
Vilaysing 1 38th Annual Small Satellite Conference

SSC24-S3-10

Automation as a Mindset: An Approach to Streamlining Spacecraft Development and
Operations

Annalisa Vilaysing, Terrance Yee, Elizabeth Nelson

Malin Space Science Systems, Inc.
5580 Pacific Center Blvd, San Diego, CA 92121; 858-552-2650 x215

vilaysing@msss.com

ABSTRACT
With limited opportunities and funding for deep space missions, there is increased pressure to build better, faster, and
cheaper space-borne payloads. Smaller teams and limited tools provide a unique challenge for such development. This
paper reviews the approach the Micro-Mission Systems (MMS) group at Malin Space Science Systems (MSSS) took
in the development of the Mars Synchronous Orbiter (MSO) to streamline and automate various tasks so team
members could focus their efforts on solving more difficult problems and minimize user induced errors.

The team utilized free tools to automate labor intensive and manual processes, run and monitor tests with little to no
user intervention, and build complex flight operation scripts and timetables. Some of these tools were also integrated
with commercial flight software systems to deepen the level of automation that could be accomplished and allow for
a very lean staffing plan.

The integration of automation at every stage of development culminates within the spacecraft itself in two forms: an
autonomous Fault Detection, Isolation, and Recovery (FDIR) system and on-board image processing in the infrared
(IR) and visible range. These processes are not unprecedented in spacecraft; however, MSO pushes the envelope on
the robustness of these processes in the application of deep space.

In the first autonomous process, the FDIR subsystem monitors key parameters of the spacecraft’s health, reboots upon
detection of major faults, and proceeds with its primary operations and science objectives on its own. It will only seek
ground intervention if it cannot recover from faults autonomously. This subsystem allows routine reboots to be
scheduled into nominal operations so that minor errors have less of a chance to accumulate into major errors.

In the second autonomous process, on-board payload image processing was designed to reduce the volume of
downlinked data while still delivering products sufficient for science analysis. MSO implements multiple algorithms
to improve signal-to-noise ratios for the IR products and to construct high-dynamic range (HDR) visible images that
still retain accurate radiometric data. Compression using JPEG2000 results in a data reduction factor up to or
exceeding 1000. Raw payload data and lossless final products are generally available - downlink permitting - allowing
for a robust delivery system of imaging products.

1 INTRODUCTION
Spacecraft development is a multi-faceted process
requiring expertise from different disciplines and
coordination of many moving parts. While it’s preferable
for responsibilities to be compartmentalized within a
team, limited funding for deep space missions require
team members to wear multiple hats and be more
efficient with less manpower, time, and tools.
Limitations may breed innovation, but it also demands
automation.

During the development of the Mars Synchronous
Orbiter (MSO), the Micro-Mission Systems (MMS)
group at Malin Space Science Systems (MSSS)
fluctuated between 6 to 9 members at any given point in

time and their total responsibilities ranged from the
spacecraft’s flight software to imaging systems and
hardware design to functional testing. Automation
systems were necessary to streamline and optimize
particular hand-heavy and laborious processes in order
to free up resources to focus on other complex issues and
development. This paper will discuss three automation
tools/systems that were used to execute a complex set of
equations to model MSO’s battery performance, execute
and monitor spacecraft test procedures, and build
detailed flight operation scripts and timetables. These
tools and systems were built using free software such as
Python, Grafana, and Google Apps Script provided by
the Google Suite. Some of these tools were also
integrated with RocketLab USA’s MAX flight software
system or Ansys Government Initiative’s (ASI) Satellite

Vilaysing 2 38th Annual Small Satellite Conference

Tool Kit (STK) to deepen the level of automation that
could be performed on the development system with
minor oversight, allowing for a very lean staffing plan.

Approaching automation as a mindset for the entire team
and the development of the spacecraft became reflected
in the operating ideology of the spacecraft itself. MSO
benefits from three major automation processes which
allow it to run autonomously and efficiently: a Fault
Detection, Isolation, and Recovery (FDIR) subsystem, a
robust on-board processing algorithm for infrared (IR)
image processing, and an on-board processing algorithm
for visible image processing that produces high-dynamic
range products. These systems are not uncommon in
spacecraft; however, the design of these systems grant
MSO more autonomy in what it can do, especially in the
application of deep space operations.

This paper will discuss the logic behind these subsystems
and the particular challenges solved by them. The FDIR
system monitors key parameters of the spacecraft’s
health and takes action independently to keep the
spacecraft performing nominal operations. This system
grants MSO the ability to perform a system reboot upon
detecting a major fault and return to pre-planned scripts
and sequences to continue its primary science and
communication relay tasks. A major benefit of this
system also allows routine weekly reboots to be
commanded in nominal operations so that an
accumulation of minor errors have less of a chance to
become major errors. This drastically reduces the
amount of downtime when faults are detected and the
need for ground support for the spacecraft to perform its
objectives.

The on-board processing algorithms for the IR and
visible imaging products were implemented because
MSO does not nominally have the downlink budget to
deliver the volume of desired raw data to ground. These
algorithms allow for more data to be sent without
compromising the downlink rates required to send that
data or the scientific accuracy of the data. IR imaging
products generated by MSO have greater signal-to-noise
ratio (SNR) improvements through real-time multi-point
non-uniformity correction, the averaging of hundreds to
thousands of image acquisitions, and operations in 16-bit
space. High-dynamic range visible imaging products
generated by MSO have multiple exposure data
constructed into one image through the use of a robust
patch-based system and adaptive weighting functions
done in Bayer-space. File sizes of the imaging products
are further optimized through JPEG2000 compression
and are returned to ground progressively which results in
a data reduction factor up to or exceeding 1000. MSO
also has enough on-board storage capability to hold raw

payload data and lossless image products for ground
users should data rates permit downlink.

2 OPTIMIZATION OF WORKFLOW

Power Modeling Tool

A major benefit of automation is that tedious, repetitive,
and frankly annoying tasks can be executed accurately,
indefinitely, and without complaint. Modeling the state
of charge of MSO’s battery at various flight modes and
operational environments generated a lot of complaints
within the team and as such, was a prime candidate for
automation.

This model was required to simulate the battery’s state
of charge and the results would be used to properly size
and configure set points for the battery. There were a
rather lengthy number of input parameters that battery
state of charge is dependent on such as battery resistance
coefficients, environmental temperature data,
component power loads, solar array efficiency factors at
different distances from the Sun, and solar incidence
angles just to name a few of them. Properly managing all
the input data on top of the different edge cases to be
tested was difficult and prone to human error. It also took
a lot of time to manually define the component duty
cycle data for component load data calculations.

