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ABSTRACT 
With limited opportunities and funding for deep space missions, there is increased pressure to build better, faster, and 
cheaper space-borne payloads. Smaller teams and limited tools provide a unique challenge for such development. This 
paper reviews the approach the Micro-Mission Systems (MMS) group at Malin Space Science Systems (MSSS) took 
in the development of the Mars Synchronous Orbiter (MSO) to streamline and automate various tasks so team 
members could focus their efforts on solving more difficult problems and minimize user induced errors.  

The team utilized free tools to automate labor intensive and manual processes, run and monitor tests with little to no 
user intervention, and build complex flight operation scripts and timetables. Some of these tools were also integrated 
with commercial flight software systems to deepen the level of automation that could be accomplished and allow for 
a very lean staffing plan. 

The integration of automation at every stage of development culminates within the spacecraft itself in two forms: an 
autonomous Fault Detection, Isolation, and Recovery (FDIR) system and on-board image processing in the infrared 
(IR) and visible range. These processes are not unprecedented in spacecraft; however, MSO pushes the envelope on 
the robustness of these processes in the application of deep space. 

In the first autonomous process, the FDIR subsystem monitors key parameters of the spacecraft’s health, reboots upon 
detection of major faults, and proceeds with its primary operations and science objectives on its own. It will only seek 
ground intervention if it cannot recover from faults autonomously. This subsystem allows routine reboots to be 
scheduled into nominal operations so that minor errors have less of a chance to accumulate into major errors. 

In the second autonomous process, on-board payload image processing was designed to reduce the volume of 
downlinked data while still delivering products sufficient for science analysis. MSO implements multiple algorithms 
to improve signal-to-noise ratios for the IR products and to construct high-dynamic range (HDR) visible images that 
still retain accurate radiometric data. Compression using JPEG2000 results in a data reduction factor up to or 
exceeding 1000. Raw payload data and lossless final products are generally available - downlink permitting - allowing 
for a robust delivery system of imaging products.

1  INTRODUCTION 
Spacecraft development is a multi-faceted process 
requiring expertise from different disciplines and 
coordination of many moving parts. While it’s preferable 
for responsibilities to be compartmentalized within a 
team, limited funding for deep space missions require 
team members to wear multiple hats and be more 
efficient with less manpower, time, and tools. 
Limitations may breed innovation, but it also demands 
automation. 

During the development of the Mars Synchronous 
Orbiter (MSO), the Micro-Mission Systems (MMS) 
group at Malin Space Science Systems (MSSS) 
fluctuated between 6 to 9 members at any given point in 

time and their total responsibilities ranged from the 
spacecraft’s flight software to imaging systems and 
hardware design to functional testing. Automation 
systems were necessary to streamline and optimize 
particular hand-heavy and laborious processes in order 
to free up resources to focus on other complex issues and 
development. This paper will discuss three automation 
tools/systems that were used to execute a complex set of 
equations to model MSO’s battery performance, execute 
and monitor spacecraft test procedures, and build 
detailed flight operation scripts and timetables. These 
tools and systems were built using free software such as 
Python, Grafana, and Google Apps Script provided by 
the Google Suite. Some of these tools were also 
integrated with RocketLab USA’s MAX flight software 
system or Ansys Government Initiative’s (ASI) Satellite 
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Tool Kit (STK) to deepen the level of automation that 
could be performed on the development system with 
minor oversight, allowing for a very lean staffing plan. 

Approaching automation as a mindset for the entire team 
and the development of the spacecraft became reflected 
in the operating ideology of the spacecraft itself. MSO 
benefits from three major automation processes which 
allow it to run autonomously and efficiently: a Fault 
Detection, Isolation, and Recovery (FDIR) subsystem, a 
robust on-board processing algorithm for infrared (IR) 
image processing, and an on-board processing algorithm 
for visible image processing that produces high-dynamic 
range products. These systems are not uncommon in 
spacecraft; however, the design of these systems grant 
MSO more autonomy in what it can do, especially in the 
application of deep space operations.  

This paper will discuss the logic behind these subsystems 
and the particular challenges solved by them. The FDIR 
system monitors key parameters of the spacecraft’s 
health and takes action independently to keep the 
spacecraft performing nominal operations. This system 
grants MSO the ability to perform a system reboot upon 
detecting a major fault and return to pre-planned scripts 
and sequences to continue its primary science and 
communication relay tasks. A major benefit of this 
system also allows routine weekly reboots to be 
commanded in nominal operations so that an 
accumulation of minor errors have less of a chance to 
become major errors. This drastically reduces the 
amount of downtime when faults are detected and the 
need for ground support for the spacecraft to perform its 
objectives. 

The on-board processing algorithms for the IR and 
visible imaging products were implemented because 
MSO does not nominally have the downlink budget to 
deliver the volume of desired raw data to ground. These 
algorithms allow for more data to be sent without 
compromising the downlink rates required to send that 
data or the scientific accuracy of the data. IR imaging 
products generated by MSO have greater signal-to-noise 
ratio (SNR) improvements through real-time multi-point 
non-uniformity correction, the averaging of hundreds to 
thousands of image acquisitions, and operations in 16-bit 
space. High-dynamic range visible imaging products 
generated by MSO have multiple exposure data 
constructed into one image through the use of a robust 
patch-based system and adaptive weighting functions 
done in Bayer-space. File sizes of the imaging products 
are further optimized through JPEG2000 compression 
and are returned to ground progressively which results in 
a data reduction factor up to or exceeding 1000. MSO 
also has enough on-board storage capability to hold raw 

payload data and lossless image products for ground 
users should data rates permit downlink. 

2  OPTIMIZATION OF WORKFLOW 

Power Modeling Tool 

A major benefit of automation is that tedious, repetitive, 
and frankly annoying tasks can be executed accurately, 
indefinitely, and without complaint. Modeling the state 
of charge of MSO’s battery at various flight modes and 
operational environments generated a lot of complaints 
within the team and as such, was a prime candidate for 
automation. 

This model was required to simulate the battery’s state 
of charge and the results would be used to properly size 
and configure set points for the battery. There were a 
rather lengthy number of input parameters that battery 
state of charge is dependent on such as battery resistance 
coefficients, environmental temperature data, 
component power loads, solar array efficiency factors at 
different distances from the Sun, and solar incidence 
angles just to name a few of them. Properly managing all 
the input data on top of the different edge cases to be 
tested was difficult and prone to human error. It also took 
a lot of time to manually define the component duty 
cycle data for component load data calculations.  

