The Effect of Behavioral Skills Training on Teachers Conducting the Recess-to-Classroom Transition

Sarah C. Smith
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

Part of the Special Education and Teaching Commons

Recommended Citation
Smith, Sarah C., "The Effect of Behavioral Skills Training on Teachers Conducting the Recess-to-Classroom Transition" (2016). All Graduate Theses and Dissertations. 4948.
https://digitalcommons.usu.edu/etd/4948

This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.
THE EFFECTS OF BEHAVIORAL SKILLS TRAINING ON TEACHERS
CONDUCTING THE RECESS-TO-CLASSROOM TRANSITION

by

Sarah C. Smith

A thesis submitted in partial fulfillment
of the requirements for the degree
of
MASTER OF SCIENCE
in
Special Education

Approved:

Thomas Higbee, Ph.D. Tyra Sellers, Ph.D.
Major Professor Committee Member

Timothy A. Slocum, Ph.D.
Committee Member

Mark R. McLellan, Ph.D.
Vice President for Research and
Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2016
ABSTRACT

The Effects of Behavioral Skills Training on Teachers Conducting
the Recess-to-Classroom Transition

by

Sarah C. Smith, Master of Science

Utah State University

Major Professor: Dr. Thomas Higbee
Department: Special Education and Rehabilitation

Elementary school teachers transition their students from recess to the classroom multiple times a day. When students do not line up quickly or are disruptive in line, teachers often spend valuable instructional time trying to manage students’ inappropriate behaviors. The result is a loss of instructional time that could lead to a decrease in student performance. The current study examined how teachers could use behavioral skills training with their students as a way to reduce the length of the recess-to-classroom transition. Participants included general education second – fourth grade teachers and their students. Target behaviors included teacher implementation of behavioral skills training and student behavior of transitioning from recess to the classroom. Procedures involved first using behavioral skills training as a method of instruction for teachers, who, in turn, used behavioral skills training as a method of instruction for their students. After training, teachers were able to proficiently provide their students with instruction, modeling, rehearsal, and feedback, and students began to line up more quickly at the
teacher’s signal and use their hands and feet appropriately for the duration of the transition. These results imply that training teachers to better train their students can decrease the amount of time students spend on transitions and increase the amount of time teachers spend on instruction.
The Effect of Behavioral Skills Training on Teachers Conducting the Recess-to-Classroom Transition

Sarah C. Smith

Although it may not seem harmful, students in the elementary grades often take several minutes to move from recess back to their classrooms. The problem, however, is that these lengthy transitions add up over time, and teachers lose valuable time to instruct. The less instruction students receive, the poorer their academic performance tends to be. But how much time can teachers save by reducing their students’ transitions?

According to the current study, the answer is a lot. Dr. Thomas S. Higbee and Sarah C. Smith of Utah State University recently conducted a study in which they trained second, third, and fourth grade teachers to reduce the length of their students’ transitions. Teachers learned to:

- tell their students that they expected them to line up quickly and quietly
- show their students what this behavior looked like
- require that their students practice meeting these expectations
- give their students praise or correction for their behavior

After the training, each teacher was able to effectively change her students’ line-up behavior, and each class began to transition significantly faster. For example, a fourth grade class initially took more than 5 min to move from recess to their classroom, and after the training, they could do it in less than 2 min. This meant that their teacher gained 3 min per recess to use for instruction. Multiplied by three recesses per day, this meant
that the teacher gained 9 min per day and 45 min per week. In other words, as students transition more quickly, teachers can devote more time to instruction, and student achievement typically improves.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>PUBLIC ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>METHOD</td>
<td>14</td>
</tr>
<tr>
<td>Setting</td>
<td>14</td>
</tr>
<tr>
<td>Participants</td>
<td>14</td>
</tr>
<tr>
<td>Dependent Variables and Response Measurement</td>
<td>15</td>
</tr>
<tr>
<td>Interobserver Agreement</td>
<td>15</td>
</tr>
<tr>
<td>Treatment Integrity</td>
<td>16</td>
</tr>
<tr>
<td>Experimental Design</td>
<td>17</td>
</tr>
<tr>
<td>Procedures</td>
<td>18</td>
</tr>
<tr>
<td>Baseline</td>
<td>18</td>
</tr>
<tr>
<td>Teacher Training</td>
<td>18</td>
</tr>
<tr>
<td>Student Training</td>
<td>21</td>
</tr>
<tr>
<td>Maintenance</td>
<td>25</td>
</tr>
<tr>
<td>RESULTS</td>
<td>26</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>33</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>38</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>42</td>
</tr>
<tr>
<td>Appendix A: Figures</td>
<td>43</td>
</tr>
<tr>
<td>Appendix B: Treatment Integrity Form</td>
<td>46</td>
</tr>
<tr>
<td>Appendix C: Teacher Training Sheets</td>
<td>48</td>
</tr>
<tr>
<td>Appendix D: Data Sheet – Initial Session</td>
<td>51</td>
</tr>
<tr>
<td>Appendix E: Data Sheet – Subsequent Sessions</td>
<td>56</td>
</tr>
<tr>
<td>Appendix F: Data Sheet – Duration of Transitions</td>
<td>58</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1.</td>
<td>Teacher percent of BST steps implemented during the recess transition</td>
</tr>
<tr>
<td>2.</td>
<td>Student duration of transitions from the playground to the classroom</td>
</tr>
</tbody>
</table>
INTRODUCTION

Although teachers are expected to manage their students’ behavior, they often report that classroom management is the area in which they feel the least qualified and where they receive the least amount of training (Barrett & Davis, 1993; Ingersoll, 2002; Reinke, Stormont, Herman, Puri, & Goel, 2011). One point during the school day in which there is a high potential for disruptive behavior is during transitions: when students are expected to shift from one activity to another. Whether students are lining up or rotating between centers or preparing to go home, transitions can result in loss of instructional time as teachers try to manage students’ inappropriate behaviors.

One transition that can be particularly difficult is when elementary students are required to move from recess to the classroom (Lewis, Powers, Kely, & Newcomer, 2002). This transition presents a unique challenge because it typically (a) requires use of an outside signal to gather the students, (b) occurs multiple times a day, and (c) involves moving students from outside, to the hall, and then to the classroom—making it a potentially long transition and therefore one in which much instructional time may be lost. The result is that loss of instructional time each day can lead to decreases in student performance (Simonsen, Fairbanks, Briesch, Myers, & Sugai, 2008). Clearly, teachers need to be able to transition their students quickly and smoothly in order to maximize instructional time.

Current literature has offered some consistent guidelines about classroom transitions. First, teachers are often directed to clearly instruct the students on how the transition should look (Buck, 1999; Hemmeter, Ostrosky, Artman, & Kinder, 2008;
Smythe, 2002). Another common recommendation is that the teacher allow the students to practice the behavior multiple times (Buck, 1999; Hovland, 2008; Thelen & Klifman, 2008). Finally, relevant literature details the importance of giving students specific feedback as they transition (Buck, 1999; Hovland, 2008; Rosenkoetter, 1986). The combination of these recommendations—instruction, practice, and feedback—closely resembles a behavior analytic training package named behavioral skills training (BST). BST is a method of providing instruction, modeling, rehearsal, and feedback in order to teach a behavioral skill (Poche, Brouwer, & Swearingen, 1981).

