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ABSTRACT

Small satellites in Low Earth Orbit (LEO) constellations are shaping the future of communications and
Earth observation. Despite having inherent advantages such as lower latency and faster deployments due
to quicker and cheaper access to space, monitoring the large number of LEO satellites imposes a significant
burden when considering the long-established methods of human-in-the-loop anomaly detection and recovery.
Timely responses to anomalies reduce operational outages and help maximize the availability of the network.
Traditional rule-based detection and supervised learning have inherent limitations in monitoring the large
numbers of space assets projected to be launched over the next decades because more human intervention
will be required to ensure anomaly detection. Although studies demonstrate the potential of unsupervised
learning in detecting system anomalies using time-series telemetry data from space missions, such studies are
limited to small telemetry datasets (i.e. less than 100 mnemonics). Because it is common for satellites to have
many hundreds or thousands of mnemonics, adapting such Machine Learning (ML) models for time-series
anomaly detection at a larger scale remains challenging. We examined the TelemAnom model developed
by NASA using years of historical satellite telemetry data and proposed improvements to the TelemAnom
model for scalable time-series anomaly detection on operational platforms. We evaluated the predictability
of our adapted model on empirical telemetry data and compared model-identified anomalies with known
anomalies identified by subject matter experts. Our finding suggests that factors such as satellite design,
availability of data, and Exploratory Data Analysis (EDA) processes are important considerations when
aligning unsupervised models with traditional time-series anomaly detection methods.

1 Introduction

The rapidly increasing number of small satellites
being deployed in Low-Earth Orbit (LEO) and Very
Low-Earth Orbit (VLEO) constellations addresses
the urgent demand for convenient and cost-effective
broadband communication1,2 and high-resolution
and near real-time (nRT) Earth observation (EO)
tasks.3 Meanwhile, the unprecedented number of
satellites presents two major challenges for satel-
lite operators. On one hand, the expected rate of
anomalies increases with the number of satellites.4

On the other hand, manual and rule-based monitor-
ing approaches become insufficient to handle the vol-
ume and complexity of telemetry data generated by
large numbers of satellite constellations.5,6 Lever-
aging artificial intelligence (AI)-based methods can
improve automation, accuracy, and scalability in de-
tecting anomalies during satellite operations.7–9

Studies have demonstrated the potential of deep
learning methods to improve the automation of
time-series anomaly detection (TSAD).10–17 How-
ever, these models are developed using synthetic or

small telemetry datasets, which usually consist of
fewer than 100 mnemonics over less than a month,
resulting in fewer than 500, 000 telemetry values in
total. In contrast, the telemetry data of an op-
erational satellite may have a thousand or more
mnemonics and average hundreds or thousands of
records per second, rendering the results of these
studies informative but not representative of real
operations. Therefore, the applicability of existing
methods and the remaining challenges in applying
deep learning methods to improve TSAD automa-
tion for satellite constellations remain unclear and
can be summarized into the following questions:

• Are the models scalable to the number of
mnemonics and the time-series duration typ-
ically found in practical telemetry datasets?

• Are the models’ outputs usable for satellite op-
erators to reduce service latency and improve
their productivity?

• Are there special characteristics within cer-
tain telemetry datasets that have not been ad-
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dressed by existing models?

We examined operational telemetry data from
the Near Earth Object Surveillance Satellite
(NEOSSat) from 2017 to 2022 to investigate these
questions. Additionally, we learned from satel-
lite operators about the anomaly response pro-
cess, particularly regarding the type of model
output that could enhance their daily workflow.
Prediction-error-based, reconstruction-error-based,
and dissimilarity-based approaches are three ac-
tively studied deep learning approaches for TSAD.9

Both prediction-error-based and reconstruction-
error-based approaches train models on telemetry
data that reflects the nominal status of a space-
craft, and then detects anomalies based on the resid-
uals between the model-predicted healthy teleme-
try data and observed telemetry data collected from
the spacecraft. A well-known prediction-error-based
TSAD model leveraging long short-term memory
(LSTM) for prediction, developed by Hundman et
al .,12 was selected and adapted for detecting anoma-
lies in NEOSSat telemetry data. We also investi-
gated dynamic time warping (DTW) for estimat-
ing correlations among mnemonics.10 We evaluated
the performance of the adapted model and identified
gaps in existing models for serving anomaly detec-
tion needs in satellite operations as they grow in
scale and complexity.

