
SSC24-S1-05

Planet’s Agile Software Development for Spacecraft

Kenneth Donahue, Kiruthika Devaraj, James Mason, Meric Ozturk
Planet Labs, PBC

645 Harrison Street, 4th Floor, San Francisco, CA 94107, USA
kenny at planet dot com

ABSTRACT
Planet Labs PBC (NYSE:PL), is a vertically integrated space and data company, and a leading provider of daily
Earth data and insights; we design, build, and operate the largest constellation of imaging satellites in history. We
have built and launched over 500 satellites by pioneering the agile aerospace philosophy that encourages rapid
prototyping and iteration on the hardware, and building a minimum viable flight software to launch the satellites into
space. This allows us to use space as a testbed and extension of the development environment as quickly as possible.
Further software development occurs after the satellites are in space, and new features are progressively brought
online to customers as the software matures. Planet’s 3U Dove satellites were built with this approach in mind and
over the last 10 years there have been 15 hardware iterations and ten times as many software iterations.

Pelican, the next-generation follow-on to SkySat, is a category-defining satellite constellation that is designed to
deliver responsive, rapid, very-high-resolution data to our customers. This new constellation has been developed
using this agile development process. We have focused on rapidly creating and integrating a prototype, and then
evolving it with software updates over time to deliver satellites with relatively short design cycles. Prior to delivery
for launch, the focus is on developing and validating a minimum viable product (MVP) with a base level of
capability that enables reliable communication, security, and over-the-air reprogrammability. All low-level interfaces
and devices are confirmed working but await a later software update to fully enable those features.

Planet launched our first successful Pelican Tech Demo (Pelican-1) on Transporter 9 in November. Within the first
orbit, we made first contact and got critical telemetry. Since then, we have successfully commissioned and enabled
multiple subsystems via more than 70 software updates (many of them in the first few months). In this paper we
discuss the core software features that must be tested early in the program, what features can be delayed until later,
and how we triage various needs to safely and incrementally improve the spacecraft post-launch.

AEROSPACE DEVELOPMENTMETHODOLOGIES

Historically, aerospace programs have been large,
long-lived, and expensive. A traditional aerospace
development flow follows the Waterfall project
development methodology, in part because it was the
military standard for contractor development1.
Waterfall is typically used on programs that have long
timelines with a priori known deadlines2. It generally
involves a linear flow from initial concept through
delivery with firm handoffs between teams as the
program progresses in maturity.

NASA generally follows the Waterfall model because it
is instilled in the NASA Procedural Requirements3,
which means there are many existence proofs of the
Waterfall methodology successfully delivering
world-class spacecraft.

Embracing Agile Aerospace
The Waterfall methodology works well in many cases.
Using NASA as an example, it is clear that Waterfall
works for large-budget, low-quantity spacecraft that
need extremely high mission assurance and require
coordination of many subcontractors (e.g. the James

Donahue 1 38th Annual Small Satellite Conference



Webb Space Telescope). One of the challenges with
implementing programs like this is the serial nature of
development. Software cannot be sufficiently matured
and validated until hardware is available to develop/test
against, and launch cannot happen until software is
sufficiently mature. These dependencies extend
schedule, increase program cost, and necessitate the
addition of complex specification and interface
management processes or emulators. Agile Aerospace
decouples software development, leading to faster and
lower cost/complexity programs. Figure 1 depicts the
notional development flows used in the traditional
Waterfall and Agile Aerospace methodologies.

Figure 1: Development Methodologies
Planet on the other hand works on optimizing cost,
schedule, and capabilities against a risk profile for a
given mission. With a distributed network of satellites
as in the Dove and SkySat constellations operated by
Planet, it is acceptable to take risk at the individual
component, system, or satellite level while ensuring
mission success by working on redundancy at the
component, system, or even satellite level. Reframing
the success criteria in this fashion allows Planet to take
a completely different approach to satellite
development.