The use of BST as an effective method for improving student behavior is well documented. Among the skills that have been taught to children via BST are pedestrian-safety skills (Yeaton & Bailey, 1978), fire-safety skills (Jones, Kazdin, & Haney, 1981), gun-safety skills (Himle, Miltenberger, Gatheridge, & Flessner, 2004), abduction-prevention skills (Johnson et al., 2005), and response-to-signal skills (Beaulieu & Hanley, 2014). In each of these studies, students’ performance increased significantly and rapidly when BST was implemented.

Several studies have also shown that BST can be used to train caregivers. Such research has included training special educators to conduct mand training (Nigro-Brucci & Sturmey, 2010) and discrete-trial teaching (Sarokoff & Sturmey, 2004); training paraprofessionals to use data to inform decisions (Matthews & Hagopian, 2014) and to implement prompting strategies (Toelken & Miltenberger, 2012); training undergraduate students to conduct functional analyses (Iwata et al., 2000); and training caregivers to implement guided compliance (Miles & Wilder, 2009). Again, each study showed substantial improvements in caregivers’ skills when BST was the instructional approach.
The current research therefore demonstrates that BST can produce skill acquisition in students and caregivers. Present literature further recommends using features of BST in training for transitions, but it has not been tested in any systematic way. Thus, research is needed in relation to how the BST method could improve the recess-to-classroom transition.
Using Academic Search Premier, Education Source, ERIC, Psychology and Behavioral Sciences Collection, and PsycINFO, I searched the terms "(early AND education) OR (elementary AND education) OR kindergarten) AND ("recess transition*" OR "class* transition*" OR "transition times"). This yielded 78 results, six of which pertained to managing student behavior during transitions. I eliminated articles that pertained to transitioning students between grades or teachers or curricula; I also eliminated those that pertained to child care settings or child development. A brief initial review of these articles and their reference sections produced five more relevant articles, which resulted in 11 articles that were selected for review in this section on transitions.

Because none of the articles about transitions mentioned BST, I did a separate search to find text about using BST as a method of teacher training. Using the above-listed search engines, I searched the terms "(behavioral skills training") AND (staff) OR ("behavioral skills training") AND (classroom* management)). This yielded 48 results, five of which pertained specifically to using the BST method to train staff or caregivers who worked with children. I eliminated articles if they discussed using BST in order to train adults with disabilities or to train staff in a nonrelevant context (e.g., secondary schools, nursing homes, vocational settings). I also eliminated articles that discussed the effects of staff training for sexual or drug-related behavior. A review of these articles’ reference sections yielded four more articles, making a total of nine articles that I reviewed for this section on training staff via BST.
Finally, I did a search to find text about using BST as a method for training children. Using the same search engines, I searched the terms ("behavior* skills training") AND (student*) OR ("behavior* skills training") AND (child*). This produced 169 results, 15 of which pertained to using BST in order to teach typically developing children a new skill. I eliminated articles that examined using BST for students with sexual, emotional, or medical issues, as well as for students with reading deficits or language barriers or disabilities. I also eliminated articles if the population was adolescent-age or older or if the articles were not empirical studies. A review of two articles’ reference sections produced five more relevant articles, making 20 total. Because there was considerable overlap in the topic of these articles, however (e.g., six articles on abduction prevention), I only examined those articles that were the most comprehensive, making a total of seven articles reviewed for this section. Combined with the two previous searches, this made a total of 27 articles that were reviewed for this study. The following reviews describe four articles that were the most relevant to the present study.

In 2004, Yarbrough, Skinner, and Lee investigated the effects of implementing a transitions game with students in order to see whether it reduced transitional time in a second grade class. Participants included 15 African American second graders (three girls and 12 boys) and their teacher. The students attended a public school in an urban Southeastern area, and the teacher reported that the students displayed several disruptive behaviors each day as they entered the classroom after lunch—jumping, yelling, running, pushing, etc. She noted that she was not spending time on instruction because she was trying to calm the students.
Researchers in this study recommended use of the *Timely Transitions Game* (TGG), an approach that Campbell and Skinner developed in 2004. In this game, the teacher explained to the students that she was going to time them after lunch each day to see how long it took until everyone was seated quietly at their desks. Their time would be recorded on the board. At the end of the day, the teacher would draw from a shoebox containing 13 cards; on each card was written an acceptable transition time, ranging from 40 – 100 s. If the time the students achieved was *less* than the time on the card, the students would earn a letter. Letters spelled out P-A-R-T-Y, and when the students had earned each letter, they would have a party the following day (thereby creating an interdependent group contingency). If the students’ transitional time exceeded the time on the card, students would not receive a letter for that day. Thus, the dependent variable in this study was the students’ transitional time from the hallway to the classroom; the independent variable was the use of the TGG; and the measure was the duration of each transition. A withdrawal design was used to gauge the game’s effectiveness.

During the three-day baseline phase, it took students more than 2.5 min to transition into the classroom each day. After the first intervention phase began, transitional time decreased to an average of 59 s, and no transition exceeded 2 min. (There were still 3 days, however, in which the students did not meet the criteria on the transition card.) The treatment phase ended when students earned their first party, and then the teacher withdrew the TGG. The first day without the TGG showed a minimal increase in transitional time, but the subsequent days showed a return to baseline levels. When the teacher reinstated the game, transitional times reduced again—even to below initial treatment levels (range: 33 – 55 s). A short withdrawal produced a return to
baseline levels before the teacher permanently reinstated the TGG.

The results of this study indicate that interdependent group contingencies can be an effective way to reduce transitional times in a classroom. One caution with this type of intervention, however, is that a single student has the potential to sabotage the group’s performance. In this study, such a situation occurred when a student refused to sit down during a transition. Researchers reported that the student’s classmates begged, pleaded with, and demanded that he sit down until he finally complied. Contingencies like this can pit students in competition against each other and promote coercive or threatening forms of behavior (Romeo, 1998).

Furthermore, use of a game like this throughout the day would require that the teacher timed and recorded several transitions. While she could still draw just one time card at the end of each day in order to see whether students met the criteria, a system like this could easily become overwhelming, given the frequent number of times that students have to transition in a school day. A simpler form of intervention may be more beneficial. In order to produce a change in students, however, teachers must be able to competently train them, as the next study shows.

In 2010, Nigro-Bruzzi and Sturmey investigated the effectiveness of using BST to train staff to implement mand training. Six staff members (three special education teachers and three speech therapists) participated. Each staff member was paired with a child with autism spectrum disorder, ranging in age from 2 – 6 years old, and each child had the ability to imitate vocal models. Staff training and mand training took place in the children’s classroom or in their home, and staff-only training was also conducted in a private office.
Experimenters first developed an eight-step task analysis in order to specify the behaviors that staff would need to implement during mand training. This task analysis then served as a way to score staff performance: Observers counted a correct response if the staff completed all the components in each applicable task, while a skipped or incomplete task was counted as incorrect. During baseline, experimenters presented staff with this task analysis as well as with written instructions that described how to implement mand training. The experimenter read these documents aloud to each staff member prior to the first session and instructed them to teach manding to the best of their ability.

During training, the experimenter used BST (the independent variable) in order to teach the staff how to conduct mand training with the child. This included four components: providing instructions (written and verbal), showing a video model that depicted all the mand training steps, using role play between the experimenter and staff, and offering positive and corrective feedback based on role-play performance. These training sessions were conducted until staff received 90% accuracy across three consecutive sessions. After training, staff members conducted mand training with their assigned child; their performance during this time was the dependent variable. The design used was a multiple baseline across participants.