Our findings suggest that satellite telemetry data
are typically of much higher volume, and having a
much larger feature space, than the datasets em-
ployed to develop the existing TSAD models. Typ-
ical approaches like one-hot encoding and dynamic
time warping (DTW) become less straightforward
to employ due to the increased temporal and spa-
tial dimensions of operational telemetry data. Al-
though the theoretical classification of anomalies
into point anomalies, contextual anomalies, and col-
lective anomalies aids in solving the general prob-
lem of anomaly detection,9,18 in practice, this clas-
sification loses efficacy when applied to satellite op-
erations due to the inherent protocols for respond-
ing to anomalies in-orbit. Existing models that ex-
hibit decent performance in detecting the presence
of anomalies still have trouble categorizing anoma-
lies into relevant operational categories necessary for
a corresponding recovery. Finally, we identified sev-
eral typical anomaly patterns that seem to break as-
sumptions of existing dynamic error threshold func-
tions for future work. We believe that a more realis-
tic synthetic benchmark dataset could be valuable in
guiding TSAD model development to be applicable
for satellite-related TSAD.

The rest of the paper is structured as follows:

In Section 2, we employed exploratory data anal-
ysis (EDA) to compare operational telemetry data
from NEOSSat versus the Mars Science Laboratory
(MSL) rover and the Soil Moisture Active Passive
(SMAP) satellite dataset used by Hundman et al .;12

In Section 3, we summarized the differences between
the theoretical anomaly categories versus the oper-
ational anomaly categories, and we illustrated the
reason why this improvement is more applicable to
an operational environment; In Section 4, we pro-
posed an approach to reduce the feature space and
map detected anomalies into operational anomaly
categories by leveraging the structure of the teleme-
try data; In Section 5, we evaluated our approach
by benchmarking the adapted TelemAnom model
against anomalies identified during operation. We
summarized a typical anomaly pattern that seems
to break the assumptions in existing dynamic error
threshold functions in Section 6. Finally, we dis-
cussed the gaps in existing TSAD methods for prac-
tical satellite operations in Section 7 and identified
future work that can further promote the utility of
TSAD for satellite operations.

2 Comparing Telemetry Datasets

We compared two open-access telemetry datasets
with the NEOSSat mission telemetry dataset (here-
after NEOSSat dataset) in both data volume and
feature space. The NEOSSat dataset demonstrates
a significantly larger data volume and feature space
compared to the datasets employed in the develop-
ment and testing of existing TSAD methods. The
scale of the NEOSSat dataset reveals limitations in
the scalability of existing methods. We explored the
structure of the telemetry data with dynamic time
warping (DTW) correlation10 and discussed the lim-
itations and mitigations of applying DTW correla-
tion to large-scale operational datasets.

2.1 Data Volume and Feature Space

The volume of data and the feature space are
critical factors for effective TSAD. Large volumes
of informative data can provide a more comprehen-
sive view of the satellite’s operational condition, re-
flecting the operational status of satellite fleets and
enabling more thorough maintenance processes to
be leveraged. Meanwhile, these large data volumes
challenge ML models when considering the predic-
tion throughput and the models’ capacity to effec-
tively utilize the vast amount of information embed-
ded in the data.

Informed by satellite engineers, we extracted a
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few thousand channels that are closely related to op-
erationally relevant anomalies, which results in more
than a twenty-fold increase in the number of chan-
nels compared with the SMAP and MSL dataset.
The total number of anomaly occurrences is sim-
ilarly larger with up to a five-fold increase. As
shown in Table 1, we found that the increase in
data volume mainly consists in the available length
of the time-series and the number of statuses each
categorical variable can have. In the SMAP and
MSL dataset, after one-hot encoding, each chan-
nel depends on mostly fewer than thirty dichoto-
mous variables. However, for an operational teleme-
try dataset, a single categorical variable can have
more than two hundred statuses, which translate
into more than two hundred one-hot encoded di-
chotomous variables, greatly increasing the size of
the feature space.