The automation of setting up and feeding data into this
model was implemented through two software systems:
Google Apps Script and AGI’s Systems Tool Kit (STK)
software. Google Apps Script is a low-code platform that
allows tasks to be programmatically executed across
products in Google's suite of online applications and was
used to write all of the code for automation. STK is a
modeling and simulation software for digital mission
engineering and systems analysis. Further augmented
with SOLIS, a module to model satellites and their
systems, a digital recreation of MSO was created to
simulate all of the environmental conditions that would
be fed into the battery model.

The first stage of the automation code would intake the
desired time scale and duration of the test case to be
modeled and output a set of blank worksheets that would
be automatically formatted with the input parameters and
associated equations of the battery model. While the
sheets are being generated, a user can adjust the scenario
parameters in STK to the same desired time scale and
duration and run a simulation that would output data for
the time dependent input parameters (component duty
cycles, environmental temperature, solar intensity, and
solar incidence angles) of the battery model. This output
of input parameters was designed to be formatted in a
way that can directly interface with the automation code,

Vilaysing 3 38th Annual Small Satellite Conference

allowing the only action from the user to copy and paste
the file into a location the automation code can access.

The second stage of the automation code would then
parse the time dependent input parameters into the blank
worksheets and ask the user for the remaining non-time
dependent input parameters such as battery
characteristics and expected efficiency margins. Since
all worksheets were generated with the required
equations, it only takes a few seconds for the data to
propagate through all the worksheets and finalize with a
graph of the battery’s modeled state of charge, total
loads, and generated power.

Figure 1: Output of the battery power model
automation code for a case where the spacecraft is
operating under the coldest expected conditions. The
model was generated at a time step of 30 seconds and
an analysis duration of 1 day. The blue line graphs
the generated solar array power, the red line graphs
the total component loads, and the yellow line graphs
the battery state of charge.
This automation code turned adjusting time scales for
more fine or coarse calculations from a nightmare into a
trivial matter, allowed for multiple test cases to be
modeled simultaneously since it ran off of a central code
base, and helped with determining a solution for the
battery’s size and set points much more quickly than if
this process was done manually.

Hands-Off Testing Procedures
With only a single test engineer on the development
team, hands-off testing procedures were necessary to
decrease the set up and observation time of testing
sequences on the spacecraft. Automation tools allowed
for multiple tests to be performed in parallel and
adequately managed by one person. The automation of
test procedures were implemented in several stages: 1)
determining when and where automation scripts were
necessary, 2) implementing monitoring scripts and
automated shutoff precautions, and 3) utilizing operation
dashboards and visualizations of databases that were
autonomously fed data from the test environment.

Multiple interconnected tools were necessary to carry
out automated testing of the spacecraft. These include:

● Remote control of spacecraft components and
ground support equipment;

● Command scripts for RocketLab USA’s Ground
Data System (GDS) for MAX, an off-the-shelf flight
software system;

● Telemetry monitoring and alarm scripts written in
Python;

● PostgreSQL databases, an open-source database
management system; and

● Grafana, an open-source web application that allows
users to visualize and query data.

Environmental testing required functional tests to
constantly run in order to verify survival under thermal
stress. This posed an opportunity to automate component
operations and monitoring. Both the commands being
sent and the alarm system setup are included in scripts,
which eliminate the need for an operator and attendant
during tests which last days to weeks long. Thus, while
one automated test is running, another test requiring
manual commands can be performed simultaneously,
and multiple milestones are met within a short period of
the project.

During component level tests, power supplies can be
powered on or off remotely using a Python script and
General Purpose Interface Bus (GPIB) connection, so
long as the power supply has the capability. This allows
engineers to power on components and run tests using
MAX GDS remotely instead of requiring them to be
physically present with the component. For example,
during image capture tests, one can remotely turn on the
power supply, remotely connect to the flight computer,
and remotely actuate the command to capture and
immediately analyze a picture.

Python scripts can also be used to alert test personnel in
real time as soon as the monitored data becomes out of
bounds. Multiple telemetry points of interest can be
monitored at the same time, and the script differentiates
them to alert the responsible engineer. A simple text
message is sent which states exactly which test point is
out of bounds and continues to send texts until returned
to a nominal state. Multiple team members can be added
to the text system to increase reliability and avoid a loss
of hardware.

This is useful not only for safety of the component being
tested and the environment but also for timekeeping
when analyzing data later on. If, for example, the
temperature of the hardware approached a dangerously
high level, the monitoring script recognizes the issue and

Vilaysing 4 38th Annual Small Satellite Conference

immediately shuts off the power supply before damage
has occurred to either the component or the hardware
surrounding it. The temperature increase may also
correlate to the effects on the hardware’s voltage
reading, which could be traced using both the time stamp
from the alert and the overall trend from the data.

After MAX GDS is launched, a Python script is executed
from the command line which immediately opens the
necessary telemetry windows. This is an enormous time
saver, as the operator no longer has to manually request
the windows. MAX GDS can then be connected to a
PostgreSQL database to allow for further interfacing
with Grafana. Thresholds are added to live feed graphs
which alert the operator to correct the spacecraft if
moving towards a hazardous state. These thresholds can
include high and low values, as well as yellow or red
levels of alarm (or any degree of differentiation desired).
Grafana dashboards can be both focused and general; a
dashboard is created for each specialized operations role.
Examples include a dashboard for the attitude
determination and control system and a dashboard
dedicated to the propulsion system. A separate
dashboard exists for a top level view of the most critical
components on the spacecraft, such as battery state of
charge, ADCS control mode, and operational status - all
in the same view.

Additional Grafana dashboards can be used for
component level testing. Separate PostgreSQL databases
can be created for use with testing that does not require
the MAX GDS operational commands and telemetry
data. Python scripts can run tests of printed circuit boards
in a loop and relay data back to a host on a PC. Multiple
dashboards can be run at once from separate databases.
Therefore, a telemetry dashboard generated directly
from MAX GDS can be viewed in tandem with the
dashboard viewing the information from the PC’s
database. Data collected by the python scripts can also
be saved and analyzed with and without the use of
Grafana.

Overall, the use of automation has saved the team time
and effort by granting the ability to run multiple tests at
once without direct oversight, keep spacecraft hardware
running within safe levels, and query and view large
volumes of data.