The automation of setting up and feeding data into this 
model was implemented through two software systems: 
Google Apps Script and AGI’s Systems Tool Kit (STK) 
software. Google Apps Script is a low-code platform that 
allows tasks to be programmatically executed across 
products in Google's suite of online applications and was 
used to write all of the code for automation. STK is a 
modeling and simulation software for digital mission 
engineering and systems analysis. Further augmented 
with SOLIS, a module to model satellites and their 
systems, a digital recreation of MSO was created to 
simulate all of the environmental conditions that would 
be fed into the battery model.  

The first stage of the automation code would intake the 
desired time scale and duration of the test case to be 
modeled and output a set of blank worksheets that would 
be automatically formatted with the input parameters and 
associated equations of the battery model. While the 
sheets are being generated, a user can adjust the scenario 
parameters in STK to the same desired time scale and 
duration and run a simulation that would output data for 
the time dependent input parameters (component duty 
cycles, environmental temperature, solar intensity, and 
solar incidence angles) of the battery model. This output 
of input parameters was designed to be formatted in a 
way that can directly interface with the automation code, 
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allowing the only action from the user to copy and paste 
the file into a location the automation code can access. 

The second stage of the automation code would then 
parse the time dependent input parameters into the blank 
worksheets and ask the user for the remaining non-time 
dependent input parameters such as battery 
characteristics and expected efficiency margins. Since 
all worksheets were generated with the required 
equations, it only takes a few seconds for the data to 
propagate through all the worksheets and finalize with a 
graph of the battery’s modeled state of charge, total 
loads, and generated power. 

 

Figure 1: Output of the battery power model 
automation code for a case where the spacecraft is 
operating under the coldest expected conditions. The 
model was generated at a time step of 30 seconds and 
an analysis duration of 1 day. The blue line graphs 
the generated solar array power, the red line graphs 
the total component loads, and the yellow line graphs 
the battery state of charge. 
This automation code turned adjusting time scales for 
more fine or coarse calculations from a nightmare into a 
trivial matter, allowed for multiple test cases to be 
modeled simultaneously since it ran off of a central code 
base, and helped with determining a solution for the 
battery’s size and set points much more quickly than if 
this process was done manually.  

Hands-Off Testing Procedures 
With only a single test engineer on the development 
team, hands-off testing procedures were necessary to 
decrease the set up and observation time of testing 
sequences on the spacecraft. Automation tools allowed 
for multiple tests to be performed in parallel and 
adequately managed by one person. The automation of 
test procedures were implemented in several stages: 1) 
determining when and where automation scripts were 
necessary, 2) implementing monitoring scripts and 
automated shutoff precautions, and 3) utilizing operation 
dashboards and visualizations of databases that were 
autonomously fed data from the test environment. 

Multiple interconnected tools were necessary to carry 
out automated testing of the spacecraft. These include: 

● Remote control of spacecraft components and 
ground support equipment; 

● Command scripts for RocketLab USA’s Ground 
Data System (GDS) for MAX, an off-the-shelf flight 
software system; 

● Telemetry monitoring and alarm scripts written in 
Python; 

● PostgreSQL databases, an open-source database 
management system; and 

● Grafana, an open-source web application that allows 
users to visualize and query data. 

Environmental testing required functional tests to 
constantly run in order to verify survival under thermal 
stress. This posed an opportunity to automate component 
operations and monitoring. Both the commands being 
sent and the alarm system setup are included in scripts, 
which eliminate the need for an operator and attendant 
during tests which last days to weeks long. Thus, while 
one automated test is running, another test requiring 
manual commands can be performed simultaneously, 
and multiple milestones are met within a short period of 
the project. 

During component level tests, power supplies can be 
powered on or off remotely using a Python script and 
General Purpose Interface Bus (GPIB) connection, so 
long as the power supply has the capability. This allows 
engineers to power on components and run tests using 
MAX GDS remotely instead of requiring them to be 
physically present with the component. For example, 
during image capture tests, one can remotely turn on the 
power supply, remotely connect to the flight computer, 
and remotely actuate the command to capture and 
immediately analyze a picture. 

Python scripts can also be used to alert test personnel in 
real time as soon as the monitored data becomes out of 
bounds. Multiple telemetry points of interest can be 
monitored at the same time, and the script differentiates 
them to alert the responsible engineer. A simple text 
message is sent which states exactly which test point is 
out of bounds and continues to send texts until returned 
to a nominal state. Multiple team members can be added 
to the text system to increase reliability and avoid a loss 
of hardware. 

This is useful not only for safety of the component being 
tested and the environment but also for timekeeping 
when analyzing data later on. If, for example, the 
temperature of the hardware approached a dangerously 
high level, the monitoring script recognizes the issue and 
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immediately shuts off the power supply before damage 
has occurred to either the component or the hardware 
surrounding it. The temperature increase may also 
correlate to the effects on the hardware’s voltage 
reading, which could be traced using both the time stamp 
from the alert and the overall trend from the data. 

After MAX GDS is launched, a Python script is executed 
from the command line which immediately opens the 
necessary telemetry windows. This is an enormous time 
saver, as the operator no longer has to manually request 
the windows. MAX GDS can then be connected to a 
PostgreSQL database to allow for further interfacing 
with Grafana. Thresholds are added to live feed graphs 
which alert the operator to correct the spacecraft if 
moving towards a hazardous state. These thresholds can 
include high and low values, as well as yellow or red 
levels of alarm (or any degree of differentiation desired). 
Grafana dashboards can be both focused and general; a 
dashboard is created for each specialized operations role. 
Examples include a dashboard for the attitude 
determination and control system and a dashboard 
dedicated to the propulsion system. A separate 
dashboard exists for a top level view of the most critical 
components on the spacecraft, such as battery state of 
charge, ADCS control mode, and operational status - all 
in the same view.  

Additional Grafana dashboards can be used for 
component level testing. Separate PostgreSQL databases 
can be created for use with testing that does not require 
the MAX GDS operational commands and telemetry 
data. Python scripts can run tests of printed circuit boards 
in a loop and relay data back to a host on a PC. Multiple 
dashboards can be run at once from separate databases. 
Therefore, a telemetry dashboard generated directly 
from MAX GDS can be viewed in tandem with the 
dashboard viewing the information from the PC’s 
database. Data collected by the python scripts can also 
be saved and analyzed with and without the use of 
Grafana.  

Overall, the use of automation has saved the team time 
and effort by granting the ability to run multiple tests at 
once without direct oversight, keep spacecraft hardware 
running within safe levels, and query and view large 
volumes of data. 

