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Figure 1: Decision tree for SEE testing E. Mit gation Methods
Risk of SEEs can never be 0%. The following methods can reduce the probability of destructive
| and non-destructive SEE; a system level analysis considering these methods should be considered.
o Multiple methods can be used to increase radiation tolerance.
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When humanity returns to the lunar surface, the opportunity to capture inspiring imagery like 1 : Any NDSEE? —: _ (EDACI)
the Earthrise photo will depend on the technical performance of the Handheld Universal Ly | q h'V'd Internal WD'T
Lunar Camera (HULC). Proper testing and development of the COTS imagery system for : : | tlriizcaii\(::lniarg%gc?on : ©. Rad hard components ' : .
the Artemis Lunar Surface mission will help ensure HULC is ready for its moment to 11 : ' R | g) Large, prenswe, ana custom footprints
shine. Radiation environments are challenging for modern electronics. Without a cost- | : , probability : I ) dNoInee {0 test Ci 11 C £ DI th ion testing at NSRL
effective means of performing radiation tests, the HULC would not be ready when its - | | 6. Rad tolerant components lgure 11 Lomponent pIece part heavy 1on testing a
Earthshine opportunity arises. While COTS products provide a cheap and easy solution for || : l . F. Estimatina likelihood of SEE In a svstem
many space applications, most are susceptible to ionizing radiation. Such COTS systems L et e ____ [+ There exist several ways to calculate the expectation or rate of events for a given environment with
often require modification, yet programs do not want to incur large cost and schedule [ : Risk? , respect to single event effects [1-3] on individual components
Impacts. This poster will guide other developers regarding single-event effect (SEE) testing | L No | « The basic principle brings together environment contributors and device cross-section [2, 3]
decisions when using COTS. P! : « Test costs and feasibility can limit data gathering for full cross-section information [4, 5]
1 : Yes Program Op. I * In order to determine a bounding case given a dataset with limited number of LET data — use
| | Constraints | > At - -
: : : | ecible? Petersen’s single-event figure of merit (FOM) [6, 7]
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The Earth’s magnetosphere creates belt of trapped 1onizing radiation that should be : : I ) : . Empirical I ationsh _ ‘o (lh'ETlo.ZS_) i th ver of variab|
considered. It additionally shields from most radiation from other sources. Outside the 11 : .3 Ext monitoring and | No CoTS | . FQII\J/:mad %)I\évlglr\/laEVgge f '0nt5 Ip Se€eEn mlﬁs €C no> 019(;85 S”an IdleEE Te Zu;no el\r/IOVVa“?/ es.
magnetosphere, Solar Particle Events (SPE) and Galactic Cosmic Rays (GCR) are the : : - modifications sty : 5 t?\n di FO[I\/I] rate ggriﬁ vvte ?L.Gshat t 8um an 0 ev-emHimg, even
abundant sources of 1onizing radiation. | . WHEN INEY 1Sagree @ 900t InCiCator o1 NG Tates [8]
Calacti |  For all identified failure rates, the risk is additive:
alactic Cosmic Ray LET Spectra 1 | Yes I ] ] ) ) L ]
© 0E+03 _ _ _ 1 | « Assuming constant failure rate will give the reliability function R(t) = e~
b ) Figure 3: Comparisons of - |
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roe0s L EO estimates. compon ] G. A Real-Lunar Example: HULC A COTS Product requiring
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Foe10 | Vos Component * NASA Human Space Flight Program chose the next handheld camera for use both in LEO and Lunar
> v o aln b substitution locations. The choice was based on technical performance.
( J ' possiier « Lunar Environment flux ~ 15x more heavy ions than ISS, determined proton testing performed to test for
At radiation susceptibility and analysis of environment revealed SEE test and analysis required
C. Proton Radiation -  Proton chosen for system test, results est. 60% chance of failure in 24 hours from COTS power IC
) ) D. Heavy lon Radiation » \endor agreed to redesign and investigated replacement I1Cs to improve tolerance
The basics of Proton Testing : e - Proton screening on several candidates quickly reduced candidates to narrow field
* Low cost $1-$2k/hr, more readily available (scheduled within months) Basics of Heavy lon Radiation » Results of heavy ion testing allowed est. of SEEs w/ FOM for each IC candidate
* Most common source of ionizing radiation in space * Testexpensive ($5k-$7k/hr) and low availability (scheduled within years), test » Concurrent proton testing w/ temporary protection/mitigation allowed for further board level screening
» High energy (>200 MeV) protons energetic enough to pass through systems with objectives and facility capabilities must be considered + Initial results from heavy ion were not promising, additional mitigation added by reducing voltage and
little concern for packaging are easily produced, can produce LETs ~ 0.02MeV- * Are highly energetic particles that cannot be shielded due to energy adding one rad hard component |
cm?/mg * Requires synchrot_rons to develop high (_enough cnergy (0 pe_ngtra_te most parts « Heavy ion test results from NSRL with new mitigation showed promise using FOM analysis
- Secondary ions produced by proton strikes can have LET typically up to 8, inrare | * Lower energy emitters (cyclotrons) available, requires modifications of part and » Additional proton performed on subsystems including the lens, view finder, memory card, and Wi-Fi
Instances between 15-25 system packaging for test showed SEESs, though risk was acceptable | | |
Benefits of Proton testing 0 HeaVy lon esting » Components added to manufacturer’s board design and prototypes created
»  Pros: COTS screening, high energy to Benefits of Piece part testing * Proton testing of new board resulted in no DSEE. NDSEEs still present as expected
penetrate packaging, more available than  Pros: DSEE and NDSEE cross-section for part selection, more flexible testing than | « View finder failure occurred, previously undetected because of beam line/time exposure low
heavy ion, cheaper than heavy ion, typically § system level, validate some mitigation techniques before system implementation  Heavy ion testing for complete system was planned to test for DSEE
larger beam window : . Cons; no benefit for some COTS systems, gnknown system effe_c_ts |  Testing was to be performed in June at GSI, however, facility failures delayed the test
« Cons: requires higher dose (longer times) for |, 1 e ot Vel e vo) L5 p . Co_n3|der: beam energy to penetrate packaging, cost to prep, facility time, cost Results
equivalent coverage, uncertain LET from ?37 Benefits of System tesIlng e _  Conservative estimates of the test have indicated that the product has improved from a 60% chance of
secondary ionization, ) . Prog: Broad analysis of system response and mitigations, simulates worst case failure in a day to a 0.36% chance of failure in a day, a 166x improvement
« Consider: good entry point for data, validate | environment
mitigation, easy to test at most facilities 1 i | | « Cons: Expensive, difficult to procure, complex data capture, beam energy requwed
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