We estimated the average channel-perplexity for
each feature space to further reflect the differences
of feature spaces of existing datasets and practical
satellite telemetry data. The perplexity PP of a dis-
crete probability distribution of p over the support
of status code (encoded as a categorical variable) for
a channel is equal to two raised to the power of the
information entropy of p,

PP (p) := 2H(p) (1)

where H(p) is the information entropy in bits with
base 2,

H(p) :=
∑
x

−p(x) log2 p(x) (2)

We use linear-scaled perplexity instead of log-scaled
information entropy to make it easier for readers
to compare values in the table. The exponentially
larger feature space, as in Table 1, necessitates di-
mension reduction techniques and careful use of one-
hot encoding.

Dynamic Time Warping (DTW) is a widely used
distance metric for comparing two time series due to
its capability of aligning sequences with non-linear
variations.10,19–21 However, the time complexity of
DTW without constraint would be O(MN) where
M and N are the length of two time-series, which re-
sults in time complexity over 2e7 for two mnemonics
readings of practical satellite telemetry data. Con-
straints like Sakoe-Chiba band and Itakura Paral-
lelogram22,23 can reduce the time complexity for
long time-series at the cost of overestimating the
distances. Contextual information can help derive
the radius parameter but such a radius parameter
becomes time-series specific and thus less generaliz-

able.24–26

In summary, the increased volume in feature
space and the length of time series have yet to be
reflected in the existing available datasets and may
pose challenges to the usability of current TSAD
methods for this application.

Table 1: Data Volume Comparison

Sub-dataset
Name

SMAP MSL NEOSSat

Number of
Channels

55 27 few thousand

Number of
Anomalies

69 36 few hundred

Average
Length

∼8,600 in to-
tal

several thou-
sand per day

Compressed
Dataset
Size

82MB in total hundreds of
megabytes
per day

Average
Perplexity
of Feature
Space

1 per channel 3e79 per
channel

2.2 Dynamic Time Warping Correlation

We adapted Rao et al .’s dynamic time warp-
ing correlation method10 to investigate the patterns
in readings of mnemonics of operational telemetry
dataset. Because categorical variables with hun-
dreds of status codes frequently appear in the oper-
ational telemetry dataset, instead of min-max nor-
malizing variables to be in the range of [−1, 1] and
then evaluating the DTW distance matrix on the
normalized values, we computed DTW distances for
each pair of readings, then used the variance of dis-
tances for each pair of readings as the DTW distance
matrix. We then use the transform function

trans(x) =
1

1 + log(x+ 1)
(3)

to map DTW distance from [0,+∞) to [1, 0). The
transform function has a fat-tail to ensure that dif-
ferences between pairs with high DTW distance re-
main visible.

We computed the DTW correlation of mnemon-
ics from an example packet by appplying DTW
correlation transform function Equation (3) to the
DTW distance matrix calculated with Sakoe-Chiba
band set to 10. The DTW correlation matrix is il-
lustrated as a heatmap, with darker rectangles sug-
gesting that there exist groups of mnemonics whose
time-series readings have smaller DTW distances.
These groups of mnemonics possess potential to be
used to predict each other, or to be combined to re-
duce dimensionality when predicting other mnemon-
ics.
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Figure 1: DTW Correlation of Example
Mnemonics for 1, 000 readings

