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Overview

The Pandora mission introduces the Near-Infrared Detector Assembly (NIRDA) as an advancement in small satellite space-based infrared spectroscopy. This presentation
emphasizes thermal stability, compact form factor, and ruggedized design. Developed by Lawrence Livermore National Laboratory (LLNL), with support from NASA Ames
Research Center (ARC) and NASA Goddard Space Flight Center (GSFC), the NIRDA is designed as one of two detector assemblies on the Pandora mission. Pandora is a
Pioneers class astrophysics mission that seeks to characterize exoplanets and the activity of their host stars. The following presents the testing results of the NIRDA
engineering unit (EU) and a comparison with our finite element models. Key performance metrics are absolute temperature of the detector, sustained gradients at boundary Visible Channel
conditions, and temperature stability.
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Test Results Test Configuration
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slowly transition at <3°C/min for The NIRDA was tested in the LLNL 40 thermal vacuum chamber over several Weeks.
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o - - - - - - - - . olane diode data was recorded on a Lakeshore Model 336 cryogenic temperature controller
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Thermal Analysis
Mocle Modle
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The cryocooler controller was set to manual open loop mode The cryocooler was operated in a backed off condition with a The thermal model initially showed significantly less parasitic heat losses than the test
and the/ trim heater was disabled off to charagterize I?hermal trim hgater to maintgin steady temperatures for detector data suggests. The emissivity of the radiation shields and conduction through the isolators
stability. The average drift during this assessment was 4.8 characterization. The trim heate/r owgr at each temperature were Increased to correlate with the demonstrated heat leakages. ' For the 90K therma
mK/min. Spikes in t?re data are r?oise from the silicon diode demonstrates tne excess cr ocolgler lift available I:lt each case, the model predicts 1.26W of parasitic loss to balance the 0.24W trim heater power
- 9P y and estimated 1.5W of cryocooler lift.
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