

3D-Printed Polymer-Based Conformal Space Radiation Shield with Heat Dissipation

Yue Xiao¹, An Zou¹, David Carlson¹, Sam Hanson², Aminur Rahman³, Robert B. Hayes², and Pu Zhang³

¹ Advanced Cooling Technologies, Inc. Lancaster, PA

² Department of Nuclear Engineering, North Carolina State University, Raleigh, NC ³Department of Mechanical Engineering, Binghamton University, Binghamton, NY

INTRODUCTION

Current Bulk AI shielding has high Size, Weight, and Power (SWaP) requirements

Image Source: University of Liège.

Bulk AI shielding thickness depends on the electronics with the least

COTS (MAX32675ATK+)	Rad-hard (VA41620)
\$10.26	\$3,912.17
Source: Mouser.com	

- Rad-hard parts: expensive and long lead time
- Advanced electronics are COTS-only

 \rightarrow Need space radiation shield with low Size, Weight, and Power (SWaP) requirements

radiation resistance

Rad-hard part are still needed at certain orbit heights

CONCEPT

A 3D-printed lightweight polymer radiation shield with an integrated heat dissipation layer

- One system for both radiation and thermal challenges
- MOPC with High-Z metal oxides particle

\rightarrow Enhanced electron attenuation

- FRPC with carbon fiber
 - \rightarrow Improved heat dissipation
- 3D printing enables spot radiation shielding
 - → Allow COTS parts w/ low SWaP requirements

RESULTS AND DISCUSSION

MOPC Development and Testing

Gamma ray radiation measurements: >7x radiation attenuation coefficient

MOPC with $Gd_2O_3 - 3D$ Printed

at Lower Energy 0.2 0.4 0.6 Gamma Energy (MeV)

MCNP6 modeling shows 18% - 25% weight reduction compared to Al

High quality MOPC samples

FRPC Development and Testing

FRPC with aligned carbon fibers – 3D Printed • 2.55 W/m-K in-plane thermal conductivity

Shielding Prototype TVAC Tests

Acknowledgment: Program Managers: Capt. Chris McCartan, USAF. Maj. Adam Rich, USSF.