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Current State of the Art for Flight Software Stacks sat-rs — A library collection for writing flight
e Cand C++ frameworks and libraries are the standard software
solution, for example NASA cFS or F Prime, or in-house framework FSFW + Written specifically for remote systems like satellites and
* Proven and matured technology, but not perfect: CubeSats
Prone to memory-bugs, hard dependency

 Written with embedded systems in mind: Run-time
allocation is avoided, but still offer good support for systems
without a standard run-time

management

Rust — A modern system’s programming language

 Compiled language with performance comparable to C and
C++

e Standardized and interoperable components extracted to
separate libraries, for example for CCSDS and ECSS protocols

* Safety by Design: The borrow checker prevents memory bugs spacepackets sat-rs core HAL Catrs MIB
at complle time CCSDS Modes Thermal TCP/IP
* All the tooling needed to write high-quality software out-of- Health || Housekeeping
) . ECSS sat-rs Book
the-box: Linter, formatter and unit-test harness... Events Parameters || Subsystem
* Easy dependency management PUS Actions Pool
cfdp FDIR TMTC Power sat-rs Example
Rust in the Embedded Domain
e Strong existing layered ecosystem for working with Mode Tree Modelling with sat-rs sat-rs — A Good Fit for your System as
common microcontrollers e Satellite components can be modelled as a tree structure well?
 Good support for interoperability with (vendor provided) C * Mode commands are propagated down the system tree * Existing early flight heritage: Usage for an on-
libraries  Specify system modes and transition sequences inside board software simulator and on the ESA
 Write platform independent drivers with the embedded- table structures OPS-SAT mission
hal library » Example Application which can be run on a
. . - . L. Satellite System h t t d -th .«
* Space domain specific support for radiation-hardened oSt computer and comes with a mini-
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Event Management ACS Mode Tree
with sat-rs xample Event Flow Mode | MGMs || SUSs STR MGT RWs |ACS CTRL satrs-example Component Structure
Event SyStem for: Creator 1 Creator 2 Creator 3 o IofF o o o o o Application Generic Components
ope A SAFE |[NORMAL |NORMAL | OFF OFF NORMAL || SAFE
* Obvervability T 000 s | | evener | v vt roup e Components cvont Manager | | Shared | [ pus stack
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Process fvent Manager | ACS IDLE Sequence TM Sink TC Source
Communication TCS Subsystem Satellite
. e events»l l catleventss | supsmpton Step| MGMs | sus | STR | MGT | Rws |ACSCTRL — e Tro PP Servere
mEChanlsm PUS Service 5 PUS Service 19 1. Event Creator 0 subscribes 1 NORMAL [|NORMAL | NORMAL || NORMAL || NORMAL Subsystem
_ . Event Reporting Event Action for event 0 _ 5 SAFE
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enabled Events or even g.roup
solation And e l " cubscribes for all events | sattrs-minisim |
Telemetry 4. PUS Service 19 handler Simulator based on asynchronix
:{ecove ry (FDlR) Sink subscribes for all events
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PUrposes Command-line interface based TMTC handling
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