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ABSTRACT 

The Effects of Myoglobin, Nitrosylmyoglobin, and Free Iron 

on the Growth of Clostridium botulinum in Cured Meat 

by 

Susan K. Fortier Collinge, Master of Science 

Utah State University, 1981 

Major Professor: Arthur W. Mahoney, Ph.D. 
Department: Nutrition and Food Sciences 

viii 

Although nitrite is a known inhibitor of Clostridium botulinum in 

cured meats, the mechanism of inhibition is not understood. The 

observation has been made that iron is required for growth of C. 

botulinum and that the role of nitrite may be to alter the pathway of 

iron uptake by these organisms. Since the color change in cured meats 

is due to the binding of nitrite to the heme group of meat pigments, it 

was hypothesized that nitrite may also be tying up an essential iron 

source, heme. This experiment was an investigation of the possibility 

that myoglobin added to a meat system would stimulate growth and toxin 

production by C. botulinum much more than myoglobin that had been 

nitrosylated before inclusion in the product. Treatments were included 

to compare the effects of a heme iron source, myoglobin, with that of an 

ionic source, ferric chloride. To help understand the role of free iron 

in botulinal growth, several treatments contained a metal ion chelator, 

ethylenediaminetetraacetic acid (EDTA). Nitrite caused a definite delay 



ix 

of growth, as evidenced by gas bubbles, when compared with a non-nitrite 

system. Addition of ferric chloride resulted in an increase in the rate 

of appearance of swollen samples, although growth was enhanced even 

more when myoglobin was added. When nitrosylated myoglobin was 

included, growth was inhibited more than in the treatment with nitrite 

alone. EDTA inhibited growth of C. botulinum but a conclusion should 

not be made with respect to the chelation of iron since EDTA chelates 

many other metals. Residual nitrite levels had declined to below 10 ppm 

by the time swelling occurred. Although swelling did not occur until 

nitrite had declined in the products, the absence of nitrite alone did 

not allow growth and toxin production. Since nitrosylated myoglobin and 

EDTA inhibited botulinal growth even after residual nitrite had 

declined, it is possible that the inhibitory action of nitrite is 

creating a nutritional deficiency for C. botulinum. 

(83 pages) 



INTRODUCTION 

Function of Nitrite 

Nitrite has long been used in the curing of meats. Its functions 

include (a.) producing the characteristic pink color of cured meats; 

(b.) preventing oxidative rancidity; (c.) affecting flavor and texture; 

and (d.) inhibiting growth and toxin production by Clostridium 

botulinum (Sofos et al., 1979). The pink color is formed when nitrite 

is converted to nitric oxide by reductants in the meat, which is 

complexed with oxidized pigments, mainly metmyoglobin, to form 

nitrosylmetmyoglobin, which is ultimately converted to nitrosyl­

hemochrome when heated (Fox and Thomson, 1963). Igene et al. (1979) 

reported that addition of nitrite and removal of heme pigments from meat 

significantly inhibited lipid oxidation in cooked meat. Prevention of 

lipid oxidation would certainly affect the taste of meat. Hustad et al. 

(1973) reported that the flavor quality of weiners made with nitrite was 

significantly higher than weiners made without nitrite. A number of 

researchers have shown that nitrite inhibits growth and toxin formation 

by C. botulinum (Christiansen et al., 1973; 1974; Hustad et al., 

1973). When considering the inclusion of a substance which inhibits C. 

botulinum one might wonder how great the risk is of acquiring 

botulism from sausage. In a survey of 2,358 samples of raw meat from 

the U.S. and Canada, only one C. botulinum spore was confirmed 

(Greenberg et al., 1966b). If this study were representative, the 

logical conclusion is that the chance of getting botulism from cured 

meat is slight. 
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Safety of Nitrite 

Recently, the safety of nitrites has been questioned. Several 

researchers have reported the presence of nitrosamines in bacon. 

Nitrosamines can be formed by a reaction of nitrite or nitrous acid with 

secondary or tertiary amines (Sebranek and Cassens, 1973). Cured meats 

contain these reactants and the potential for nitrosamine formation. 

Fazio et al. (1973) isolated N-Nitrosopyrrolidine from eight commercial 

brands of cooked bacon at levels ranging from 10 to 108 ppb (ug/kg). 

Nitrosamines are considered one of the most potent groups of carcinogens 

known. Schmahl and Osswald (1967) reported the presence of liver tumors 

in eight different species fed diethyl-nitrosamine. The frequency of 

the liver tumors was practically one hundred percent. Newberne (1979) 

concluded that nitrite itself was carcinogenic. Lymphoma was increased 

in all groups fed nitrite. The incidence of lymphoma was 5,4 percent in 

573 control rats and 10.2 percent in 1383 treated rats. Holland (1979) 

reviewed some of the findings from a number of investigations of the 

Newberne study. Criticisms included unethical data recording 

procedures, poor quality control, and the presence of urethane, a 

powerful carcinogen in one of the animal rooms. Pearson et al. (1980) 

confirmed the carcinogenicity of N-nitrosylpyrrolidine but found no 

evidence that nitrite alone or in a combination with pyrrolidine was 

carcinogenic. 

While questioning the safety of nitrite, it is important to 

consider the relative contribution of nitrite to our diets from cured 

meats. It has been estimated that of the average daily per capita 

ingestion of nitrite in the U.S., 21 .1% is from cured meats and 76.8% 
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from saliva (White, 1976). Since saliva is the main source of nitrite 

in our diets, it would be illogical to try to reduce nitrite consumption 

by excluding nitrite from meat. 

Current concern over the possibility that nitrite or reaction 

products of nitrite may be carcinogenic has led to an investigation of 

the benefits of this meat additive. Most of this research has been 

focused on the antibotulinal properties of sodium nitrite, since a 

critical issue exists with regards to the risk of contracting this often 

fatal neuroparalytic disease. Even one incident of botulism could 
I 

destroy an entire meat company as well as undermine public confidence in 

the meat industry as a whole. At present, there is evidence that 

nitrite is beneficial as an antibotulinal agent (Christiansen et al., 

1973; 1974; Hustad et al., 1973) but may be reacting to form 

carcinogenic nitrosamines (Fazio et al., 1973). More research is 

probably needed if a clear decision is to be made concerning this 

risk-benefit dilemma. 

Mechanism of Botulinal Inhibition 

Although the antibotulinal property of nitrite has been 

demonstrated, only speculations have been made as to the mechanism of 

inhibition. If results of further studies show nitrite or degradative 

products of nitrite to be a significant risk, it may be necessary to 

find alternative methods of curing. The ideal substitute for nitrite 

would impart the same characteristics to the product, including a high 

degree of botulinal safety, without posing a health risk. If the 

mechanism by which nitrite inhibits C. botulinum growth were 



determined, it may facilitate the development of other non-nitrite 

curing systems. 

4 

Johnston et al. (1969) described the following as possible 

mechanisms of inhibition by sodium nitrite: 1 .) enhancement of the 

destruction of spores in the presence of heat; 2.) causing an increased 

rate of germination of spores during the heat process followed by death 

of the germinated spores from the heat process; 3.) prevention of 

germination of spores that survived the heat process; and 4.) production 

of more inhibitory substances from nitrite. Of the above possibilities, 

the fourth has received the most discussion and study. Perigo et al. 

(1967) speculated that nitrite might, when heated in the presence of the 

supporting medium, be converted to a much more powerful inhibitor 

(Perigo factor). Experimentally, they were able to show with ~ 

sporogenes that smaller concentrations of nitrite were inhibitory in a 

heated culture medium when compared with an unheated system. Perigo and 

Roberts (1968) confirmed the enhancement of the inhibitory effect of 

nitrite after heating, using C. botulinum types A, B, E, and F and 

C. welchii (perfringens). In another study, growth of C. 

perfringens occurred at nitrite concentrations as high as 600-1000 ppm 

in a filter sterilized medium, whereas in autoclaved media, growth was 

observed at nitrite levels of 10-50 ppm (Riha and Solberg, 1975). 

Attempts have been made to characterize this inhibitor that has been 

referred to as the Perigo factor. Moran et al. (1975) found that only 

amino acids and mineral salts were involved in the production of this 

inhibitor. A complex of cysteine, iron, and nitric oxide was detected in 

an autoclaved solution containing cysteine, ferrous sulfate, and sodium 

nitrite. This compound did not appear to be inhibitory at levels that 



5 

would be found in the culture medium. Johnston et al. (1969) 

investigated the possibility that the Perigo factor was formed in meat 

systems. The conclusion was made that meat may prevent the formation of 

this factor and that meat and culture work are best considered 

separately, if the inhibitory mechanism is to be determined. 