Planet has created a development methodology we refer
to as Agile Aerospace4. Agile is a software
development methodology based on iterative
development using the following principles5:

● Individuals and interactions over processes
and tools

● Working software over comprehensive
documentation

● Customer collaboration over contract
negotiation

● Responding to change over following a plan

Agile Aerospace is a spacecraft development
methodology that borrows principles from the Agile

software methodology and, with appropriate
modifications, applies them to hardware components
and mission design as well. The goal is to deliver a
minimally working spacecraft prototype that enables all
necessary hardware checkouts, exercise that platform in
space, and then apply any lessons-learned as design
updates in subsequent spacecraft. This feedback loop
allows Planet to take risks with early spacecraft and use
them to derisk future spacecraft.

The major problem with employing Agile Aerospace to
a space program is the inherent risks with the first
prototypes or tech demonstration satellites. These tech
demo satellites may not meet all the performance
requirements and may need more complex and involved
operational support as new features are brought online
with software updates over time. Additionally, the fact
that the hardware may evolve from spacecraft to
spacecraft implies that both the onboard-software and
the operations stack need to be able to support
heterogeneous feature sets as hardware configurations
evolve through this iteration process.

However, the benefits of adopting Agile Aerospace at
Planet are very clear: Planet has proliferated a
constellation of 100s of cubesats and dozens of
SkySats. With each iteration of these satellites, new
features are added in both the hardware and software,
thereby enabling Planet to integrate and leverage the
latest technology innovations from adjacent sectors
(consumer electronics, automotive, medical devices,
etc.). These upgrades enable new features such as e.g.
more spectral bands or faster image delivery to our
customers. On the Smallsat program, and Pelican-1 in
particular, Planet was able to deliver a working
spacecraft prototype in just 2 years from original
conception.

Background on the Smallsat Program and Pelican-1

Planet has taken on the task of creating a new
spacecraft platform using state-of-the-art standards,
cutting-edge processors, and blazing-fast protocols6.
The goal of the Smallsat program is to create a
multi-mission spacecraft bus that can accommodate a
large family of payloads. The Pelican constellation7

(30-cm class optical payload) and the Tanager
constellation8 (a VSWIR imaging spectrometer) will
both be using the Smallsat platform9; Pelican-1, which
was launched in Nov 2023, is our first technology
demonstration using the Smallsat platform and is
intended to be the first of many satellites.

The Smallsat platform has the following basic
architecture as shown in Figure 2.

Donahue 2 38th Annual Small Satellite Conference



Figure 2: Smallsat High-level Architecture
Below is a list of features relevant to the agile process
workflow employed on Pelican-1, which will be
discussed in subsequent sections of this paper:

● Telemetry, Tracking, and Command (TTC)
radios: the primary communication path
between terrestrial ground stations and the
spacecraft.

● Multiple heterogeneous processors: Each
responsible for a specific function; there are
hot or cold spares of nearly everything in the
system.

● Power system: deployable solar arrays for
power generation, batteries for power storage,
and switches and conditioning for power
distribution.

● Attitude Determination and Control system
(ADCS) and Guidance Navigation and Control
(GNC) system: The control loops using
sensors (magnetometers, sun sensors, IMUs,
gyros, GPS, and star trackers) to determine
how to command actuators (magnetorquers,
reaction wheels, and thrusters) to elicit the
desired pointing mode of the spacecraft (e.g.
point the solar arrays at the sun).

● Payload storage and processing: High speed
special purpose processors and high capacity
storage devices with high speed interfaces to
the payload and radio associated with storing,
processing, and downlinking payload data.

● Flight computer: the logical control hub of the
system.

A few additional points of note in the architecture that
are interesting from a software perspective.

● The software update processes should be
tolerant to failures and interrupts and always
be recoverable. As a result, each processor has
multiple software image slots (locations from

which software images can be loaded) and
some even have multiple types of memory
(each with multiple software image slots).

● There is a fair amount of cross-strapping
between subsystems to increase reliability and
flexibility, which means the number of
possible configurations in which the spacecraft
may be operating is very high.