Collaborative Flight Operation Plans
Flight operation plans can be written mainly in one of
two methods: 1) define a particular set of commands for
one period and then repeat that set for the desired amount
of time, or 2) define a command for each epoch for the
entire duration of the plan. Each method has its pros and
cons. The first method is simpler to define and write and
produces neater, shorter scripts, but leaves no room for

additional commands outside of the routine operation.
Furthermore, any unscheduled spacecraft reboots would
only start the script at the beginning of a sequence,
potentially skipping an operation that otherwise would
have been expected from the ground. The second method
allows for specific commands or complicated sequences
at very precise times and in the event of a spacecraft
reset, operations would pick up where it left off or onto
the next expected command. However, the scripts using
this method can become very long, tedious to write, and
difficult to debug if any errors occur during testing.

Then, the complexity of generating these scripts was
further increased as conflicting priorities were
introduced such as requests for routine orbit maintenance
maneuvers, communications relay with ground assets on
Mars, or special observation passes of Mars for scientific
research interrupt nominal operations. For this reason
alone, the first method of generating flight operation
scripts is unsuitable for MSO. In order to overcome the
challenges of collecting the requests from multiple
parties in a unified way, balancing these conflicting
priorities, and generating the scripts without headache,
automation comes into play.

The first challenge was solved through the usage of
Google Sheets, a web-based application that enables
multiple users to modify spreadsheets and share the data
online in real time. This allows the multiple parties to
input their requests as new rows to define their ‘event
timeframes’ which is characterized by the category of the
spacecraft maneuver or phenomena, the event start time,
and event end time. A new feature of Google Sheets
called ‘Timeline’ can then output a comprehensive
timeline of all events to highlight priority event
timeframes for ground users. However, this output only
serves as a visual aid to find where interruptions to
routine operations would occur. The generation of the
flight operations script is performed autonomously via
Google Apps Script that interfaces with this Google
Sheet.

This automation script begins with definition of the
hierarchy of priorities that were designed for MSO: 1)
orbit maintenance maneuvers, 2) Mars communication
relay passes, 3) special observations of Mars
phenomena, 4) Earth occultation or if DSN
communication is otherwise not available, 5) eclipse
periods, and 6) a combination of Earth occultation and
eclipse period. In the exclusion of any of these priorities,
MSO routine operation sequence is a 15 minute block:
an imaging pass of Mars for 2.5 minutes before a
communications pass for downlink for 12.5 minutes.

With this information and the initial epoch that the flight
operation plan will be executed, the automation script

Vilaysing 5 38th Annual Small Satellite Conference

will then build the flight script using several passes. The
orbit maintenance maneuver and communications relay
timeframes are placed first into the flight script. These
two event timeframes are non-negotiable in the flight
script and all remaining priorities and operations will be
built around them.

In the second pass, the automation script will fill in the
remaining epochs with the routine operation sequence
and make modifications if the epoch falls within the
remaining four priorities. If the epoch is within the
timeframe of a:
● Special observation: then the imaging pass may be

extended into the downlink pass;
● Earth occultation or DSN unavailability: then

downlink passes will be replaced with a slew to the
Sun for power generation;

● Eclipse: then operations may be reduced to only
imaging or only communications based on battery
state of charge; and

● Simultaneous Earth occultation and eclipse: then the
spacecraft will only perform imaging until exiting
one of the two priorities.

The resulting script is considered a rough cut of the flight
operation plan and proceeds through additional passes
for optimization. This initial flight script is written in
FlightJAS, the programming language that the flight
software uses, which is fed directly into SOLIS to
simulate the entire operation plan. Key outputs from this
simulation are battery state of charge levels and slew
durations for each maneuver which are used for the final
pass of the automation script. If the battery state of
charge falls below the allowable threshold, then a few
cycles of the routine operation sequence will be replaced
with power generation. Slew durations are accounted for
all maneuvers and can affect durations of other
operations. For example, if an orbit maintenance
maneuver requires 1 minute of burn and the slew for the
burn takes 2 minutes, then the actual duration of the
timeframe in the flight script needs to be 3 minutes. A
few iterative passes of script adjustment then simulation
may be required to resolve battery state of charge levels
and timing of slews for operations.

After these passes of the automation script, the final
flight operation script has been built and can be used for
final simulation, review, and then verification and
validation. This final step is performed on a flatsat that
will stay on the ground which is a functional copy of the
satellite itself using engineering model hardware.
Realistic simulation of the spacecraft’s behavior is done
through another module of MAX, the On-Board
Dynamic Simulation System (ODySSy). While SOLIS
is a virtual simulation that can be used to validate the

entirety of the flight operation plan at accelerated rates,
ODySSy on the flatsat is run in realtime and is used to
validate a representative day or two only. The telemetry
produced by ODySSy, the on-board FDIR subsystem,
and GDS are monitored autonomously and any
dangerous or unsafe trends are identified in alarms
without requiring extensive human data review. After
these verification/validation steps the operations script is
released for upload at the next scheduled DSN contact.

The use of automation for generating the flight operation
script greatly reduces the amount of manhours and
tedious planning that would have been required if
performed manually and also removes human error that
would inevitably occur with managing multiple
priorities and different operation sequences. Moreover,
the rapid generation of the flight script allows for quicker
responses to modify the operation plan to capture special
phenomena or respond to emergency events without
compromising routine operations.

3 SPACECRAFT AUTOMATION

Fault Detection, Isolation, and Recovery
When Earth and Mars are at the largest distance between
them, a signal can take approximately 21 minutes to be
sent one-way. At best, it can take an hour for an error to
be detected on the spacecraft, send a message for help to
Earth, generate a solution, and then send the solution to
the spacecraft to be executed. During the most infrequent
contact periods, it might be a week before ground
operators would even be aware of a problem. This
represents the potential loss of an hour’s or a week’s
worth of time to complete mission objectives for an issue
that could have been solved by the most common
troubleshooting technique: have you tried turning it off
and back on again?

This is the core ideology behind the Fault Detection,
Isolation, and Recovery (FDIR) subsystem on MSO. The
subsystem is designed to detect serious faults and reboot
the spacecraft (the turning it off portion) before
autonomously returning to full flight operations after
successful reboot, safe mode entry, and safe mode exit
once telemetry is “green” across the board (the turning it
back on portion). This will allow the spacecraft to
tolerate transient faults and recover to full operability
without the need for operator input. While minor faults
that do not affect the spacecraft’s performance or
persistent faults that haven’t been cleared through
system reboots will be directed for ground intervention,
the main purpose of the FDIR subsystem is to minimize
disruptions to the completion of MSO’s mission
objectives. Leveraging the ability for autonomous return
to nominal flight operations allows MSO to deliberately
reboot the spacecraft once a week via command in the

Vilaysing 6 38th Annual Small Satellite Conference

flight operations script or through the expiration of a
one-week deadman timer within the Master Power
Controller. This removes any build up of non-volatile bit
errors in memory and ensures a solid method of
recovering spacecraft communications if any soft
latchups are encountered.

