

Threshold 

The relative change 

needed to produce a 

negative event. 

Percent 

Refractory 

Period 

The minimum time 

between events for a 

single pixel. 

Microseconds 

Several different datasets have been generated to support 

this development effort. They include slewing and 

boresight rolling cases. Their inputs are described before 

the results are shown in the Results section. 

Particle Filter Implementation 

The particle filter used for this experiment assumes a 

constant angular velocity for the system dynamics. The 

particles are resampled with a constant 0.01 radian 

covariance and are resampled with every new event 

packet. During resampling, the particles are propagated 

and scored again. The highest weighted particles are then 

resampled to replace the lower scoring particles. Noise 

is added to the attitude and velocities of high weight 

particles before replacing the low weight particles to add 

additional variation in the particle distribution.  

Both test cases described in the Results section utilize 

event packets that are 0.025 seconds in length. This 

corresponds to an update rate of 40 Hz. The event packet 

size chosen is selected to balance accuracy with 

computation time. The measurement function used for 

the update step is described in detail below. 

Measurement Function 

Particle filters are particularly sensitive to measurement 

function selection. The measurement function calculates 

the probability of the measurement observed given the 

predicted state distribution.  

The measurement function compares the expected focal 

plane of each of the particles with the focal plane 

generated by the event packet it has been fed. The events 

contained in the first 0.01 seconds of the event packet are 

accumulated to generate a synthetic focal plane. This 

accumulation frame is then used to find the centroids of 

the stars on the focal plane at the beginning of the event 

packet. A star catalog is then used to calculate the 

expected centroids for the simulated focal planes of each 

of the particles.  

A modified triangle algorithm is used to compare 

features from the event data to the predicted star image. 

First, the stars centroids are sorted by their distance from 

the center of the focal plane, and then are used to 

generate every possible triangle that can be made with 

those points. The two outer most points are excluded 

from this calculation to avoid issues with one or two stars 

not being visible.  

Next, the angles defining each triangle are calculated, 

and stored as a matrix. In order to map these angles to a 

metric, a scoring function measures the sum of 

differences between the angles of the measured and 

predicted triangles to score the particles. This score is 

then inverted, meaning the lowest distances will have the 

highest scores, and used to update the particle weights. 

Particle Distribution  

If starting with no a-priori attitude or velocity knowledge 

a uniform sphere of 20,000 particles is generated to find 

an initial weighting using the measurement function. The 

0.1% of highest weighted attitudes are then determined 

and used to generate the particles that will be utilized in 

the filter. Each of these attitudes is then matched with a 

uniform distribution of velocity vectors to generate a set 

of 5,000 total particles that each have their own attitude 

and velocity vectors.  

If any a-priori attitude knowledge is known, the particles 

can be initially distributed in a significantly smaller 

region. This allows for a smaller number of particles to 

be used to save computational resources, or for the 

velocity distributions to be larger for each initial attitude 

to save time to convergence.  
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RESULTS 

The data passed to the particle filter for attitude tracking 

performance assessment has been generated with the 

parameters in Table 2.   

Table 2: Test Case 1 Inputs 

Parameter Value 

Initial Attitude 30 degrees RA, 30 

degrees DEC 

Angular Velocity [5, 0, 0] degrees per 

second 

Field of View (FOV) 13 degrees 

Resolution 321 x 321 pixels 

Positive Contrast 

Threshold 

0.1 

Negative Contrast 

Threshold 

0.1 

Refractory Period 100 µs 

The angular displacement between the particle with the 

highest weight and the truth was determined using 

Equation 5: 

θ = 2cos−1(𝑞𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑞𝑡𝑟𝑢𝑡ℎ
∗ ) (5) 

Where the * operator represents the conjugate of the 

quaternion. Angular velocity error was calculated using 

the root mean square error (RMSE) between the truth 

velocity and the highest weight particle velocity.  

𝑅𝑀𝑆𝐸 = √∑ (𝑣𝑡𝑟𝑢𝑡ℎ
𝑖 − 𝑣𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑖 )
2𝑛

𝑖=1  (6) 

Figure 8 shows these error values over time. 

 

Figure 8: Errors of Particle Filter over Time for 

Test Case 1 

The high initial error settles quickly. Figure 9 shows a 

zoomed in plot showing the performance over time. 

 

Figure 9: Errors of Particle Filter over Time for 

Test Case 1 – Zoomed 

The angular error for test case 1 settles between 1 degree 

and 2 degrees. While this value would not be considered 

competitive for modern star trackers, this value has been 

obtained with a relatively low-resolution camera. 

Test case 2 used the parameters in Table 3. 
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Table 3: Test Case 2 Inputs 

Parameter Value 

Initial Attitude 30 degrees RA, 30 

degrees DEC 

Angular Velocity [0, 0, 5] degrees per 

second 

Field of View (FOV) 13 degrees 

Resolution 321 x 321 pixels 

Positive Contrast 

Threshold 

0.1 

Negative Contrast 

Threshold 

0.1 

Refractory Period 100 µs 

The difference between test case 1 and test case 2 is that 

the rotation of the vehicle is about the boresight instead 

of slewing across the night sky. The errors are calculated 

according to Equation 5 and Equation 6. The error over 

time is shown in Figure 10. 

 

Figure 10: Errors of Particle Filter over Time for 

Test Case 2 

Again, this plot is skewed by the high initial error which 

decays quickly. For ease of visualization, Figure 11 

shows a zoomed in version of the errors. 

 

Figure 11: Errors of Particle Filter over Time for 

Test Case 2 – Zoomed 

For test case 2, the error appears to settle between 0.25 

and 0.75 degrees. This is closer to lower accuracy, 

commercially available star trackers, but it should be 

noted that these updates are provided at the high update 

rate of 40 Hz. 

CONCLUSIONS 

The simulation results show that event cameras can use 

novel algorithms to support the star tracking and attitude 

determination needs of satellites. It is believed that this 

application in particular shows promise for space 

applications, especially if the algorithm performance can 

be improved. The authors believe the following would 

improve the algorithm:  

• Further iteration on the measurement function 

and its parameters would yield higher attitude 

estimation accuracy. Taking advantage of other 

features that can be calculated from the event 

data, such as optical flow, could dramatically 

improve performance. 

• Improvements to the state transition function 

could improve filter performance by 

responding more effectively to the expected 

system dynamics. 

• Exploring other resampling methods and 

proposal distributions for the particle filter. 

• Optimization of the initial prior distribution 

could significantly reduce the needed particles. 

This would in turn significantly reduce runtime 

and needed computational power. 

With these improvements, it is believed that this method 

could be viable for application with the current set of 

commercially available event cameras. 

Using current commercially available event cameras and 

processors, this could be performed with a relatively low 

size, weight, and power (SWaP) system. Due to its 
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ability to operate at much higher rates, this type of 

system could provide a high-quality single attitude 

determination system for a small satellite, eliminating 

the need for gyroscopes or other attitude determination 

systems. 

Neuromorphic computing represents a new class of 

potential space hardware that can dramatically improve 

space vehicle mission success and performance. Small 

satellites could gain from the rise of low power event-

based computing architectures to allow for much more 

efficient operations. This approach only represents the 

beginning of possible applications of event cameras in 

the space domain. 
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