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ABSTRACT

Earth observation (EO) is currently a major application area of satellite operations. As more powerful
imagers become more accessible and see increased use, these EO images will increase in size, which also
increases the computational complexity of classifying them. Using neural networks for this task has limi-
tations due to the small memory and compute capability possessed by embedded platforms. Instead, this
research investigates a shift in machine-learning paradigms from neural networks to hyperdimensional com-
puting (HDC). HDC uses very large vectors to represent and draw relations from data. HDC often has a
lower latency, power usage, and memory footprint than neural networks. Using the EuroSAT dataset, this
research achieved > 1.4× speedup and energy efficiency using an HDC model over a convolutional neural
network. Though, this improvement came at the cost of 4% lower accuracy. These results indicate HDC is
well suited for machine-learning tasks in space.

INTRODUCTION

In recent years, significant effort has been spent
researching onboard machine learning for space ap-
plications, most notably apps using neural networks.
However, neural networks often require significant
onboard memory and lots of power. These chal-
lenges make neural networks nontrivial to use in
space, but the benefits they offer, such as autonomy,
make them a hot topic for space-computing research.

While there exist multiple solutions to over-
come some of these challenges, one possible solu-
tion is shifting from neural networks to alterna-
tive paradigms, such as hyperdimensional comput-
ing (HDC). HDC generally offers smaller models,
lower power consumption, and shorter training times
compared to neural networks. These benefits often
come at the cost of accuracy. This research investi-
gates the trade offs between accuracy, latency, mem-
ory, power, and energy when using an HDC-based
model instead of a neural network for the space-
domain application of tile classification.

The main contribution of this research is eval-
uating the performance and tradeoffs of using an
HDC model instead of a conventional neural network
for tile classification. This contribution is achieved
by collecting and comparing test accuracy, infer-
ence latency, memory usage, power consumption,
and energy consumption on multiple compute plat-
forms commonly used for space computing. This
research does not make any algorithmic contribu-

tions. Rather, the goal of this research is to inform
members of the space computing community of these
tradeoffs, so they can better assess using HDC in
their future missions.

BACKGROUND

This section first gives an introduction to HDC
and how it can be applied to classification tasks.
Then, commonly used deep-learning models are
introduced. Finally, relevant Earth-observation
datasets are given.

Hyperdimensional Computing

Hyperdimensional computing (HDC) is a method
of computing which performs symbolic computation
on data represented as very high dimensional vectors
(hypervectors).1 This high dimensionality makes it
so independent and identically distributed randomly
generated hypervectors are near orthogonal.2 Thus,
semantically different objects can be represented as
different randomly generated hypervectors. In re-
cent years, a machine-learning paradigm based on
HDC has emerged as an alternative to traditional
neural-network methods. HDC often achieves bet-
ter energy efficiency, lower latency, and additional
robustness to noise, making it of interest for embed-
ded and near-sensor computing scenarios.3 These
benefits often come at a cost in accuracy. However,
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more recent advancements in HDC techniques have
significantly reduced this gap4.5

HDC uses a similarity function (δ) and a set
of three data transformation operations: bundling
(⊕), binding (⊗), and permutation (ρ). The simi-
larity function compares the orthogonality between
hypervectors. If for hypervectors A,B, the similarity
δ(A,B) ≈ 0, then they are orthogonal and consid-
ered unrelated. Alternatively, if δ(A,B) >> 0, then
they are considered related. Commonly, this func-
tion is implemented as the cosine similarity func-
tion, δ(A,B) = A·B

|A||B| . The bundling operation com-

bines the data represented by multiple hypervectors
into a single hypervector. This resultant hypervec-
tor has high similarity to both input hypervectors, so
δ(A,A⊕B) >> 0 and δ(B,A⊕B) >> 0. Bundling
is often simply implemented as vector addition. The
binding operation associates two hypervectors into a
resultant hypervector that is dissimilar to its inputs,
so δ(A,A ⊗ B) ≈ 0 and δ(B,A ⊗ B) ≈ 0. Binding
is often implemented as XOR for binary hypervec-
tors, and more complex operations like circular con-
volutions for real-valued hypervectors. The permu-
tation operation rotates the input hypervector. This
resultant hypervector is dissimilar to the input, so
δ(A, ρ(A)) ≈ 0.