Residual vs. Initial Nitrite 

More recently, researchers have investigated the role of residual 

nitrite in botulinal inhibition, along with variations in mineral and 

vitamin composition of the meat. Christiansen et al. (1974) showed that 

botulinal toxin production depended upon initial nitrite formulation and 

spore level. At low inoculum levels (210 spores/g before processing), 

samples became toxic if formulated with 120 µg/g nitrite or less. At 

the same inoculum level, toxin was not detected in products formulated 

with 170 or 340 µg/g nitrite. Inoculum levels of 19,000 spores/g 

resulted in detectable toxin at all nitrite levels. 

The question of the relative importance of residual versus initial 

nitrite level has been addressed by Christiansen (1980). A suggestion 

was made that considering initial nitrite level as the important factor 

implies one of three things: 1 .) nitrite reacts with C. botulinum 

spores to cause inhibition; 2.) nitrite reacts with a component of the 

meat to form a Perigo-type factor; or 3.) the input level of nitrite 

must cure the meat and provide sufficient residual nitrite to provide 

inhibition. Christiansen (1980) stated that: "The literature contains 

no compelling evidence that either of the first two events occurs in 

meat products." In early studies by Christiansen et al. (1973; 1974) a 
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conclusion was made that the input level of nitrite predetermines the 

degree of nitrite inhibition. Later discussion has indicated that the 

above conclusion was erroneous and Christiansen (1980) has since 

emphasized the importance of residual nitrite in botulinal inhibition. 

The variation irr response with differing initial nitrite levels was 

explained as the result of a race between nitrite depletion and death of 

germinated botulinal spores (Christiansen et al., 1978). This theory 

described by Christiansen (1980) is based upon the idea that botulinal 

spores germinate but do not grow and produce toxin in the presence of 

nitrite. If this were the case, growth would occur if nitrite was 

depleted because the input level was not adequate. Since the amount of 

residual nitrite depends to an extent on the input level; it does not 

seem possible to completely dissociate initial and residual nitrite . 

If nitrite is injurious to germinated botulinal spores 

(Christiansen, 1980), one would expect nitrite to limit growth in a 

culture medium other than meat. Some strains of C. botulinum (types 

A, B, E, or F) were not inhibited by nitrite concentrations as high as 

100 ppm in culture media (Perigo and Roberts; 1968). Roberts and Ingram 

(1973) reported growth of C. botulinum in culture media at nitrite 

concentrations as high as 300 ppm. Growth of C. perfringens occurred 

at nitrite concentrations as high as 600-1000 ppm at pH 7.2 (Riha and 

Solberg, 1975). Growth of Clostridia in culture media containing 

nitrite does not indicate that nitrite itself is injurious to the 

bacterial cells, nor does it help to validate the theory that residual 

nitrite is responsible for inhibition of C. botulinum in meats. 

Among the more convincing evidence that residual nitrite is 

important for C. botulinum inhibition, is the acceleration of growth 



following nitrite depletion by extended refrigeration (Tompkin et al., 

1978e). It is possible that botulinal spores do not germinate until 

removed from refrigeration and held at 27C. By the time germination 

occurs, nitrite is depleted, and growth occurs. 

7 

In addition· to these suggestions of possible implications for the 

importance of initial nitrite level, is one that is being investigated 

here. It is possible that nitrite reacts with heme iron so that it 

becomes unavailable for microbial utilization, thus inhibiting growth 

and toxin production by limiting uptake of an essential nutrient, iron. 

This could depend upon the input level of nitrite. 

Tompkin et al. (1977) attempted to determine a base line for 

inhibition of C. botulinum by nitrite in a perishable canned meat 

product. Growth of C. botulinum was considered positive when cans 

became swollen with gas. Predicted average times to first swell were 

6.7, 29.8, 82.6, and 94.3 days when O, 50, 100, and 156 µg/g of sodium 

nitrite was added to the meat. The length of the lag phase was extended 

with increasing amounts of nitrite, but once swelling began, rate of 

appearance of swollen cans was not significantly different at 50, 100, 

and 156 µg/g of sodium nitrite. Within a particular nitrite level, a 

substantial amount of variability was seen between the six replications. 

Iron and C. botulinum 

Further studies have been focused on determining the cause of 

variation within replications of the same treatment. Tompkin et al. 

(1978b) tested several different kinds of meat to see if botulinal 

growth varied with meat source. No inhibition was seen with pork or 
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beef heart, but with turkey breast, turkey thigh, pork ham, beef round, 

and veal, varying amounts of inhibition were observed. The authors felt 

that a possible reason for the lack of inhibition with heart meat was 

the increased amount of pigment. To test this hypothesis, 1 percent 

hemoglobin (1 pe~cent hemoglobin + pork is approximately equal to heart 

meat in iron content) was added to a basic pork product, before curing. 

With equivalent amounts of sodium nitrite, the hemoglobin treatment was 

much more inhibitory than the heart formulations, but less inhibitory 

than the pork control. A conclusion was made that heart meat has a 

higher level of readily available iron than the pork plus hemoglobin 

system. Residual nitrite had an inhibitory effect in the hemoglobin 

test but this effect was overcome by an essential factor in the heart 

meats. Tompkin et al. (1978b) suggested that nitric oxide formed from 

nitrite reacts with iron in the vegetative cells, blocking an essential 

step for growth. 

To test the hypothesis that loss of inhibition with heart meat was 

due to the greater availability of iron, products were formulated with 

ethylenediaminetetraacetic acid (EDTA) and isoascorbate, known metal ion 

chelators (Tompkin et al., 1979). Neither EDTA (Tompkin et al., 1979) 

nor isoascorbate (Tompkin et. al, 1978a) were inhibitory alone. Both 

enhanced the inhibitory effect of nitrite in a pork ham formulation. 

Only EDTA enhanced inhibition .in canned cured pork hearts. The 

conclusion was made that EDTA more effectively sequesters iron, making 

iron less available for preventing inhibition by nitrite. 

In addition to differences in pigment ,between heart and most 

skeletal muscles, other nutritional differences exist. Tompkin et al. 

(1978c) examined the effects of calcium, iron, manganese, zinc, and 



9 

riboflavin content on botulinal growth in perishable canned cured meat. 

Of the variables tested, only the iron (in addition to residual nitrite 

level) influenced the degree of botulinal inhibition. A hypothesis 

derived from this study for the inhibitory effect of nitrite was that 

nitric oxide reacts with the iron of a compound such as ferredoxin 

within the germinated cell. This reaction could interfere with energy 

metabolism to prevent outgrowth. 

Tompkin et al. (1979) showed a dose response relationship of 

available iron to the antibotulinal property of sodium nitrite. This 

involved the addition of ferric chloride at the level of O, 10, 20, 30, 

and 40 µg/g meat. The antibotulinal effect of sodium nitrite decreased 

as the level of added iron increased. This response coupled with that 

of EDTA presents a strong case for free iron causing a loss of 

inhibition by sodium nitrite. 

Tompkin et al. (1978c; 1979) showed substantial evidence of the 

r~quirement of C. botulinum for iron. Although a complete loss of 

inhibition was seen with heavily pigmented meats like pork and beef 

heart, addition of hemoglobin to pork ham did not produce the same 

effect. Tompkin et al. (1978b) concluded that the iron in heart meat 

causes a loss of inhibition and that it is more available than the iron 

of the heme group for this purpose. More heavily pigmented turkey thigh 

meat also showed a decreased level of inhibition when compared with 

turkey breast. Although heart meat may contain something in addition to 

pigment that would stimulate growth of C. botulinum, pigment may be an 

important factor. Addition of hemoglobin to a pork ham product resulted 

in a less inhibitory system than the control. Stimulation of C. 

botulinum growth in the presence of added hemoglobin, with turkey 
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thigh meat, and heart meat suggests that these organisms can use the 

iron from the heme group. The same reaction that causes the pink color 

of cured meat could cause the iron of the heme group to become 

unavailable for microbial utilization. Mahoney et al. (1979) showed 

that the bioavailability of meat iron is decreased in a cured meat 

product, as measured by hematinic responses of rats. It is possible 

that curing with nitrite reduces the bioavailability of heme iron for 

utilization by C. botulinum. 

C. botulinum certainly has a requirement for iron, but how is the 

iron utilized? A number of iron containing or iron activated enzymes 

and proteins have been reported in other Clostridia. Among these are 

ferredoxins, which play a central role in the transfer of electrons in 

many anaerobic redox reactions (Lovenberg, 1974). Since free iron may be 

utilized in the synthesis of a number of essential metabolic proteins, 

it would be reasonable to expect that a deficiency of available iron 

would limit Clostridia growth and toxin formation. 