In baseline, 5 of the 6 teacher-child dyads showed low levels of correct staff performance and low levels of child manding. After training, each staff member increased in correct performance and each child increased in manding—a result that generalized to a new setting for 3 of the 5 children. These data demonstrate that BST can be an effective method of training staff to teach children with autism. It was further
significant that training sessions were 30 – 60 min in length and that all staff members met the criteria in three sessions. This suggests that BST was a time-efficient method of instruction and skill acquisition. Most importantly, this study demonstrated that an increase in staff performance resulted in an increase in student performance. The next study addresses the effect that the BST approach can have when used with students.

In 2014, Beaulieu and Hanley investigated the effects of a classwide program intended to promote compliance in 4- and 5-year-old preschoolers. Six typically developing students who exhibited low to moderate levels of compliance in baseline were selected for inclusion in the data analyses, although all 11 children in the class received the training. Two preschool teachers also participated.

The independent variable was a class-wide training that consisted of teaching students two skills: how to respond to the teacher when she issued an individual or group call, and how to peer mediate these responses. Briefly, teaching children to respond when their name is called or when their group name is called (e.g., “everyone”) has been shown to increase compliance and is therefore referred to as a precursor—a skill that precedes compliance. Teaching children to remind their peers to engage in precursors (e.g., “Sam, Teacher is talking to you”) has also been shown to increase compliance and is therefore referred to as peer mediation. The dependent variable and purpose of the study was to see whether these two procedures were manageable and effective for teachers to implement. The design used was multiple baseline across skills.

In baseline, teachers were taught to say a child’s name or a group call and wait up to 6 s before issuing an instruction. After baseline, the teachers were trained to use BST in order to teach the children how to respond to precursors. This entailed the teacher
describing how the children should respond to an individual call, and then the two teachers modeled the skill for the children. Next, the teacher allowed several children to role-play in front of the class, and she praised them for responding correctly to a call. If a child responded incorrectly, the teacher gave the child descriptive feedback and allowed him/her another turn. This process (instruction, modeling, rehearsal, feedback) was repeated in order to teach the children how to respond to group calls.

In the next phase, peer mediation, teachers again used BST in order to teach the children how to remind their peers to engage in precursors. If a child did not correctly use a precursor during this phase, the teacher prompted another child to remind the child what to do (and to offer praise for correct responding). Frequency was used in order to count how often children engaged in precursors, peer mediation, and compliance.

The results showed that no children engaged in precursors or peer mediation during baseline, and the average compliance rate was 52%. In the precursor phase, an increase in precursors was observed ($M = 53\%$) as well as compliance ($M = 83\%$). In the peer mediation phase, there was an increase in three behaviors: precursors ($M = 77\%$), compliance ($M = 95\%$), and peer mediation ($M = 13$). Thus, compliance almost doubled, and precursors and peer mediation went from never occurring to frequently occurring by the end of the study.

While these data highlight the value of precursors and peer mediation in order to increase compliance, it is also significant that the teachers used BST in order to teach both skills. The immediate results within each phase demonstrate that the training produced a rapid behavior change, and the time required to complete the training was also reasonable: 45 min for teachers and the length of a circle time session for the
children. Finally, it is relevant that BST was selected as the method to teach students to respond to a group call; it lends support to the idea of using BST in order to teach students to respond to a group recess signal.

Because the above-cited study did not primarily discuss the value of BST, however, a review of another study is warranted. In 2004, Himle, Miltenberger, Gatheridge, and Flessner compared BST to another technique in order to teach gun-safety skills to 4- and 5-year-old preschoolers. Thirty-one children attending 1 of 3 preschools participated, and training took place in the children’s classrooms. Children were then randomly assigned to either the control group, the Eddie Eagle group, or the BST group, and children in the treatment groups received instruction in small groups (two – five children). The design was a posttest only control group design that compared results of the control group with both treatment groups.

Children in both treatment groups (Eddie Eagle and BST) were first taught what to do if they encountered a gun; this was the independent variable. The Eddie Eagle approach prescribed that children spend 5 consecutive days in training (10 – 15 min sessions), set up as follows: On days 1 and 2, children were introduced to general gun safety concepts. On day 3, children learned a specific safety message, which was to “Stop. Don’t touch. Leave the area. Tell an adult.” On day 4, children spent time discussing hypothetical situations and vocalizing what they would do if they found a firearm, and day 5 was spent giving the children awards for completing the program.

The BST approach was also completed in five sessions and targeted the same safety skills, namely, not touching the firearm, leaving the area, and telling an adult. For “don’t touch,” the trainer first told the children why it was important not to touch a
firearm (instruction) and then demonstrated approaching one and saying “Don’t touch”
(modeling). Next, the children were directed to approach the firearm and say “Don’t
touch” (rehearsal), and the trainer either praised the child for responding correctly or
modeled for the child what to change (feedback). This same format was then used to
teach children how to leave the area and tell an adult. Once children correctly
demonstrated the safety chain, they spent the subsequent sessions practicing the response
in a variety of scenarios. This included the trainer directing a child to complete a task
(e.g., “Put the soap under the sink”) and the child finding a gun in the location (e.g., a
bathroom, closet, drawer, etc.). Feedback always followed the child’s response.

Upon completion of training, children in all groups were assessed via in situ, role-
play, and self-report; their responses to the firearms were the dependent variable.
Assessments took place in each child’s preschool or home, and behavior was scored on a
scale of 0 – 3 according to each child’s response to the firearm in each setting. For in situ
training, an adult instructed the child to go to a separate room where (unbeknownst to the
child) a gun had been placed. For role play, each child was paired with their trainer and
asked to act out what they would do if they found a firearm. For self-report, children
were interviewed and asked how they would respond if they found a firearm.

The results of the study showed that for the self-report assessment, both treatment
groups scored significantly higher than the control group—meaning both groups were
able to verbalize the behavior they were supposed to exhibit. For the role play
assessment, the BST group scored significantly higher than the Eddie Eagle group—
showing that students who received BST were able to verbalize and demonstrate the
target skills. All three groups, however, scored low in the in situ assessment—indicating
that in a novel, seemingly real-life situation, the target behavior did not generalize for the
treatment groups.

These data indicate that often, simply telling the students what they should do is not sufficient; they must also see the behavior modeled and practice the skill and receive
feedback in order to exhibit it themselves. The fact that the target behavior did not
generalize for either group is disturbing; however, researchers speculated that it could
have been because the trainer wasn’t present in order to signal reinforcement. When BST
is used to teach transitioning in the current study, the teacher will always be present and
will therefore signal the availability of reinforcement at each opportunity to respond.

The research presented thus far highlights some key features: (a) transitions can be a disruptive time of day that result in loss of valuable instructional time; (b) teachers can be trained using the BST method and thereby effect change in their students’ skills;
(c) students can be trained using the BST method and thereby demonstrate significantly
higher levels of skills than students who are only given verbal instructions. The purpose
of the current study is to use the BST method in order to train teachers to more
effectively conduct the recess-to-classroom transition.

Thus, the research questions in the present study are:

1. Can teachers be trained through the BST method to follow the steps of BST
 instruction during the recess-to-classroom transition, as measured by percent of
 steps followed in a task analysis?

2. To what extent will BST of second – fourth grade students reduce the transitional
time from recess to the classroom, as measured by the duration of the transition?
METHOD

Setting

The study was conducted at an urban elementary school that accommodated approximately 600 students and was located in the western region of the U.S. Training for the teachers took place in their individual classrooms, each of which measured 5 m by 6.5 m, and role play and rehearsal with teachers extended to the playground. Training for students initially took place on the playground, an area that measured 50 m by 110 m and was equipped with jungle gyms, swing sets, a soccer field, and a blacktop area. Students also moved through the hallway, though hallway length varied depending on the distance from the recess doors to each classroom (range 6 m – 10 m).

