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ABSTRACT 

HawkEye 360 is the world leader in RF signal monitoring and analytics from space. Its constellation of more than two 

dozen small satellites, each with a GPS time-synchronized on-board Software Defined Radio, enables it to record and 

monitor terrestrial RF signals emitted from anywhere on Earth, multiple times a day. The satellites fly in clusters of 

three each, in a tight orbital formation, enabling trilateration of emitters by observed time and frequency difference of 

arrival. RF signals come in such a wide variety in their applications and content, that from early on the spacecraft 

design was structured with flexibility in mind. All processing elements, e.g. microprocessors, FPGAs, embedded 

Linux computers, in the payload can be re-programmed safely on-orbit, by leaning on bootloaders or two-string 

redundancy, should an issue occur. Furthermore, TCP/IP and UDP/IP support on the payload communications link 

enables a flexible workflow with standard Linux network tools, for uplinking new firmware binaries during 

communications passes. In the past year, HawkEye 360 implemented a Continuous Integration (CI) system with Gitlab 

CI tools to facilitate automated Software in the Loop (SIL) and Hardware in the Loop (HIL) testing of these binaries, 

on the equipment in its flatsat lab of equivalent payload hardware. A Continuous Deployment (CD) system based on 

Mender, a software framework for over-the-air firmware updates developed initially for IoT devices, was adopted to 

facilitate automated synchronization and installation of new firmware binaries on-orbit. This talk and accompanying 

paper will describe the development and implementation of this CI/CD system and the new on-orbit functionality it 

has unlocked for the company.

OVERVIEW 

HawkEye 360’s spacecraft are capable of monitoring RF 

signals over the range of roughly 70 MHz to 18 GHz. 

Not only that, but these spacecraft can also listen on 

multiple antennas and record/process the signals from 

those multiple antennas simultaneously. Each satellite 

can simply record the RF signals acquired, as 

timestamped I/Q sample files, and they can also process 

and derive analytics about the signal at the edge. Edge 

processing is enabled by the payload computer, which is 

currently a quad-core ARM processor and FPGA System 

on a Chip. The flexibility of the payload to perform a 

wide variety of tasks is intentional, and it’s a feature that 

customers take advantage of. 

Behind all of the hardware capability is an expansive 

ecosystem of embedded firmware and ground-segment 

software to support the range of tasks available on the 

spacecraft. Often, a customer asks the company to 

perform a specific task for which software is not yet 

implemented to support it. The company also has 

internal initiatives to develop new products and 

capabilities, requiring new software developments. As 

such, we are updating the embedded firmware on orbit, 

on all of the satellites, along with the ground software to 

support it, on a daily basis. 

Challenges for On-Orbit updates 

There are three categories of challenges for on-orbit 

spacecraft firmware updates. The first category is, the 

spacecraft’s communication link must support the 

bandwidth needed to regularly uplink new firmware 

binaries to the vehicle, so that they can be then installed. 

This can be considered a hardware design requirement, 

but there is also a software consideration. For example, 

if a developer or operator uploads new firmware for the 

communications application that runs on the spacecraft, 

and if there is a bug in that new firmware that causes the 

spacecraft to no longer contact ground stations, that’s a 

potential failure mode that also needs to be mitigated 

against. 

The second category is that for many processors, any 

corruption of the boot firmware can lead that processor 

to become totally inoperable. Therefore, it’s important to 

structure boot firmware for each processor in a way such 

that at least one of the following is true: 

Case 1. The boot firmware is stored in a way that makes 

it generally unalterable and passively stable for the space 

environment. 

Case 2. Multiple redundant copies of the boot firmware 

can be selected at boot time, so if one image is corrupted 
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or has a bug, it can be repaired by first booting from 

another working image and then accessing the corrupted 

image. 

Case 3. It’s possible for an external processor to access 

and modify the boot firmware storage. In this case the 

external processor can be used to repair/upgrade the boot 

firmware if needed. 

An example of a Case 1 solution is to store the boot 

firmware on a non-volatile storage medium known to 

operate effectively and retain its state in the space 

environment for as long as the mission requires. For chip 

components operating in space, Total Ionization Dosage 

(TID) and Single Event Effects (SEE) can cause both 

faults and state changes. There are some non-volatile 

storage architectures that have proven to be more 

resilient than others on this front. One such example is 

some Ferroelectric Random Access Memory (FRAM) 

chipsets [1], with a few others. 

The third category of the challenge is, even if the 

spacecraft and all its embedded processors are in healthy 

operable condition, if a firmware update introduces a bug 

that causes a temporary mission outage, that can lead to 

lost revenue and even customers. The considerations for 

this are completely different from the first category, and 

are specific to each business, its customers, and the 

tolerance for risk for each party. Generally, the best 

scenario is to catch bugs on the ground with ground-

based software and hardware testing. Beyond that, two 

approaches that can be effective are: the progressive roll-

out of upgrades across the fleet, and the implementation 

of automated alerts and monitors for outages. 