Objective 

The objective of this study was to investigate the effects of free 

iron, heme iron, nitrosoheme iron, and EDTA on C. botulinum growth and 

toxin production in perishable cured meat. 
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EXPERIMENTAL PROCEDURE 

Product Formulation and Processing 

One large batch (23 kg) of fresh pork picnics (lower half of pork 

shoulder) was received, ground through a 0.64 cm plate, and portioned 

into packages the appropriate size for all treatments. The meat was 

vacuum packaged and kept frozen until time of formulation. All products 

were formulated to contain 2.5% sodium chloride and 0.5% dextrose and 

then emulsified in a one gallon stainless steel blender. The finished 

product contained 68.6% water, 13.3% protein, 15.2% fat, and 2.8% ash. 

When sodium nitrite was added to the product, the 156 ug/g was based 

only on the meat fraction, according to standard industry practice. The 

meat mixture (approximately 80 g) was filled into plastic film pouches 

as described by Greenberg et al. (1966a). The pouches, laminated of 0.75 

mil nylon and 2.25 mil of a co-polymer of· 6% ethylene vinyl acetate and 

94% polyethylene, are used routinely for vacuum packaging of meats. 

These pouches are sold under the trade name "Vacu-fresh" by Meat Packers 

and Butchers Supply Co., 2820 E. Washington Blvd., Los Angeles, Ca., 

90023 (Oxygen permeability, 0.78 ml/24 hr/atm). Pouches were vacuum 

packaged and cooked in a 70C water bath for 30 min. Tompkin et al. 

(1978b) found that final internal processing temperatures within the 

range of 63C to 74C did not influence botulinal inhibition. Immediately 

after cooking, the pouches were placed into ice water until fully 

cooled. 
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Inoculum and Spore Counts 

A mixture of spores of one type A (ATCC #19397) and one type B 

(ATCC #17843) strain of C. botulinum was used. Each strain was 

propagated separately in chopped liver media (Appendix A) at 35C for 

approximately one week. The broth was centrifuged at 3,000 G for 15 

min. to sediment the cells. After decanting the broth, the organisms 

were resuspended in sporulation media (Appendix A). After allowing one 

week at 35C for spore formation, the suspensions were heat shocked at 

85C for 5 min. to inactivate the toxin as well as preserve most of the 

spores (Woodburn et al., 1979). Spore suspensions we~e centrifuged at 

3,000 G for 15 min, the media decanted, and the spores resuspended in 

sterile water. Spore counts were determined by making appropriate 

dilutions in 0.1% peptone water (Appendix A) and plated on anaerobic egg 

agar (Appendix A). The plates were incubated anaerobically at 35C using 

a polycarbonate jar with a hydrogen and carbon dioxide generator. A 

single suspension was made containing equal numbers of both spore types, 

and mixed into the meat (100 spores/g meat) immediately before bagging. 

The meat was processed as quickly as possible after spore addition, to 

minimize the possibility of germination and subsequent death of the 

vegetative cells during processing. 

In some of the treatments (6, 7, 8, and 9), anaerobic and aerobic 

plate counts were done on two samples from each treatment that were 

unswollen after 100 days. Aerobic counts were done with plate count 

agar (Appendix A) and anaerobic counts done as described above. 

Colonies from both aerobic and anaerobic plates were Gram stained 

(Appendix A) and examined microscopically. 
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Holding Conditions 

The sealed pouches were abused by holding at 27C and observed for 

gas production for 100 days. Pouches were removed and analyzed 

periodically for nitrosoheme iron, heme iron, residual nitrite, and 

toxin. Each treatment also included an uninoculated control. Samples 

were checked daily for evidence of gas production. 

Experimental Rationale 

In this experiment, nine treatments were compared. For each 

comparison, twenty five pouches of product were formulated, stored, and 

analyzed as described. The nine treatments were formulated as follows: 

1.) This was the basic meat formulation with added dextrose, water, 

and sodium chloride. 

2.) Sodium nitrite (156 µg/g meat) was added to the basic product. 

This resulted in 128 µ8/g in the final product. 

3.) Sodium nitrite (156 µg/g meat) and ferric chloride (20 µg/g 

product) were added. 

4.) Sodium nitrite (156 ~g/g meat) and myoglobin (2.16 mg/g 

product) were added. The amount of myoglobin added was equivalent 

in iron content to 20 µg/g ferric chloride. 

5,) Sodium nitrite (156 µg/g meat), myoglobin (2.16 mg/g product), 

and EDTA (200 µg/g) were included. 

6.) Myoglobin (2.16 mg/g product) was first nitrosylated and then 

added to the meat with 156 µg sodium nitrite/g meat. 



7.) EDTA (200 µg/g) was added to the basic nitrite containing 

product. 

8.) Ferric chloride (20 µg/g product) was included in a product 

with 200 µg/g EDTA and 156 µg/g sodium nitrite. 
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9.) Ferric chloride (40 µg/g product) was added to a product with 

200 µg/g EDTA and 156 µg/g sodium nitrite. 

The formulations for the nine treatments are summarized in Table 1. 

Preparation of Nitrosylmyoglobin 

Nitrosylmyoglobin was prepared by solubilizing 6g lyophilized horse 

heart myoglobin in approximately 300 ml of a 1000 ppm solution of sodium 

nitrite, adding 1-2 g ascorbic acid, and heating the mixture in a 

boiling water bath for approximately 20 min. Ascorbic acid was used to 

hasten development and stabilize the color of the pigment (Kramlich et 

al., 1973), although normally the sodium salt is used. Nitrosylmyoglobin 

was precipitated out of solution by adding a minimum amount of sodium 

chloride (less than 1 g sodium chloride for 6 g myoglobin). The 

precipitate was centrifuged for 15 min. at 6,000 G, resuspended with 

water to wash out excess nitrite, sodium chloride, and ascorbic acid. 

Washing and centrifuging were repeated four times before the 

nitrosylmyoglobin was added to the treatment. The above procedure 

produced a product with 74-87% of the pigment nitrosylated when measured 

by the Hornsey (1956) method (Appendix D). A distinct color change was 

noted as the product was converted from the brown color of metmyoglobin 

to the reddish-pink nitrosylated product. 



15 

Table 1 . Meat product for~ulations; including all additives 
for 2.27 kg meat , 65 g sodium chloride, 
13 g dextrose, and 410 ml water. 

Treatment NO -2 Fec1
3 Mb NO Mb EDTA 

( g) (mg) (g) (g) (g) 

No nitrite 

2 Nitrite .3538 

3 Nitrite + FeC1
3 .3538 55. 1 

4 Nitrite + Mb .3538 5.953 

5 Nitrite + Mb .3538 5.953 .7020 
+EDTA 

6 Nitrite + NOMb .3538 5.953 

7 Nitrite + EDTA .353s .7020 

8 Nitrite + EDTA .3538 55. 1 ,7020 
+ 20 ppm Fec1

3 

9 Nitrite + EDTA .3538 11o.2 .7020 
+ 40 ppm Fec1

3 

1 Ground pork picnics (lower portion of pork shoulder). 
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Chemical Analyses 

Nitrite concentration was determined spectrophotometrically 

(Appendix B). Total iron and soluble iron were determined by atomic 

absorption spect~oscopy (Appendix C). Total heme iron and 

nitrosohemochrome were determined spectrophotometrically (Appendix D). 

Early in the analytical process, it was noted that an unusual 

amount of variability was seen in the results of the pigment analysis. 

To verify the validity of the procedure, several experiments were 

performed. Hematin was nitrosylated by dissolving in dilute NaOH, 

followed by adding sodium nitrite, and then adding ascorbic acid until 

the hematin precipitated out of solution. The acidification procedure 

appeared to be necessary for nitrosylation. Hematin was brought back 

into solution by careful addition of NaOH. This nitrosylated hematin 

was added in varying amounts to weiner samples and measured for 

completeness of nitrosylation over a range of concentrations. 

Acetone-water extracts of both nitrosylated myoglobin and purchased 

weiners were scanned between 350 and 750 nm using a recording 

spectrophotometer. Another scan was done to show the absorption spectra 

for total pigments over the same wavelengths. 

Toxin Assays 

The first five pouches to swell from each test variable were tested 

for botulinal toxin. Tompkin et al. (1978a) reported that over five 

years of using this procedure, over 90% of swelled cans were toxic. If 

swelling did not occur, the first five samples removed from the 
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treatment were tested for toxin. The procedure for toxin testing was 

adapted from the Food and Drug Administration Bacteriological Analytical 

Manual (Kautter and Lynt, 1978). Toxin assays involved blending 5 g of 

each sample with 10 ml of gel phosphate buffer (Appendix A). The slurry 

was centrifuged at 3,000 G and the supernatant fluid sterilized by 

filtration through a sterile 0.2 micron filter. One mouse was injected 

with 0.5 ml of the supernatant fluid, one with 0.5 ml of the boiled 

fluid, and one injected with the toxic substance after first being 

protected with type AB antitoxin. The protected mice received 0.5 ml of 

each type of antitoxin, diluted to 2 IU/ml with glycerine and 0.9% 

sterile saline. All mice were observed for botulism symptoms for 72 hrs 

after injection. Botulinal toxin was confirmed by death of the 

unprotected mouse and survival of the ones that received antitoxin or 

boiled toxin. 