Collaborative Flight Operation Plans 
Flight operation plans can be written mainly in one of 
two methods: 1) define a particular set of commands for 
one period and then repeat that set for the desired amount 
of time, or 2) define a command for each epoch for the 
entire duration of the plan. Each method has its pros and 
cons. The first method is simpler to define and write and 
produces neater, shorter scripts, but leaves no room for 

additional commands outside of the routine operation. 
Furthermore, any unscheduled spacecraft reboots would 
only start the script at the beginning of a sequence, 
potentially skipping an operation that otherwise would 
have been expected from the ground. The second method 
allows for specific commands or complicated sequences 
at very precise times and in the event of a spacecraft 
reset, operations would pick up where it left off or onto 
the next expected command. However, the scripts using 
this method can become very long, tedious to write, and 
difficult to debug if any errors occur during testing. 

Then, the complexity of generating these scripts was 
further increased as conflicting priorities were 
introduced such as requests for routine orbit maintenance 
maneuvers, communications relay with ground assets on 
Mars, or special observation passes of Mars for scientific 
research interrupt nominal operations. For this reason 
alone, the first method of generating flight operation 
scripts is unsuitable for MSO. In order to overcome the 
challenges of collecting the requests from multiple 
parties in a unified way, balancing these conflicting 
priorities, and generating the scripts without headache, 
automation comes into play.  

The first challenge was solved through the usage of 
Google Sheets, a web-based application that enables 
multiple users to modify spreadsheets and share the data 
online in real time. This allows the multiple parties to 
input their requests as new rows to define their ‘event 
timeframes’ which is characterized by the category of the 
spacecraft maneuver or phenomena, the event start time, 
and event end time. A new feature of Google Sheets 
called ‘Timeline’ can then output a comprehensive 
timeline of all events to highlight priority event 
timeframes for ground users. However, this output only 
serves as a visual aid to find where interruptions to 
routine operations would occur. The generation of the 
flight operations script is performed autonomously via 
Google Apps Script that interfaces with this Google 
Sheet. 

This automation script begins with definition of the 
hierarchy of priorities that were designed for MSO: 1) 
orbit maintenance maneuvers, 2) Mars communication 
relay passes, 3) special observations of Mars 
phenomena, 4) Earth occultation or if DSN 
communication is otherwise not available, 5) eclipse 
periods, and 6) a combination of Earth occultation and 
eclipse period. In the exclusion of any of these priorities, 
MSO routine operation sequence is a 15 minute block: 
an imaging pass of Mars for 2.5 minutes before a 
communications pass for downlink for 12.5 minutes. 

With this information and the initial epoch that the flight 
operation plan will be executed, the automation script 
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will then build the flight script using several passes. The 
orbit maintenance maneuver and communications relay 
timeframes are placed first into the flight script. These 
two event timeframes are non-negotiable in the flight 
script and all remaining priorities and operations will be 
built around them. 

In the second pass, the automation script will fill in the 
remaining epochs with the routine operation sequence 
and make modifications if the epoch falls within the 
remaining four priorities. If the epoch is within the 
timeframe of a: 
● Special observation: then the imaging pass may be 

extended into the downlink pass; 
● Earth occultation or DSN unavailability: then 

downlink passes will be replaced with a slew to the 
Sun for power generation; 

● Eclipse: then operations may be reduced to only 
imaging or only communications based on battery 
state of charge; and 

● Simultaneous Earth occultation and eclipse: then the 
spacecraft will only perform imaging until exiting 
one of the two priorities. 

The resulting script is considered a rough cut of the flight 
operation plan and proceeds through additional passes 
for optimization. This initial flight script is written in 
FlightJAS, the programming language that the flight 
software uses, which is fed directly into SOLIS to 
simulate the entire operation plan. Key outputs from this 
simulation are battery state of charge levels and slew 
durations for each maneuver which are used for the final 
pass of the automation script. If the battery state of 
charge falls below the allowable threshold, then a few 
cycles of the routine operation sequence will be replaced 
with power generation. Slew durations are accounted for 
all maneuvers and can affect durations of other 
operations. For example, if an orbit maintenance 
maneuver requires 1 minute of burn and the slew for the 
burn takes 2 minutes, then the actual duration of the 
timeframe in the flight script needs to be 3 minutes. A 
few iterative passes of script adjustment then simulation 
may be required to resolve battery state of charge levels 
and timing of slews for operations. 

After these passes of the automation script, the final 
flight operation script has been built and can be used for 
final simulation, review, and then verification and 
validation. This final step is performed on a flatsat that 
will stay on the ground which is a functional copy of the 
satellite itself using engineering model hardware. 
Realistic simulation of the spacecraft’s behavior is done 
through another module of MAX, the On-Board 
Dynamic Simulation System (ODySSy). While SOLIS 
is a virtual simulation that can be used to validate the 

entirety of the flight operation plan at accelerated rates, 
ODySSy on the flatsat is run in realtime and is used to 
validate a representative day or two only. The telemetry 
produced by ODySSy, the on-board FDIR subsystem, 
and GDS are monitored autonomously and any 
dangerous or unsafe trends are identified in alarms 
without requiring extensive human data review. After 
these verification/validation steps the operations script is 
released for upload at the next scheduled DSN contact. 

The use of automation for generating the flight operation 
script greatly reduces the amount of manhours and 
tedious planning that would have been required if 
performed manually and also removes human error that 
would inevitably occur with managing multiple 
priorities and different operation sequences. Moreover, 
the rapid generation of the flight script allows for quicker 
responses to modify the operation plan to capture special 
phenomena or respond to emergency events without 
compromising routine operations. 

3  SPACECRAFT AUTOMATION 

Fault Detection, Isolation, and Recovery 
When Earth and Mars are at the largest distance between 
them, a signal can take approximately 21 minutes to be 
sent one-way. At best, it can take an hour for an error to 
be detected on the spacecraft, send a message for help to 
Earth, generate a solution, and then send the solution to 
the spacecraft to be executed. During the most infrequent 
contact periods, it might be a week before ground 
operators would even be aware of a problem. This 
represents the potential loss of an hour’s or a week’s 
worth of time to complete mission objectives for an issue 
that could have been solved by the most common 
troubleshooting technique: have you tried turning it off 
and back on again? 