PROCESSES SUPPORTING AGILE AEROSPACE AT PLANET
Planet applied the Agile Aerospace methodology on the
Smallsat program. The program started with
requirements that were of varying completeness and
certainty depending on the subsystem. The
requirements were useful as an initial starting point, but
refining the requirements became less important than
strongly collaborating with stakeholders, prototyping
and rapidly delivering piecemeal functionality as soon
as it was available, and constantly iterating with
stakeholders to make sure their needs were being met.
This mindset has continued throughout the lifecycle of
the program.

The main pieces of Agile that Planet uses are scrum
and feature-driven development. The scrum scopes
and prioritizes the backlog of work, and every two
weeks (this two week period is called a sprint), our
engineering team signs up to complete a certain volume
of work. Sometimes we estimate that volume well and
we pull in some of the backlog. Sometimes we estimate
poorly and some of the volume carries into the next two
week segment. Feature-driven development means we
meet with stakeholders very regularly (at least weekly)
and discuss the following:

● points of friction (what do they want to see
changed)

● user stories to inform feature development
(how do they want the system to behave)

● prioritization of known feature requests and
bug reports

● milestone status, confirming the cognizant
engineers driving the milestones are properly
supported and the milestones are on-track (or
discussing why they are not and how we
rescope/replan)

● the current state of software rollouts (from
release candidates through flight-like
integrated tests on ground-based testbeds, to
on-orbit checkouts and eventual on-orbit
rollout to all images). (This software rollout
process is described in detail later in this
paper.)

These weekly meetings are an invaluable forum for
transparency and flowing information across teams,

Donahue 3 38th Annual Small Satellite Conference



ensuring we are generally focused on the same things
and moving in the same direction at the same time.
However, they are not the only modality for
communicating amongst the teams. Our teams are in
constant communication with anyone they need to be
via the company-embraced instant messaging
communication platform and video conferencing tools.
These tools allow for asynchronous communication
when that is sufficient, or more structured meetings
when needed.

Weekly reprioritization means that the plan can change
very quickly. Whatever problem is most impactful to
the overall program can become the focus of the entire
team if necessary. More likely, the reprioritization
causes some tasks to change, usually at the expense of
knowingly pushing some work into a subsequent sprint
(either just deferring work or knowingly accepting
some tech debt (a known incomplete but passable
solution to be replaced with a more complete solution
as future work) in favor of transitioning to the new
higher priority work). This interrupt-driven
reprioritization is embraced as part of the nominal
workflow, especially as we encounter new issues at the
system integration stages that may not have shown up
at the subsystem level stage, or occasionally when the
space environment presents interesting anomalies that
need triage. With the knowledge that the MVP for
launch (where launch-MVP is the incompressible
feature set necessary to keep the spacecraft safe and is
required by launch) contains (by definition) all
necessary features to keep the spacecraft safe, we
generally have time to properly triage anomalies and
insert them into our backlog with the proper priority.

It is worth noting that the MVP and its associated
milestones are defined and agreed upon by the entire
team with input provided from Systems Engineering,
Program, Missions, Operations, Flight Software, and
any other relevant stakeholders. These milestones
allow us to reason about different features.

● Which features are dependent on one another?
● Which developers need additional support if

milestone development needs to be
parallelized?

● How might a delayed milestone impact the
overall schedule?

While these milestones are defined, there is a constant
negotiation between the various teams to ensure the
definition of MVP for that milestone is properly
scoped. If a milestone is vague or large in scope, it is
decomposed into several milestones. If we realize that
some dependency for a milestone is not going to be
ready in time, we replan, reshape, or redefine the

milestone and its associated MVP with whatever
contingencies we agree upon. All this is to say that
while we have a milestone and MVP roadmap, the
milestones and MVP constantly evolve as we gain more
understanding about the system. By ensuring there is
alignment across the entire team about the MVP feature
set for a given milestone, we are able to avoid scope
creep which could result in massive delays to the
program. Any additional scope gets factored into a
planned future milestone and goes in the backlog.

