

An Exploration of Wood-Based Cube Satellite Chassis

The Wolfpack CubeSat Development Team, Palm Beach Gardens, Florida Sebastian Timbal (sstimbal@gmail.com), Kevin L. Simmons(ksimmons@bluecubesat.com)

Introduction

- Cubesat chassis are typically constructed using Aluminum alloys.
- Aluminum-based chassis are considerably heavy when compared to chassis constructed with alternative materials.
- Wood may prove to be a far more lightweight and cost-effective material for constructing

The Behavior of Wood in LEO

- Wood will not rot in orbit, as organic compounds are absent in the vacuum of space.
- In a vacuum, wood cannot expand or contract, as there is no moisture or humidity for the grain to absorb.

• The average

wood is

content.

expansion and

contraction of

approximately

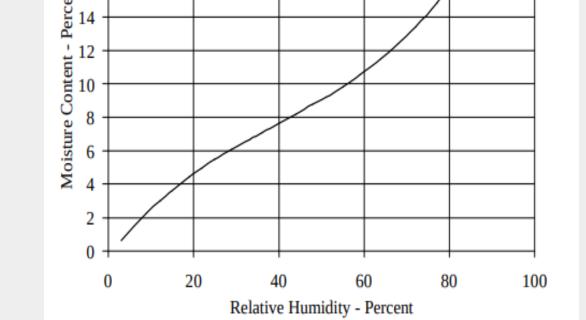
of moisture

0.26% per percent

_		 		
			/	
+	 	 	_/	
			/	
t			/	

Ongoing Research on Wooden CubeSats

- A researcher at Japan's Kyoto University is currently working with the Japan Aerospace Exploration Agency (JAXA) and the National Aeronautics and Space Administration (NASA) to send the first wood-based CubeSat into orbit in 2024.
- The Kyoto wood-satellite team sent wood


CubeSat chassis.

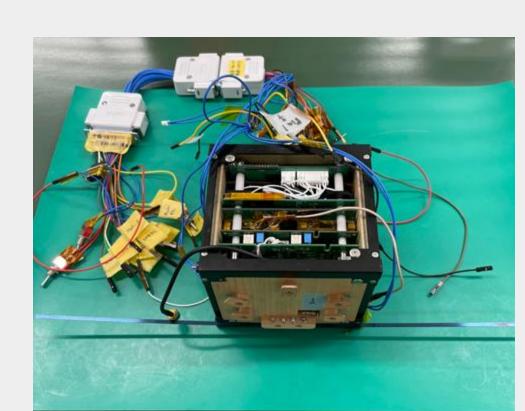
The Advantage of Wood Over Aluminum

- Wood-based chassis are far lighter than aluminum-based chassis.
- The lighter chassis translates to a reduced cost to launch a CubeSat payload.
- Wood-based CubeSat chassis are therefore more financially viable for small research teams.

Alloy	g/cm ³	Alloy	S(cm)	Alloy	g/cm ³
1050	2.705	4032	2.68	6003	2.70
1060		4043	2.69	6005	2.70
1100		4045	2.67	6053	2.69
1145		4047	2.66	6061	2.70
1175	2.700	4145	2.74	6063	2.70
1200	2.70	4343		6066	
1230		4643		6070	2.71
1235		5005	2.70	6101	2.70
345		5050		6105	
1350	2.705	5052	2.68	6151	
2011		5056		6162	
2014		5083	2.66	6201	
2017		5086		6262	
2018		5154		6351	2.71
024		5183		6463	
2025		5252	2.67	6951	
2036		5254	2.66	7005	
2117		5356	2.64	7008	2.78
2124	2.78	5454		7049	
2218	2.81	5456	2.66	7050	
2219		5457	2.69	7072	2.72
2618		5554	2.69	7075	2.81
3003		5556	2.66	7178	2.83
3004		5652	2.67	8017	
3005		5654		8030	2.71
3105		5657		8176	

Material	g/cubic centimeter
Aluminum	2.70
Birch wood	0.67
Magnolia wood	0.57
Cherry wood	0.56

Moisture content as a function of relative humidity(Eckelman, 2)


- Wood cannot normally combust in space, due to the lack of oxygen.
- The autoignition temperature of wood, 1112 degrees fahrenheit, is far above the temperatures typically reached in Low Earth Orbit (LEO).
- Wood has been found to reliably withstand temperatures ranging from -238 F to 302 F, well past the range of temperatures commonly reached in LEO (-85 F to 257 F degrees).

samples into orbit in 2021. The three best performing samples were birch, cherry, and magnolia wood.

• After five years of building and testing, Kyoto University's CubeSat, LignoSat, is scheduled to launch in September of 2024.

LignoSat image courtesy of **BBC Science Focus**

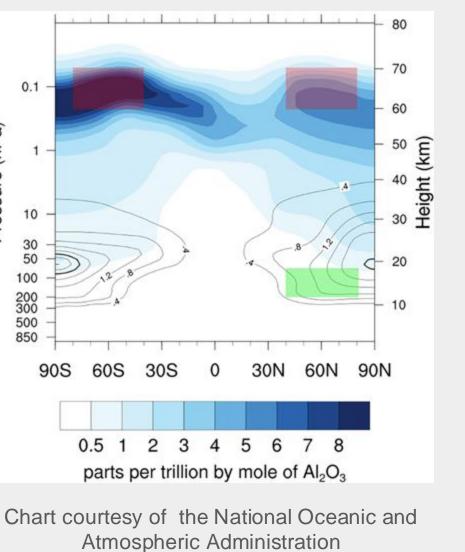
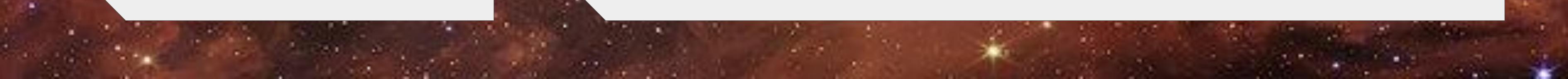

LignoSat image courtesy of Nanosats Database

Table courtesy of Aluminium Guide

The Environmental Impact of Wood

• A recent study by the National Oceanic and Atmospheric Administration has shown that aluminum satellites disintegrate into metal particles in the stratosphere while burning up upon reentry.


• These particles have been found in ten percent of atmospheric aerosols, leading to the concern that they may be harmful to the Earth's ozone layer.

• Rather than disintegrate into particles, naturallysourced wood-based satellite chassis burn up into gases, which is a much more atmospherically- friendly alternative.

Experimental Wooden CubeSat Mission Proposal

- This author proposes a CubeSat mission to test the behavior of magnolia wood in the form of a full 1U CubeSat chassis.
- The chassis will be constructed of five 10x10x0.25 cm magnolia panels.
- Along with the magnolia chassis, eight wood samples will make up the sixth wall of the chassis.
- The samples will consist of oak, hickory, balsa, mahogany, maple, walnut, cherry, and birch wood.
- Two cameras will be mounted to the CubeSat, capturing the interior and exterior of the wall made up of samples, as well as two walls of the magnolia chassis.
- Additionally, two thermometers will be mounted inside and outside of the CubeSat to monitor how the drastic temperature changes affect the wood sample.
- The interior of the CubeSat will be equipped with basic communication instruments.
- A small LED will be mounted to the interior to provide visibility for the interior camera.
- Two sides of the magnolia exterior will host solar panels to provide power to the payload instruments.

