

Concept Design of 50-kg Class Satellite 'INSPIRE' : On-Orbit Demonstration of Orbit Control and Formation Flight by Atmospheric Drag Using Variable Shape Function

ect Lab

Website

Website

SSC24-P3-03

Yuki Amaki, Kei Watanabe, Hiroyuki Kobayashi, Yoichi Yatsu, Toshihiro Chujo, Hiroki Nakanishi (Tokyo Institute of Technology),

Jun Kataoka, Kazuo Tanaka (Waseda University)

Tokyo Institute of Technology Lab for Space Systems / +81-3-5734-2609 / info@lss.mech.e.titech.ac.jp

Tokyo Institute of Technology and Waseda University are developing a 50-kg class satellite, tentatively named INSPIRE and now officially named GRAPHIUM. The scientific mission of this satellite is to observe gamma rays from the galactic plane, solar flares, lightning, and auroras using the Compton Camera. On the other hand, the satellite aims to accomplish advanced engineering missions. It is to demonstrate orbit control and formation flight by atmospheric drag force using the variable shape function.

Variable Shape Satellite

The variable shape function is an active shape change method to enable attitude control using changes in mass property and attitude/orbit control using external forces such as atmospheric drag. Attitude control was demonstrated on orbit by HIBARI, and we will demonstrate orbit control next.

Attitude Control Demonstration [1][2]

Orbit Control and Formation Flight Demonstration

Size	550 \times 550 \times 550 mm ³
	(Paddle Stowed)
Mass	75kg
	 Bus 45kg
	 Science Mission 15kg
	 Engineering Mission 10kg
Power	Sun pointing 192Wh
eneration	LVLH 105Wh
Battery	9600mAh
Comm	S-band Uplink 1Kbps
	S-band Downlink 10K~100Kbps

Main Science Mission

MeV Gamma Astronomy

Deep exploration of galactic plane and monitoring transient events such as solar flares using Compton Camera

Compton Camera Weekend Session IV 「MeV Gamma-Ray Detector on the 50-kg Class Satellite」

HIBARI (Launched in 2021 and under operation)

GRAPHIUM (To be launched in FY2026)

	X-band Downlink 20Mbps				
Orbit	SSO 550km, LST 10:00~10:30				

Differences from Atmospheric Drag Orbit Control in Previous Studies

Atmosphere		Advantage	Disadvantage	
Small Drag Attitude is constrained.	Thruster	 High acceleration Can generate thrust in out-of-plane direction Can increase mechanical energy 	 Requires large power and volume resources Limited mission life Coarse thrust resolution 	
Atmosphere Attitude Is free.	Maneuver and Atmospheric Drag Control	System is simple	 Attitude is constrained for orbit control Changing the cross-sectional area causes atmospheric lift and torque in unwanted directions Need to estimate atmospheric drag Difficult to generate force in out-of-plane direction 	
Atmospheric Drag Control by Shape Change	Yariable Shape Atmospheric Drag Control	 Free attitude → easier observation, communication and power generation Easy to generate drag vectors in the desired direction (also in the direction of lift) Can generate drag force without unwanted torque 	 Need to estimate atmospheric drag Difficult to generate force in out-of-plane direction System is complex 	

Formation Flight Using Atmospheric Drag

Relative orbit maintenance at 1km behind the target marker

Formation Flight Mission Sequence

Short distance FF requires high-precision orbit control to prevent collisions, so start with long distance coarse control. After confirming long distance FF, short distance FF is performed using high-precision navigation to evaluate the accuracy of the atmospheric drag orbit control.

①Target Marker②TM position estimation andDrift cancellation

Cross-tr	ack direction [m] In-track direction [m] Relative orbit	$\frac{-\frac{60}{-70}}{-90}_{0} = \frac{1}{5} = 1$	¹⁰ ¹⁵ ²⁰ ²⁵ Time [hr] ²⁵ Paddle angle	Paddle 1 Paddle 2 30 35 40				G di	Short stance FF	 3Start FF 4Long distance FF 	
Accuracy form (only perturbation JZ is considered)					#	Phase	Distance [km]	Period	Navigation	Control	Demonstration
					1	TM Separation	0	1 pass	VBS (Offline Estimation)	Separation by spring	TM position estimation with VBS
Success Criteria			2	Drift Cancel	>100	2, 3 days	TLE	Thruster			
	Orbit Control Using Atmospheric Drag	Thruster	Target Marker Separation	Navigation	3	Start FF	30	5 days	TLE	Drag and thruster assist	
Minimum	 Deploy and drive atmospheric drag control paddles Confirm orbit change by external force with driving paddles 	 Check performance Δv Torque offset 			4	Long Distance FF	30	2 days	TLE	Drag + Thruster	Confirm control performance with TLE accuracy
Full	 Orbit control In-plane control < TBD m Out-of-plane control < TBD m 	 Thrust toward target direction Δv error < TBD m/s 	Separation with speed error less than TBD m/s	 Demonstration of Offline VBS Confirm TM Separation 	5	Middle Distance FF	1~10	2 days	TLE + VBS(Angle Only Navigation)	Thruster + Drag	Confirm control performance with Angle Only Navigation
Extra	 Formation Flight with Target Marker Maintain accuracy within TBD m for TBD days 			 Demonstration of Angle Only Navigation Demonstration of Online VBS 	6	Short Distance FF	< 1	2 days	Wide-angle Camera Coarse VBS →STT VBS (Model Based Navigation)	Thruster + Drag	Confirm control performance with VBS

Reference

[1] K.Watanabe, H.Kobayashi, Y.Amaki, T.Chujo, S.Matunaga, "Attitude control and on-orbit performance evaluation of spacecraft with variable shape function," Advances in Space Research, Volume 72, Issue 6, pp. 2313-2323, 2023 [2] K.Miyamoto, K.Watanabe, T.Chujo, S.Matunaga, "Attitude dynamics of satellites with variable shape mechanisms using atmospheric drag torque and gravity gradient torque," Acta Astronautica, Volume 202, pp. 625-636, 2022