Statistical Analyses 

Data for total and nitroso pigments and total iron were analyzed by 

Analysis of Variance using a completely randomized block design (Ostle 

and Mensing, 1975). Least significant difference (LSD) values were 

determined by using the same source. Mean differences must equal or 

exceed the LSD values to be statistically significant. 

Nitrite Depletion in Uninoculated Samples 

Using the same meat and product formulation as the other 

treatments, an experimental unit (treatment #10) was set up with 156 µg 



18 

sodium nitrite/g meat, as in treatment #2. This treatment was not 

inoculated with C. botulinum. Nitrite was measured daily for 29 days 

using a randomly selected sample to observe decline of nitrite in 

uninoculated samples. 
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RESULTS 

Swelling Rate 

The rate of swelling for all nine treatments is presented 

graphically in figures 1-3. In the absence of sodium nitrite (tmt. #1, 

Fig. 1a), all samples had swelled by day 5. The addition of sodium 

nitrite (tmt. #2, Fig. 1b) had a definite inhibitory effect. When 

nitrite was added, swelling began on day 9 but all 25 samples were not 

swollen until day 62. In treatment #3 (Fig. 1c) with added ferric 

chloride, swelling began at the same time as in treatment #2, but the 

curve appears to be a little steeper, indicating a slightly faster rate 

of swelling. When myoglobin was added to the mixture (tmt. #4, Fig. 

2a), swelling began in eight days and the rate of swelling was faster 

than in either treatment 2 or 3, with all bags swelling by day 43. 

Addition of EDTA to a treatment of similar composition as treatment #4 

resulted in a rather inhibitory system (Fig. 2b). In treatment #5 (Fig. 

2b), swelling was delayed until day 18 and by day 100 only 14 bags had 

swelled. Treatment #6 (Fig. 2c), with added nitrosylmyoglobin, proved 

to be more inhibitory than treatments 2-5. Addition of EDTA to the 

basic nitrite containing product like treatment #2 proved to be 

extremely inhibitory (Fig. 3a). Treatment #8 (Fig. 3b) had a composition 

similar to treatment #5 except that the iron source of #8 was ferric 

chloride instead of myoglobin. Swelling occurred more slowly in 

treatment #8 than in treatment #5. Treatment #9 (Fig. 3c) had twice as 

much ferric chloride as treatment #8 and the response was much like that 

of treatment #7. 
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Figure 1. Rate of swelling in a pasteurized meat product formulated 
(a.) without nitrite (treatment 1), (b.) with 156 µg 
sodium nitrite/g meat (treatment 2), and (c.) with 156 
µg/g sodium nitrite and 20 µg/g ferric chloride (treatment 
3). 
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Figure 2. Rate of swelling in a meat product formulated with 
156 µg/g sodium nitrite and (a.) 2.16 mg myoglobin/g 
(treatment 4), (b.) 2.16 mg myoglobin/g, and 200 µg/g 
EDTA (treatment 5), (c.) 2.16 mg nitrosylated myoglobin/g 
(treatment 6). 
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Figure 3. Rate of swelling in a meat product formulated with 
156 µg/g sodium nitrite and (a.) 200 µg/g EDTA (treatment 
7), (b.) 200 ~g/g EDTA and 20 µg/g ferric chloride 
(treatment 8), (c.) 200 µg/g EDTA, and 40 µg/g ferric 
chloride (treatment 9). 
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Toxin Assays 

Results of the toxin assay are presented in Table 2. In treatments 

1-3, all samples tested were confirmed to contain toxin, however in the 

remainder of the treatments some discrepency was observed between 

swollen and toxic bags. Of the 36 swollen samples tested, only 23 (64%) 

were confirmed to contain toxin. None of the boiled samples caused the 

death of a mouse. Of the protected mice, only one death occurred, 

confirming that Botulism types A and B were the etiological agents of 

death. 

Nitrite Level 

The decline of nitrite over time is presented for treatments 2-9, 

in Figures 4-7. At the time of swelling, nitrite had decreased to less 

than 10 ppm in all treatments. Initial nitrite in treatment 1 (no 

nitrite) was 3.36 µg/g, which is probably near the limit of sensitivity 

of the procedure. Although swelling was accompanied by low nitrite 

levels, the absence of residual nitrite was not always associated with 

swelling as is evidenced by treatments 6, 7, 8, and 9. 

Heme Pigments 

Total and nitroso pigments for the nine treatments are presented 

graphically in figures 8 through 10. Theoretically, the amount of heme 

added to treatments 4, 5, and 6 was 80 µg hematin/g meat, doubling the 

amount in the product. From the data (Fig 8-10, Table 3), one can see 
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Table 2. C. botulinum toxin in meat samples. a 

Treatment Swollen Unswollen Protected Boiled Toxin 

(No. of Samples Tested) (Number of Deaths) 

No nitrite 5 0 0 0 5 

2 Nitrite 5 0 0 0 5 

3 Nitrite + 5 0 0 0 5 
20 ppm Fec1

3 

4 Nitrite + Mb 5 0 0 4 

5 Nitrite + Mb 5 0 0 0 3 
+ EDTA 

6 Nitrite + NOMb 4 0 0 0 

7 Nitrite + EDTA 4 0 0 0 

8 Nitrite + EDTA 5 0 0 0 
+ 20 ppm Fec1

3 

9 Nitrite + EDTA 4 0 0 0 
+ 40 ppm Fec1

3 

aFive bags were tested in each treatment by mouse assay. 



Table 3. Mean va lues of total and nitroso pigments, calculated 
amount of heme iron (µg/g). 

Treatment Total1 Nitroso 2 Heme 
Pigment Pigment Iron 

1 No nitrite 

2 Nitrite -

3 Nitrite + 
20 ppm Fec1

3 

4 Nitrite + 
Mb 

5 Nitrite + 
Mb + EDTA 

6 Nitrite + 
NO Mb 

7 Nitrite + 
EDTA 

8 Nitrite + 
EDTA + 
20 ppm Fec1

3 

9 Nitrite + 
EDTA + 

40 ppm Fec1
3 

75.5a 
n=11 

92.8b 
n=15 

84.9ab 
n=18 

163.8cd 
n=18 

154.5C 
n=20 

93.2b 
n=8 

87.9b 
n=17 

1LSD .01/.05=9.78/7.39 

2LSD .01/.05=11 .73/8.86 

4.49d 
n=11 

58.8b 
n=14 

45.6a 
n=18 

126.9C 
n=17 

79.9e 
n=16 

1 21 • 7C 
n=19 

48.2ab 
n=7 

49.5ab 
n=8 

6.66 

8.18 

7.49 

14.4 

14.8 

13. 6 

8.22 

7.75 

8.22 

Total Percent 
Iron of Iron 

as Heme 

11. 3 
n=6 

11. 3 
n=6 

17 .6 
n=5 

1 5. 6 
n=4 

14.9 
n=4 

17. 7 
n=5 

11. 7 
n=4 

18.3 
n=5 

20.3 
n=6 

58.9 

42.6 

92.3 

99.3 

76.8 

42.4 

40.5 

abcdeMean values with the same letter are not significantly 

different at the 1% level of probability. 
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Figure 4. Nitrite depletion in a meat product formulated with 
(a.) 156 µg sodium nitrite/g meat (treatment 2), (b.) 156 
µg/g sodium nitrite and 20 µg/g ferric chloride (treatment 
3). 
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Figure 5. Nitrite depletion in a meat product formulated with 
156 µg/g sodium nitrite and (a.) 2.16 mg myoglobin/g 
(treatment 4), (b.) 2.16 mg/g myoglobin and 200 µg/g EDTA 
(treatment 5). 
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Figure 6. Nitrite depletion in a meat product formulated with 
156 µg/g sodium nitrite and (a.) 2.16 mg/g 
nitrosylmyoglobin (treatment 6), (b.) 200 µg/g EDTA 
(treatment 7). 
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Figure 7. Nitrite depletion in a meat product formulated with 
156 µg/g sodium nitrite, 200 µg/g EDTA, and (a.) 20 µg/g 
ferric chloride (treatment 8), (b.) 40 µg/g ferric 
chloride (treatment 9). 
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Figure 8. Total and nitroso pigments in a meat product (a.) without 
sodium nitrite (treatment 1), (b.) with 156 µg/g sodium 
nitrite (treatment 2), (c) with 156 µg/g sodium nitrite 
and 20 µg/g ferric chloride (treatment 3). 
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Figure 9. Total and nitroso pigments in a meat product formulated 
with 156 µg/g sodium nitrite and (a.) 2.16 mg/g myoglobin 
(treatment 4), (b.) 2.16 mg/g myoglobin and 200 µg/g EDTA 
(treatment 5), (c.) 2.16 mg/g nitrosylmyoglobin (treatment 
6). 
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Figure 10. Total and nitroso pigments in a meat product formulated 
with 156 µg/g sodium nitrite and (a.) 200 µg/g EDTA 
(treatment 7), (b.) 200 µg/g EDTA and 20 µg/g ferric 
chloride (treatment 8), (c.) 200 µg/g EDTA and 40 µg/g 
ferric chloride (treatment 9). 
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that this added heme was measured by the analytical procedure for total 