Communications System Architecture 

HawkEye 360 implemente a modest 1-2 megabit per 

second payload uplink to complement its payload 

downlink, which is much faster. When both uplink and 

downlink are in active use over a ground station, the 

onboard payload computer supports transmission of 

Internet Protocol packets over the radio link. This 

enables developers and operators at the company to 

access the payload computer via standard Linux 

networking tools such as SSH and RSYNC. It also 

enables an entire ecosystem of open source tools for 

managing remote devices, as most such software tools 

ultimately expect to be able to communicate with the 

remote devices over sockets. 

In addition to the payload communications system, the 

spacecraft bus implements a lower data rate command 

and control transceiver, which is always available for 

back-up access to the platform.  

Processing Elements on HawkEye 360’s Payload 

Each satellite payload has two Software Defined Radios 

(SDRs), developed internally by the company. These 

SDRs are built around a quad-core ARM processor 

paired with an on-chip FPGA, sometimes called a 

System on a Chip (SoC). The reason for two-string 

redundancy on the SDR front is that it enables the 

company to rapidly iterate and develop state-of-the-art 

SDRs into the future. By always flying one known, 

flight-proven device plus a newly developed device, the 

company can mitigate the risk of flying an unproven 

device for a mission-critical application. 

The embedded firmware considerations for the SoC are 

largely divided between the boot firmware and the 

application firmware. This device runs Open Embedded 

Linux, with u-Boot and the Xilinx First Stage bootloader 

(FSBL) managing the start-up sequence. There is also a 

boot FPGA image that is loaded at start-up. The 

combination of these piece parts can be considered a 

single boot image. Copies of these boot images reside on 

two redundant QSPI flash memory chips. Each chip is 

partitioned in half, for up to four redundant copies of the 

boot firmware for the SoC. The capacity for redundant 

boot images in QSPI flash memory is an important 

hardware consideration to enable safe reprogramming of 

the FSBL image, u-Boot image, boot FPGA image, and 

the Linux image itself. 

The other hardware consideration that enables safe on-

orbit reprogramming of the SoC boot image, is the 

implementation of a flash memory-based FPGA on the 

same circuit board. This secondary FPGA monitors the 

SoC boot sequence for reboot loops and failed boots, and 

it will automatically switch the SoC to boot from a 

different copy of the boot firmware should an issue 

occur. The secondary FPGA, together with the redundant 

QSPI flash memory structure for boot images, enables 

safe on-orbit re-programmability for the SoC boot 

firmware. 

For non-boot firmware, the situation is a lot simpler. 

Some application firmware is baked into the Linux 

image itself, but much of it resides on a secondary non-

volatile storage medium. For that, there are two 

redundant eMMC chips per SDR and, more recently a 

Solid State Drive per SDR. The general approach for 

application firmware, is to have multiple copies of the 

firmware images located on the secondary storage as a 

mount point in Linux. Symbolic links select which 

application image to use operationally, for each type of 

application run on the SDR. 

In addition to the SoC, each payload implements either 

one or two 8051 series microprocessors, to command 

and control the payload hardware, e.g., the RF front-end 
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and Low Noise Amplifier circuitry. This microprocessor 

implements a light-weight custom bootloader, that can 

be entered into by external command. This bootloader 

enables reprogramming of the 8051’s application 

firmware. It can be entered into even if the application 

firmware is for some reason corrupted, enabling 

recovery against a bad application firmware load. This 

processor’s program memory is stored on internal 

FRAM. 

CONTINUOUS INTEGRATION FOR SMALL 

SATELLITES 

Continuous Integration (CI) refers to regularly 

integrating source code changes, often from multiple 

developers working in parallel, to the main branch of a 

source code repository. It is one of the more common 

developer workflows in place today for terrestrial 

software development. Some published works indicate 

that other New Space companies, like HawkEye 360, 

have adopted a CI approach to on-orbit firmware updates 

[2]. That said, it appears to be a relatively new approach 

for the industry. 

Our CI development workflow is essentially as follows: 

1. Requirements for a new firmware capability are 

defined based on new hardware to be flown on 

an upcoming mission or on a new product 

initiative, and developers are assigned to the 

project. 

2. The new firmware is generally developed on a 

branch of an existing source code repository 

and tested first by the developers on payload 

hardware expressly set aside for testing an 

development. These spacecraft payloads for 

test and development are colloquially referred 

as “flatsats.” 