Participants

Participants included two groups: the teachers and the students. Teachers were selected who held a degree in elementary education and who taught second, third, or fourth grade. Teachers were not excluded from participation based on their age or years of teaching experience; rather, they were recruited based on their desire to reduce transitional times and their willingness to complete the training when invited by the researcher. Teachers were excluded if they had any previous exposure to BST.

Students were in the second, third, or fourth grade and therefore included males and females from 7 – 10 years in age. Most students were Caucasian, some were of diverse ethnic background, and all spoke English as a first or second language. Each class contained 20 – 30 students.
Dependent Variables and Response Measurement

For teachers, the dependent variable (DV) was the extent to which they used BST in order to teach their students how to transition from recess to the classroom. This was measured by the percent of steps that teachers correctly implemented according to a task analysis (see Appendix D). This task analysis specified the steps that teachers should follow within each BST category (instruction, modeling, rehearsal, feedback) as they taught their students how to transition. The task analysis was in the form of a checklist and was marked “+” (followed the step completely), “-” (did not follow the step in some way), or “N/A” (step not applicable). The checklist was scored by dividing the number of steps scored “yes” by the total number of “yes” and “no” steps possible and multiplying by 100. The researcher was the primary data collector and used a clipboard, paper, and pencil to measure this behavior.

For students, the DV was the amount of time that it took for them to transition from recess to the classroom, as measured by the duration of the transition. Transitional time was defined as beginning when the teacher gave the signal to line up (e.g., blew the whistle) and ending when the final student crossed the threshold into the classroom. A stopwatch was used in order to facilitate timing, and the researcher followed from 1 – 2 m behind the teacher and to the side of the students in order to collect these data (See Appendix F).

Interobserver Agreement (IOA)

A second independent observer collected data on the DVs during a portion of the
baseline sessions, for the training session with each teacher, and every third session thereafter, which resulted in IOA for 42% of sessions. Agreement for the task analyses was shown when the responses on each step was scored the same between observers (i.e., both scored “yes,” both scored “no,” or both scored “N/A”). Percent agreement was calculated by dividing the total number of agreements by the total steps possible and multiplying by 100. The IOA score for the task analyses was 99% (range 98 – 100%). Agreement for the duration of a transition was calculated by dividing the shorter of the two durations reported by the observers by the longer duration (in seconds) and multiplying by 100. The IOA score for the duration of the transitions was 98% (range 97 – 100%).

The researcher trained the independent observer in the school setting when the teacher and students were not present. This session included (a) reviewing the task analysis, (b) explaining the definition of the duration of a transition, (c) watching a video of the researcher implementing the procedures with her own class, and (d) taking data during the video according to the procedures discussed. Training occurred until the observers reached 90% IOA or higher on both components (completion of task analysis and duration of transition), which occurred during the first viewing of the video.

Treatment Integrity (TI)

To assess TI, the independent observer also recorded the occurrence of the critical components of the teacher training procedure (See Appendix B). Using a checklist, the observer marked whether the researcher (a) provided the teacher with a written copy of the task analysis, (b) explained each step on the task analysis vocally, (c) modeled the
BST procedure by showing the teacher a video of the procedure being used, (d) allowed opportunities for the teacher to rehearse each step of the skill, and (e) provided the teacher with feedback that was immediate, specific, positive and/or corrective for each step. Observation of the researcher occurred during the first session of each teacher training, as this is when the majority of each teacher’s training occurred.

Prior to the first training session, the researcher explained this checklist to the independent observer, making clarifications as needed. To generate a percentage of the researcher’s performance with teachers, the number of correctly implemented steps was divided by the total steps possible and multiplied by 100. The TI score in each case was 100%.

Experimental Design

A non-concurrent multiple baseline design (Cooper, Heron, & Heward, 2007) was used to evaluate the effects of teacher-implemented BST. This design was selected in order to allow the researcher to collect data on each teacher for one recess per day while still fulfilling her own classroom duties.

A reversal design was not chosen for this study because it would not be possible to remove the skills from the teacher or her students once the skills were acquired. An alternating treatments design was also not chosen because only one treatment (BST) was being implemented, and comparison between treatments was therefore irrelevant. Finally, a changing criterion design was not chosen for this study because the IV was not applied in a graduated fashion; rather, the BST package was presented as a whole for both the teachers and the students.
Procedures

Baseline

The baseline condition entailed the researcher observing the participating teachers and their students transitioning from lunch recess to the classroom each day. Data was collected on (a) the extent to which teachers already [unknowingly] used any components of BST with their students during the transition, (b) the extent to which teachers offered positive and corrective feedback to the students, and (c) the duration of the transition. After stable baseline data were obtained for each teacher, her training began.

Teacher Training

The researcher, interobserver, and teacher met for three hours on a Saturday for training. The first hour and a half was spent in instruction, wherein the researcher described each component of BST and taught teachers the acronym TEMPO (tell expectations, model, practice, offer feedback) as a way to condense and remember these expectations (see Appendix C). The researcher also described how to offer praise and corrective feedback to both the whole class and individual students. The researcher then provided the teacher with a task analysis that listed the steps the teacher should follow when training the students to transition from recess to the classroom (See Appendix D). The researcher provided the task analysis in written format, explained it vocally, and told the teacher that she could use the task analysis as a reference during the Saturday training and when instructing her actual students on the following Monday.

After explaining the task analysis, the researcher showed each teacher a video model of first grade students being trained to complete the transition. This video was
taken at the same school where the teachers worked and showed the researcher training a class of first graders to respond to the outside signal. Teachers viewed the video twice: first as an overview and then to compare it against the task analysis. During the second viewing, teachers were asked to place a check mark on the task analysis next to each component as it was demonstrated; this was to facilitate the teacher paying attention to each required step.

Following instruction and modeling, each teacher practiced training a small group of students (7 – 8) to line up at the actual playground setting. The researcher selected these students based on their age (7 – 10 years) and willingness to participate. For the sake of scheduling these students, it was necessary for the teacher to complete all of her training on a single day (Saturday) rather than over the course of several days.

With the students, teachers completed a total of five trials: three that were not scored, wherein the researcher provided assistance and positive/corrective feedback to the teacher, and two that were unassisted and scored.

On the first trial, the researcher instructed the students to respond according to the teacher’s instructions (i.e., no problem behavior) in order to familiarize the teacher with the BST approach and to provide her with a chance to practice praising students for meeting the expectations.

During the second trial, the researcher instructed most of the students to meet every expectation, while 1 – 2 students engaged in the anticipated forms of problem behavior when the teacher gave the recess signal (i.e., lining up slowly; being disruptive in line). This was designed to simulate a real class, wherein some students always meet a teacher’s expectations and others require corrective feedback. The researcher informed
the students in the presence of the teacher what type of problem behavior they would exhibit when the teacher gave the signal and also instructed the students to respond to the teacher’s corrective feedback on her first prompt.

During the third trial, some students again met every expectation while 1 – 2 students engaged in problem behavior. In this trial, however, one of the students was instructed not to respond to the teacher’s first prompt to correct the behavior so that she could practice offering individual BST to a student until he or she met the expectations. This meant that while the other students had a “real recess,” the teacher had to continue providing one student with rehearsal and feedback until the expectations were met twice consecutively. (Upon receiving individual BST, the student was instructed to comply with all teacher directions the first time.) In this way, each trial became incrementally more difficult and allowed the teacher to practice giving praise and corrective feedback to both individuals and the group. Although each teacher had the option of completing additional practice trials, each demonstrated readiness for the scored trials after these three assisted trials.