This is the core ideology behind the Fault Detection, 
Isolation, and Recovery (FDIR) subsystem on MSO. The 
subsystem is designed to detect serious faults and reboot 
the spacecraft (the turning it off portion) before 
autonomously returning to full flight operations after 
successful reboot, safe mode entry, and safe mode exit 
once telemetry is “green” across the board (the turning it 
back on portion). This will allow the spacecraft to 
tolerate transient faults and recover to full operability 
without the need for operator input. While minor faults 
that do not affect the spacecraft’s performance or 
persistent faults that haven’t been cleared through 
system reboots will be directed for ground intervention, 
the main purpose of the FDIR subsystem is to minimize 
disruptions to the completion of MSO’s mission 
objectives. Leveraging the ability for autonomous return 
to nominal flight operations allows MSO to deliberately 
reboot the spacecraft once a week via command in the 
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flight operations script or through the expiration of a 
one-week deadman timer within the Master Power 
Controller. This removes any build up of non-volatile bit 
errors in memory and ensures a solid method of 
recovering spacecraft communications if any soft 
latchups are encountered. 

The subsystem has been designed to be executed 
identically, independent of entry conditions, in order to 
reduce complexity in design and testing. There are a 
plethora of potential faults that could be monitored to 
trigger a spacecraft reset, but the main premise of the 
FDIR subsystem is that all serious errors inevitably result 
in one of three main conditions:  

● Loss of battery charge, where the battery state of 
charge or voltage has fallen below allowed threshold 
levels; 

● Loss of attitude control or knowledge, where the 
attitude determination & control system (ADCS) 
has begun detecting control errors; or  

● Failure to pet one of the watchdogs, where a 
subsystem in avionics, flight software, or payloads 
has suffered command loss. 

This top-down approach is a crude methodology for fault 
detection, but allows the spacecraft to continue 
completing its mission objectives as long as the main 
subsystems are operational. A more fine grained, 
component-level method of fault detection may result in 
more precise and faster subsystem resets instead of a 
broad and slower system reset; however, component-
level fault detection and recovery dramatically increases 
the complexity of the FDIR system and produces many 
potential variations in responses, making testing and 
managing those responses time consuming and 
expensive, as well as introducing further opportunities 
for human error. A component fault that does not affect 
operations is ignored if the spacecraft can still perform 
its tasks within the allowable thresholds on the three 
main criteria. 

Monitoring of these conditions is configured as a set of 
telemetered values with an assigned conditional check or 
set of conditional checks to a persistence threshold as 
shown in Figure 2. A fault condition is entered once a 
conditional check returns true for the persistent threshold 
defined for that fault and once entered, the fault response 
sequence is executed. 

In addition to being triggered by any of these three fault 
conditions, the FDIR subsystem will also run when MSO 
performs its routine weekly system reboot. This is a 
unique capability of the spacecraft, where most 
spaceborne payloads operate based on a ‘run until there’s  

 

Figure 2: Event-based monitoring architecture 

a problem’ ideology. The autonomous recovery of the 
spacecraft through the FDIR subsystem allows MSO to 
function as robustly as possible, opting for preventative 
maintenance to continuously keep minor issues under 
control rather than performing reactive maintenance for 
an issue that may have gone past the point of repair. 

Once triggered by any of the three fault conditions or the 
weekly reboot, the FDIR subsystem will attempt an 
orderly shutdown where any write commands will be 
completed and components not critical for spacecraft 
operation are turned off. Regardless of whether or not the 
shutdown was performed cleanly, the Master Power 
Reset flag on the Master Power Controller will be 
maintained for a long enough period to allow for bleed 
off of residual charge to clear any soft latchups. 
Afterwards, the FDIR system will begin the reboot 
process and set the spacecraft into one of four following 
modes: 

1. Normal Mode: the system has determined that all 
fault conditions are above allowable thresholds and 
will resume the flight operation plan; 

2. Safe Mode: the status of fault conditions is 
undetermined and the spacecraft will focus on 
staying power positive and command receptive; 

3. Emergency Power Mode: the system has determined 
that power levels are below allowable thresholds 
and the spacecraft will focus on staying command 
receptive with thermal and attitude control functions 
disabled; or 

4. Hibernation Mode: the system has determined that 
the power has drained below the critical level to 
safely sustain the flight computer and radio 
communications and will disconnect the battery 
from primary loads, only autonomously 
transitioning to Safe Mode when power levels return 
to an acceptable threshold. 
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The FDIR subsystem has been designed to be invoked 
for only one instance at a time, even if there are 
subsequent faults that follow the original. The FDIR 
subsystem can only be re-entered once the spacecraft has 
recovered to a state that has cleared the original fault. 
This is to ensure that the spacecraft avoids getting stuck 
in partial check loops and allow watchdog protection 
against Single Event Effects to be continuous. 
Additionally, since the fault response to each of the three 
fault conditions is identical, running through the entire 
FDIR logic should clear any additional faults anyway. 
Each time the FDIR fault response has been triggered, 
the subsystem will take a ‘snapshot’ of key telemetry and 
store this information for ground users so that the fault 
could be investigated at a later time. 

 

Figure 3: Spacecraft operation modes and entry/exit 
pathways 

In the event that a fault condition has been triggered a 
certain amount of times within a specified time frame, 
the fault will then be classified as a persistent fault. The 
spacecraft will disable autonomous transition into 
Normal Mode and wait in Safe Mode for ground 
intervention. 

There is one scenario the spacecraft will experience that 
requires the FDIR subsystem to monitor a specific subset 
of faults and produce a unique response. That is the event 
of critical burns, a spacecraft maneuver period that is 
vital to maintain the trajectory of the spacecraft. There 
are two executions of these critical burns, the Trans-
Mars Injection maneuver that will put the spacecraft on 
a transfer trajectory to Mars and the Mars Orbit Insertion 
maneuver that will put the spacecraft into Mars orbit. 
Critical burns must reach a certain amount of ΔV 
(change in velocity) within a specified timeframe for 
maximum efficiency. Therefore, it is crucial that only 
faults related to maintaining the critical burn are detected 
and cleared immediately. If the spacecraft is rebooted 
during the timeframe of a critical burn, the FDIR 
subsystem will execute an expedited version of the 
ADCS recovery sequence and then proceed with the 
critical burn. After the critical burn has completed, the 
FDIR subsystem will proceed with the remainder of its 
bootup sequence.  

Overall, the FDIR subsystem has been designed to 
respond to faults in a robust manner, minimize the need 
for ground user intervention, and authorize on-board 
autonomy for recovery from Safe Mode. Since, it’s 
impossible to plan for every imaginable possible fault, 
this design allows the spacecraft to attempt to handle 
those unpredictable contingencies through a simple 
system reboot response. Only until faults become 
persistent does the spacecraft signal for help. The routine 
weekly resets is also advantageous for the long-term 
health of the spacecraft so that it can perform its mission 
objectives as efficiently as possible. 