3. When ready, the firmware is requested to be 

merged into the main branch of its source code 

repository. At this point, the firmware is 

required to pass many automated tests. These 

tests are all defined/constructed as jobs and 

pipelines utilizing Gitlab CI tools. Some of 

them occur automatically on a schedule, and 

some are initiated as needed by developers. 

4. Some of these tests are software tests. For 

example, firmware that is ultimately meant for 

an ARM processor may be compiled first for 

x86 and run through a number of software-only 

tests on an x86 server. 

5. Many of the tests are Hardware-in-the-Loop 

(HIL) tests. For these tests, the firmware is 

installed on the flatsats along with all other boot 

and application firmware for the spacecraft, and 

each flatsat is then tasked to perform a variety 

of standard operations. This is done to check 

that the new firmware has not negatively 

impacted legacy capabilities. 

6. Should all software and hardware tests pass, the 

new firmware is merged into the main branch 

of its source code repository. 

7. Depending on the urgency of the new feature, 

one or more new features may go through the 

same process before a release is officially 

tagged for that source code repository. Once 

tagged, the application firmware is packaged 

and placed in a centralized firmware artifact 

storage and is staged for release to the 

constellation. 

AUTOMATING ON-ORBIT UPDATES 

The other side of developing new software for the 

spacecraft, is deploying that new software to the 

constellation. We follow the principle that by deploying 

small software improvements more frequently it’s easier 

to isolate bugs or issues to specific new developments, 

than if a larger and more substantial firmware update is 

rolled out all at once. As such, we follow a Continuous 

Deployment (CD) strategy to complement our CI 

approach. Firmware updates for the satellites are rolled 

out several times a day. 

A CD process will look different for every company and 

their spacecraft’s unique set of firmware. For this 

constellation, there are essentially three categories of 

firmware updates performed on the spacecraft regularly, 

and each has its own considerations: 

1. Application software updates. This is the most 

straightforward type of update performed on the 

spacecraft. Generally, new images are uploaded 

over ground station communication passes, and 

placed in non-volatile storage on a Linux 

accessible mountpoint. A symbolic link is 

updated to point to the new release package, for 

a given application. 

2. Linux updates. Occasionally, the bootloader (u-

Boot/FSBL), the FPGA boot image, or the 

entire Linux root filesystem needs to be 

reinstalled. Generally, that whole collection of 

firmware artifacts is uplinked all at once, and 

installed in one shot. The installation process is 

to boot a different QSPI flash memory image 

than the one intended for upgrade. Once booted 

to Linux, the QSPI memory partition intended 

for upgrade is mounted, and the files are placed 

where they need to go. 

3. 8051 microprocessor updates. One or two such 

devices per payload are accessible to the 

payload computer via Controller Area Network 

(CAN). It’s also possible to direct CAN packets 

at this device directly from the command and 
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control radio. In normal conditions, the payload 

computers have a routine they can execute to 

upload a new application image to the 8051. 

The command and control radio serves as a 

backup means to program this device. 

Earlier on in the company, when there were only a 

handful of spacecraft in orbit, it was possible to perform 

many of these updates by hand during a ground station 

payload communications pass. A developer or operator 

would log into the ground station, upload the firmware 

to the spacecraft with RSYNC, remotely connect to the 

payload computer over SSH, and then perform the 

update with a series of Linux shell commands or scripts. 

As the constellation has grown, this is no longer 

sustainable, and automation has been implemented to 

streamline the roll-out of updates. 

We have adopted the Open Source Software (OSS) tool 

Mender for automation purposes. This software, initially 

meant for Internet of Things (IoT) devices, is essentially 

a general-purpose remote software update management 

tool. With Mender, one can specify firmware images to 

deploy, schedule those deployments, and receive 

feedback from the remote device about executing that 

installation. On the payload computer side, the Mender 

client calls an update script specified by the user, to 

execute the update. The protocol for the Mender server 

to communicate with the Mender client on the device is 

built on HTTPS. Like with any OSS, as a software tool, 

it’s not completely without its issues, but it has been a 

successful tool for our needs to date. 

SUMMARY 

Our spacecraft payload can perform a wide variety of 

tasks in acquiring RF signals and analyzing them at the 

edge. As such, we are constantly innovating on the 

software on the vehicle, to support the evolving needs of 

our customers. As our constellation has grown, we have 

implemented a CI/CD approach to developing and 

managing the firmware on our spacecraft. Our CI 

approach is based on an automated system of Gitlab CI 

jobs and pipelines that perform software and HIL testing 

with our flatsats. Our CD approach utilizes Mender, an 

OSS tool for managing firmware on remote devices, to 

automate the deployment and execution of firmware 

upgrades. 

This is made possible by a design architecture that 

enables the safe remote reprogramming of all processing 

elements on the payload, and the implementation of a 

standard Internet Protocol stack on top of our payload 

communication radio link. 
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