heme pigment. In the scan of the extracted pigment from one of the 

samples, there was a definite peak at 640 nm, the anticipated wavelength 

for measuring acid hematin (Fig. 12a). Table 3 includes the mean and LSD 

values for total and nitroso pigments, along with the calculated amount 

of heme iron. The analysis for nitroso pigments in treatment #6 (Table 

3.), did not show the anticipated increase over treatment #4. In an 

experiment with nitrosylated hematin, 83.1% to 90.1% of the pigment was 

measured as nitrosylated over a concentration of 225 to 290 ppm total 

hematin. With a range of 7%, measured percent nitrosylation appears to 

be consistent over the concentrations investigated. In addition to 

these data supporting the validity of the Hornsey (1956) procedure, in a 

scan of an acetone and water extract of nitrosylated myoglobin (Fig. 

12b) or purchased weiners, no definite peak was seen at 540 nm, where 

nitroso pigments were to be measured. 

Nitrite Depletion in Uninoculated Samples 

In treatment number 10, the observed decline of nitrite over 29 

days of sampling was not as expected (Figure lla). These data were much 

more variable than data from mainly swollen samples (Figures 4-7). 

Total Iron 

The expected and measured values for all nine treatments are 

presented in Table 4. Total iron content was increased in all 

treatments with added iron, as measured by atomic absorption 
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Table 4. Theoretical and measured total iron and soluble iron (µg/g). 
The basic product without added iron (tmts. 1 and 2), 
contained 11 .3 µg/g Fe. 

Treatment Theoretical Theoretical Measured
1 So~uble 

Added Fe Total Fe Total Fe Fe 

1 No nitrite 0 11. 3 11 • 3a 1 .42ab 
n=6 n=4 

2 Nitrite 0 11. 3 11 • 3a .67a 
n=6 n=9 

3 Nitrite + 6.89 18.2 17. 6c •78ab 
20 ppm Fec1

3 
n=5 n=9 

4 Nitrite + Mb 6.89 18. 2 15. 6d 1 .07ab 
n=4 n=9 

5 Nitrite + Mb 6.89 18. 2 14. 9b 2.52C 
+ EDTA n=4 n=9 

6 Nitrite + 6.89 18. 2 17 • 7C 1. 59b 
NO Mb n=5 n=8 

7 Nitrite + 0 11. 3 11. 7a 3.65d 
EDTA n=4 n=7 

8 Nitrite + EDTA 6.89 18.2 18. 3C 4.64e 
+20 ppm Fec1

3 n=5 n=7 

9 Nitrite + EDTA 13.78 25. 1 20.3d 8.06f 
+40 ppm Fec1

3 
n=6 n=4 

1 LSD .01/.05 1.47/1.11 

2LSD .01/.05 .88/.66 

abcdef . Mean values with the same letter are not significantly 

different at the 1% level of probability. 





Figure 11. Nitrite depletion over time in an uninoculated meat 
product formulated with 156 µg/g sodium nitrite: (a.) 
connecting all points and (b.) showing possible dichotomy 
of values. 
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Figure 12· Scan of (a.) extracted acid hematin for measurement of 
. total pigment at 640 nm and (b.) extracted nitroso hematin 
for measurement of nitroso pigment at 540 nm. 
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spectroscopy. Means of the three treatments without added iron (1, 2, 

and 7) were not significantly different. Treatments 3, 4, 5, 6, and 8 

should have had equivalent mean total iron levels, but treatments 4 and 

5 were considered significantly different from 3, 6, and 8. 

Soluble Iron 

Figures 1 3 through 1 5 include values of soluble iron for the nine 

treatments. Mean and LSD values for the nine treatments are included in 

Table 4. Very little difference was seen in the soluble iron content 

over time. Several of the treatments showed a slight decline in soluble 

iron of the swollen samples, when compared to an unswollen sample (day 

0). There were some striking differences between treatments, however. 

All treatments containing EDTA (tmts. 5, 7, 8, 9; Figs. 14b,15a-c) had 

more water soluble iron than the other treatments. 

Spore Counts 

The stock suspension of Type A spores contained 7.6 x 105 

spores/ ml. To a pooled inoculum, 1 .72 ml of a 1 :10 dilution of this 

stock suspension was added. The type B spore suspension contained 4.7 x 

6 
10 spores/ml. From a 1 :100 dilution of this suspension, 2.7 ml was 

added to the pooled inoculum for a concentration of 5.8 X 104 

spores/ml. Of the pooled inoculum, 4.42 ml was mixed with 2700 g of 

treatment mix to give approximately 100 spores/g meat. 

Organism counts from unswollen samples of treatments 6, 7, 8, and 9 

are presented in Table 5. No Clostridia were identified in any of the 





Figure 13. Soluble iron in a pasteurized meat product (a.) without 
nitrite (treatment 1). Uncooked sample had 4.62 µg/g; 1 b.) 
with 156 µg/g sodium nitrite (treatment 2). Uncooked 
sample contained 2.08 µg/g; (c.) with 156 µg/g sodium 
nitrite and 20 µg/g ferric chloride (treatment 3). 
Uncooked sample contained 4.17 µg/g. 
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Figure 14. Soluble iron in a meat product formulated with 
156 µg/g sodium nitrite and (a.) 2.16 mg/g myoglobin 
(treatment 4). Uncooked sample had 7.51 µg/g; (b.) 2.16 
mg myoglobin/g and 200 µg/g EDTA (treatment 5). Uncooked 
sample had 7.22 µg/g; (c.) 2.16 mg/g nitrosylated 
myoglobin (treatment 6). Uncooked sample had 3.74 µg/g. 
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Figure 15. Soluble iron in a meat product formulated with 
156 µg/g sodium nitrite and (a.) 200 µg/g EDTA (treatIJBnt 
7). Uncooked sample had 6.45 µg/g; (b.) 200 µg/g EDTA 1nd 
20 µg/g ferric chloride (treatment 8). Uncooked sampb 
had 8.46 µg/g; (c.) 200 µg/g EDTA and 40 µg/g ferric 
chloride (treatment 9). Uncooked sample had 10.6 µg/g. 
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samples. Nearly all the colonies were small, button shaped, opaque, and 

convex. The same type of colonies was seen on both the anaerobic and 

aerobic plates. Gram positive cocci in chains and clumps were observed 

in Gram stains from both aerobic and anaerobic plates. 
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Table 5, Organisms counted from unswollen samples after 100 
days at 27C. 

Treatment Sample Aerobic Anaerobic 
Number (Colonies/g) (Colonies/g) 

6 Ni trite + 6-26 4. 1 x 106 5,4 x 107 
NO Mb 

6-19 1.9 x 107 2. 1 x 107 

7 Nitrite + 7-20 7,5 x 104 6.3 x 104 
EDTA 

7-23 1.4 x 105 1.8 x 105 

8 Nitrite + 8-21 4,7 x 105 5,9 x 105 
EDTA + 
20 ppm Fec1

3 8-24 7,3 x 105 9,4 x 105 

9 Nitrite + 9-11 1.5 x 105 2.0 x 105 
EDTA + 
40 ppm Fec1

3 9-18 4.0 x 105 4. 1 x 105 
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DISCUSSION 

Gas Production 

Rate of swelling in a non-nitrite treatment (#1) occurred as 

expected. Tompkin et al. (1977) reported that the average time to first 

swell in a non-nitrite treatment was 6.7 days. This compares favorably 

with the observed average of 4 days until swelling. Once swelling 

began, all variables were swollen within a few days as has been 

presented (Tompkin et al., 1977; 1978a) for a non-nitrite product. Pork 

ham products without nitrite but containing sulfur dioxide (Tompkin et 

al., 1980), EDTA (Tompkin et al., 1979), or isoascorbate (Tompkin et 

al., 1978a) all have swelling profiles similar to a non-nitrite 

treatment without any of these additives. 

