..':?:’:‘:ff".. Robin Muller
TR . .
seensitetes Unive rS|ty of StUttgart
eeleee Institute of Space Systems
Robin Miller
muellerr@irs.uni-stuttgart.de
Institute of Space Systems
Pfaffenwaldring 29, D-70565 Stuttgart, Germany
https://absatsw.irs.uni-stuttgart.de/
https://www.irs.uni-stuttgart.de/
Current State of the Art for Flight Software Stacks sat-rs — A library collection for writing flight
e Cand C++ frameworks and libraries are the standard software
solution, for example NASA cFS or F Prime, or in-house framework FSFW + Written specifically for remote systems like satellites and
* Proven and matured technology, but not perfect: CubeSats
Prone to memory-bugs, hard dependency

 Written with embedded systems in mind: Run-time
allocation is avoided, but still offer good support for systems
without a standard run-time

management

Rust — A modern system’s programming language

 Compiled language with performance comparable to C and
C++

e Standardized and interoperable components extracted to
separate libraries, for example for CCSDS and ECSS protocols

* Safety by Design: The borrow checker prevents memory bugs spacepackets sat-rs core HAL Catrs MIB
at complle time CCSDS Modes Thermal TCP/IP
* All the tooling needed to write high-quality software out-of- Health || Housekeeping
) . ECSS sat-rs Book
the-box: Linter, formatter and unit-test harness... Events Parameters || Subsystem
* Easy dependency management PUS Actions Pool
cfdp FDIR TMTC Power sat-rs Example
Rust in the Embedded Domain
e Strong existing layered ecosystem for working with Mode Tree Modelling with sat-rs sat-rs — A Good Fit for your System as
common microcontrollers e Satellite components can be modelled as a tree structure well?
 Good support for interoperability with (vendor provided) C * Mode commands are propagated down the system tree * Existing early flight heritage: Usage for an on-
libraries Specify system modes and transition sequences inside board software simulator and on the ESA
 Write platform independent drivers with the embedded- table structures OPS-SAT mission
hal library » Example Application which can be run on a
. . - . L. Satellite System h t t d -th .«
* Space domain specific support for radiation-hardened oSt computer and comes with a mini-
Vorago microcontroller families S v y simulator
(STM3ZF3) ACS Subsystem
B Micro-architecture] Microprocessaor
Crate (ARM Cortex)
Board Crate HAL Crate , [ADC GPIO MiM SﬁS S*R tGT R%N Ais
F’”E!;?;i'F.Tgf‘SE 2 Memory| | 12c Assembly Assembly Manager Manager Assembly CTRL
- HEE —>{ MGMo —>/ SUSO i i > RWO
IRy |y STR MGT —>» RW1
Device Device
< > > MeM2 »{sUS12 —>| Rwz
High level of abstraction Low level of abstraction 3 RW3
Event Management ACS Mode Tree
with sat-rs xample Event Flow Mode | MGMs || SUSs STR MGT RWs |ACS CTRL satrs-example Component Structure
Event SyStem for: Creator 1 Creator 2 Creator 3 o IofF o o o o o Application Generic Components
ope A SAFE |[NORMAL |NORMAL | OFF OFF NORMAL || SAFE
* Obvervability T 000 s | | evener | v vt roup e Components cvont Manager | | Shared | [pus stack
. . Creator 0 (group 1) (group 3) event 4 (group 2) ACS Subsystem | TMTC Pools |
e Light-weight Inter- s " T " " |/—F——||/———— "“"—————
T gz:gg; Y Y EPS Subsystem PUS Distribution '
Process fvent Manager | ACS IDLE Sequence TM Sink TC Source
Communication TCS Subsystem Satellite
. e events»l l catleventss | supsmpton Step| MGMs | sus | STR | MGT | Rws |ACSCTRL — e Tro PP Servere
mEChanlsm PUS Service 5 PUS Service 19 1. Event Creator 0 subscribes 1 NORMAL [|NORMAL | NORMAL || NORMAL || NORMAL Subsystem
_ . Event Reporting Event Action for event 0 _ 5 SAFE
PY _aUIt, DEtECtIOn, — Z.FventCtreator123ubscr|bes
enabled Events or even g.roup
solation And e l " cubscribes for all events | sattrs-minisim |
Telemetry 4. PUS Service 19 handler Simulator based on asynchronix
:{ecove ry (FDlR) Sink subscribes for all events
pytmtc
PUrposes Command-line interface based TMTC handling

	Folie 1

