
Haengel 1 38th Annual Small Satellite Conference

SSC24-S3-09

HawkEye 360's CI/CD Approach to Automatic On-Orbit Firmware Updates

Eric Haengel, Lorin Metzger

HawkEye 360

485 Spring Park Place STE 450, Herndon VA 20170; 1-734-358-2827

eric@he360.com

ABSTRACT

HawkEye 360 is the world leader in RF signal monitoring and analytics from space. Its constellation of more than two

dozen small satellites, each with a GPS time-synchronized on-board Software Defined Radio, enables it to record and

monitor terrestrial RF signals emitted from anywhere on Earth, multiple times a day. The satellites fly in clusters of

three each, in a tight orbital formation, enabling trilateration of emitters by observed time and frequency difference of

arrival. RF signals come in such a wide variety in their applications and content, that from early on the spacecraft

design was structured with flexibility in mind. All processing elements, e.g. microprocessors, FPGAs, embedded

Linux computers, in the payload can be re-programmed safely on-orbit, by leaning on bootloaders or two-string

redundancy, should an issue occur. Furthermore, TCP/IP and UDP/IP support on the payload communications link

enables a flexible workflow with standard Linux network tools, for uplinking new firmware binaries during

communications passes. In the past year, HawkEye 360 implemented a Continuous Integration (CI) system with Gitlab

CI tools to facilitate automated Software in the Loop (SIL) and Hardware in the Loop (HIL) testing of these binaries,

on the equipment in its flatsat lab of equivalent payload hardware. A Continuous Deployment (CD) system based on

Mender, a software framework for over-the-air firmware updates developed initially for IoT devices, was adopted to

facilitate automated synchronization and installation of new firmware binaries on-orbit. This talk and accompanying

paper will describe the development and implementation of this CI/CD system and the new on-orbit functionality it

has unlocked for the company.

OVERVIEW

HawkEye 360’s spacecraft are capable of monitoring RF

signals over the range of roughly 70 MHz to 18 GHz.

Not only that, but these spacecraft can also listen on

multiple antennas and record/process the signals from

those multiple antennas simultaneously. Each satellite

can simply record the RF signals acquired, as

timestamped I/Q sample files, and they can also process

and derive analytics about the signal at the edge. Edge

processing is enabled by the payload computer, which is

currently a quad-core ARM processor and FPGA System

on a Chip. The flexibility of the payload to perform a

wide variety of tasks is intentional, and it’s a feature that

customers take advantage of.

Behind all of the hardware capability is an expansive

ecosystem of embedded firmware and ground-segment

software to support the range of tasks available on the

spacecraft. Often, a customer asks the company to

perform a specific task for which software is not yet

implemented to support it. The company also has

internal initiatives to develop new products and

capabilities, requiring new software developments. As

such, we are updating the embedded firmware on orbit,

on all of the satellites, along with the ground software to

support it, on a daily basis.

Challenges for On-Orbit updates

There are three categories of challenges for on-orbit

spacecraft firmware updates. The first category is, the

spacecraft’s communication link must support the

bandwidth needed to regularly uplink new firmware

binaries to the vehicle, so that they can be then installed.

This can be considered a hardware design requirement,

but there is also a software consideration. For example,

if a developer or operator uploads new firmware for the

communications application that runs on the spacecraft,

and if there is a bug in that new firmware that causes the

spacecraft to no longer contact ground stations, that’s a

potential failure mode that also needs to be mitigated

against.

The second category is that for many processors, any

corruption of the boot firmware can lead that processor

to become totally inoperable. Therefore, it’s important to

structure boot firmware for each processor in a way such

that at least one of the following is true:

Case 1. The boot firmware is stored in a way that makes

it generally unalterable and passively stable for the space

environment.

Case 2. Multiple redundant copies of the boot firmware

can be selected at boot time, so if one image is corrupted

Haengel 2 38th Annual Small Satellite Conference

or has a bug, it can be repaired by first booting from

another working image and then accessing the corrupted

image.

Case 3. It’s possible for an external processor to access

and modify the boot firmware storage. In this case the

external processor can be used to repair/upgrade the boot

firmware if needed.

An example of a Case 1 solution is to store the boot

firmware on a non-volatile storage medium known to

operate effectively and retain its state in the space

environment for as long as the mission requires. For chip

components operating in space, Total Ionization Dosage

(TID) and Single Event Effects (SEE) can cause both

faults and state changes. There are some non-volatile

storage architectures that have proven to be more

resilient than others on this front. One such example is

some Ferroelectric Random Access Memory (FRAM)

chipsets [1], with a few others.

The third category of the challenge is, even if the

spacecraft and all its embedded processors are in healthy

operable condition, if a firmware update introduces a bug

that causes a temporary mission outage, that can lead to

lost revenue and even customers. The considerations for

this are completely different from the first category, and

are specific to each business, its customers, and the

tolerance for risk for each party. Generally, the best

scenario is to catch bugs on the ground with ground-

based software and hardware testing. Beyond that, two

approaches that can be effective are: the progressive roll-

out of upgrades across the fleet, and the implementation

of automated alerts and monitors for outages.