Infrared Imaging 
One of the key automation innovations of this mission is 
moving the majority of the image processing chain on 
board the spacecraft. This has the primary advantage of 
minimizing the amount of data that has to be sent back 
to Earth, resulting in significant savings due to the cost 
of the Deep Space Network’s (DSN) time. Therefore, 
after initial on-orbit calibration and characterization, 
only final image products will be routinely sent to Earth. 

This also allows the IR instrument to utilize extensive 
averaging to improve the signal to noise ratio of the final 
science product. Up to 3600 raw images can be averaged 
to improve the SNR by a factor of approximately 55. 
JPEG2000 compression is also employed to allow the 
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progressively encoded data to be sent to the ground at 
low resolution shortly after creation, while the large on 
board storage (2TB) holds the entire mission data at full 
resolution (final products only). This allows scientists to 
prioritize which data sets to download at higher 
resolution and thus investigate interesting phenomena 
quickly, while allowing the full resolution data to be 
downloaded much later when Mars and Earth are closer 
and data rates are highest. 

The IR detector must have an “RBS” or “Row-redundant 
Bolometer” correction applied to remove gross non-
uniformities, which are dominated by the image column 
gain values that would otherwise produce a vertical 
stripe pattern. The RBS file is not anticipated to change 
rapidly throughout the mission but can be revised in 
flight based on in flight calibration if warranted. The 
correction for the RBS file values is applied in the 
detector and affects the analog values coming out of the 
detector. 

The other analog correction to non-uniformities is the 2D 
map of the detector known as the “compensation”. This 
compensation is planned to be derived from a fresh deep 
space image which should be uniformly cold, although 
the option to compensate with a view of the “calibration 
paddle” is also available. This provides a uniformly 
warm view if on-orbit characterization indicates superior 
performance. Compensation to the detector will be 
loaded just prior to each scientific observation (every 15 
minutes). Once compensation is loaded, it is applied by 
the detector to the analog output. 

After digitization, the images can be collected and 
summed over an observation period (currently planned 
to be up to 30 seconds at 120 Hz for 3600 images). Upon 
completion of an observation the digital image values are 
divided by the number of observations to generate an 
average value. 

In addition to collecting digitally averaged observations 
of the planet, each 15 minutes the instrument will collect 
deep space and calibration paddle images before the 
science observation and potentially after as well. These 
cold and warm uniform images will also be averaged 
over the same number of observations as the images of 
the planet. These averaged calibration images are used to 
apply a two point Non-Uniformity Correction (2-pt 
NUC) to the averaged science observation which allows 
not only a final non-uniformity correction to be applied 
to the detector, but also correct the data to known 
absolute radiometric values. If on-orbit calibration 
shows that it is necessary, both pre and post observation 
2-pt NUC’s can be interpolated and applied to correct for 
temporal drift as the camera warms up or cools down 
over time. 

During the science observations, additional data on the 
instrument and spacecraft status are gathered by flight 
software so they can be associated with the observations 
in the metadata attached to each image. This metadata 
includes spacecraft pointing information, position, 
temperatures of the instruments and spacecraft power 
levels as well as settings used to create the images such 
as camera frame rate and number of images averaged. 

The final on board process is creating the JPEG2000 
image products which include Metadata and make the 
image components available in a range of resolutions 
available to download to Earth. These final products are 
then transferred from the instruments to the flight 
computer and then stored in non-volatile memory for 
access by the routine recent image download utility or as 
high resolution products to be downloaded upon request 
or at a later date. 

The entire process of collecting and processing the IR 
data is driven at the top level by the flight operations 
scripts in FlightJAS, which then invoke various utilities 
to execute the tasks described above. Imaging software 
is invoked by MAX via a script process called 
“payload_agent”. These programs access raw payload 
image data in the Unix file system, process raw payload 
data per ground selected parameters, and move 
processed image products to the MAX “to_send” 
downlink directory. 

A tool to separate the layers of a JP2 file called 
“jp2_deconstruct.py” has been developed to allow a JP2 
image to be reduced in size and transmitted piecemeal in 
order to reduce the amount of downlink bandwidth 
needed. The JP2 pieces can be viewed independently 
with certain applications and therefore additional image 
pieces can be downlinked if the initial image passes 
inspection on the ground and proves interesting. 

A script to wait for JP2 files to be created (i.e. wait for a 
picture to be taken) and take actions upon that file such 
as deconstructing it is called “jp2_process.sh”. 

Overall, the IR3C imaging software has to be able to 
perform the following functions: 

● Compensation: Converges all pixel values to a 
certain target signal value in order to reduce the 
coarse non-uniformity between the pixels. 

● Calibration: Obtain a bias frame correction, dark 
frame correction, stored as sensor gain & offset 
information to create a flat-field correction. 

● Image averaging: Individual pixels from an arbitrary 
number of consecutive images are summed on the 
camera electronics and then averaged before the raw 
image is sent to the flight computer. 
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● Compression: Apply lossless JPEG 2000 [18] 
compression or another lossless progressive 
compression format. 

● Metadata: Attach data to images crucial to 
understanding the environment in which the images 
were taken. 

● Deconstruction/Construction: Separate JPEG 2000 
images into smaller constituent layers for downlink 
and later on the ground, reconstruct into a lossless 
image or a lossy portion of an image as needed. 

Implementation of these processes are performed 
through a set of programs that are managed by a Python 
dictionary to call the appropriate program and feed in the 
correct parameters. 

Program Name Description 

mso_ir3c_cal_flags.py  Set Calibration Flags 

mso_ir3c_cals.py  Calibrate Cameras 

mso_ir3c_cals.py  Get Calibration Data 

mso_ir3c_compensate.py  Compensate Cameras 

mso_ir3c_compensate_save.py  Save Compensation 

mso_ir3c_compensate_write.py  Write Compensation 

mso_ir3c_setups.py  Setup Cameras 

ir3c_jp2 mso_ir3c_pics.py Take JP2 Pictures 

Table 1: Python programs used for the IR3C imaging 
process 
These programs work together as follows: 

Step One: IR3C camera calibration is performed through 
the 2-pt NUC process as described earlier in this section. 

Step Two: IR3C camera compensation data is saved and 
written. Compensation data may be written to or read 
from the BIRD17µ-640 detector on the IR3C camera. 
The camera may not image during reading or writing of 
compensation data. Approximately 100 seconds per 
camera is required to transmit a full compensation 
image, however, this is only necessary for diagnostics, 
not routine operations. 