The subsystem has been designed to be executed
identically, independent of entry conditions, in order to
reduce complexity in design and testing. There are a
plethora of potential faults that could be monitored to
trigger a spacecraft reset, but the main premise of the
FDIR subsystem is that all serious errors inevitably result
in one of three main conditions:

● Loss of battery charge, where the battery state of
charge or voltage has fallen below allowed threshold
levels;

● Loss of attitude control or knowledge, where the
attitude determination & control system (ADCS)
has begun detecting control errors; or

● Failure to pet one of the watchdogs, where a
subsystem in avionics, flight software, or payloads
has suffered command loss.

This top-down approach is a crude methodology for fault
detection, but allows the spacecraft to continue
completing its mission objectives as long as the main
subsystems are operational. A more fine grained,
component-level method of fault detection may result in
more precise and faster subsystem resets instead of a
broad and slower system reset; however, component-
level fault detection and recovery dramatically increases
the complexity of the FDIR system and produces many
potential variations in responses, making testing and
managing those responses time consuming and
expensive, as well as introducing further opportunities
for human error. A component fault that does not affect
operations is ignored if the spacecraft can still perform
its tasks within the allowable thresholds on the three
main criteria.

Monitoring of these conditions is configured as a set of
telemetered values with an assigned conditional check or
set of conditional checks to a persistence threshold as
shown in Figure 2. A fault condition is entered once a
conditional check returns true for the persistent threshold
defined for that fault and once entered, the fault response
sequence is executed.

In addition to being triggered by any of these three fault
conditions, the FDIR subsystem will also run when MSO
performs its routine weekly system reboot. This is a
unique capability of the spacecraft, where most
spaceborne payloads operate based on a ‘run until there’s

Figure 2: Event-based monitoring architecture

a problem’ ideology. The autonomous recovery of the
spacecraft through the FDIR subsystem allows MSO to
function as robustly as possible, opting for preventative
maintenance to continuously keep minor issues under
control rather than performing reactive maintenance for
an issue that may have gone past the point of repair.

Once triggered by any of the three fault conditions or the
weekly reboot, the FDIR subsystem will attempt an
orderly shutdown where any write commands will be
completed and components not critical for spacecraft
operation are turned off. Regardless of whether or not the
shutdown was performed cleanly, the Master Power
Reset flag on the Master Power Controller will be
maintained for a long enough period to allow for bleed
off of residual charge to clear any soft latchups.
Afterwards, the FDIR system will begin the reboot
process and set the spacecraft into one of four following
modes:

1. Normal Mode: the system has determined that all
fault conditions are above allowable thresholds and
will resume the flight operation plan;

2. Safe Mode: the status of fault conditions is
undetermined and the spacecraft will focus on
staying power positive and command receptive;

3. Emergency Power Mode: the system has determined
that power levels are below allowable thresholds
and the spacecraft will focus on staying command
receptive with thermal and attitude control functions
disabled; or

4. Hibernation Mode: the system has determined that
the power has drained below the critical level to
safely sustain the flight computer and radio
communications and will disconnect the battery
from primary loads, only autonomously
transitioning to Safe Mode when power levels return
to an acceptable threshold.

Vilaysing 7 38th Annual Small Satellite Conference

The FDIR subsystem has been designed to be invoked
for only one instance at a time, even if there are
subsequent faults that follow the original. The FDIR
subsystem can only be re-entered once the spacecraft has
recovered to a state that has cleared the original fault.
This is to ensure that the spacecraft avoids getting stuck
in partial check loops and allow watchdog protection
against Single Event Effects to be continuous.
Additionally, since the fault response to each of the three
fault conditions is identical, running through the entire
FDIR logic should clear any additional faults anyway.
Each time the FDIR fault response has been triggered,
the subsystem will take a ‘snapshot’ of key telemetry and
store this information for ground users so that the fault
could be investigated at a later time.

Figure 3: Spacecraft operation modes and entry/exit
pathways

In the event that a fault condition has been triggered a
certain amount of times within a specified time frame,
the fault will then be classified as a persistent fault. The
spacecraft will disable autonomous transition into
Normal Mode and wait in Safe Mode for ground
intervention.

There is one scenario the spacecraft will experience that
requires the FDIR subsystem to monitor a specific subset
of faults and produce a unique response. That is the event
of critical burns, a spacecraft maneuver period that is
vital to maintain the trajectory of the spacecraft. There
are two executions of these critical burns, the Trans-
Mars Injection maneuver that will put the spacecraft on
a transfer trajectory to Mars and the Mars Orbit Insertion
maneuver that will put the spacecraft into Mars orbit.
Critical burns must reach a certain amount of ΔV
(change in velocity) within a specified timeframe for
maximum efficiency. Therefore, it is crucial that only
faults related to maintaining the critical burn are detected
and cleared immediately. If the spacecraft is rebooted
during the timeframe of a critical burn, the FDIR
subsystem will execute an expedited version of the
ADCS recovery sequence and then proceed with the
critical burn. After the critical burn has completed, the
FDIR subsystem will proceed with the remainder of its
bootup sequence.

Overall, the FDIR subsystem has been designed to
respond to faults in a robust manner, minimize the need
for ground user intervention, and authorize on-board
autonomy for recovery from Safe Mode. Since, it’s
impossible to plan for every imaginable possible fault,
this design allows the spacecraft to attempt to handle
those unpredictable contingencies through a simple
system reboot response. Only until faults become
persistent does the spacecraft signal for help. The routine
weekly resets is also advantageous for the long-term
health of the spacecraft so that it can perform its mission
objectives as efficiently as possible.

Infrared Imaging
One of the key automation innovations of this mission is
moving the majority of the image processing chain on
board the spacecraft. This has the primary advantage of
minimizing the amount of data that has to be sent back
to Earth, resulting in significant savings due to the cost
of the Deep Space Network’s (DSN) time. Therefore,
after initial on-orbit calibration and characterization,
only final image products will be routinely sent to Earth.