MINIMUM VIABLE PRODUCT FOR LAUNCH ON THE
SMALLSAT PROGRAM
The complexity of the system coupled with a rigid
launch schedule means that we as a team need to focus
on and agree upon an incompressible feature set: the
minimum viable product for launch (launch-MVP).
Leading up to launch, we would regularly revisit this
feature set to ensure we truly had eliminated everything
that could be deferred until after launch. The team
focused on delivering a known-working platform that
had been electrically tested. The known-working
platform could then accept a future software update that
would unlock new (but known, as-designed)
capabilities of the platform.

To that end, the focus prior to launch for a new platform
is on the following features:

● bidirectional, reliable radio communications
● security;
● over-the-air (OTA) reprogrammability of

everything that is reasonable;
● a gating mechanism to protect deployables

from early deployment;
● functioning power system (generation,

distribution, and storage);
● minimal attitude control necessary to maintain

spacecraft safety while in our
post-launch-vehicle-separation configuration;

● minimal thermal control necessary to maintain
spacecraft safety while in our
post-launch-vehicle-separation configuration;

● minimal fault protection necessary to maintain
spacecraft safety while in our post-launch
vehicle-separation configuration; and

● minimal propulsion integration.

It is worth noting that mission requirements and
licensing conditions mandate that our smallsats be
capable of performing collision avoidance; enabling,
commissioning, and testing propulsion quickly after
launch was important. The system was extensively
tested on the ground, but full operationalization of the
system came after on-orbit checkout and

Donahue 4 38th Annual Small Satellite Conference



characterization as part of Pelican-1 commissioning
activities.

While that features set was required before launch,
most of these features were also required months prior
to launch as part of spacecraft integration: once the
subsystems are integrated into a full spacecraft
configuration, these features are necessary to support
various tests in our verification and validation
campaign.

The reader may notice some large exclusions from this
feature set:

● the payload;
● fully-featured radios;
● time distribution;
● scheduling;
● (more) comprehensive fault protection;
● fully-configurable software; and
● star trackers

These exclusions are intentional for the launch-MVP.
Subsequent software updates can and have unlocked
these other features.

Radios
In general, space missions need to establish
communication with a newly launched spacecraft
shortly after launch to assess spacecraft health and, if
necessary, command the spacecraft into different
configurations to maintain health or perform a software
update.

On the Smallsat platform, we have many radios; the
only radios truly required for launch-MVP are the TTC
radios. Further, the only required mode of operation for
the TTC radios is the slowest symbol rate; this rate is
sufficient for us to communicate, ascertain health state,
and if necessary, command the spacecraft into a new
state. This mode has the benefit of having the least
stringent requirement on attitude pointing, which in our
case, removes any attitude pointing requirements.

Lack of attitude pointing requirement means that even
if the spacecraft is tumbling, we are able to
communicate, assess the health of the spacecraft,
command, and perform any necessary updates.

Security
As a provider of trusted imagery to businesses and
governments, lack of proper security could cause a loss
of mission. As such, and per federal mandate, security
on the communications link between mission control
and the spacecraft is a hard requirement: each packet
requires encryption and authentication. Key

management was also deemed sufficiently important for
testing and interaction with the security system that it
too became a hard requirement.

More extensive nice-to-have features were not required
for the launch-MVP and are instead implemented as
software updates.

OTA Updates
Software update capability is a must, but not
necessarily everywhere. We chose to exclude some
vendor-provided hardware from our initial set of
update-able targets. The expectation was that these
parts of the system, having heritage from other
programs, would be much less likely to need a software
update and if the need were to arise, we would be able
to perform an OTA update to whatever parent
subsystem communicates with the vendor hardware and
unlock reprogramming to the vendor part on an
as-needed basis.