Writing compensation image data is performed by: 

● Powering up the detector by calling 
mso_ir3c_setup.py 

● Writing the compensation data by calling 
mso_ir3c_compensate_write.py 

● The camera is now ready to capture images. 

Prior to reading compensation data it is assumed the 
camera has been powered up with the detector setup and 
previously compensated. Reading compensation data 
from a detector that has not been previously 
compensated will return undefined / useless image data. 

Reading the compensation image data is performed by: 

● Reading the compensation data by calling 
mso_ir3c_compensate_read.py. 

Step Three: Before images are acquired, the IR3C 
cameras go through a few more setup processes. 

● First, setup the camera using the 
mso_ir3c_setups.py command, 

● Prepare for compensation using the 
mso_ir3c_cal_flags.py command to engage the 
calibration flags,  

● Perform compensation by using the 
mso_ir3c_compensate.py, and then 

● Restore to picture taking mode using the 
mso_ir3c_cal_flags.py command to disengage the 
calibration flags. 

Step Four: A FlightJAS script is invoked to generate an 
XML file containing the metadata for the IR3C camera 
that a picture is to be taken with. The FlightJAS script 
gets the spacecraft clock date/time from MAX, converts 
it to a string and uses it as an argument to 
ir3c_metadata_xml.py which creates the .xml file. The 
rest of the arguments used to create the XML metadata 
are created by mso_ir3c_metadata_xml.py and added to 
the argument list. The final XML file generated is placed 
in the “cooked” imaging file system partition. 

Step Five: A picture from the camera is then taken 
through commanding payload_agent. Raw and JPEG 
2000 images are created and placed in the “raw” and 
“cooked” imaging file system partitions respectively. 
The jp2_process.sh daemon sees that a new JPEG2000 
file has been created and makes a directory based on the 
JPEG2000 file name in the “cooked” imaging partition. 
It then moves the JPEG2000 file to that newly created 
directory, attaches the XML metadata sitting in the 
cooked partition to it using opj_jpip_addxml, deletes the 
XML metadata file and then deconstructs the JPEG2000 
file in the cooked partition directory using 
jp2_deconstruct.py. 

High-Dynamic Range Visible Imaging 
The quality of images acquired in visible light conditions 
is dependent on two factors: the spatial sampling and the 
magnitude of brightness differences. Spatial sampling is 
the size of individual sensors within a detector and how 
the optics perform in illuminating each sample. 
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Brightness differences, in other words the contrast or 
modulation, is dependent on the brightness and range of 
brightness’s in the scene as well as the detector’s ability 
to distinguish details in that range. Scene brightness and 
the detector’s ability to capture that range is called 
dynamic range.  

Scene dynamic range depends on the nature of the 
illumination, the ability of the scene to reflect light, and 
the optical properties within the volume between the 
scene and the sensor. Scenes with high contrast (daylight 
and shadow) have high dynamic range; scenes of low 
contrast (like the diffuse illumination on an overcast day) 
have low dynamic range.  A principal factor in how well 
scenes can be captured is the levels of fineness into 
which the range can be sampled and divided. As long as 
the subject’s dynamic range doesn’t exceed the camera’s 
dynamic range, then the image can be resolved with all 
the details. However, more often than not, the subject’s 
dynamic range is higher than what the camera can handle 
and details can get lost on either side of the extreme. 

For global observations of Mars, there are multiple 
opportunities for large subject dynamic range during the 
twilight hours where sunlit features on one side of the 
planet will be drastically brighter than the dim features 
on the other side or during eclipse periods that could be 
dotted with auroras or faint lightning produced by dust 
storms. These periods are wonderful opportunities to 
capture valuable scientific data, but the limitations of the 
camera’s dynamic range can miss out on getting every 
detail. A longer exposure would allow more light to 
reach the camera’s sensor to resolve details in the 
shadow, but the harsh highlights would max out the 
photocells of the camera’s sensor and lose details in the 
brighter portions of the image. A shorter exposure would 
limit the amount of light so that the sensor’s photocells 
are not maxed out and details in the highlights can be 
resolved, but then details in the shadows would be lost. 
Any exposure in between would lose details from both 
light and shadow. 

MSO addresses the inherent limitations of dynamic 
range in two ways: it uses a 12-bit analog-to-digital 
converter (ADC) to encode the dynamic range of the 
detector and exposure control using an automation 
software to perform on-board processing that will 
construct high-dynamic range (HDR) images from a set 
of low-dynamic range source images for downlink. The 
process begins with taking an image at a baseline 
exposure between the light extremes of highlights and 
shadow. Then 1 or 2 additional images above and below 
the baseline exposure (for a total of 3 or 5 source images) 
will be taken to capture image data for details in the 
highlights and shadows. Finally, the source images will 
be combined into one with all details, as if it was 

captured by a camera with high-dynamic range. 
Unfortunately, MSO does not have the space in its 
downlink budget to send the 3 or 5 source images for this 
process to be done on the ground. Therefore, the visible 
imaging on MSO will be performed on-board by an 
automation software that will reduce the amount of data 
to be downlinked while still preserving radiometric 
information for scientific analysis. 

There are multiple challenges that come with this 
approach including: finding the correct exposure and 
exposure stops to capture as many details as possible, 
ensuring that noise and loss factors do not obscure those 
details, merging each exposure in a way that displays 
those details without destroying the data about the actual 
amount of light the imager has measured, and ensuring 
that the final product is a manageable size for downlink; 
all to be done autonomously by the spacecraft. 

 

Figure 4: Flowchart of processes and their products 
that will be covered in this section 
The first challenge is finding the correct exposures. The 
general approach is to determine a “seed” exposure time 
and then determine the range necessary for HDR. The 
process can be done in two ways: 1) with a pre-
determined method by the operations team who will 
estimate the exposure from the basic physics of the scene 
illumination and viewing conditions, and then iterating 
with ground-in-the-loop or, 2) by using an on-board 
auto-exposure algorithm. 

The first method involves some initial guesswork and 
iteration. MSO would take a single image for downlink 
at an exposure setting ground operators have determined 
would be the most likely to be suitable for a particular 
time of day. Ground operators would then analyze the 
image and determine whether a different exposure 
setting should be used in the next round of imaging. It 
may take a few rounds of this process to pinpoint an 
acceptable baseline exposure for each size of subject 
dynamic range. The empirical method would take some 
time and hands-on effort, but would produce images that 
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are acceptable and verified by ground operators. Once 
the dataset of baseline exposures for different times of 
day on Mars has been established, the iterative process 
begins again for the additional exposure stops above and 
below the baseline. Ground operators can begin with one 
and two exposure stops and increase as necessary until 
all light and dark details have been resolved.  