This also allows the IR instrument to utilize extensive
averaging to improve the signal to noise ratio of the final
science product. Up to 3600 raw images can be averaged
to improve the SNR by a factor of approximately 55.
JPEG2000 compression is also employed to allow the

Vilaysing 8 38th Annual Small Satellite Conference

progressively encoded data to be sent to the ground at
low resolution shortly after creation, while the large on
board storage (2TB) holds the entire mission data at full
resolution (final products only). This allows scientists to
prioritize which data sets to download at higher
resolution and thus investigate interesting phenomena
quickly, while allowing the full resolution data to be
downloaded much later when Mars and Earth are closer
and data rates are highest.

The IR detector must have an “RBS” or “Row-redundant
Bolometer” correction applied to remove gross non-
uniformities, which are dominated by the image column
gain values that would otherwise produce a vertical
stripe pattern. The RBS file is not anticipated to change
rapidly throughout the mission but can be revised in
flight based on in flight calibration if warranted. The
correction for the RBS file values is applied in the
detector and affects the analog values coming out of the
detector.

The other analog correction to non-uniformities is the 2D
map of the detector known as the “compensation”. This
compensation is planned to be derived from a fresh deep
space image which should be uniformly cold, although
the option to compensate with a view of the “calibration
paddle” is also available. This provides a uniformly
warm view if on-orbit characterization indicates superior
performance. Compensation to the detector will be
loaded just prior to each scientific observation (every 15
minutes). Once compensation is loaded, it is applied by
the detector to the analog output.

After digitization, the images can be collected and
summed over an observation period (currently planned
to be up to 30 seconds at 120 Hz for 3600 images). Upon
completion of an observation the digital image values are
divided by the number of observations to generate an
average value.

In addition to collecting digitally averaged observations
of the planet, each 15 minutes the instrument will collect
deep space and calibration paddle images before the
science observation and potentially after as well. These
cold and warm uniform images will also be averaged
over the same number of observations as the images of
the planet. These averaged calibration images are used to
apply a two point Non-Uniformity Correction (2-pt
NUC) to the averaged science observation which allows
not only a final non-uniformity correction to be applied
to the detector, but also correct the data to known
absolute radiometric values. If on-orbit calibration
shows that it is necessary, both pre and post observation
2-pt NUC’s can be interpolated and applied to correct for
temporal drift as the camera warms up or cools down
over time.

During the science observations, additional data on the
instrument and spacecraft status are gathered by flight
software so they can be associated with the observations
in the metadata attached to each image. This metadata
includes spacecraft pointing information, position,
temperatures of the instruments and spacecraft power
levels as well as settings used to create the images such
as camera frame rate and number of images averaged.

The final on board process is creating the JPEG2000
image products which include Metadata and make the
image components available in a range of resolutions
available to download to Earth. These final products are
then transferred from the instruments to the flight
computer and then stored in non-volatile memory for
access by the routine recent image download utility or as
high resolution products to be downloaded upon request
or at a later date.

The entire process of collecting and processing the IR
data is driven at the top level by the flight operations
scripts in FlightJAS, which then invoke various utilities
to execute the tasks described above. Imaging software
is invoked by MAX via a script process called
“payload_agent”. These programs access raw payload
image data in the Unix file system, process raw payload
data per ground selected parameters, and move
processed image products to the MAX “to_send”
downlink directory.

A tool to separate the layers of a JP2 file called
“jp2_deconstruct.py” has been developed to allow a JP2
image to be reduced in size and transmitted piecemeal in
order to reduce the amount of downlink bandwidth
needed. The JP2 pieces can be viewed independently
with certain applications and therefore additional image
pieces can be downlinked if the initial image passes
inspection on the ground and proves interesting.

A script to wait for JP2 files to be created (i.e. wait for a
picture to be taken) and take actions upon that file such
as deconstructing it is called “jp2_process.sh”.

Overall, the IR3C imaging software has to be able to
perform the following functions:

● Compensation: Converges all pixel values to a
certain target signal value in order to reduce the
coarse non-uniformity between the pixels.

● Calibration: Obtain a bias frame correction, dark
frame correction, stored as sensor gain & offset
information to create a flat-field correction.

● Image averaging: Individual pixels from an arbitrary
number of consecutive images are summed on the
camera electronics and then averaged before the raw
image is sent to the flight computer.

Vilaysing 9 38th Annual Small Satellite Conference

● Compression: Apply lossless JPEG 2000 [18]
compression or another lossless progressive
compression format.

● Metadata: Attach data to images crucial to
understanding the environment in which the images
were taken.

● Deconstruction/Construction: Separate JPEG 2000
images into smaller constituent layers for downlink
and later on the ground, reconstruct into a lossless
image or a lossy portion of an image as needed.

Implementation of these processes are performed
through a set of programs that are managed by a Python
dictionary to call the appropriate program and feed in the
correct parameters.

Program Name Description

mso_ir3c_cal_flags.py Set Calibration Flags

mso_ir3c_cals.py Calibrate Cameras

mso_ir3c_cals.py Get Calibration Data

mso_ir3c_compensate.py Compensate Cameras

mso_ir3c_compensate_save.py Save Compensation

mso_ir3c_compensate_write.py Write Compensation

mso_ir3c_setups.py Setup Cameras

ir3c_jp2 mso_ir3c_pics.py Take JP2 Pictures

Table 1: Python programs used for the IR3C imaging
process
These programs work together as follows:

Step One: IR3C camera calibration is performed through
the 2-pt NUC process as described earlier in this section.

Step Two: IR3C camera compensation data is saved and
written. Compensation data may be written to or read
from the BIRD17µ-640 detector on the IR3C camera.
The camera may not image during reading or writing of
compensation data. Approximately 100 seconds per
camera is required to transmit a full compensation
image, however, this is only necessary for diagnostics,
not routine operations.

Writing compensation image data is performed by:

● Powering up the detector by calling
mso_ir3c_setup.py

● Writing the compensation data by calling
mso_ir3c_compensate_write.py

● The camera is now ready to capture images.

Prior to reading compensation data it is assumed the
camera has been powered up with the detector setup and
previously compensated. Reading compensation data
from a detector that has not been previously
compensated will return undefined / useless image data.

Reading the compensation image data is performed by:

● Reading the compensation data by calling
mso_ir3c_compensate_read.py.

Step Three: Before images are acquired, the IR3C
cameras go through a few more setup processes.

● First, setup the camera using the
mso_ir3c_setups.py command,

● Prepare for compensation using the
mso_ir3c_cal_flags.py command to engage the
calibration flags,

● Perform compensation by using the
mso_ir3c_compensate.py, and then

● Restore to picture taking mode using the
mso_ir3c_cal_flags.py command to disengage the
calibration flags.