Using these operations and the similarity func-
tion, a clustering-based classification method can
be built. Training a model using this method of
classification starts by encoding the input features
into their corresponding hypervectors. This map-
ping is achieved in many different ways, but often
uses record-based encoding, matrix-vector multipli-
cation, binding, and permutation. For each class,
there is a corresponding hypervector which repre-
sents that class. After encoding, each encoded hy-
pervector is bundled into its corresponding class hy-
pervector, forming centroids for each class. Due to
the similarity properties of bundling, these centroids
will be similar to all the training data that make up
each class.2,6 Further fine-tuning can be performed
in subsequent training passes. This fine-tuning is
often performed by calculating the similarity of the
encoded hypervector with each class hypervector. If
the class corresponding to that encoded hypervector
has the highest similarity of all the class hypervec-
tors, then no updates are performed and the process
continues with the next encoded hypervector. How-
ever, if the class does not have the highest similar-
ity, then an update is performed where the encoded
hypervector is subtracted from the class that has
the highest similarity and bundled into the class the
encoded hypervector is supposed to correspond to.
This process is represented in the following equa-

tions:

Cl′ = Cl′ − αA

Cl = Cl ⊕ αA

Where A is the encoded hypervector, Cl′ is the hy-
pervector corresponding to the incorrect class, Cl is
the hypervector corresponding to the correct class,
and α is a scalar update value that adjusts how much
to update the classes.7,8 This method of classifica-
tion has been applied to various tasks, such as lan-
guage recognition,9,10 gesture recognition,11 seizure
detection,11,12 and simple image classification.5,13

Specific efforts into using HDC methods for clas-
sification on more complex image datasets, such as
ImageNet, CIFAR-10, and CIFAR-100, have been
more common in recent years. One such research
culminated in PIONEER13 which uses a learned
encoding mapping to improve the accuracy of the
HDC model. Using PIONEER lead to an in-
crease from 4% accuracy on CIFAR-10 using vanilla
HDC, to 50.10% accuracy. However, this increase
in accuracy still lagged behind the 92% accuracy
achieved by the ResNet-18 model that was used
as a baseline. Though, for single epoch train-
ing, PIONEER outperformed ResNet-18, with PI-
ONEER having 8.30% higher single-epoch accuracy
than ResNet-18 (46.06% vs 37.76%). PIONEER
achieved these accuracies while maintaining a tra-
ditional HDC model that consists of only an en-
coder and clustering. What seems to show more
promise in this area, however, is methods that com-
bine other machine-learning paradigms with HDC.
An example of this concept is demonstrated in Dutta
et al.’s4 research which combined hyperdimensional
and neural network (HDnn) methods for classifica-
tion on the CIFAR-10, CIFAR-100, and FLOWERS
datasets. Their HDnn model achieved 95.1%, 78.3%,
and 88.8% accuracy on these datasets, respectively,
while ResNet-18 achieved 94.6%, 78.7%, and 84.7%
accuracy. Additionally, HDnn had fewer MAC oper-
ations and parameters than ResNet-18. Due to this
high accuracy, HDnn is the main HDC method of
interest in this research.

Deep-Learning Models

In order to compare HDnn to previous efforts,
we also benchmark a MobileNetV2 model.14 Mo-
bileNetV2 improved on the first MobileNet architec-
ture15 with architectural optimizations for improved
accuracy and performance. MobileNetV2 has been
featured on several previous onboard-classification
studies by this group.16,17 While MobileNetV318
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has since been released, further optimizations tar-
geted GPU- and TPU-based accelerators, not CPU
inference as featured in this paper.

The state-of-the-art method for feature extrac-
tion in image classification has arguably transitioned
from convolutional neural networks to transformer
backbones. However, mobile-optimized transformer
models, such as MobileViT,19 are comparable in pa-
rameter count and computational requirement to the
MobileNetV2 model featured in this study. Extend-
ing this study to transformer models is a potential
avenue of future research.