The second method proceeds in a similar fashion as the 
first method where a baseline exposure must be 
determined first, but this initial step can be performed 
autonomously. Autoexposure algorithms have already 
been developed and used for deep space applications 
such as the Imager for Mars Pathfinder and imagers on 
the Mars Exploration Rover. These prior algorithms 
form the basis of the algorithm used on MSO. This 
algorithm involves viewing the image’s histogram of 
pixel values or Digital Number (DN). There are four 
parameters to the algorithm: a lower and upper target DN 
threshold, an allowable percentage of pixels to exceed 
either DN threshold (pixel fraction), and a termination 
value. The measured upper and lower DN thresholds are 
calculated by counting the number of pixels on the right 
and left sides of the histogram respectively, until the 
number of pixels equals the commanded pixel fraction. 
If the difference between both DN thresholds from their 
local maxima (e.g. for an 8-bit image maxima are 0 for 
lower and 255 for upper) are within the termination 
value, then the algorithm terminates and the image is 
accepted as the baseline exposure. Otherwise, the 
process iterates by generating a new exposure time (tnew) 
by multiplying the current exposure time (tcurrent) by the 
ratio of the lower to upper DN threshold. 

𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛  =  𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐 × 𝐷𝐷𝐷𝐷(𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑐𝑐)
𝐷𝐷𝐷𝐷(𝑚𝑚𝑚𝑚𝑚𝑚)−𝐷𝐷𝐷𝐷(𝑐𝑐𝑢𝑢𝑢𝑢𝑛𝑛𝑐𝑐)

                               [1] 

This autoexposure algorithm was designed to center the 
histogram as much as possible so that low- and high-
contrast images could be accommodated and the baseline 
exposure would only capture the midtones of the subject.  

As for the remaining under- and over-exposure times, the 
algorithm repeats similarly except the right side of the 
histogram for the upper DN threshold and left side of the 
histogram for the lower DN threshold are evaluated 
separately. Different pixel fractions are defined for the 
final two exposures on either side of the baseline. The 
method for calculating these exposure times is identical 
to that used on the imagers on MER. 

𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐 × 𝐷𝐷𝐷𝐷(𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑𝑐𝑐𝑛𝑛𝑑𝑑)
𝐷𝐷𝐷𝐷(𝑚𝑚𝑛𝑛𝑚𝑚𝑑𝑑𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑)

                                    [2] 

Both approaches to determining the seed exposure and 
variances around it will produce a dataset of baseline 
exposures and appropriate exposure steps above and 
below the baseline at different times of the day on Mars. 
This dataset of exposure settings can be stored onboard 
the spacecraft and used for future reference for the 
remainder of the mission. A number of pathologic cases, 
where the histogram has many modes, or is heavily 
skewed, often require the use of a combination of 
ground-in-the-loop and autonomous methods to ensure 
that acceptable images are produced for the next step in 
the HDR process. 

The next challenge is to ensure that noise and loss factors 
are properly mitigated before the HDR construction 

Figure 5: Pictorial representation of the MSO autoexposure algorithm 
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process since errors would propagate through to the final 
product. Specific types of loss factors are related to the 
type of sensor technology used for an imager as well as 
the image acquisition mode. The camera imaging system 
used on MSO makes use of a Complementary Metal 
Oxide Semiconductor (CMOS) digital image sensor and 
images are taken using a Global Reset Release mode (the 
digital equivalent to a mechanical global shutter). Four 
mitigation/correction processes emerge from this 
configuration: dark current compensation, parasitic light 
sensitivity (PLS) mitigation, flat-field or non-uniformity 
correction, and bad pixel mitigation.  

 

Figure 6: Mitigation and correction processes used 
to reduce errors before HDR construction process 

Dark current is the accumulation of thermal energy 
within an imager’s sensor. The sensor cannot 
differentiate between these thermal electrons and the 
photoelectrons generated by light (i.e. the data that is 
actually desired), resulting in the undesirable 
“contamination” of the signal. Therefore, dark current 
must be compensated. Compensation for dark current is 
a complex issue since it is dependent on both 
temperature and exposure times. A straightforward 
method would be to take a reference image at a constant 
temperature and exposure with a closed shutter and 
subtract this reference from the image; however, CMOS 
sensors do not have a mechanical shutter to make use of 
this method and many spacecraft cameras avoid 
mechanical shutters owing to their mass, complexity, 
and cost. 

An alternative method to perform the dark current 
compensation (developed by Abarca and Theuwissen), 
uses the dual functionality of the CMOS pixel 
architecture to generate an artificial dark current 
reference frame. This method leverages use of the 
CMOS imager pixel as a local temperature sensor, 
enabling the collection of thermal distribution data 
which eliminates the temperature dependency and leaves 
the exposure time to be the only variable. This is 
particularly useful since multiple exposure times will be 

used for a single HDR image. Implementation of this 
method would be to take a source image of Mars at one 
exposure and then immediately take a temperature image 
to create the artificial dark current frame at the same 
exposure time. This will proceed for the remaining 
exposures, essentially creating a pair of source and 
temperature images for every exposure. 

A second and simpler, but less accurate method, is a two-
step process that recognizes the fact that deep space is 
not photoactive in the general sensitivity range of CMOS 
detectors. After performing a planet centered imaging 
pass and collecting all the source images, the spacecraft 
will begin to slew towards an Earth-centered attitude for 
its downlink pass. During this slew, calibration images 
at each exposure will be taken of deep space which will 
function in a similar manner as a ‘mechanical closed 
shutter’. Comparison of these deep space calibration 
images with the deep space portion of the image around 
Mars’ disk will yield an approximate value of the dark 
current generation. This is only approximate because 
there may be a temperature difference between the 
calibration and source images. 

Use of either method is dependent on the accuracy 
desired as well as the duration of the imaging passes. 
Short imaging passes will not be able to utilize the first 
method since imaging time is doubled. 