Step Four: A FlightJAS script is invoked to generate an
XML file containing the metadata for the IR3C camera
that a picture is to be taken with. The FlightJAS script
gets the spacecraft clock date/time from MAX, converts
it to a string and uses it as an argument to
ir3c_metadata_xml.py which creates the .xml file. The
rest of the arguments used to create the XML metadata
are created by mso_ir3c_metadata_xml.py and added to
the argument list. The final XML file generated is placed
in the “cooked” imaging file system partition.

Step Five: A picture from the camera is then taken
through commanding payload_agent. Raw and JPEG
2000 images are created and placed in the “raw” and
“cooked” imaging file system partitions respectively.
The jp2_process.sh daemon sees that a new JPEG2000
file has been created and makes a directory based on the
JPEG2000 file name in the “cooked” imaging partition.
It then moves the JPEG2000 file to that newly created
directory, attaches the XML metadata sitting in the
cooked partition to it using opj_jpip_addxml, deletes the
XML metadata file and then deconstructs the JPEG2000
file in the cooked partition directory using
jp2_deconstruct.py.

High-Dynamic Range Visible Imaging
The quality of images acquired in visible light conditions
is dependent on two factors: the spatial sampling and the
magnitude of brightness differences. Spatial sampling is
the size of individual sensors within a detector and how
the optics perform in illuminating each sample.

Vilaysing 10 38th Annual Small Satellite Conference

Brightness differences, in other words the contrast or
modulation, is dependent on the brightness and range of
brightness’s in the scene as well as the detector’s ability
to distinguish details in that range. Scene brightness and
the detector’s ability to capture that range is called
dynamic range.

Scene dynamic range depends on the nature of the
illumination, the ability of the scene to reflect light, and
the optical properties within the volume between the
scene and the sensor. Scenes with high contrast (daylight
and shadow) have high dynamic range; scenes of low
contrast (like the diffuse illumination on an overcast day)
have low dynamic range. A principal factor in how well
scenes can be captured is the levels of fineness into
which the range can be sampled and divided. As long as
the subject’s dynamic range doesn’t exceed the camera’s
dynamic range, then the image can be resolved with all
the details. However, more often than not, the subject’s
dynamic range is higher than what the camera can handle
and details can get lost on either side of the extreme.

For global observations of Mars, there are multiple
opportunities for large subject dynamic range during the
twilight hours where sunlit features on one side of the
planet will be drastically brighter than the dim features
on the other side or during eclipse periods that could be
dotted with auroras or faint lightning produced by dust
storms. These periods are wonderful opportunities to
capture valuable scientific data, but the limitations of the
camera’s dynamic range can miss out on getting every
detail. A longer exposure would allow more light to
reach the camera’s sensor to resolve details in the
shadow, but the harsh highlights would max out the
photocells of the camera’s sensor and lose details in the
brighter portions of the image. A shorter exposure would
limit the amount of light so that the sensor’s photocells
are not maxed out and details in the highlights can be
resolved, but then details in the shadows would be lost.
Any exposure in between would lose details from both
light and shadow.

MSO addresses the inherent limitations of dynamic
range in two ways: it uses a 12-bit analog-to-digital
converter (ADC) to encode the dynamic range of the
detector and exposure control using an automation
software to perform on-board processing that will
construct high-dynamic range (HDR) images from a set
of low-dynamic range source images for downlink. The
process begins with taking an image at a baseline
exposure between the light extremes of highlights and
shadow. Then 1 or 2 additional images above and below
the baseline exposure (for a total of 3 or 5 source images)
will be taken to capture image data for details in the
highlights and shadows. Finally, the source images will
be combined into one with all details, as if it was

captured by a camera with high-dynamic range.
Unfortunately, MSO does not have the space in its
downlink budget to send the 3 or 5 source images for this
process to be done on the ground. Therefore, the visible
imaging on MSO will be performed on-board by an
automation software that will reduce the amount of data
to be downlinked while still preserving radiometric
information for scientific analysis.

There are multiple challenges that come with this
approach including: finding the correct exposure and
exposure stops to capture as many details as possible,
ensuring that noise and loss factors do not obscure those
details, merging each exposure in a way that displays
those details without destroying the data about the actual
amount of light the imager has measured, and ensuring
that the final product is a manageable size for downlink;
all to be done autonomously by the spacecraft.

Figure 4: Flowchart of processes and their products
that will be covered in this section
The first challenge is finding the correct exposures. The
general approach is to determine a “seed” exposure time
and then determine the range necessary for HDR. The
process can be done in two ways: 1) with a pre-
determined method by the operations team who will
estimate the exposure from the basic physics of the scene
illumination and viewing conditions, and then iterating
with ground-in-the-loop or, 2) by using an on-board
auto-exposure algorithm.

The first method involves some initial guesswork and
iteration. MSO would take a single image for downlink
at an exposure setting ground operators have determined
would be the most likely to be suitable for a particular
time of day. Ground operators would then analyze the
image and determine whether a different exposure
setting should be used in the next round of imaging. It
may take a few rounds of this process to pinpoint an
acceptable baseline exposure for each size of subject
dynamic range. The empirical method would take some
time and hands-on effort, but would produce images that

Vilaysing 11 38th Annual Small Satellite Conference

are acceptable and verified by ground operators. Once
the dataset of baseline exposures for different times of
day on Mars has been established, the iterative process
begins again for the additional exposure stops above and
below the baseline. Ground operators can begin with one
and two exposure stops and increase as necessary until
all light and dark details have been resolved.

The second method proceeds in a similar fashion as the
first method where a baseline exposure must be
determined first, but this initial step can be performed
autonomously. Autoexposure algorithms have already
been developed and used for deep space applications
such as the Imager for Mars Pathfinder and imagers on
the Mars Exploration Rover. These prior algorithms
form the basis of the algorithm used on MSO. This
algorithm involves viewing the image’s histogram of
pixel values or Digital Number (DN). There are four
parameters to the algorithm: a lower and upper target DN
threshold, an allowable percentage of pixels to exceed
either DN threshold (pixel fraction), and a termination
value. The measured upper and lower DN thresholds are
calculated by counting the number of pixels on the right
and left sides of the histogram respectively, until the
number of pixels equals the commanded pixel fraction.
If the difference between both DN thresholds from their
local maxima (e.g. for an 8-bit image maxima are 0 for
lower and 255 for upper) are within the termination
value, then the algorithm terminates and the image is
accepted as the baseline exposure. Otherwise, the
process iterates by generating a new exposure time (tnew)
by multiplying the current exposure time (tcurrent) by the
ratio of the lower to upper DN threshold.

𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐 × 𝐷𝐷𝐷𝐷(𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑐𝑐)
𝐷𝐷𝐷𝐷(𝑚𝑚𝑚𝑚𝑚𝑚)−𝐷𝐷𝐷𝐷(𝑐𝑐𝑢𝑢𝑢𝑢𝑛𝑛𝑐𝑐)

 [1]

This autoexposure algorithm was designed to center the
histogram as much as possible so that low- and high-
contrast images could be accommodated and the baseline
exposure would only capture the midtones of the subject.

As for the remaining under- and over-exposure times, the
algorithm repeats similarly except the right side of the
histogram for the upper DN threshold and left side of the
histogram for the lower DN threshold are evaluated
separately. Different pixel fractions are defined for the
final two exposures on either side of the baseline. The
method for calculating these exposure times is identical
to that used on the imagers on MER.

𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐 × 𝐷𝐷𝐷𝐷(𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑𝑐𝑐𝑛𝑛𝑑𝑑)
𝐷𝐷𝐷𝐷(𝑚𝑚𝑛𝑛𝑚𝑚𝑑𝑑𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑)

 [2]

Both approaches to determining the seed exposure and
variances around it will produce a dataset of baseline
exposures and appropriate exposure steps above and
below the baseline at different times of the day on Mars.
This dataset of exposure settings can be stored onboard
the spacecraft and used for future reference for the
remainder of the mission. A number of pathologic cases,
where the histogram has many modes, or is heavily
skewed, often require the use of a combination of
ground-in-the-loop and autonomous methods to ensure
that acceptable images are produced for the next step in
the HDR process.

The next challenge is to ensure that noise and loss factors
are properly mitigated before the HDR construction

Figure 5: Pictorial representation of the MSO autoexposure algorithm

Vilaysing 12 38th Annual Small Satellite Conference

process since errors would propagate through to the final
product. Specific types of loss factors are related to the
type of sensor technology used for an imager as well as
the image acquisition mode. The camera imaging system
used on MSO makes use of a Complementary Metal
Oxide Semiconductor (CMOS) digital image sensor and
images are taken using a Global Reset Release mode (the
digital equivalent to a mechanical global shutter). Four
mitigation/correction processes emerge from this
configuration: dark current compensation, parasitic light
sensitivity (PLS) mitigation, flat-field or non-uniformity
correction, and bad pixel mitigation.

Figure 6: Mitigation and correction processes used
to reduce errors before HDR construction process

Dark current is the accumulation of thermal energy
within an imager’s sensor. The sensor cannot
differentiate between these thermal electrons and the
photoelectrons generated by light (i.e. the data that is
actually desired), resulting in the undesirable
“contamination” of the signal. Therefore, dark current
must be compensated. Compensation for dark current is
a complex issue since it is dependent on both
temperature and exposure times. A straightforward
method would be to take a reference image at a constant
temperature and exposure with a closed shutter and
subtract this reference from the image; however, CMOS
sensors do not have a mechanical shutter to make use of
this method and many spacecraft cameras avoid
mechanical shutters owing to their mass, complexity,
and cost.

An alternative method to perform the dark current
compensation (developed by Abarca and Theuwissen),
uses the dual functionality of the CMOS pixel
architecture to generate an artificial dark current
reference frame. This method leverages use of the
CMOS imager pixel as a local temperature sensor,
enabling the collection of thermal distribution data
which eliminates the temperature dependency and leaves
the exposure time to be the only variable. This is
particularly useful since multiple exposure times will be

used for a single HDR image. Implementation of this
method would be to take a source image of Mars at one
exposure and then immediately take a temperature image
to create the artificial dark current frame at the same
exposure time. This will proceed for the remaining
exposures, essentially creating a pair of source and
temperature images for every exposure.

A second and simpler, but less accurate method, is a two-
step process that recognizes the fact that deep space is
not photoactive in the general sensitivity range of CMOS
detectors. After performing a planet centered imaging
pass and collecting all the source images, the spacecraft
will begin to slew towards an Earth-centered attitude for
its downlink pass. During this slew, calibration images
at each exposure will be taken of deep space which will
function in a similar manner as a ‘mechanical closed
shutter’. Comparison of these deep space calibration
images with the deep space portion of the image around
Mars’ disk will yield an approximate value of the dark
current generation. This is only approximate because
there may be a temperature difference between the
calibration and source images.

Use of either method is dependent on the accuracy
desired as well as the duration of the imaging passes.
Short imaging passes will not be able to utilize the first
method since imaging time is doubled.

Parasitic light sensitivity is a phenomenon unique to
CMOS sensors using a global shutter mechanism. In
order to separate the exposure phase from the readout
phase in the sensor, an in-pixel light-shielded storage
node is used; however, the information in the storage
node is corrupted by further incoming light between the
end of exposure and the start of readout. Pixels affected
by PLS appear as an after-glow on one side of the final
image. The amount of influence PLS will have on an
imaging system is fixed by the sensor and cannot be
corrected, but there are four factors that can be
considered to mitigate its effects. Those factors are:
exposure time, sensor readout time, wavelengths of the
light source, and the angle of incident light. PLS effects
appear to decrease with longer exposure times because
their relative contribution in the time-domain of the
readout phase decreases, i.e. already high DN values
won’t visually appear much brighter compared to low
DN values. Conversely, shorter sensor readout times also
decrease PLS effects since there is less time between
exposure and readout for the parasitic light to affect the
storage nodes. Light source wavelengths and angle of
incident cannot be changed since MSO is designed to
image Mars at the same angle, but it is useful to know
that PLS effects decrease at shorter wavelengths and
shallower angles of incidences. The considerations of

Vilaysing 13 38th Annual Small Satellite Conference

these factors are vital during the construction step of the
HDR process.

Another limitation of any imaging system is the
uniformity of its brightness response as a function of
position within its field of view. The use of color filter
arrays closely adjacent to the photosites as well as the
color and brightness attributes of the optics create
variations of the camera’s responses that can be
corrected. This correction is easily done by dividing the
source image by another corrected image of uniform
scene to increase brightness in areas of lower response.