Earth-Observation Datasets

There are a number of Earth-observation
datasets available for image-classification training.
Among the first is the UC Merced dataset,20 which
includes 21 classes of land cover and 100 images
per class at very low ∼0.3 m/px GRDs. The
most widely used land cover dataset is NWPU-
RESISC45.21 This source includes 700 images in
each of the 45 classes at variable GRDs also as low
as ∼0.3 m/px. Cheng et al.’s research,21 the ori-
gin of NWPU-RESISC45, also offers a comparison
of deep-learning land-cover classification to previous
methods. This comparison to previous methods also
enables further comparison of HDnn to more classi-
cal options.

The dataset used most extensively in this study is
EuroSAT.22 This data is based on Earth-observation
imagery from the Sentinel-2 satellite, a key com-
ponent of the ESA Copernicus system. EuroSAT
includes 2700 64-pixel square image tiles for each
of ten land-cover classes. These images are much
smaller than the typical 256-pixel square imagery
in UC Merced and NWPU-RESISC45. The highest-
resolution MobileNetV2 model is pre-trained on 224-
pixel square images. This discrepancy sometimes
makes it difficult to compare the datasets. Smaller
image sizes can reduce inference runtimes, but may
also result in lower accuracy. However, the smaller
sizes of EuroSAT imagery are a better fit for the vec-
tor space of HDnn as the smaller feature space allows
for greater benefit from the larger hyperdimensional
space.

APPROACH

This research benchmarks various metrics of an
HDC-based model and MobileNetV2 on multiple
space-grade CPU architectures. The HDC model
benchmarked is the HDnn method described in.4

The HDnn models used in this research use the first

four convolutional blocks of MobileNetV2 as a fea-
ture extractor. Two variants of HDnn are bench-
marked in this research, one using 1000 hyperdi-
mensions (HDs) and another using 4000 HDs. The
HDnn model uses projection matrices for the encod-
ing schemes. The MobileNetV2 model used is based
on the model used in Evan W. Gretok and Alan
D. George’s research.17 This model was trained us-
ing transfer learning, so it uses all of the convolu-
tional layers with the pretrained Imagenet weights,
and then has a single dense layer appended.

The metrics of interest in this research are ac-
curacy, inference latency, and model size. The
EuroSAT-RGB image dataset was the focus for this
study. This dataset consists of 64×64 pixel color im-
ages of satellite imagery from the Sentinel-2 satellite.

Multiple test platforms were used for this re-
search. The first platform was for training the HDnn
models. This platform was implemented on Intel’s
DevCloud and used the TensorFlow2 library. The
training was performed on an Intel Xeon Gold 6128
CPU. The other platforms were used to benchmark
inference latency, memory usage, power consump-
tion, and energy consumption. The platforms used
were an NVIDIA Jetson AGX Orin (ARM Cortex-
A78), a Raspberry Pi 4 (ARM Cortex-A72), and
a Raspberry Pi 3 (ARM Cortex-A53). These plat-
forms were chosen as they contain the same proces-
sor architectures representative of commercial-off-
the-shelf compute platforms commonly considered
for space applications, especially in the SmallSat do-
main. The models benchmarked on these platforms
were converted to ONNX and made use of ONNX
Runtime.

Model Architecture

The HDnn models used in this research were
constructed with some of the convolutional layers
from MobileNetV2 as the feature extractor. These
layers were pretrained on the ImageNet dataset
and frozen. This research uses the output of the
block 3 depthwise relu layer as the input feature
vector to the HDC model. For the encoder, a series
of randomly generated basis vectors B⃗1, ..., B⃗D with
D being the dimension of the hypervectors. Then,
for each feature vector F⃗ from the feature extractor,
the corresponding hypervector H⃗ = {h1, ..., hD} is
calculated as follows:

hi = cos(B⃗i · F⃗ )× sin(B⃗i · F⃗ )

To train the models, five passes through the training
data are used, using the retraining method described
previously. These extra training passes allow for the
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model to achieve a higher accuracy than just a single
pass.

The MobileNetV2 model used is based on the
model used in related literature.23 This model was
trained using transfer learning. Thus, it uses all
of the convolutional layers with the pretrained Im-
agenet weights, and then has a single dense layer
appended to this pretrained model.

Benchmarking

Inference runtime data for each model type on
each platform were collected using ONNX Runtime.
Individual iterations were used to collect individual
runtimes. Runtimes were averaged over three sets of
100 inferences.