Addition of 156 µg sodium nitrite/g meat had a distinct inhibitory 

effect, with swelling beginning in 9 days. A similar swelling pattern 

was reported (Tompkin et al., 1978a) for a treatment formulated with 156 

µg sodium nitrite/g meat. However, Tompkin et al. (1977; 1978b) have 

also indicated that 156 µg/g sodium nitrite creates a much more 

inhibitory system, with significant swelling beginning at about day 60 

to 80. There is a large difference between these results and those 

presented by Tompkin et al. (1978a), in which significant swelling began 

at approximately day 10, as is presented here. The plastic bag assay 

used in this study may have allowed earlier detection of gas than the 

aluminum cans used by Tompkin et al. (1977; 1978a; 1978b). All 

treatments had similar formulations and target spore levels of 100 

spores/g. No obvious explanation can be given for the great difference 
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in swelling time from the data reported here and one study by Tompkin et 

al. (1978a) beginning in 10 days and other similar treatments resulting 

in swelling in 60 to 80 days (Tompkin et al., 1977; 1978b). 

When iron as ferric chloride (trot. #3) or myoglobin (tmt. #4) was 

added to the basic formulation, growth was slightly stimulated. 

Stimulation of growth by the addition of ferric chloride or myoglobin 

provides further evidence that C. botulinum requires iron (Tompkin et 

al., 1978c; 1979). Pre-nitrosylation of myoglobin (trot. #6) negated the 

stimulatory effect and caused significant inhibition compared with 

myoglobin alone. The observed inhibition in treatment #6 could be due 

to reduced availability of the iron in nitrosylated myoglobin. Since the 

pre-nitrosylation of myoglobin included a cooking step to denature the 

protein to facilitate precipitation and centrifugation, this may have 

created a Perigo-type inhibitor. In further studies, it might be wise 

to include a non-nitrosylated control in which the myoglobin was heated 

and denatured, in the absence of sodium nitrite. 

Inclusion of EDTA (tmt. #5) also caused a decrease in the 

stimulatory effect of myoglobin but not as extensively as nitrosylation 

of the added myoglobin. Since EDTA is a non-specific metal ion 

chelator, the observed inhibition could be due to chelation of iron as 

well as other metal ions. Addition of EDTA to the basic nitrite 

containing formulation proved to be quite inhibitory with a swelling 

profile almost exactly like that reported by Tompkin et al. (1979). 

They concluded that EDTA sequesters iron, making iron less available for 

preventing nitrite inhibition. Addition of 20 ppm ferric chloride to an 

EDTA and nitrite formulation stimulated growth (tmt. #8) when compared 

with a similar treatment without added iron (tmt. #7). At the same iron 
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concentration, myoglobin (tmt. #5) stimulated growth of C. botulinum 

more than ferric chloride (tmt. #8). Ferric iron probably was not as 

available as heme iron for microbial utilization in the presence of 

EDTA. When 40 ppm ferric chloride was added to the basic nitrite and 

EDTA formulatio~ (tmt. #9), the resulting product had the same growth 

response as the treatment without added iron (tmt. #7). It was expected 

that the 40 ppm increment of ferric chloride (tmt. #9) would override 

the inhibitory effect of EDTA, even more than 20 ppm ferric chloride 

(tmt. #8). Instead, the 40 ppm ferric chloride treatment was more 

inhibitory than the 20 ppm treatment. 

Toxin Assay 

The swelling data may be explained further if the results of the 

toxin test are discussed. In treatments such as #6 (NOMb) and #8 

(Fec13 +EDTA) there was a substantial discrepancy between the number 

of swollen samples and those that were toxic. Presence of gas in these 

treatments apparently was not an adequate assay for growth and toxin 

production by C. 

production by C. 

botulinum. In actuality, the growth and toxin 

botulinum in treatments 6 and 8 may have been 

similar to that of tmt. #7, the gas being produced by other organisms. 

Of 36 swollen samples tested, only 23 (64 percent) were confirmed to 

contain toxin. Sixty-four percent of swollen samples were confirmed 

toxic whereas Tompkin et al. (1978a) reported that over 5 years of using 

this procedure, over 90% of swelled cans were toxic. The reason fewer 

swelled products were toxic in the work presented here, may have been 

due to the greater sensitivity of the plastic bag procedure, because it 
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is easy to observe gas bubbles in the clear plastic bags. Small bubbles 

of gas from contaminating organisms may have been mistaken for 

Clostridia growth. Possibly, these bubbles would not have distended 

aluminum cans. 

Nitrite Depletion 

Residual nitrite declined in all treatments at a rate similar to 

that reported by Christiansen (1980). In all treatments containing 

EDTA (5, 7, 8, and 9), nitrite depletion occurred more slowly than it 

did in the other treatments. It is possible that EDTA exerts its 

inhibitory effect by decreasing the rate of nitrite depletion. Although 

Tompkin et al. (1977) reported that the primary effect of varying the 

quantity of initial nitrite was to vary the length of the lag phase, 

this lag phase length is not well correlated with the presence of 

residual nitrite. Christiansen (1980) has emphasized the importance of 

residual nitrite in inhibition of C. botulinum. When the input level 

of sodium nitrite was 156 µg/g, residual nitrite declined to below 10 

µg/g (the level considered critical for inhibition) in 20 days at 27C 

(Christiansen, 1980). Predicted average time to first swell at the same 

nitrite level was 94.3 days (Tompkin et al., 1977). What is occurring 

between day 20 and day 90? If residual nitrite is necessary for C. 

botulinum inhibition, swelling should have occurred before 70 days 

after nitrite was depleted. Tompkin et al. (1978a) showed significant 

swelling to occur in as few as 10 days or as many as 60 to 90 days with 

the same formulation (Tompkin et al., 1977; 1978b). The role of 

residua l nitrite in botulinal inhibition appears to be quite ambiguous. 
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In treatments 6-9, swelling proceded slowly even after residual nitrite 

had declined. Residual nitrite may play a role in botulinal inhibition, 

but it probably is not the most important factor if swelling does not 

occur when nitrite is depleted. 

It was expected that residual nitrite in an uninoculated sample 

(Fig. 11) would decline as depicted in the classic graphs of 

Christiansen (1980). Initial decline (Fig. lla) was constant with time, 

but after day 8, nitrite values became quite variable. It appears that 

two completely different trends were seen in this homogeneous treatment 

(Fig. llb). Possibly, this dichotomy occurs in many of these assays, 

but only the values of the lower curve might be measured if swollen 

samples had lower nitrite values. Many researchers (Christiansen et 

al., 1973; 1974) only analyzed for nitrite at the time of swelling and 

would not determine if unswollen samples had higher nitrite values. 

Some of the treatments in which swelling was delayed (5, 7, 8, and 9) 

show a curve much like the upper curve in figure llb (solid line). At 

this point, no substantial conclusions should be drawn, since more 

samples should be measured to get a more definite characterization of 

nitrite decline over time. From the evidence presented here, it appears 

that nitrite decline in a homogeneous product may be quite erratic. 

Heme Pigments 

If C. botulinum organisms were using the iron from the heme 

group, one would expect the concentration of total heme to be less in a 

swollen sample. This was the case in treatment four where the initial 

total pigment concentration was over 40 ppm greater than the mean value 



for the treatment. None of the other treatments show any definite 

trends and the data appear to be quite variable. 
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One reason for the variability in the data may have been due to 

problems in the Hornsey (1956) procedure. The assay for total pigment 

is probably quite accurate, but the one for nitroso pigment may yield 

questionable quantitative results. Using the procedure for total 

pigments, measurement of added hematin was closely associated with the 

theoretical increase. A distinct peak at 640 nm on the scan of the 

pigment extract (Fig. 12a) would also support the validity of this 

procedure. Measurement of nitrosylated hematin was consistent over a 

concentration range of 225-290 ppm total pigment. However, a scan of 

nitrosylated myoglobin (Fig. 12b) did not contain a distinct peak at 540 

nm, the anticipated wavelength for measuring nitroso pigment. Although 

this procedure is the standard one used by meat analysts and processors, 

wavelength scans indicated that it may not be very accurate. Hornsey 

(1956) included a wavelength scan of a nitroso-heme-acetone complex. 

Nitroso pigment was quantitated by a rather flat-topped peak between 530 

and 570 nm, that may have been the shoulder of a much larger peak at 400 

nm. This scan in the paper of Hornsey (1956) showed a more distinct 

peak than the one obtained from the myoglobin or weiners analyzed in 

this study (Fig. 12b). In either case, the proximity of the large peak 

at 400 nm may interfere with quantitative measurement of nitroso heme at 

540 nm. This procedure may need a thorough review and revision if it is 

to be in continued use. 