In the scored trials, the researcher and a second interobserver scored the teacher’s performance as she performed BST without prompting. Students acted as before: some meeting every expectation and 1 – 2 engaging in problem behavior as instructed by the researcher. In the first scored trial, students exhibiting problem behavior were instructed to comply with all teacher instructions to change the behavior on the first prompt. In the second scored trial, students exhibiting problem behavior were instructed to comply with all teacher instructions on the first prompt except for one student, who was instructed not to comply. This gave the researcher the opportunity to score each teacher’s ability to
provide individual BST when expectations were not met. At the end of each test session, the researcher showed the teacher her score and provided praise and corrective feedback. These scored trials were conducted until the teacher performed at 90% accuracy or greater on the task analysis for two consecutive trials, and none of the teachers required more than two trials in order to demonstrate proficiency.

Student Training

BST of the teacher’s actual students began with instruction, wherein the teacher took the students outside to the designated line-up area and reminded them what her end-of-recess signal sounded like (e.g., a whistle). She then stated the expectation that at this signal, students should (a) immediately come to the designated line-up area and (b) stand in line with their mouths closed and (c) keep their hands and feet still and to themselves. (This training occurred in the morning before other classes came outside in order to allow students to more easily hear their teacher’s instruction.)

Following this instruction, the teacher chose a student model to demonstrate these behaviors. The student was instructed to pretend to play on a nearby piece of recess equipment until the signal was given 5 – 10 s later. As the student responded to the signal, the teacher vocally described and praised the demonstrated behavior: “Notice how Eliza heard the whistle and started running to line up. Now she is standing in line with her mouth closed and her hands and feet to herself. That was perfect!” A student model was selected for this portion of the demonstration in order to make a clearer distinction between the teacher’s role (giving the signal) and the students’ role (moving to stand in line as directed).
Although a student model seemed appropriate for showing the students what to do, the teacher served as the next model and showed the students what *not* to do. The teacher was selected as the preferred model for this portion of training because of the extensive prompting that the teacher would have to use in order to help a student engage in all the necessary forms of problem behavior at the appropriate times. Thus, the teacher directed the students to watch as she showed them what not to do when the signal was given. The teacher then went to the same equipment that the student model used and played for 5 – 10 s before telling the students, “Pretend I hear the whistle!” At this point she blew the whistle but continued to play for 5 – 10 s before moving slowly to the designated line-up area. She then asked students to verbalize what she did wrong (came slowly when the signal was given), and she reminded them that the expectation was to move as quickly as possible when they heard her signal. She further explained to students the reason for this expectation (e.g., so that the class could have enough time to complete their math lesson).

The teacher then directed the students to watch as she showed them what else they should not do. The teacher returned to the previous equipment, played for 5 – 10 s, told the students, “Pretend I hear the whistle!” and gave the signal. This time, she moved quickly to the designated line-up area but made several noises (e.g., laughing, shouting “I got here first,”) and moved her hands and feet inappropriately once there (e.g., jumping, touching others, etc.). She then asked the students to verbalize what she did wrong (made noises and used her hands and feet disruptively), and she reminded them that the expectation was to stand in line with mouths closed and hands and feet still. Again, she
explained to the students why this expectation was necessary (e.g., so that the students could avoid disturbing other students).

The modeling portion of the training concluded with the teacher selecting another student to demonstrate meeting the expectations. The student moved to a different piece of equipment, played for 5 – 10 s, and responded to the teacher’s signal. Again, the teacher vocally described and praised the student’s behavior: “Notice how James heard the whistle and started running to line up. Now he is standing in line with his mouth closed and his hands and feet to himself. That was absolutely fabulous!”

After the modeling portion concluded, the teacher told the students that they were going to practice lining up. In the first round, she directed the students to “pretend to play” and gave the recess signal 5 – 10 s later. As students moved to line up, the teacher provided individual and group praise to students who met the expectations; she also offered individual and group corrective feedback to students who did not meet the expectations.

Rehearsal and feedback continued for two more rounds, and students who met the line-up expectations by the last round were given an actual recess. Any student who did not respond appropriately remained with the teacher in order to receive individualized feedback and practice.

At the conclusion of the recess, the teacher gave the recess signal and offered praise and corrective feedback to the students as they lined up. Before taking them into the school, she instructed students that their mouths should remain closed and that they should continue to keep their hands and feet to themselves in the hallway. When the last student crossed the threshold into the classroom, the transition was concluded.
The teacher only implemented this entire BST sequence, however, during the first training session with the students. Thereafter, she attempted to maintain students’ appropriate behavior through the use of praise and corrective feedback. Each teacher was explicitly trained on how to offer feedback within the BST sequence since it was the feedback portion of the package that was expected to maintain future student responding. This also meant that after the first session with the students, the researcher used a separate data sheet in order to score the teacher’s use of feedback, not only as students lined up outside, but also as they moved through the hallway to the classroom (see Appendix E). It should be noted, however, that the feedback sequence included a requirement for BST if the students didn’t comply with the teacher’s corrective feedback by the third prompt. BST was therefore possible on more than one occasion (either for individual students or for the entire group) depending on the students’ response to their teacher.

Because teachers practiced using the feedback sequence in the Saturday training, the researcher did not conduct additional formal training for how to offer feedback. The researcher did, however, show the “Subsequent Sessions” data sheet to each teacher prior to using it and reviewed its components, letting teachers know that they would continue to be scored on how effectively they delivered praise and correction to the students as students completed the transition. Thereafter, the researcher briefly met with the teacher at the end of every day in order to show the teacher her score and provide her with praise and corrective feedback.
Maintenance

A single maintenance probe was conducted for two of the three teachers in the two weeks following intervention. The researcher scored the extent to which the teacher correctly used feedback as a way to elicit appropriate student responding as well as the duration of the students’ transition.
RESULTS

In baseline, teachers used very few components of BST in order to have their students line up from recess (range 0 – 33%). Of the three teachers, only the third ever specifically directed the students to stand quietly in line and to move quietly through the halls; the other two teachers largely ignored disruptive behavior except to occasionally say “shh” to the group. Even in the presence of highly disruptive behavior (e.g., bouncing a ball in line, shoving in line), none of the teachers provided instruction, modeled or nonmodeled the desired behavior, or provided opportunities for students to rehearse the behavior. The majority of students in each class were disruptive outside and in the hallway as they completed the transition.

Some students in each class also responded slowly to the recess signal, and none of the teachers attempted to change the behavior; they simply waited while all the students came to the line. There were some students in each class, however, who lined up at the signal, moved quietly in line, and kept their hands and feet to themselves during the transition. Only the third teacher, however, provided any praise to the students for appropriate responding (one praise statement in nine days of baseline); the other two teachers provided no praise in baseline for students’ appropriate responding. Thus, students as a whole did not consistently line up quickly, move quietly in line, or use hands and feet appropriately. All of these behaviors led to the outcome that for each class, the transition from recess to the classroom was lengthy, requiring as much as four times the amount of time shown possible in treatment.
The data for the percentage of BST components implemented are presented in Figure 1 (See Appendix A). The first teacher, Josie, showed a consistently low level of responding in baseline, implementing an average of 7% of BST steps (range 0 – 9%). In training, Josie scored an average of 95% on the task analysis (trial 1: 93%; trial 2: 96%), though her score increased to a 98% when she performed BST with her actual students. Josie was also the only teacher who trained her students without using the task analysis as a reference; having forgotten it in her classroom, she commented that she knew it “well enough” and commenced training. During this training, all fourth graders complied with Josie’s instructions the first time, except for two students who continued to be disruptive in line (e.g., whispering, giggling). Upon completion of the whole-class training, Josie released all students to recess except for these two, who had to practice the line-up behaviors until they met the expectations twice consecutively. During these additional trials, both students followed her directions the first time and were released to recess after two trials. After this initial student training, Josie implemented the feedback steps with 100% accuracy. Her data in Figure 1 therefore changed from a consistently low to a consistently high level of implementation. A maintenance probe two weeks later showed that Josie still performed the feedback steps of the task analysis at 100% accuracy.