ST
T_

Va
lid

ity
_F

la
g

ST
T_

Re
qu

es
t_

Fl
ag

ST
T_

_R
PY

_0
ST

T_
RP

Y_
1

ST
T_

RP
Y_

2
ST

T_
Qu

at
_R

ef
_1

ST
T_

Qu
at

_R
ef

_2
ST

T_
Qu

at
_R

ef
_3

ST
T_

Qu
at

_R
ef

_0
ST

T_
So

lu
tio

n_
Ag

e
ST

T_
Av

er
ag

e_
Pi

xe
ls_

Le
ft

ST
T_

Av
er

ag
e_

Pi
xe

ls_
Ri

gh
t

ST
T_

Ce
nt

ro
id

_C
ou

nt
ST

T_
Co

rre
ct

io
n

ST
T_

So
lu

tio
n_

De
la

y
ST

T_
RP

Y_
De

lta
_0

ST
T_

RP
Y_

De
lta

_1
ST

T_
RP

Y_
De

lta
_2

ST
T_

Er
ro

r_
Nu

m
ST

T_
Lit

_P
ixe

l_C
ou

nt
ST

T_
Th

re
sh

ol
d_

Lim
it_

Le
ft

ST
T_

Th
re

sh
ol

d_
Lim

it_
Ri

gh
t

ST
T_

Qu
at

_M
ea

s_
1

ST
T_

Qu
at

_M
ea

s_
2

ST
T_

Qu
at

_M
ea

s_
3

ST
T_

Qu
at

_M
ea

s_
0

ST
T_

Sa
m

pl
e_

Pe
rio

d
ST

T_
RP

Y_
Es

t_
0

ST
T_

RP
Y_

Es
t_

1
ST

T_
RP

Y_
Es

t_
2

ST
T_

M
ea

su
re

m
en

t_
ID

ST
T_

Ti
m

e_
Co

rre
ct

io
n

ST
T_

Ti
m

e_
De

la
y

ST
T_

Ti
m

e_
Ex

pi
ra

tio
n

ST
T_

Ti
m

e_
Re

ad
ou

t
ST

T_
Bi

nn
in

g_
X

ST
T_

Bi
nn

in
g_

Y
ST

T_
M

in
im

um
_C

or
r

ST
T_

M
in

im
um

_C
en

tro
id

ST
T_

Re
fe

re
nc

e_
St

ar
s

ST
T_

Ge
ne

ra
tio

n_
Ti

m
e

ST
T_

Pi
xe

l_C
ou

nt
ST

T_
Ex

po
su

re
_S

ta
rt

ST
T_

Vi
sib

le
_F

ra
ct

io
n

STT_Validity_Flag
STT_Request_Flag

STT__RPY_0
STT_RPY_1
STT_RPY_2

STT_Quat_Ref_1
STT_Quat_Ref_2
STT_Quat_Ref_3
STT_Quat_Ref_0

STT_Solution_Age
STT_Average_Pixels_Left

STT_Average_Pixels_Right
STT_Centroid_Count

STT_Correction
STT_Solution_Delay

STT_RPY_Delta_0
STT_RPY_Delta_1
STT_RPY_Delta_2

STT_Error_Num
STT_Lit_Pixel_Count

STT_Threshold_Limit_Left
STT_Threshold_Limit_Right

STT_Quat_Meas_1
STT_Quat_Meas_2
STT_Quat_Meas_3
STT_Quat_Meas_0

STT_Sample_Period
STT_RPY_Est_0
STT_RPY_Est_1
STT_RPY_Est_2

STT_Measurement_ID
STT_Time_Correction

STT_Time_Delay
STT_Time_Expiration

STT_Time_Readout
STT_Binning_X
STT_Binning_Y

STT_Minimum_Corr
STT_Minimum_Centroid

STT_Reference_Stars
STT_Generation_Time

STT_Pixel_Count
STT_Exposure_Start
STT_Visible_Fraction

10 1

100

Figure 2: DTW Correlation of Example
Mnemonics for 10, 000 readings

Despite its capability in aligning time series, the
DTW approach is known to become computationally
expensive with increases in time-series length.24–26