The amount of nitroso pigment was not significantly different 

between treatments 4 and 6, although treatment #6 should have measured 

considerably higher (Table 3). It is possible that 156 µg sodium 
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nit r ite/g product was enough to result in an equal proportion of 

nit r osylated myoglobin (tmt. #4) as in the product with pre-nitrosylated 

myoglobin (tmt. #6). A more appropriate test of the effect of 

nitrosylation of myoglobin on C. botulinum growth, might include 

add i tion of both myoglobin and pre-nitrosylated myoglibin to the control 

formulation (156 µg sodium nitrite/g) after curing. One might conclude 

tha t nitrosylation was just as complete in treatment #4 as it was in 

treatment #6 in which nitrosylated myoglobin was added. This could be 

true but it may also reflect a problem in the analytical procedure. 

Either way, the pre-nitrosylation of myoglobin appears to have caused a 

substantial inhibition of botulinal growth and toxin production. 

A substantial amount of variation was seen in both total and 

nitroso pigments within a treatment. This variation may have been due 

to the storage conditions after swelling. Goutefongea (1980) reported 

that with a low level of residual nitrite, only a very good vacuum is 

able to maintain color characteri stics. Some of the samples were stored 

opened in the freezer before analysis. In the absence of a vacuum, 

pigment may have be en oxidized in open packages, resulting in smaller 

amounts of measurable pigment. 

Total Iron 

In all treatments with added iron, an increase in iron was measured 

by atomic absorption analysis, although the measured values differed 

from the expected values (Table 4). It is possible that there was this 

much variation in the formulation, but there also might have been some 

analytical error. Although atomic absorption analysis for iron is done 
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routinely in this laboratory, in recent studies, problems have been 

encountered both with the method and the atomic absorption 

spectrophotometer. The three treatments without added iron (1, 2, and 

7) had similar iron levels, indicating a high degree of consistency in 

formulation. 

Soluble Iron 

Very little change in soluble iron was observed over time in all of 

the treatments. In all products, the largest change was seen between 

the uncooked and cooked sample. Visual observation indicated that much 

of the pigment was solubilized in the uncooked sample, but not in a 

cooked product. One might hypothesize that a proteolytic organism like 

C. botulinum would cause iron to become more soluble as the meat 

matrix is degraded. If this were the case, the magnitude of change was 

not measurable by the method employed here. Absolute differences in the 

amount of soluble iron between treatments were associated with total 

amount of iron and all treatments formulated with EDTA (5, 7, 8, and 9) 

contained higher levels of soluble iron. Extractability of iron 

apparently has little association with C. botulinum growth, since 

these were among the more inhibitory treatments. 

Organism Counts 

No Clostridia were isolated from unswollen packages after 100 days 

of incubation. The Gram-positive cocci found were probably a 

thermoduric facultative organism. If the environment was not conducive 
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to germination and growth of C. botulinum spores, any other organisms 

that survived pasteurization could have grown and altered the media to 

suppress the growth of Clostridium spores. The contaminating organisms 

proteolyzed the meat, but it was often sour, not putrefied. 

Microbial Iron Metabolism 

What might be the physiological consequences of iron deficiency for 

C. botulinum orgainsms? Although there is a dearth of information 

regarding iron metabolism in C. botulinum, an iron containing protein, 

rerredoxin, has been reported in C. pasteurianum (Mortenson et al., 

1962; 1963; Mortenson, 1964). Ferredoxin, which contains iron but no 

detectable heme or flavin, functions as an electron transferring protein 

between pyruvic dehydrogenase and hydrogenase (Mortenson et al., 1963). 

Carbon dioxide is produced in the pyruvic dehydrogenase reaction and 

hydrogen gas is formed in the hydrogenase reaction. 

Ferredoxin plays an essential role in pyruvate metabolism, which 

would be important in utilization of this important energy source. 

Additionally, ferredoxin is a link in the evolution of hydrogen gas and 

carbon dioxide gas. Ferredoxin also participates in the reduction of 

nitrite and hydroxylamine with molecular hydrogen as the reductant 

(Valentine et al., 1963). A reduction in the availability of iron for 

C. botulinum growth may result in a deficiency of ferredoxin, which 

could affect growth of C. botulinum and interpretation of experiments 

like the one presented here. An interruption in pyruvate metabolism 

could slow or halt growth since energy for growth and metabolism might 

be limited. If this occurred, and iron were unavailable for Clostridia 
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growth, it would definitely inhibit gas and toxin production by C. 

botulinum Even if growth were occurring in the absence of 

ferredoxin, hydrogen and carbon dioxide gas might not be produced. This 

reason alone could account for a reduction in the rate of gas production 

in iron deficient or iron chelated meat systems. In an iron limited 

meat system, it may be possible for gas production to be inhibited, 

while toxin is still being produced. This was not observed here, but 

could easily be overlooked if only swollen products were tested for 

toxin. The observation made here that addition of EDTA slowed nitrite 

depletion (Fig. 22, 24, 25, and 26) may be another manifestation of 

reduced ferredoxin levels due to the chelated iron being unavailable 

for microbial utilization, since nitrite can be reduced to ammonia in 

the presence of ferredoxin (Valentine et al., 1963). 

Another iron containing protein, rubredoxin, has been isolated from 

some Clostridia and is believed to be present in C. botulinum (Probst 

et al., 1978). It is also involved in electron transport. 
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CONCLUSION 

The addition of pre-nitrosylated myoglobin to a cured meat product 

resulted in effective inhibition of C. botulinum when compared with a 

product with the same amount of untreated myoglobin. At the time of 

swelling, residual nitrite had declined to below 10 ppm, but the decline 

of nitrite alone was not enough to allow swelling to occur in all 

treatments. These results contradict those of Tompkin et al. (1977), in 

which 0, 50, 100, and 156 µg sodium nitrite/g meat was added to four 

different treatments. In the Tompkin (1977) study, the quantity of 

nitrite affected the length of the lag phase, but once swelling began, 

the rate of swelling was not significanly different for the four 

treatments. 

Addition of ferric iron or myoglobin stimulated gas and toxin 

production by C. botulinum, whereas pre-nitrosylated myoglobin and 

EDTA inhibited growth. In the treatment with added myoglobin alone, 

there was an observed decrease in total pigments in the swollen samples 

when compared with the initial level. This, along with the inhibition 

observed when heme iron was nitrosylated is evidence that C. botulinum 

is able to use the iron within a heme group. The effectiveness of 

sodium nitrite may result from the tying up of heme iron in the 

nitrosylated hemochrome pigment. Since more than half of the iron in 

these meat products was in the heme form, this could have a large 

impact. 

The approach taken here was to see if nitrite is responsible for 

tying up a nutritional requirement of C. botulinum, iron. From the 

evidence presented above, this is a logical possibility. This approach 
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is quite contradictory to the explanation by Van Roon (1980), that both 

heme and non-heme iron are involved in the formation of complexes at the 

cost of nitrite necessary for growth inhibition. If residual nitrite 

were necessary for botulinal inhibition, growth should have accelerated 

greatly in treatment #6 after nitrite was depleted. Inhibition must 

have been due to something else since this was not the case. 



LITERATURE CITED 

AOAC. 1980. "Official Methods of Analysis," 13th ed. Association of 
Official Analytical Chemists, Washington, DC, p. 381. 

Christiansen, L.N. 1980. Factors influencing botulinal inhibition by 
nitrite. Food Tech. 34:237. 

Christiansen, L.N., R.W. Johnston, D.A. Kautter, J.W. Howard, and W.J. 

70 

Aunan. 1973. Effect of nitrite and nitrate on toxin production by 
Clostridium botulinum and on nitrosamine formation in perishable 
canned comminuted cured meat. Appl. Microbial. 25:357. 

Christiansen, L.N., R.B. Tompkin and A.B. Shaparis. 1978. Fate of 
Clostridium botulinum in perishable canned cured meat at abuse 
temperature. J. Food Protection 41:354. 

Christiansen, L.N., R.B. Tompkin, A.B. Shaparis, T.V. Kueper, R.W. 
Johnston, D.A. Kautter, and O.J. Kolari. 1974. Effect of sodium 
nitrite on toxin production by Clostridium botulinum in bacon. 
Appl. Microbial. 27:733. 

Farmer, B.R., A.W. Mahoney, D.G. Hendricks and T.A. Gillett. 1977. 
Iron bioavailability of hand-deboned and mechanically deboned beef. 
J. Food Sci. 42:1630. 

Fazio, T., R.H. White, L.R. Dusold, and J.W. Howard. 1973. 
Nitrosopyrrolidine in cooked bacon. J. Assoc. Off. An. Chem. 
56:919. 