Data for the second teacher, Demi, are presented in the second panel of Figure 1. Demi implemented an average of 9% of BST steps during baseline (range 0 – 18%), meaning her accuracy levels were low and somewhat variable. In training, Demi scored an average of 99% on the task analysis (trial 1: 98%; trial 2: 100%), and she scored 98% when she performed BST with her actual students. During this training, all third graders
complied with Demi’s instructions the first time, and no students had to complete individual trials before being released to recess.

After the initial full-sequence training, Demi implemented the feedback steps with 94% accuracy (range 80 – 100%). Her accuracy level was therefore much higher than in baseline but still had some variability. In the two sessions that account for the variable data (80% and 83%), Demi gave two students corrective feedback about their disruptive behavior but did not require further practicing when the students did not comply with her instructions. During a feedback session following the second disruptive instance, the researcher reminded Demi to respond to disruptive behavior swiftly and to require students’ further practice if necessary. After this feedback, Demi required individual practice of two students: once for a student who was tossing a ball in the hallway and once for a student who was talking through the hallway. Both times, students responded to Demi’s instructions to practice the behavior as expected, and further individualized BST was never required. After this, Demi’s scores improved to 100% accuracy on the task analysis, and a maintenance probe two weeks later showed that Demi again performed the feedback steps of the task analysis at 100%.

The third panel of Figure 1 shows data for the third teacher, Amber. In baseline, she implemented an average of 20% of BST steps (range 8 – 33%), meaning her data were at a low level with some variability and a slightly decreasing trend. In training, Amber scored an average of 95% on the task analysis (trial 1: 96%, trial 2: 94%), although she scored a 98% when she performed BST with her actual class. During this student training, all of Amber’s second grade students complied with her instructions the first time, and individual practice was not necessary.
Thereafter, Amber performed the feedback steps at 100% accuracy in all sessions except for one, when her score dropped to 83%. On this day, Amber was in a hurry to pick up her students from recess and therefore did not provide the amount of praise or corrections that the students’ behavior warranted. This meant that her average score on implementing the feedback steps was a 96% (range 83 – 100%), and her data showed a high level with only slight variability. Because Amber’s second graders always met her expectations or responded to her corrective feedback on the first prompt, none of the students ever required any individual practice during treatment. Amber declined having a maintenance probe conducted, however, because it was nearing the end of the school year, and she didn’t want to require “perfection” of her students in their final weeks of class.

Figure 2 shows data for the duration of each recess-to-classroom transition (See Appendix A). The first teacher, Josie, had baseline levels that were high and somewhat variable: It took her fourth grade students an average of 5:08 min to transition from recess to the classroom (range 4:22 – 5:36 min). After training, it took Josie’s students an average of 1:47 min to transition from recess to the classroom (range 1:23 – 1:55 min), meaning the data were at a lower level and had less variability than in baseline. In total, this meant that Josie gained an average of 3:21 min/day during the lunch recess transition, or 16:45 min/week.

Although all students responded as expected during the observed transitions, the teacher noted anecdotally that she had conducted an individual practice session for two students who had lined up slowly during a morning recess. While the other students went into the classroom to spend time with a former student teacher, Josie had both of these
students practice meeting the line-up expectations twice consecutively, which she reported they did the first time. Overall, Josie’s students lined up quickly at her signal, moved quietly through the line, and kept their hands and feet to themselves for the duration of the transition. A maintenance probe taken two weeks after treatment showed that Josie implemented the BST steps with 100% accuracy and that her students still completed the transition quickly (1:31 min).

The second panel of Figure 2 presents data for the second teacher, Demi. These data show that in baseline, the students’ transitional times were at a high and variable level; it took the third graders an average of 5:02 min to transition from recess to the classroom (range 4:03 – 6:39 min). After training, it took Demi’s students an average of 2:34 min to transition from recess to the classroom (range 2:12 – 3:01 min). Duration levels were therefore not only lower than baseline levels, but also less variable. A maintenance probe taken two weeks after treatment showed that Demi’s students still completed the transition quickly (2:13 min). Overall, this meant that Demi gained an average of 2:28 min/day during the lunch recess transition, or 12:20 min/week.

The third panel of Figure 2 shows data for the third teacher, Amber. In baseline, it took her students an average of 3:16 min to complete the transition (range 2:25 – 4:11 min), placing the data at a middle and variable level. After training, it took Amber’s second grade students an average of 2:15 min to complete the transition (range 1:56 – 2:41 min), meaning the data were reduced to a lower level but still showed variability.

It is important to note that in both sessions where the time was above baseline levels (2:41 min and 2:28 min), every student was in the classroom before 2 min except for a single student—a boy in the first transition and a girl in the second one. In each
case, the students were filling up water bottles (a practice the teacher allowed) and taking a drink before concluding their transition. By contrast, in baseline, several students were still in the hallway up until the time the teacher told them to enter the classroom. This indicates that although the transitional time after training still exceeded baseline levels on two occasions, students as a whole completed the transition more quickly. Even with these two outlier students increasing the overall time, Amber gained an average of 1:01 min/day during the lunch recess transition, or 5:05 min/week. Although the amount of time this teacher gained was less than the gains of the other two teachers, it still represents a 31% increase over baseline levels.

While I did not conduct a formal satisfaction survey or social validity measure with teacher participants, I did record anecdotal comments that they made about the procedures and results. Amber noted being surprised from the baseline scores that she didn’t praise her students more and commented that she was glad she had improved in that category.

Demi, the second teacher, said that when she initially saw the duration of her students’ transitions in baseline (5:02 min), she didn’t think the length seemed excessive. She reported being “shocked” that her students had therefore cut their transitional time in half (2:34 min), and she noted that it had been eye-opening for her to see that her students were able to meet the higher expectations.

Josie, the first teacher, gained the most time (3:21 min) during the transition and expressed the most satisfaction with the study’s results. She noted that beyond gaining time to teach a newly-mandated vocabulary program, she had started using BST to target other problems her students were having in the classroom: how to turn in papers, how to
line up for lunch, how to clean out mailboxes at the end of the day, and how to move from their desks to the rug area. She reported that this training had made “all the difference” in her classroom and that her students were proud of themselves for the improvements they had made. Even though Josie and her students showed the greatest improvements in the study, all participating teachers vocally expressed satisfaction at the gains they and their students made.
DISCUSSION

Results showed that after training, teachers effectively used BST in order to teach their students to transition quickly and quietly from recess to the classroom. Specifically, teachers provided explicit instruction, modeled and nonmodeled the desired behavior, and implemented rehearsal sessions that were coupled with specific praise and corrective feedback. Teachers were also able to use praise and corrective feedback at the expected level (at or above 90% proficiency) in order to maintain student responding after the initial training. Finally, in both classes where a maintenance probe was taken, teachers continued to perform the feedback sequence with 100% accuracy. By contrast, the greatest level of proficiency teachers demonstrated in baseline was 33% (range 0 – 33%). These results demonstrate that BST was therefore an effective method for improving teacher behavior.