Parasitic light sensitivity is a phenomenon unique to 
CMOS sensors using a global shutter mechanism. In 
order to separate the exposure phase from the readout 
phase in the sensor, an in-pixel light-shielded storage 
node is used; however, the information in the storage 
node is corrupted by further incoming light between the 
end of exposure and the start of readout. Pixels affected 
by PLS appear as an after-glow on one side of the final 
image. The amount of influence PLS will have on an 
imaging system is fixed by the sensor and cannot be 
corrected, but there are four factors that can be 
considered to mitigate its effects. Those factors are: 
exposure time, sensor readout time, wavelengths of the 
light source, and the angle of incident light. PLS effects 
appear to decrease with longer exposure times because 
their relative contribution in the time-domain of the 
readout phase decreases, i.e. already high DN values 
won’t visually appear much brighter compared to low 
DN values. Conversely, shorter sensor readout times also 
decrease PLS effects since there is less time between 
exposure and readout for the parasitic light to affect the 
storage nodes. Light source wavelengths and angle of 
incident cannot be changed since MSO is designed to 
image Mars at the same angle, but it is useful to know 
that PLS effects decrease at shorter wavelengths and 
shallower angles of incidences. The considerations of 
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these factors are vital during the construction step of the 
HDR process.  

Another limitation of any imaging system is the 
uniformity of its brightness response as a function of 
position within its field of view. The use of color filter 
arrays closely adjacent to the photosites as well as the 
color and brightness attributes of the optics create 
variations of the camera’s responses that can be 
corrected. This correction is easily done by dividing the 
source image by another corrected image of uniform 
scene to increase brightness in areas of lower response. 

The final process is bad pixel mitigation. Defects in 
manufacturing, contamination of the sensor, and 
radiation damage can affect the uniformity in the 
sensitivity of individual pixel photosites leading to single 
pixels that are more ‘hot’ (bright or sensitive) than their 
neighboring pixels or more ‘cold’ (dark or less 
sensitive). Manufacturing defects are mapped out and 
supplied by the sensor manufacturer. Sensor 
contamination is mapped out during calibration. 
Radiation damage occurs throughout the life of the 
sensor and would be mapped out as they are found 
throughout the course of its lifecycle. Bad pixel 
mitigation is performed by replacing the DN value with 
an average value of its neighboring pixels within the 
same color channel. Since these defects are often only a 
single or a few pixels in size, this simple averaging done 
by the algorithm is sufficient for MSO’s purposes. 

With the baseline, over-, and under-exposed images 
scrubbed of as many noise and loss factors as possible, 
the autonomous HDR processing can now compile the 
exposures into a single image. Challenges in this part of 
the process are characterized by noise factors, motion 
artifacts, and ensuring that radiometric data from each 
exposure is not lost during this compiling process. Since 
each exposure is taken at different times, there will 
inevitably be movement between images. That 
movement can come from cloud movement over the 
surface of Mars or the small jitter from the spacecraft 
itself stemming from the errors in attitude control during 
Mars tracking. These slight differences between images 
can appear in the final image as ‘ghosts’ when the 
movement is large or blurring when the movement is 
small. The final image also must be able to track which 
pixels came from which exposure and appropriately 
scale the value of each pixel to form a coherent image 
while still preserving the radiometric data. 

The impact of these issues can be reduced by a 
combination of two methods. The first is proposed by 
Kang et al that utilizes an adaptive weighting function so 
that noise and local motions contribute less to the final 
image. This method can also be leveraged to increase 

contribution from images with longer exposure times or 
shorter readout times to reduce the effect of PLS. An 
added benefit of this method is that it performs the HDR 
image construction in Bayer space instead of full RGB. 
This allows the HDR process to use 12-bit raw data from 
the camera system and decreases the processing power 
required from the flight computer. The second method 
(proposed by Sen et al) utilizes a patch-based system for 
constructing the HDR image which is particularly 
effective with aligning all of the exposures and 
extracting accurate radiometric data during the final 
merge. As the range of DNs created in the final merged 
image can exceed the initial 12-bit encoding, these 
images will likely be 16-bit encoded. 

Notation Description 

S Source LDR images 

SN LDR image of +/- exposure stops 

R Reference source LDR image 

IN Adjusted source LDR images to Nth exposure 
stop; created using gn(S) to map an Ith image to 
Nth exposure 

KN Adjusted reference source LDR image to Nth 
exposure stop; initially created using gn(R) and 
iteratively optimized using lk(H) 

LK Reconstructed K image from an iterative 
optimization cycle 

H Final HDR constructed image using an 
adaptive weighting function w(Lk) 

Table 2: Notations used in Figure 7 
With the HDR image constructed in Bayer space, the 
autonomous process will then prepare the image for 
downlink. It is important to ensure that the method for 
reducing or compressing the data volume for downlink 
can recover all information after restoring or 
decompressing the data. This is defined as lossless (when 
all data can be recovered) or lossy (when some data is 
permanently lost) compression. The methods employed 
for this are a 12-to-8 bit compression table-lookup 
process or upon receipt an 8-to 12 bit decompression 
table (the inverse of the compression table), both of 
which are somewhat lossy and the JPEG2000 
compression algorithm (that can be either lossy or 
lossless, depending on the amount of compression 
commanded.  The compression/expanding (contracted to 
companding) process is an optional step that is used to 
further reduce data volume by limiting the effects of 
photon statistical or shot noise in the image.  Since the 
data volume has already been optimized by using a 
Bayer space image and JPEG2000 compression, the 
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companding process would only be implemented if 
downlink rates are below nominal expectations or if the 
NASA Planetary Data System has an objection to the use 
of JPEG2000 and insists on another image format. 

This concludes the entire autonomous visible imaging 
process that occurs on-board the spacecraft. Additional 
steps are performed during ground processing, but are 
not the subject of this paper. This process will be able to 
produce high-dynamic range images that can resolve 
faint phenomena in the dark hemisphere and bright sunlit 
features on the day side that are sufficient for science 
analysis. Any of the steps in this process can be omitted 
should science teams request anything between single 
exposure, unprocessed, raw image data or the full HDR, 
corrected, processed image data. This makes the visible 
imaging system on MSO robust in its delivery. 

4  CONCLUSION 

This paper has discussed the automation mindset the 
MMS group has taken in the development of MSO that 
led to optimized workflows that allowed the small team 
to perform the plethora of tasks required for such 
development. The time savings provided by these 
optimized workflows allowed the team to focus on more 
complicated problems that ultimately culminated in 
MSO adopting the same automated operation ideology. 
The automation procedures on MSO solved problems 
surrounding deep space operations and limited downlink 

budgets which helped make the mission feasible in the 
first place. 

Automation has taken the brunt of the brute work 
required for spacecraft development and is a path 
forward for small teams with restricted budgets to enter 
the playing field. It is also a pathway for spacecraft 
operating in deep space to have more resilient responses 
to inevitable contingencies and more diversity in its 
delivery of mission objectives. It is the hope of the MMS 
group that future spacecraft take advantage of similar 
highly automated and autonomous solutions to continue 
exploring and go further into the last frontier.  
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