The final process is bad pixel mitigation. Defects in
manufacturing, contamination of the sensor, and
radiation damage can affect the uniformity in the
sensitivity of individual pixel photosites leading to single
pixels that are more ‘hot’ (bright or sensitive) than their
neighboring pixels or more ‘cold’ (dark or less
sensitive). Manufacturing defects are mapped out and
supplied by the sensor manufacturer. Sensor
contamination is mapped out during calibration.
Radiation damage occurs throughout the life of the
sensor and would be mapped out as they are found
throughout the course of its lifecycle. Bad pixel
mitigation is performed by replacing the DN value with
an average value of its neighboring pixels within the
same color channel. Since these defects are often only a
single or a few pixels in size, this simple averaging done
by the algorithm is sufficient for MSO’s purposes.

With the baseline, over-, and under-exposed images
scrubbed of as many noise and loss factors as possible,
the autonomous HDR processing can now compile the
exposures into a single image. Challenges in this part of
the process are characterized by noise factors, motion
artifacts, and ensuring that radiometric data from each
exposure is not lost during this compiling process. Since
each exposure is taken at different times, there will
inevitably be movement between images. That
movement can come from cloud movement over the
surface of Mars or the small jitter from the spacecraft
itself stemming from the errors in attitude control during
Mars tracking. These slight differences between images
can appear in the final image as ‘ghosts’ when the
movement is large or blurring when the movement is
small. The final image also must be able to track which
pixels came from which exposure and appropriately
scale the value of each pixel to form a coherent image
while still preserving the radiometric data.

The impact of these issues can be reduced by a
combination of two methods. The first is proposed by
Kang et al that utilizes an adaptive weighting function so
that noise and local motions contribute less to the final
image. This method can also be leveraged to increase

contribution from images with longer exposure times or
shorter readout times to reduce the effect of PLS. An
added benefit of this method is that it performs the HDR
image construction in Bayer space instead of full RGB.
This allows the HDR process to use 12-bit raw data from
the camera system and decreases the processing power
required from the flight computer. The second method
(proposed by Sen et al) utilizes a patch-based system for
constructing the HDR image which is particularly
effective with aligning all of the exposures and
extracting accurate radiometric data during the final
merge. As the range of DNs created in the final merged
image can exceed the initial 12-bit encoding, these
images will likely be 16-bit encoded.

Notation Description

S Source LDR images

SN LDR image of +/- exposure stops

R Reference source LDR image

IN Adjusted source LDR images to Nth exposure
stop; created using gn(S) to map an Ith image to
Nth exposure

KN Adjusted reference source LDR image to Nth
exposure stop; initially created using gn(R) and
iteratively optimized using lk(H)

LK Reconstructed K image from an iterative
optimization cycle

H Final HDR constructed image using an
adaptive weighting function w(Lk)

Table 2: Notations used in Figure 7
With the HDR image constructed in Bayer space, the
autonomous process will then prepare the image for
downlink. It is important to ensure that the method for
reducing or compressing the data volume for downlink
can recover all information after restoring or
decompressing the data. This is defined as lossless (when
all data can be recovered) or lossy (when some data is
permanently lost) compression. The methods employed
for this are a 12-to-8 bit compression table-lookup
process or upon receipt an 8-to 12 bit decompression
table (the inverse of the compression table), both of
which are somewhat lossy and the JPEG2000
compression algorithm (that can be either lossy or
lossless, depending on the amount of compression
commanded. The compression/expanding (contracted to
companding) process is an optional step that is used to
further reduce data volume by limiting the effects of
photon statistical or shot noise in the image. Since the
data volume has already been optimized by using a
Bayer space image and JPEG2000 compression, the

Vilaysing 14 38th Annual Small Satellite Conference

companding process would only be implemented if
downlink rates are below nominal expectations or if the
NASA Planetary Data System has an objection to the use
of JPEG2000 and insists on another image format.

This concludes the entire autonomous visible imaging
process that occurs on-board the spacecraft. Additional
steps are performed during ground processing, but are
not the subject of this paper. This process will be able to
produce high-dynamic range images that can resolve
faint phenomena in the dark hemisphere and bright sunlit
features on the day side that are sufficient for science
analysis. Any of the steps in this process can be omitted
should science teams request anything between single
exposure, unprocessed, raw image data or the full HDR,
corrected, processed image data. This makes the visible
imaging system on MSO robust in its delivery.

4 CONCLUSION

This paper has discussed the automation mindset the
MMS group has taken in the development of MSO that
led to optimized workflows that allowed the small team
to perform the plethora of tasks required for such
development. The time savings provided by these
optimized workflows allowed the team to focus on more
complicated problems that ultimately culminated in
MSO adopting the same automated operation ideology.
The automation procedures on MSO solved problems
surrounding deep space operations and limited downlink

budgets which helped make the mission feasible in the
first place.

Automation has taken the brunt of the brute work
required for spacecraft development and is a path
forward for small teams with restricted budgets to enter
the playing field. It is also a pathway for spacecraft
operating in deep space to have more resilient responses
to inevitable contingencies and more diversity in its
delivery of mission objectives. It is the hope of the MMS
group that future spacecraft take advantage of similar
highly automated and autonomous solutions to continue
exploring and go further into the last frontier.

References
A. Abarca & A. Theuwissen (2023). "A CMOS Image
Sensor Dark Current Compensation Using In-Pixel
Temperature Sensors." Proceedings of the 2023
International Image Sensor Workshop.

G. Meynants et al. Backside illuminated global shutter
CMOS image sensors.

H. Kang, S. Lee, K. Song, M. Kang (2014). "Bayer
patterned high dynamic range image reconstruction
using adaptive weighting function." Eurasip Journal on
Advances in Signal Processing 10.1186

Figure 7: HDR construction process

Vilaysing 15 38th Annual Small Satellite Conference

J. N. Maki et al. (2003) "Mars Exploration Rover
Engineering Cameras" Journal of Geophysical Research:
Planets 108(E12).

J. Warren & M. Malin (1995) Shot Noise Limiting
Companding for MSI.
https://www.msss.com/http/near_cal/fs_algorithms/com
panding/companding.html

P. H. Smith et al. (1997) "Results from the Mars
Pathfinder Camera" Science 278(5344), 1758-1765.

P. Sen et al. (2012) "Robust Patch-Based HDR
Reconstruction of Dynamic Scenes." ACM Transactions
on Graphics 31(6), 203:1-203:11

	Automation as a Mindset: An Approach to Streamlining Spacecraft Development and Operations
	1 INTRODUCTION
	2 OPTIMIZATION OF WORKFLOW
	Power Modeling Tool
	Hands-Off Testing Procedures
	Collaborative Flight Operation Plans

	3 SPACECRAFT AUTOMATION
	Fault Detection, Isolation, and Recovery
	Infrared Imaging
	High-Dynamic Range Visible Imaging

	4 CONCLUSION
	References