Communications System Architecture

HawkEye 360 implemente a modest 1-2 megabit per

second payload uplink to complement its payload

downlink, which is much faster. When both uplink and

downlink are in active use over a ground station, the

onboard payload computer supports transmission of

Internet Protocol packets over the radio link. This

enables developers and operators at the company to

access the payload computer via standard Linux

networking tools such as SSH and RSYNC. It also

enables an entire ecosystem of open source tools for

managing remote devices, as most such software tools

ultimately expect to be able to communicate with the

remote devices over sockets.

In addition to the payload communications system, the

spacecraft bus implements a lower data rate command

and control transceiver, which is always available for

back-up access to the platform.

Processing Elements on HawkEye 360’s Payload

Each satellite payload has two Software Defined Radios

(SDRs), developed internally by the company. These

SDRs are built around a quad-core ARM processor

paired with an on-chip FPGA, sometimes called a

System on a Chip (SoC). The reason for two-string

redundancy on the SDR front is that it enables the

company to rapidly iterate and develop state-of-the-art

SDRs into the future. By always flying one known,

flight-proven device plus a newly developed device, the

company can mitigate the risk of flying an unproven

device for a mission-critical application.

The embedded firmware considerations for the SoC are

largely divided between the boot firmware and the

application firmware. This device runs Open Embedded

Linux, with u-Boot and the Xilinx First Stage bootloader

(FSBL) managing the start-up sequence. There is also a

boot FPGA image that is loaded at start-up. The

combination of these piece parts can be considered a

single boot image. Copies of these boot images reside on

two redundant QSPI flash memory chips. Each chip is

partitioned in half, for up to four redundant copies of the

boot firmware for the SoC. The capacity for redundant

boot images in QSPI flash memory is an important

hardware consideration to enable safe reprogramming of

the FSBL image, u-Boot image, boot FPGA image, and

the Linux image itself.

The other hardware consideration that enables safe on-

orbit reprogramming of the SoC boot image, is the

implementation of a flash memory-based FPGA on the

same circuit board. This secondary FPGA monitors the

SoC boot sequence for reboot loops and failed boots, and

it will automatically switch the SoC to boot from a

different copy of the boot firmware should an issue

occur. The secondary FPGA, together with the redundant

QSPI flash memory structure for boot images, enables

safe on-orbit re-programmability for the SoC boot

firmware.

For non-boot firmware, the situation is a lot simpler.

Some application firmware is baked into the Linux

image itself, but much of it resides on a secondary non-

volatile storage medium. For that, there are two

redundant eMMC chips per SDR and, more recently a

Solid State Drive per SDR. The general approach for

application firmware, is to have multiple copies of the

firmware images located on the secondary storage as a

mount point in Linux. Symbolic links select which

application image to use operationally, for each type of

application run on the SDR.

In addition to the SoC, each payload implements either

one or two 8051 series microprocessors, to command

and control the payload hardware, e.g., the RF front-end

Haengel 3 38th Annual Small Satellite Conference

and Low Noise Amplifier circuitry. This microprocessor

implements a light-weight custom bootloader, that can

be entered into by external command. This bootloader

enables reprogramming of the 8051’s application

firmware. It can be entered into even if the application

firmware is for some reason corrupted, enabling

recovery against a bad application firmware load. This

processor’s program memory is stored on internal

FRAM.

CONTINUOUS INTEGRATION FOR SMALL

SATELLITES

Continuous Integration (CI) refers to regularly

integrating source code changes, often from multiple

developers working in parallel, to the main branch of a

source code repository. It is one of the more common

developer workflows in place today for terrestrial

software development. Some published works indicate

that other New Space companies, like HawkEye 360,

have adopted a CI approach to on-orbit firmware updates

[2]. That said, it appears to be a relatively new approach

for the industry.

Our CI development workflow is essentially as follows:

1. Requirements for a new firmware capability are

defined based on new hardware to be flown on

an upcoming mission or on a new product

initiative, and developers are assigned to the

project.

2. The new firmware is generally developed on a

branch of an existing source code repository

and tested first by the developers on payload

hardware expressly set aside for testing an

development. These spacecraft payloads for

test and development are colloquially referred

as “flatsats.”

3. When ready, the firmware is requested to be

merged into the main branch of its source code

repository. At this point, the firmware is

required to pass many automated tests. These

tests are all defined/constructed as jobs and

pipelines utilizing Gitlab CI tools. Some of

them occur automatically on a schedule, and

some are initiated as needed by developers.

4. Some of these tests are software tests. For

example, firmware that is ultimately meant for

an ARM processor may be compiled first for

x86 and run through a number of software-only

tests on an x86 server.