Memory consumption data for each model type
on each platform were collected using a combination
of the free and process status. Free measures were
conducted in kilobytes with the device idle and at
peak inference load. The resident set sizes (RSS) in
the process status output were also recorded. Mem-
ory measures were conducted using internal infer-
ence iterations of ONNX Runtime, as this method
resulted in more stable, worst case, and easier to
measure results.

Power consumption data for each model type on
each platform was collected with a Ponnie PN2000
power meter. Minimum idle power and maximum
load power were measured to ensure the worst-case
values. Power was also measured using internal in-
ference iterations of ONNX Runtime as this method
provided similar improved stability in power con-
sumption. Dynamic power is calculated by subtract-
ing the idle measure from the load measure. Total
and dynamic energy measures are calculated as the
product of inference runtime with total and dynamic
power measures, respectively.

RESULTS

Figure 1: Test accuracy of each model on the
EuroSAT-RBG dataset

Fig. 1 shows the accuracy of the tested models on
the EuroSat-RGB dataset. MobileNetV2 achieves
the highest accuracy at 94.17%, with the two vari-
ants of HDnn achieving accuracies near 90%. There
is little difference in accuracy between the HDnn
variant using 1000 hyperdimensions and the variant
using 4000 hyperdimensions, so all further references
to HDnn in this section are referring to the 1000 hy-
perdimension variant, as it has fewer parameters.

Figure 2: The average inference latency val-
ues across the tested devices.

Fig. 2 provides the average inference latency val-
ues for both the MobileNetV2 model and HDnn
model on various ARM CPUs. HDnn consistently
has lower latency, achieving speedup values of 1.72×,
1.58×, and 1.4× over MobileNetV2 on the ARM
Cortex-A53, Cortex-A72, and Cortex-A78, respec-
tively. While HDnn maintains lower latency values,
the improvement over MobileNetV2 decreases as the
performance of the CPU increases.
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Figure 3: The peak memory consumption val-
ues across the tested devices.

Figure 4: The peak resident set size across
the tested devices.

Fig. 3 depicts the memory usage of both models.
There is little difference between the memory usage
between the two models across all tested hardware,
though HDnn has consistently lower peak memory
consumption. Fig. 4 shows the resident set memory
allocated to the process. Here as well, HDnn gener-
ally has lower allocated memory than MobileNetV2,
though the difference is not large.

Figure 5: The dynamic power consumption
values across the tested devices.

Figure 6: The dynamic energy consumption
values across the tested devices.

Fig. 5 and Fig. 6 show the dynamic power con-
sumption and the dynamic energy consumption.
The difference between the dynamic power consump-
tion of both models is very small and there is no
consistent trend across all hardware. There is, how-
ever, a major difference between the dynamic en-
ergy consumption of the models. HDnn consistently
has lower energy consumption than MobileNetV2,
achieving 1.54×, 1.67×, and 1.43× energy improve-
ment over MobileNetV2 on the tested ARM Cortex-
A53, Cortex-A72, and Cortex-A78, respectively.

DISCUSSION

For the metrics of interest, MobileNetV2 per-
formed best for accuracy while HDnn performed best
for latency and energy consumption. From previous
research, this result is mostly as expected. Below
explanations and implications are given for each of
the benchmarked metrics.

Accuracy

As previously stated, HDnn achieved lower ac-
curacy than MobileNetV2. This reduction in accu-
racy is counter to the results presented in the orig-
inal HDnn4 paper. This result has multiple pos-
sible causes, the first being a suboptimal feature
extraction method. The model used in this re-
search uses the output of a single deep-convolutional
block from MobileNetV2, which has previously been
shown to perform well for image-classification tasks
using HDnn.4 However, there are other methods
that could extract more information from the im-
ages, such as the method demonstrated in Wilson et
al.’s research,24 which encodes the outputs of mul-
tiple layers and bundles them together to form the
query vector. HDnn’s method of using the output
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of a single layer was chosen instead of this bundling
method, as it has performed well on relatively diffi-
cult datasets, such as CIFAR-100 and FLOWERS,
but future research investigating other feature ex-
traction methods is necessary to investigate the full
capability of HDC-based methods.