We benchmarked the computational time of DTW-
distance matrix for 164 mnemonics in parallel with
4 cores of AMD Ryzen Threadripper PRO 5955WX,
with the Sakoe-Chiba band set to 10. Figure 3 sug-
gests that the growth of computational time is super-
linear with respect to the length of the time series.
Applying DTW directly for the large data volume,
such as several thousand records per day for each of
few thousand mnemonics, of satellite telemetry data

remains challenging.
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Figure 4: Relative Differences of DTW Dis-
tances of Example Mnemoncis Between 1, 000
and 10, 000 readings

We also investigated the variance of DTW corre-
lation over the length of mnemonic readings and it
seems that the DTW correlation of the length with
1, 000 readings (Figure 1) does not bear notable dif-
ferences compared with the length with 10, 000 read-
ings (Figure 2). We further investigated the relative
differences of DTW distances, as shown in Figure 4.
The overall similar color of the heatmap suggests
that DTW correlation with a length of 1, 000 is sim-
ilar to that with a length of 10, 000, except for an
offset. This indicates that the pattern of DTW cor-
relation can be relatively insensitive to the length of
the time series. Since the time complexity of DTW
increases with the length of the time series Figure 3,
this finding suggests that the pattern of DTW corre-
lation from a shorter period can be informative for a
longer time period. We evaluated the computational
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time with Sakoe-Chiba band of radius 10 and it sug-
gests that we cannot afford the time complexity to
compute the DTW correlation for the entire time-
series. Our finding suggests that we may consider
using the DTW correlation with 1, 000 readings as
an estimation while being aware that it may intro-
duce biases.

Although the DTW correlation suggests po-
tential groupings among mnemonics, we also ob-
served that the darkened rectangles can appear for
mnemonics from different missions (i.e. SMAP and
MSL), as shown in the top-right and bottom-left cor-
ner in Figure 5. Such inter-spacecraft correlation
becomes less intuitive, without knowing the mean-
ing of these correlated mnemonics. Extra metrics in
addition to DTW correlation can help further anal-
yses.

SMAP MSL

SM
AP

M
SL

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Figure 5: DTW Correlation of Mnemonics
from SAMP and MSL

3 Response to Anomalies and Expected
Model Output

Studies have categorized anomalies into point
anomaly, contextual anomaly, and collective
anomaly.9,18,27,28 A point anomaly refers to in-
dividual data that appears anomalous relative to
the rest of the data. A typical example of point
anomaly is when a telemetry reading exceeds a con-
stant threshold that defines the limit of healthy
behavior. A contextual anomaly, also known as a
conditional anomaly, refers to an instance where
data appears anomalous given its context (or condi-
tion), often manifested as readings of related time-
series variables. In time series, a contextual anomaly
can occur when two events (hence their readings)

happen in an unexpected order, even if both have
healthy readings when inspected individually. A col-
lective anomaly refers to a group of data that appear
anomalous when considered together. For example,
this could occur when a signal has readings above a
threshold for a defined period of time.

The theoretical anomaly categories are abstract
and summarize patterns of anomalies from the data
perspective. Point anomalies, contextual anomalies,
and collective anomalies may be tackled with dif-
ferent methods and techniques according to their
characteristics. Existing TSAD models often fo-
cused on detecting the existence of anomalies while
referring to these theoretical anomaly categories
for performance analysis and algorithm develop-
ment.10,12–15,29

However, for satellite operations applications,
knowing the existence of anomalous data at a given
time is insufficient. Satellite operators need to not
only detect the existence of an anomaly but also to
categorize the detected anomalies into operational
categories. These operational anomaly categories
are created to regulate response activities and track
operational statistics. Different categories of anoma-
lies may correspond to different response sequences
and indicate varying severity levels. These cate-
gories often emphasize how to react to the anomaly
rather than focusing on validating the theoretical
patterns in the data.

4 TSAD into Operational Anomaly Cate-
gories

To the best of our knowledge, existing TSAD
models10,12–17,29 are focused on detecting existences
of anomalies without further mapping the identi-
fied anomalies into operational anomaly categories.
Rao et al .10 evaluated the anomaly detection corre-
sponding to each mnemonic. However, operational
anomaly categories can be more complex than a
one-to-one mapping to a single mnemonic as pri-
mary indicator. Furthermore, even for operational
anomaly categories with a single indicator, it is un-
clear whether anomalies detected using a prediction-
error-based approach with that mnemonic as the tar-
get can correspond to the operational anomaly cat-
egory that uses the same mnemonic as the primary
indicator.