Given that posture, there was a strong requirement that
all non-vendor provided hardware be update-able. This
implied work in several places, but included:

● bulletproof bootloaders
● easy software image slot selection
● full transparency of what software image slots

are selected and running
● the ability to interrogate the system to ensure

validity of software image slots
● demonstrable recovery from any individual

image update failure due to e.g. early
termination, fault recovery interruption, power
interruption, SEU, or any other anomaly.

Deployables
Early deployment of the solar arrays (e.g. while
integrated with the launch vehicle) could have resulted
in damaged solar panels and a severely degraded
mission. As such, great care was taken when testing
and delivering the features for deployable release.

Power
While other parts of the system were intentionally pared
down for launch, the power system was mostly feature
complete. This system has to work reliably always.

Attitude Control
Minimal attitude control in the
post-launch-vehicle-separation configuration required
the ability to force a slight rotisserie roll on the
spacecraft. This rotisserie would ensure the sun would
hit at least some of the solar panels; this would ensure a
safe, power-positive state for the spacecraft. The

Donahue 5 38th Annual Small Satellite Conference



rotisserie would also change the relative angles between
our TTC radios and ground stations antennas ensuring
that we would have a high chance of successfully
communicating with the spacecraft in an early contact.
Mission Control established communication with
Pelican-1 on the first contact and proved this initial
operational mode sound.

Early operations had further requirements that once we
deploy the solar panels, we be able to point those panels
at the sun; this was coupled with a strong desire to
deploy the solar arrays early in the mission to prove out
the power generation design. Some of the features
related to these activities were included in
launch-MVP; others were deferred until after launch.

The combination of all these requirements meant most
of the attitude determination sensors and most of the
attitude control hardware had to be fully
feature-complete and plumbed into the attitude control
loop. The necessary control modes were tested in
software-in-the-loop, processor-in-the-loop, and
hardware-in-the-loop configurations to gain confidence
in their viability.

All other (more involved) pointing modes were
deferred until after launch. Many of them required
more hardware to be operationally supported (star
cameras) or timing precision, none of which were
provided in the launch-MVP feature set.

Thermal Control
The initial thermal control implementation hardcoded
heater configurations and thermostat setpoints to known
survival temperatures. While this was fine for the first
spacecraft, each spacecraft is different and may require
tweaking and each payload has its own thermal
requirements. This was an area of accepted tech debt;
moving these hardcoded configurations to configurable
but non-volatile storage was an effort taken on well
after launch-MVP delivery.

Fault Protection
Fault protection is an unending set of work. There can
always be more and more conditions to check for and
more and more responses to those conditions.

The set we decided upon was a very limited set agreed
upon by thermal, power, missions, operations, and
flight software. Originally, the recovery for every error
was to move to a progressively “safer” system
configuration until only the bare minimum set of
hardware was powered.

Conditions we looked for that would elicit the safing
behavior included:

● a small set of thermal out-of-bound conditions
● a small set of voltage out-of-bound conditions
● a small set of unresponsive hardware

conditions

Fault protection has been a constantly evolving part of
the system and has become more and more
feature-complete as we have matured the program and
learned from our experience with on-orbit operations.

SOFTWARE ROLLOUTS

While the focus prior to launch is on launch-MVP and
its associated milestones, after the satellite is shipped to
the launch base, the focus shifts to the “next MVP” and
associated milestones. Milestone work is well-scoped
and generally we have many different groups of people
working on different milestones in parallel. A
milestone may touch a single application, or may touch
many applications in the system. Whatever the affected
software set of that milestone is, as a milestone reaches
completion, we begin testing and accepting software
candidates for each piece of the puzzle.

Software Rollout Process
The software rollout process described by Doan, et al10
is detailed as follows:

1. A software release candidate is loaded into a
flight-representative hardware-in-the-loop test
environment that mirrors the current nominal
flight configuration. This allows us to have
confidence that any testing we do in this
environment should mirror what we will see
on orbit when we deploy to the real spacecraft.