The second likely cause is the the model used
as the feature extractor. The original HDnn paper
evaluated four models to uses as feature extractors:
ResNet-18, ResNet-34, VGG-16, and MobileNetV2.
This research evaluated only MobileNetV2 to give
a fair comparison to prior research done using Mo-
bileNetV2 for tile classification,17 but again fur-
ther research investigating these other models as po-
tential feature extractors would help optimize this
model. The third cause is HDC generally having
lower representation power than neural networks,
especially on images. In spite of all these factors,
HDnn is well suited for the task of tile classification,
with it still achieving > 90% accuracy with > 1.4×
inference speedup, especially in situations with strict
latency/throughput and energy constraints.

Latency

As stated in the results section, HDnn exhibits
lower inference latencies than the MobileNetV2
model on all platforms tested. This result is ex-
pected, as HDnn has a shorter critical datapath
length25 and fewer operations to perform, so it has
both less work to do and is able to experience more
speedup with multi-threading. Interestingly though,
MobileNetV2’s performance improves more with in-
creasing compute power than HDnn’s performance.
This trend could simply be due to MobileNetV2 per-
forming exceptionally poorly given the constraints of
the A53. So, it has a greater capability of improv-
ing from the A78’s increased clock speed, increased
number of cores, and added out-of-order execution.
Though, while the performance gap does shrink,
HDnn still always has the lower latency. Thus, for
low latency operations, and likely high throughput
operations, it is the better option to use.

Memory Usage

Both the tested HDnn variant with 4000 hyperdi-
mensions and MobileNetV2 had similar memory us-
age values. These results are surprising as HDnn had
far fewer parameters than the MobileNetV2 variant,
with 638,912 parameters (2.44 MB) and 2,270,794
parameters (8.66 MB), respectively. Thus, based
solely on parameters, HDnn is 3.5× more mem-
ory efficient than the MobileNetV2 variant; however,
this difference is not observed with either the peak

memory consumption or the peak resident set size.
Added overhead from ONNX Runtime is likely dom-
inating the memory usage for both models.

Power and Energy

Difference in overall power consumption between
model types was not significant enough to draw
conclusions. This behaviour was consistent across
any and all platforms tested. As noted in the re-
sults section, overall energy consumption was re-
duced primarily due to the reduced inference time
of the HDnn model. One item of concern is the
relatively high power consumption of the A78 plat-
form. The onboard GPU, DLA, vision system, and
other components were not included in the ONNX
Runtime tests performed, and no other active pro-
cesses were running. Higher-power supporting com-
ponents of the NVIDIA Jetson AGX Orin may have
biased some of the power measures from this device.
It is possible that a CPU-only A78 platform may
provide lower power and energy consumption. Fur-
ther investigation of this platform will be conducted
as this study is extended to embedded GPU plat-
forms. It is also worth noting that the A78 CPU
has a greater focus on performance than energy ef-
ficiency compared to the A72 and A53. The AGX
Orin also features a 12-core A78 compared to the
quad-core A72 and A53 tested. However, investiga-
tion of how ONNX Runtime handles multithreading
performance was beyond the scope of this study.

CONCLUSION

This research investigated the application of
HDC for the space app of tile classification of satel-
lite imagery. To achieve this goal, HDnn was lever-
aged and compared to a method using MobileNetV2
across accuracy, inference latency, memory usage,
power consumption, and energy consumption. Mo-
bileNetV2 achieved the highest accuracy at 94.17%;
however, HDnn saw only a ≈4% decrease in ac-
curacy. HDnn still achieved speedup and reduced
peak energy consumption when compared to Mo-
bileNetV2. Thus, there is potential for HDnn to be
effectively applied for satellite tile classification for
applications where speed and energy are major con-
cerns.

FUTURE RESEARCH

This research could be extended to investigate
additional feature extractors from the original HDnn
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paper, including ResNet-18, ResNet-34, and VGG-
16. Feature-extraction methods using transform-
ers, such as MobileViT or similar, could also be in-
vestigated. Additionally, there is ongoing research
into collecting similar performance metrics on both
GPUs and FPGAs for both MobileNetV2 and HDnn.
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