We adapted the TelemAnom model and eval-
uated the performance of the adapted model in
TSAD into operational anomaly categories for the
NEOSSat mission. Compared with the SMAP
and MSL datasets that provides paired channels of
telemetry data and labeled anomalies, the adapted

Qian 5 38th Annual Small Satellite Conference



model needs to select useful channels from teleme-
try data for different operational anomaly categories.
Only correctly detecting the existence of an anomaly
and the binning into the corresponding operational
anomaly category is considered as true positive.

5 Experiment

We trained the following models with 7 days of
nominal (i.e., non-anomalous) telemetry data and
tested over 30 days of telemetry data. The test
datasets include sampled anomaly days and ran-
domly selected consecutive sequences of 30 days of
nominal behavior from the five-year dataset.

5.1 Vanilla TelemAnom Model

The vanilla TelemAnom model is an LSTM
model that takes an input of commands and mon-
itors mnemonics, then predicts the expected read-
ings of such a mnemonic if the underlying status of
the system is normal. The differences between the
LSTM estimated mnemonic readings under normal
status and the actual mnemonic reading is then used
to determine whether the system is currently expe-
riencing anomalies. A high-level view of the Vanilla
TelemAnom model can be summarized as:

ŷ = LSTM(X)

X := [C;y]⊤
(4)

where ŷ is the LSTM estimated mnemonic reading
when the system has no anomalies, y is the actual
reading of the mnemonic, C is defined as the matrix
of command input to the spacecraft

C := [c(1); c(2); · · · ; c(m−1)] (5)

where c(1), c(2), · · · , c(m−1) are one-hot encoded
commands. Each c(i), i = 1, · · · ,m − 1 denote the
active status of a unique command. For example,
we may encode commands to operate a toy car by
specifying “start the engine” as c(1), “stop the en-
gine” as c(2), “accelerate” as c(3), and “brake” as
c(4). Each bold symbol indicate a vector over the
temporal span. For example the mnemonic reading
vector y denotes

y := [yt−ls , · · · , yt−1, yt]
⊤ (6)

where yt−ls , · · · , yt−1, yt each is a reading at a spe-
cific time.

The TelemAnom model further processes the
prediction error

e := ŷ − y (7)

by smoothing it with Exponentially Weighted Mov-
ing Average (EWMA), then taken by dynamic error
threshold function (DET) to detect ranges with as-
sociated anomaly scores by comparing z-score with
a dynamically adjusted threshold. The threshold is
aimed to minimize the mean and standard deviation
of periods of readings that are considered healthy
while being regularized by the penalty of the length
of anomaly periods and number of anomaly periods.

5.2 Adapted TelemAnom Model

The essence of the maximum likelihood approach
is to use other mnemonics related to the target
mnemonics as an maximum likelihood estimator
(MLE) of the commands sent to the spacecraft.
That is, we altered the model as

ŷ(i) = LSTM
(
X̂(i)

)
X̂(i) := [Y\y(i) ;y(i)]⊤

(8)

where Y\y(i) is a matrix of other mnemonic vectors
served as an MLE of one-hot encoded C commands.

Y\y(i) := [y(1); · · · ;y(i−1);y(i+1); · · · ;y(m)]⊤ (9)

where y(1); · · · ;y(i−1);y(i+1); · · · ;y(m) are
mnemonics other than y(i). An easy choice is to
use all the rest of the mnemonics within the same
packet, a structural unit of transmission that groups
several mnemonics together.

5.3 Supervised LSTM Model

The TelemAnom model and our adaptation are
unsupervised and only trained with datasets that
define healthy telemetry data. We created a super-
vised LSTM model trained with labeled anomalies
to serve as an upper bound, addressing the question
of what performance an ML model can achieve for a
well-known anomaly category when given the extra
information of labeled data for historical occurrences
of anomalies.