2. The candidate undergoes the nominal software
update procedure. This gives us confidence
that the upgrade path from the current
application to the new application does not
make any breaking assumptions and that the
upgrade path is safe.

3. The candidate is then used in a set of
nominal/off-nominal automated procedures
that provide confidence that we have not
introduced a regression and that the desired
feature is available to unlock the feature from
the milestone.

4. The candidate is then cleared for load to flight
assets.

5. The release is then loaded onto a single image
of a spacecraft. It is again run through a set of
nominal/off-nominal automated procedures.

6. The release is then allowed to run for several
orbits of use.

Donahue 6 38th Annual Small Satellite Conference



7. The release is then greenlit to be installed in
all relevant software image slots on the
spacecraft.

8. The release is then greenlit to be installed on
more spacecraft.

If at any point the candidate behavior is not desired, we
stop the rollout process, assess the issue, and decide
how to move forward. This process makes it difficult to
roll out a breaking change to an entire spacecraft, let
alone an entire constellation.

Software Rollouts To-Date
The Agile Aerospace approach to spacecraft delivery
means that we should expect to see many software
updates early in the program, but that the rate of
software updates should reach a steady state once all
features are implemented and the system reaches
maturity. This steady state reflects resolutions for novel
anomalies encountered in the space environment as
well as software changes to support different product
offerings and/or changes to the concept of operations.

Figure 3: Dove Software Updates
Figure 3 shows software updates on the Dove program
over the past few years. As expected, we see an initial
spike of software updates followed by two distinct
periods of relatively stable software updates. The
initial spike reflects a period of rapid iteration and
application of lessons-learned. The next period from
2020 to mid-2021 of about 20 updates/year reflects a
period of a priori known platform improvements. The
last period from mid-2021 on of about 5 updates/year
reflects a period of continued optimization.

The Smallsat platform has an order of magnitude more
compute nodes than the Dove platform, so while there
are general similarities between the programs’ update
cadence, the Smallsat program has been updating
software much more frequently.

Since the launch of Pelican-1 in November 2023, we
have learned a lot about the Smallsat platform and have
also unlocked a lot of features. Here are some notable
statistics on the software updates we have performed on
Pelican-1:

● 0 bootloader updates
● 1 kernel update
● 1 device tree update
● 71 unique updates (each applied to multiple

slots)
● 28 unique update targets

Figure 4: Pelican-1 Software Updates

Some of the application updates double-dip into one
another (e.g. we may only have a single release to orbit
that covers both a thermal change and a power system
performance change). Here is a mapping of most of
those 71 updates to different subsystems:

● 8 updates to our TTC radios
● 7 updates related to attitude determination and

control
● 6 updates related to thermal/heaters
● 6 updates to fault protection and recovery
● 5 updates to the power system
● 5 updates to routing
● 5 updates to telemetry and event handling
● 4 updates to security
● 4 updates to OTA updating
● 4 updates related to propulsion
● 4 updates to our payload
● 4 changes to scheduling/onboard sequence

execution
● 3 changes to time knowledge and distribution
● 2 updates to enable onboard scripting and

better debugging

There have been many software updates, and there will
continue to be more software updates as we move from

Donahue 7 38th Annual Small Satellite Conference



feature build-out through feature completeness and then
into performance improvement.

Figure 4 depicts the set of software updates plotted in
time. Some notable features are visible in the plot. The
flurry of updates before November 2023 correspond to
our pre-launch campaign in which we ensured all the
software was ready for launch. The first software
updates after launch were minor tweaks to help with
radio link reliability. The spike in December 2023 was
in support of solar array deployment and associated
spacecraft attitude control mode changes as we
transitioned into a new phase of the mission. The spike
towards the end of February 2024 was related to a
systemic software bug in telemetry flow related to high
water marks on sockets. The subsequent change in
slope starting in March 2024 reflects an operational
change wherein flight software updates were accepted
weekly (more or less as the software became available);
prior to that, software was accepted as-needed or in
support of specific activities.