It is significant that each teacher performed at these high levels of proficiency after only a single, relatively brief training session (3 hours per teacher). Each teacher also reached proficiency within the minimum number of trials (five), and short, daily feedback sessions (5 – 7 min) sufficiently targeted any lapse in teacher performance. (No teacher ever required an extended session of retraining.) These results show that BST was therefore efficient as well as effective; teacher behavior immediately improved upon receipt of training.

Teachers were, in turn, able to change their students’ behavior. After only a single, brief (15 min) training session, the majority of students in each class began to line up quickly, keep their hands and feet to themselves, and move quietly for the duration of
each transition. Only two teachers (Josie and Demi) ever had to require individual practice of any students, and in all three instances of individual practice, students complied the first time with their teachers’ instructions to change the behavior. Both maintenance probes showed that students continued to complete the transition quickly (Figure 2) and quietly, making BST an effective and efficient method for improving students’ transitional skills. The overall result of this improvement was that the duration of the transitions from recess to the classroom decreased, allowing teachers to spend more time on instruction.

Josie, in particular, benefitted from this extra time: She noted that prior to the study, she let her fourth graders have “down time” in the ten minutes between recess and prep (music, art, etc.) because she didn’t believe it was “usable” time. She also wasn’t teaching the new vocabulary program that the district had recently mandated because she couldn’t find time in her schedule for it. After training, she began using the minutes between recess and prep to teach this vocabulary program, and she noted being able to complete a lesson per day and said that her students were scoring well on the new words.

The second teacher, Demi, noted being surprised that the quick and quiet transition made a difference in the students’ behavior once they were actually in the classroom. She said she realized that she needed to be prepared to start delivering instruction right away because her third graders went to their seats and looked at her “expectantly,” as opposed to wandering around the classroom and hall for a few extra minutes. These findings are important because they increase the amount of time teachers can spend on instruction, and increasing instructional time can lead to greater academic gains for students (Simonsen, Fairbanks, Briesch, Myers, & Sugai, 2008).
Previous research on transitions has recommended that teachers turn transitions into games, where students try to “beat the clock” in order to earn a reward (Campbell & Skinner, 2004; Yarbrough & Skinner, 2004). While these studies have shown that games can effectively improve disruptive behavior and reduce transitional times, they also require keeping track of the length of each transition and supplying students with some sort of reward (e.g., treats, a party) as students meet the expectations. The time initially gained in transitions can therefore be lost as teachers take time to reward students’ behavior.

These studies also never recommended what teachers should do if their students did not transition as desired, other than not giving students their reward for that day. As one study showed (Romeo, 1998), such group contingencies have the potential to lead to students who sabotage the transition or become upset with each other when the daily reward is not earned, and the game can lead to more problem behavior than it prevents. Finally, studies that have recommended games have still required components of BST: explaining the new rules to the students, showing them what the behavior should look like, and providing them with feedback after each transition. The present study shows that use of the BST components alone can effectively improve student behavior and reduce transitional times. Because both games and use of BST have shown effectiveness, however, teachers should consider which approach would work best in their classrooms when planning to change students’ transitional behavior.

The present study also contributes to the current literature on BST by showing empirically that BST can be used to reduce transitional times. Several articles have recommended features of BST as a way to teach students to transition (Buck, 1999;
but this is the first study [known to the researcher] that has tested these recommendations. The present study also supports the current body of literature that shows BST can be used with typically-developing populations of students and adults in order to rapidly and effectively improve behavioral skills (Beaulieu & Hanley, 2014; Himle, Miltenberger, Gatheridge, & Flessner, 2004; Iwata, et al, 2000; Matthews & Hagopian, 2014).

One limitation of the current study is that after training, two of the three teachers made a change in the students’ bathroom schedule and did not allow them to use the restroom after recess (as they had done in baseline). Instead, students were asked to take this break on their own time before heading outside. Even though this change only affected a few students in each class, this could have contributed to the decrease in transitional time that was shown in Josie’s and Demi’s classes. The researcher noted, however, that even when students exited the bathroom, several other students were still in the hall visiting and standing around; thus, the change in the bathroom schedule did not seem to inflate the duration of the transitions in baseline.

Future research in this area could investigate the number of exemplars required before teachers begin to generalize the use of BST to other relevant areas (e.g., how to line up for lunch, how to act at an assembly). Although each teacher received a relatively intense exemplar in the present study, only one of the teachers (Joise) noted recognizing that BST could be used to target other problems her students were having in the classroom (e.g., how to turn in papers). The other two teachers did not appear to draw this conclusion; thus, research to investigate teachers’ generalization skills may be valuable.
Future research could also investigate the extent to which BST reduces the
duration of the recess-to-classroom transition for other populations of students beyond
second–fourth graders (e.g., kindergarteners, sixth graders). Finally, it may be valuable
to investigate the extent to which BST is an effective method for teaching students to
complete other transitions. Although the recess-to-classroom transition is arguably one
of the longest transitions in the school day, classroom and within-school transitions also
have the potential to evoke off-task behavior and reduce instructional time; thus, BST
should be evaluated in the context of a variety of transitions.

doi:10.1300/J370v20n02 06

APPENDICES
Appendix A

Figures
Figure 1. Teacher percent of BST steps implemented during the recess transition.
Figure 2. Student duration of transitions from the playground to the classroom.
Appendix B

Treatment Integrity Form
Treatment Integrity Form

Independent Observer: Observe the researcher during teacher training. Record “+” if the behavior is observed; record “-” if the behavior is not observed.

Date: __________________________ *Teacher:* __________________________

____ The researcher provided the teacher with a written copy of the task analysis.
____ The researcher explained each step on the task analysis vocally.
____ The researcher modeled the BST procedure by showing the teacher a video of the procedure being used.
____ The researcher allowed the teacher to rehearse each step of the skill with students.
____ The researcher provided the teacher with feedback. This feedback was:
 _____ delivered at least by the end of every trial
 _____ delivered specifically (i.e., it connected to the desired behavior)
 _____ given as praise when the teacher performed as trained
 _____ given as correction when the teacher did not meet criteria
____ The researcher invited the teacher to participate in an additional session in order to review concepts taught during training (intended to take place prior to the actual student training).

Score: _____ / _____ possible x 100 = _____% correct
Appendix C

Teacher Training Sheets
A Good Beat for Bad Behavior

Q: Why should we explicitly teach behavior?

A strategy to help you teach good behavior:

T

E

E xpectations
- 3 mistakes not to make:
 - DON'T ASK ("How should we be acting" v. "I expect you to..."
 - DON'T WAIT! ("I'll wait..."
 - DON'T assume kids know from A how to act @ B

M

ed by

Note: This includes a model AND a non-model. A model
- Show them what you want
- Show what they're likely to do wrong
- Q: Why end w another model?
 - Q: What would need to
 - non-model for your
 - class? (writing for class, handling jump rope)

P

ractice

- Explicitly tell: "We are going to practice!"
- May need to do this step multiple times till kids get it
 - as group or individ
- Q: Does this take time?

O

ffer feedback - generally prob area when tchr still struggle

Note: This includes praise AND correction.

T

eedback is what will maintain good respond
 - so don't have to constantly model & practice 20 vs
 - Q: what you'll be scored on after initial training (Duration: secondary)
OFFERING FEEDBACK

Praise Means...
- Identify students by name
- Tell them what they're doing right!