A = LSTM(X) (10)

where X is a matrix of all mnemonic vectors. All
nominal variables are processed by one-hot encod-
ing, and the remaining numerical variables are scaled
in range [−1, 1]. The output A is a vector of di-
chotomous value −1 (healthy) and 1 (anomaly) to
indicate whether the system has anomalies at the
corresponding time.
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6 Results

We compared the performance of our adapted
TelemAnommodel and the supervised LSTMmodel,
where both models are evaluated with respect to op-
erational anomaly categories for 30 days of healthy
telemetry data, and several days containing anoma-
lous signatures depending on the actual occurrences
of each operational anomaly category (OAC). As
shown in Table 2, the unsupervised adapted Tele-
mAnom model has lower F1 scores compared with
the supervised LSTM model. The F1 score of the
adapted TelemAnom model for the practical teleme-
try dataset is also lower than the SMAP (0.793) and
MSL dataset (0.855). Besides the extra challenge of
detecting the operational anomaly category and the
existence of anomalies, we found that the dynamic
error threshold function (DET) seems to be one of
the bottlenecks because its assumption does not ex-
pect long durations of anomaly occurrences, which
can happen in practice.

Table 2: F1 Score for Operational Anomaly
Categories

Operational
Anomaly
Category
(OAC)

F1 Score
(Adapted
TelemAnom)

F1 Score
(Supervised
LSTM)

OAC-1 0.19 1.0

OAC-2 0.34 0.875

OAC-3 0.25 0.605

We performed error analyses, particularly for the
false negatives when the model failed to detect ex-
isting anomalies. We plotted the LSTM model pre-
dicted healthy telemetry data ŷ (denoted as the blue
line that partially overlapped with the orange line),
the observed telemetry data (denoted as the orange
line), and the residual between the predicted healthy
telemetry data and the observed telemetry data (de-
noted as the green line) in Figure 6 to illustrate
a typical false negative case of a long period with
an anomalous signature. Specifically, this particu-
lar anomaly exists between the x-axis values of 750
and 1,500. Despite the clearly evident residual (the
green error line) between predicted healthy teleme-
try data and observed telemetry data, this anomaly
is overlooked by the DET algorithm due to its as-
sumption that anomalous periods are usually shorter
than healthy periods. While the assumption expect-
ing shorter anomaly periods is reasonable in general,
it can be violated during specific time intervals de-
pending on the resolution of time, particularly in
the context of satellite operations where anomalous

scenarios may persist until they are proactively re-
solved.

0 500 1000 1500 2000

200

150

100

50

0

50

100
y_hat
y_obs
error

Figure 6: Example of DET False Negative

In summary, the adapted TelemAnom model,
trained with healthy telemetry data, demonstrated
its potential to detect anomalies and categorize them
into bins applicable to an operational environment.
Its performance can be further improved by enhanc-
ing the ability to identify anomalies from the resid-
ual of the model predicted healthy telemetry data
compared to the observed telemetry data.

7 Discussion

The rapidly increasing number of satellites in
Low Earth Orbit (LEO) and Very Low Earth Or-
bit (VLEO) constellations presents a challenge to
satellite operators to efficiently and effectively man-
age responses to anomalies. The surge in satellite
deployments not only generates a larger volume of
telemetry data but also necessitates the creation of
satellite-specific rules for the evaluation of telemetry
data. These challenges demand robust and scalable
solutions to maintain the operational integrity of or-
biting assets.

Time-series anomaly detection (TSAD) models
can greatly improve satellite operation teams’ capac-
ity to process large volumes of telemetry data while
managing the fleet efficiently. Supervised learn-
ing models typically require training with labeled
anomalies, and since rules for healthy telemetry data
can be satellite-specific, the labeling process can be
cumbersome and may not be adequately prepared
for emerging anomalies. Therefore, it is ideal to de-
velop models that do not rely on labeled anomalies,
enabling more adaptive and efficient anomaly detec-
tion in dynamic satellite environments.