The expectation is that, in the near future, as the
Smallsat platform approaches feature-completeness, the
update cadence will slow to something similar to the
steady state of the Doves.

SUMMARY

At Planet, we champion Agile Aerospace development
and have applied these philosophies and processes to a
nascent spacecraft program: the Smallsat program that
both Pelican and Tanager constellations are built upon.
For Pelican-1, a first-of-a-generation prototype
spacecraft, the first of the larger Smallsat program, we
placed a large emphasis on delivering a working, tested,
albeit feature-incomplete platform to the launch base.
We focused on and continue to focus on minimum
viable product (MVP) to ensure the team is working on
the right features and bug-fixes at the right time. We try
to integrate early and iterate often. Software and
hardware updates are seen as a natural part of the
process. Our software update process is safe, well
tested, and thanks to our Missions, Operations, and
Flight Software teams, fairly automated. Pelican-1 and
the larger Smallsat program as a whole have benefitted
from many, many software updates, helping us iterate to
a reliable, robust system.

Agile Aerospace allowed us to deliver Pelican-1 in 2
years from conception to reality, prove out the hardware
on orbit, and fold all the lessons learned into the next
spacecraft. The rest of the Smallsat program, including
all subsequent Pelican and Tanager spacecraft, will
benefit from both the software and hardware iterations.

REFERENCES

1. DOD-STD-2167A

2. Petersen, K; Wohlin, C.; Baca, D. "The
Waterfall Model in Large-Scale Development"
10th International Conference on
Product-Focused Software Process
Improvement 2009

3. Stwartwout, D. “Agile Software Engineering
in NASA’s Waterfall World” 17th Annual
Workshop on Spacecraft Flight Software 2024

4. Howard, B. “What is Agile Aerospace? Learn
Planet’s Approach” 2019.

5. Beck, K.; Beedle, M.; Bennekum, A.;
Cockburn, A.; Cunningham, W.; Fowler, M.;
Grenning, J.; Highsmith, J.; Hunt, A.; Jeffries,
R.; Kern, J.; Marick, B.; Martin, R. C.; ;
Mellor, S.; Schwaber, K.; Sutherland, J.;
Thomas, D.; "Manifesto for Agile Software
Development". Agile Alliance. 2001

6. Devaraj, K. “Planet’s Modular, Extensible
Smallsat Platform Enables New Missions
Including Pelican And Tanager” 2024

7. Planet “Our Next-Generation Satellite
Constellation Pelican Is Expected To Deliver
Very-High-Resolution And Rapid-Revisit
Capabilities” 2022

8. Planet “The Hyperspectral Constellation” 2024

9. Mason, J. “Agile Aerospace: Rapid
Development Of Earth Observation Tech For
A Rapidly Changing World” 2023

10. Doan, D.; Flores-Pozo; K., Mankar, A.;
Mcgill, L. “Agile Aerospace: Lessons Learned
from Planet Mission Operations” SpaceOps
Conference 2021

Donahue 8 38th Annual Small Satellite Conference

https://www.planet.com/pulse/what-is-agile-aerospace-learn-planets-approach/
https://www.planet.com/pulse/what-is-agile-aerospace-learn-planets-approach/
https://agilemanifesto.org/
https://agilemanifesto.org/
https://www.planet.com/pulse/modular-extensible-smallsat-platform
https://www.planet.com/pulse/modular-extensible-smallsat-platform
https://www.planet.com/pulse/modular-extensible-smallsat-platform
https://www.planet.com/pulse/next-generation-satellite-pelican
https://www.planet.com/pulse/next-generation-satellite-pelican
https://www.planet.com/pulse/next-generation-satellite-pelican
https://www.planet.com/pulse/next-generation-satellite-pelican
https://www.planet.com/products/hyperspectral/
https://www.planet.com/pulse/agile-aerospace/
https://www.planet.com/pulse/agile-aerospace/
https://www.planet.com/pulse/agile-aerospace/