Correction Means...
- Identify students by name
- Tell them expectation
- Send them back for more practice
- Require individual BST

Rule of 3: why start individ?
(brady to app to praise all)
- e.g., always sitting ready (e.g., teacher stand @ doorway to watch for bx)
- Note: don't give praise like reprimand (I like how Kylee is sitting) — just say expect!
- e.g., good work & good work lining up quickly
- Q: Why tie praise to bx?
- Q: What most helpful piece here?
- Something inappropriate happening? Get attn!
- GROUP CALL or INDIVID CALL
- Saying "own" doesn't count

Teacher what to fix (e.g., "Eli, you're quiet in line") non-emotional
- Recall: DON'T ask, wait, assume
- e.g., Lily in hall

What notice same?
- This can be grp or individ depending on prob
- Extra practice should not interrupt everyone
- e.g., "Eli, quiet in line, go back to base loops and try again"

Reg: Jessica's football boys, practicing when old teacher visited
Appendix D

Data Sheet – Initial Session
Task Analysis – Initial Session

Data Collectors: Mark “√” if the behavior is observed; mark “-” if the behavior is not observed; mark “NA” if the behavior does not apply.

Date: __________________ Teacher: ____________________________

Instruction

___ Outside, demonstrate and describe the recess signal for the students. (“It’s three loud, quick blasts.”)

___ Tell students that when they hear your signal, they are to immediately line up in the designated area (e.g., in front of you).

___ Tell them that as soon as they are in line, their mouths should be quiet and their hands and feet should be kept to themselves.

Modeling

Model 1:

___ Choose a student from the class to help demonstrate this process.

___ Send the student to play on nearby equipment for 5-10 s and give the signal.

___ Describe how the student responds to the signal. (“Notice how Eliza ran to line up. Now she is standing in line with her mouth closed and her hands and feet to herself.”)

___ Praise the student model.

Non-Model 1:

___ As the teacher, tell the students that you will show them what not to do.

___ Go to the same equipment and play for 5-10 s.

___ Tell the students to pretend that the teacher gives the signal, and give the signal.

___ Play for 5 – 10 more s and slowly walk to the line-up area.

___ Ask students to verbalize what you did wrong.

___ Remind students that the expectation is to line up as quickly as possible.

___ Explain to students why this expectation is necessary. (“We have to line up quickly so that we can finish our math before it’s time for PE.”)

Non-Model 2:
Tell students that you will show them something else not to do.
Go to the same equipment and play for 5-10 s.
Tell the students to pretend that the teacher gives the signal, and give the signal.
Line up quickly, but make noises and movements in line (e.g., talking to peers, laughing, pushing, etc.)
Ask students to verbalize what you did wrong.
Remind students that the expectation is to keep mouth closed; hands and feet to self.
Explain to students why this expectation is necessary. (“We have to stay quiet in line and keep our hands to ourselves so that we don’t disturb other students.”)

Model 2:
Choose a (different) student from the class to demonstrate lining up appropriately.
Send the student to play on nearby equipment for 5-10 s and give the signal.
Describe how the student responds to the signal. (“Notice how James ran to line up. Now he is standing in line with his mouth closed and his hands and feet to himself.”)
Praise the student model.

Rehearsal
Tell students that they will practice lining up when you give the signal.
Allow students to play for 5-10 s and give the recess signal.
Make sure recess signal is audibly given.

Feedback
Trial 1:

<table>
<thead>
<tr>
<th>PRAISE SEQUENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praise students by name who are meeting expectations.</td>
</tr>
<tr>
<td>If the entire group meets the expectations, praise the group.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CORRECTIVE FEEDBACK SEQUENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify student/s by name.</td>
</tr>
</tbody>
</table>
State expected behavior.

If student/s don’t comply:

- Identify student/s by name.
- State expected behavior.
- Send student/s back to designated area to practice behavior again.

If student/s still don’t comply, the teacher should start the next trial.

Trial 2:

PRAISE SEQUENCE

- Praise students by name who are meeting expectations.
- If the entire group meets the expectations, praise the group.

CORRECTIVE FEEDBACK SEQUENCE

- Identify student/s by name.
- State expected behavior.

If student/s don’t comply:

- Identify student/s by name.
- State expected behavior.
- Send student/s back to designated area to practice behavior again.

If student/s still don’t comply, the teacher should start the next trial.

Trial 3:

PRAISE SEQUENCE

- Praise students by name who are meeting expectations.
- If the entire group meets the expectations, praise the group.
CORRECTIVE FEEDBACK SEQUENCE

<table>
<thead>
<tr>
<th>Identify student/s by name.</th>
<th>State expected behavior.</th>
</tr>
</thead>
</table>

If student/s don’t comply:

<table>
<thead>
<tr>
<th>Identify student/s by name.</th>
<th>State expected behavior.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send student/s back to designated area to practice behavior again.</td>
<td></td>
</tr>
</tbody>
</table>

For student/s who have met the expectations by trial 3:

_____ Release to recess.

For students who have not met the expectations by trial 3:

_____ Continue providing rehearsal and feedback until expectations are met twice consecutively.

Score: _____ / _____ possible x 100 = _____% correct
Appendix E

Data Sheet – Subsequent Sessions
Task Analysis – Subsequent Sessions

Data Collectors: Mark “✓” if the behavior is observed; mark “-” if the behavior is not observed; mark “NA” if the behavior does not apply.

Date: _____________________ Teacher: ________________________

___ Make sure recess signal is audibly given.
___ Remind students of expectations before entering building.

PRAISE SEQUENCE

<table>
<thead>
<tr>
<th></th>
<th>Praise students by name who are meeting expectations.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>If the entire group meets the expectations, praise the group.</td>
</tr>
</tbody>
</table>

CORRECTIVE FEEDBACK SEQUENCE

<table>
<thead>
<tr>
<th></th>
<th>Identify student/s by name.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>State expected behavior.</td>
</tr>
</tbody>
</table>

If student/s don’t comply:

<table>
<thead>
<tr>
<th></th>
<th>Identify student/s by name.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>State expected behavior.</td>
</tr>
<tr>
<td></td>
<td>Send student/s back to designated area to practice behavior again.</td>
</tr>
</tbody>
</table>

If student/s still don’t comply, the teacher should resume normal classroom tasks.

<table>
<thead>
<tr>
<th></th>
<th>Require BST during a preferred activity.</th>
</tr>
</thead>
</table>

___ State expectation.
___ Model behavior.
___ Allow student/s to practice.
___ Offer feedback.

___ Praise for compliance ___ Correction as needed
___ Require practice until student/s meet expectations twice consecutively.

Score: _____ / _____ possible x 100 = _____% correct
Appendix F

Data Sheet – Duration of Transitions
Duration Data Sheet – Recess Transitions

Start the timer as soon as the teacher gives the recess signal (e.g., blows the whistle). Stop the timer as soon as the final student crosses the threshold into the classroom.

Teacher: ______________________

Date	Length of Transition	Circle Phase: B (baseline); T (treatment); M (maintenance)	IOA Score (shorter length/longer length)
B	T	M	____/_____ = ____%
B	T	M	____/_____ = ____%
B	T	M	____/_____ = ____%
B	T	M	____/_____ = ____%
B	T	M	____/_____ = ____%
B	T	M	____/_____ = ____%
B	T	M	____/_____ = ____%
B	T	M	____/_____ = ____%
B	T	M	____/_____ = ____%
B	T	M	____/_____ = ____%
B	T	M	____/_____ = ____%
B	T	M	____/_____ = ____%
B	T	M	____/_____ = ____%
B	T	M	____/_____ = ____%
B	T	M	____/_____ = ____%
B	T	M	____/_____ = ____%
B	T	M	____/_____ = ____%