Theoretical anomaly categories concisely depict
anomaly patterns as point anomalies, contextual
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anomalies, and collective anomalies. These anomaly
patterns indicate the presence of non-nominal be-
haviour but become less informative for satellite op-
erators responses. Operational anomaly categories
based on response protocols and severity levels are
more helpful for an environment that requires ac-
tionable steps in a rapid fashion. TSAD models that
map detected anomalies into defined anomaly signa-
ture categories can significantly reduce satellite op-
erations latency in responding to anomalies.

Prediction-error-based TSAD models demon-
strated the potential to bin detected anomalies into
operational anomaly categories by training only with
datasets defining healthy telemetry data. Because
these models do not require to be trained with la-
beled anomalies, they can be scaled more easily
and are, therefore, more applicable when considering
the expected surge in future satellite deployments.
The existing prediction-error-based TSAD models
are developed with small volume datasets and fea-
ture space. The output of existing models focuses
on the existence of anomalies rather than the opera-
tional anomaly categories. To the best of our knowl-
edge, we are among the first to report the adapta-
tion and evaluation of prediction-error-based TSAD
models with operational satellite telemetry datasets
to identify and categorize anomalies for direct and
actionable responses in the operational environment.

The existing prediction-error approach relies on
prediction models to predict healthy telemetry data
given the historical telemetry data, and an error
detection function to identify anomalies from the
residual of the predicted healthy telemetry data and
the observed telemetry data. The prediction mod-
els need to account for the large feature space and
compensate for noise in the telemetry data. The
grouping patterns among mnemonics shown in Fig-
ure 1 can inform dimensionality reduction in feature
space. The insensitivity of these grouping patterns,
such as Figure 4, suggests opportunities to employ
computationally expensive algorithms over several
small sampled periods. Our finding suggests that
the error detection function can be one of the bot-
tlenecks for the prediction-error-based methods, as
shown in Figure 6, due to the assumptions currently
employed and the complexity of the variable time
resolution and characteristics of anomalies in time
series.

Our findings are limited to the dataset from the
NEOSSat mission and may be subject to change
given extra datasets from other missions. Space mis-
sions have varied purposes and operating conditions.
Observed behaviour can be different than expected
as can the identification, investigation and classi-

fication of anomalous signatures. However, com-
mon spacecraft components (such as attitude con-
trol, navigation, commanding and telemetry chains)
can still benefit from a generic TSAD solution since
the principles do not change greatly, reducing the
level of effort to arrive at a mission-specific solution.
This is particularly useful with large fleets of the
same (or related) design, where fleet-common signa-
tures can be shared alongside spacecraft-specific be-
haviours, simplifying management of the entire fleet.

TSAD with satellite telemetry data can be in-
formed by the satellite design and the implementa-
tion of the various operations concepts. Establish-
ing a systematic approach to enable models to learn
from these inputs and adapt to a specific mission-
type can be another critical consideration for TSAD
models. This approach might involve the integration
of satellite design, manufacturing, and management
to arrive at a more holistic solution. By incorpo-
rating knowledge from all stages of a satellite’s life-
cycle, TSAD models can be better adapted to the
unique requirements and behavior of the missions in
question, leading to more accurate anomaly detec-
tion and more effective operational responses.

8 Conclusion

We examined operational telemetry data from
the NEOSSat mission and compared with other
open-access datasets. Using the NEOSSat dataset,
we adapted and evaluated prediction-error-based
TSAD models on detecting anomalies into opera-
tional anomaly categories. Our findings suggest that
the large volume and feature space of operational
telemetry data can be challenging for existing TSAD
models. Existing TSAD models can be more infor-
mative for practical satellite operation by outputting
operational anomaly categories instead of the pres-
ence of anomalies alone. Unsupervised TSAD mod-
els can be a scalable solution to serve the surge in
satellite deployment but their performance needs to
be evaluated and improved with practical, opera-
tionally representative telemetry data.
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