5. Many of the tests are Hardware-in-the-Loop

(HIL) tests. For these tests, the firmware is

installed on the flatsats along with all other boot

and application firmware for the spacecraft, and

each flatsat is then tasked to perform a variety

of standard operations. This is done to check

that the new firmware has not negatively

impacted legacy capabilities.

6. Should all software and hardware tests pass, the

new firmware is merged into the main branch

of its source code repository.

7. Depending on the urgency of the new feature,

one or more new features may go through the

same process before a release is officially

tagged for that source code repository. Once

tagged, the application firmware is packaged

and placed in a centralized firmware artifact

storage and is staged for release to the

constellation.

AUTOMATING ON-ORBIT UPDATES

The other side of developing new software for the

spacecraft, is deploying that new software to the

constellation. We follow the principle that by deploying

small software improvements more frequently it’s easier

to isolate bugs or issues to specific new developments,

than if a larger and more substantial firmware update is

rolled out all at once. As such, we follow a Continuous

Deployment (CD) strategy to complement our CI

approach. Firmware updates for the satellites are rolled

out several times a day.

A CD process will look different for every company and

their spacecraft’s unique set of firmware. For this

constellation, there are essentially three categories of

firmware updates performed on the spacecraft regularly,

and each has its own considerations:

1. Application software updates. This is the most

straightforward type of update performed on the

spacecraft. Generally, new images are uploaded

over ground station communication passes, and

placed in non-volatile storage on a Linux

accessible mountpoint. A symbolic link is

updated to point to the new release package, for

a given application.

2. Linux updates. Occasionally, the bootloader (u-

Boot/FSBL), the FPGA boot image, or the

entire Linux root filesystem needs to be

reinstalled. Generally, that whole collection of

firmware artifacts is uplinked all at once, and

installed in one shot. The installation process is

to boot a different QSPI flash memory image

than the one intended for upgrade. Once booted

to Linux, the QSPI memory partition intended

for upgrade is mounted, and the files are placed

where they need to go.

3. 8051 microprocessor updates. One or two such

devices per payload are accessible to the

payload computer via Controller Area Network

(CAN). It’s also possible to direct CAN packets

at this device directly from the command and

Haengel 4 38th Annual Small Satellite Conference

control radio. In normal conditions, the payload

computers have a routine they can execute to

upload a new application image to the 8051.

The command and control radio serves as a

backup means to program this device.

Earlier on in the company, when there were only a

handful of spacecraft in orbit, it was possible to perform

many of these updates by hand during a ground station

payload communications pass. A developer or operator

would log into the ground station, upload the firmware

to the spacecraft with RSYNC, remotely connect to the

payload computer over SSH, and then perform the

update with a series of Linux shell commands or scripts.

As the constellation has grown, this is no longer

sustainable, and automation has been implemented to

streamline the roll-out of updates.

We have adopted the Open Source Software (OSS) tool

Mender for automation purposes. This software, initially

meant for Internet of Things (IoT) devices, is essentially

a general-purpose remote software update management

tool. With Mender, one can specify firmware images to

deploy, schedule those deployments, and receive

feedback from the remote device about executing that

installation. On the payload computer side, the Mender

client calls an update script specified by the user, to

execute the update. The protocol for the Mender server

to communicate with the Mender client on the device is

built on HTTPS. Like with any OSS, as a software tool,

it’s not completely without its issues, but it has been a

successful tool for our needs to date.

SUMMARY

Our spacecraft payload can perform a wide variety of

tasks in acquiring RF signals and analyzing them at the

edge. As such, we are constantly innovating on the

software on the vehicle, to support the evolving needs of

our customers. As our constellation has grown, we have

implemented a CI/CD approach to developing and

managing the firmware on our spacecraft. Our CI

approach is based on an automated system of Gitlab CI

jobs and pipelines that perform software and HIL testing

with our flatsats. Our CD approach utilizes Mender, an

OSS tool for managing firmware on remote devices, to

automate the deployment and execution of firmware

upgrades.

This is made possible by a design architecture that

enables the safe remote reprogramming of all processing

elements on the payload, and the implementation of a

standard Internet Protocol stack on top of our payload

communication radio link.

ACKNOWLEDGMENTS

The authors would like to acknowledge all of the efforts

by the space team at HawkEye 360 in fielding a

constellation of highly capable spacecraft and

implementing the system described in this paper. It truly

has been a team effort that’s been years in the making.

The authors would also like to extend their gratitude to

the company’s customers and investors for their

continued support over the years.

REFERENCES

1. Dahl, B. A., et al. "Radiation evaluation of

ferroelectric random access memory embedded in

180nm cmos technology." 2015 IEEE Radiation

Effects Data Workshop (REDW). IEEE, 2015.

2. Badshah, Akash, Natalie Morris, and Matthew

Monson. "Over-The-Vacuum Update–Starlink’s

Approach for Reliably Upgrading Software on

Thousands of Satellites." (2023).