Fox, J.B. and J.S. Thomson. 1963. Formation of bovine 
nitrosylmyoglobin. I. pH 4.5-6.5. Biochemistry. 2:465. 

Goutefongea, R. 1980. Effect of the level of residual nitrite and 
packaging conditions on color stability in cooked ham. Proceedings 
of the 26th European meeting of meat research workers. Vol 2. 
Published by American Meat Science Assoc. p. 219. 

Greenberg, R.A., B.O. Bladel and W.J. Zingelmann. 1966a. Use of the 
anaerobic pouch in isolating C. botulinum spores from fresh 
meats. Appl. Microbial. 14:223. 

Greenberg, R.A., R.B. Tompkin, B.O. Bladel, R.S. Kittaka, and A. 
Anellis. 1966b. Incidence of mesophilic Clostridium spores in raw 
pork, beef, and chicken in processing plants in the U.S. and 
Canada. Appl. Microbial. 14:789. 

Holland, G.E. 1979. Projection of trends in the food industry. 
Presented at the Nov. 15, 1979, meeting of the Canadian Institute 
of Food Science and Technology. In: Q.C.-R.&D. 6:1-18. Research 
Bulletin of the Meat Packers Council of Canada, Islington, Ont. 



Hornsey, H.C. 1956. The colour of cooked cured pork. J. Sci. Food 
Agric. 7:534. 

Hustad, G.O., J.G. Cerveny, H. Trenk, R.H. Deibel, D.A. Kautter, T. 
Fazio, R.W. Johnston and O.J. Kolari. 1973. Effect of sodium 
nitrite and sodium nitrate on botulinal toxin production and 
nitrosamine formation in weiners. Appl. Microbial. 26:22. 

Igene, J.O., J.A. King, A.M. Pearson and J. Ian Gray. 1979. 

71 

Influence of heme pigments, nitrite, and non-heme iron on 
development of warmed-over flavor (WOF) in cooked meat. J. Agric. 
Food chem. 27:838. 

Johnston, M.A., H. Pivnick and J.M. Samson. 1969. Inhibition of 
Clostridium botulinum by sodium nitrite in a bacteriological 
medium and in meat. Can. Inst. Fd. Technol. J. 2:52. 

Kautter, D.A. and R.K. Lynt. 1978. 
"Food and Drug Administration. 
5th ed. Association of Official 
DC. 

Clostridium botulinum. In 
Bacteriological Analytical Manual." 
Analytical Chemists. Washington, 

Kramlich, W.E., A.M. Pearson, and F.W. Tauber. 1973. Meat pigments 
in cured meat products. In: Processed Meats, AVI Publishing Co., 
Inc. Westport, Conn. p. 287. 

Leininger, H.V. 
and stains. 
Examination 
Washington, 

1976. Equipment, media, reagents, routine tests , 
In "Compendium of Methods for the Microbiological 

of Foods," M.L. Speck (ed.). Am. Public Health Assoc. 
DC. p. 10. 

Lovenberg, W. 1974. Ferredoxin and rubredoxin. In: Microbial Iron 
Metabolism. J.B. Neilands (ed.) Academic Press, New York and 
London. p. 161. 

Mahoney, A.W., D.G. Hendricks, T.A. Gillett, D.R. Buck and C.G. Miller 
1979. Effect of sodium nitrite on the bioavailability of meat iron 
for the anemic rat. J. Nutrition. 109:2182. 

Moran, D.M., S.R. Tannenbaum and M.C. Archer. 1975. Inhibitor of 
Clostridium perfringens formed by heating sodium nitrite in a 
chemically defined medium. Appl. Microbial. 30:838. 

Mortenson, L.E. 1964. Purification and analysis of ferredoxin 
from Clostridium pasteurianum. Biochim. Biophys. Acta. 81 :71. 

Mortenson, L.E., R.C. Valentine and J.E. Carnahan. 1962. An 
electron transport factor from Clostridium pasteurianum. Biochem. 
Biophys. Res. Commun. 7:448. 



Mortenson, L.E., R.C. Valentine and J.E. Carnahan. 1963. Ferredoxin 
in the phosphoroclastic reaction of pyruvic acid and its relation 
to nitrogen fixation in Clostridium pasteurianum. J. Biol. Chem. 
238:794. 

Newberne, P.M. 1979. Nitrite promotes lymphoma incidence in rats. 
Science. 204:1078. 

Ostle, B. and R.W. Mensing. 1975. Statistics in research. 3rd 
ed. Iowa State University Press. p. 289. 

Pearson, A.M., S.D. Sleight, D.P. Cornforth and B.T. Akoso. 1980. 

72 

Effects of nitrosamines, nitrite and secondary amines on tumor 
development in mice. In: Proceedings of the 26th European meeting 
of meat research workers. Vol. 2. Published by American Meat 
Science Assoc. p. 216. 

Perigo, J.A. and T.A. Roberts. 1968. Inhibition of Clostridia 
. by nitrite. J. Fd. Technol. 3:91. 

Perigo, J.A., E. Whiting and T.E. Bashford. 1967. Observations on the 
inhibition of vegetative cells of Clostridium sporogenes by 
nitrite which has been autoclaved in a laboratory medium, discussed 
in the context of sub-lethally processed cured meats. J. Food Tech. 
2:377. 

Probst, I., J.J.G. Moura, I. Moura, M. Brusch, and J. LeGall. 1978. 
Isolation and characterization of a rubredoxin and an (8 Fe-8 S) 
ferredoxin from Desulfuromonas acetoxidans. Biochim Biophys Acta 
502:38. 

Riha, W.E. and M. Solberg. 1975. Clostridium perfringens 
inhibition by sodium nitrite as a function of pH, inoculum size and 
heat. J. Food Science. 40:439. 

Roberts, T.A. and M. Ingram. 1973. Inhibition of growth of 
C. botulinum at different pH values by sodium chloride and sodium 
nitrite. J. Food Technol. 8:467. 

Schmahl, D. and H. Osswald. 1967. Carcinogenesis in different animal 
species by diethylnitrosamine. Experentia 23:497. 

Schmidt, C.F. and W.K. Nank. 1960. Radiation sterilization of 
food. I. Procedures for the evaluation of the radiation resistance 
of spores of C. botulinum in food products. Food Res. 25:321. 

Sebranek, J.G. and R.G. Cassens. 1973. Nitrosamines: A review. J. 
Milk Food Technol. 36:76. 



73 
Botulism control Sofos, J.N., F.F. Busta and C.E. Allen. 1979. 

by nitrite and sorbate in cured meats: A 
42:739° 

review. J. Food Protect. 

Tompkin, R.B., L.N. Christiansen and A.B. Shaparis. 1977. Variation 
in inhibition of C. Botulinum by nitrite in perishable canned 
comminuted cured meat. J. Food Sci. 42:1046. 

Tompkin, R.B., L.N. Christiansen and A.B. Shaparis. 1978a. Enhancing 
nitrite inhibition of Clostridium botulinum with isoascorbate in 
perishable canned cured meat. Appl. Environ. Microbiol. 35:59. 

Tompkin, R.B., L.N. Christiansen and A.B. Shaparis. 1978b. Causes of 
variation in botulinal inhibition in perishable canned cured meat. 
Appl. Environ. Microbiol. 35:886. 

Tompkin, R.B., L.N. Christiansen and A.B. Shaparis. 1978c. The 
effect of iron on botulinal inhibition in perishable canned cured 
meat. J. Fd. Technology. 13:521. 

Tompkin, R.B., L.N. Christiansen and A.B. Shaparis. 1978d. 
Antibotulinal role of isoascorbate in cured meat. J. Food Sci. 
43:1368. 

Tompkin, R.B., L.N. Christiansen, and A.B. Shaparis. 1978e. Effect of 
prior refrigeration on botulinal outgrowth in perishable canned 
cured meat when temperature abused. Appl. Environ. Microbiol. 
35:863. 

Tompkin, R.B., L.N. Christiansen and A.B. Shaparis. 1979. Iron and the 
antibotulinal efficacy of nitrite. Appl. Environ. Microbiol. 
37:351. 

Tompkin, R.B., L.N. Christiansen and A.B. Shaparis. 1980. 
Antibotulinal efficacy of sulfur dioxide in meat. Appl. Environ. 
Microbiol. 39:1096. 

Valentine, R.C., L.E. Mortenson, H.F. Mower, R.L. Jackson, and R.S. 
Wolfe. 1963. Ferredoxin requirement for reduction of 
hydroxylamine by Clostridium pasteurianum. J. Biol. Chem. 238: 
PC856. 

VanRoon, P.S. 
nitrite. 
workers. 

1980. Clostridial growth inhibitors, derived from 
Proc. of the 26th European meeting of meat research 
Vol 2. Published by American Meat Science Assoc. p. 227. 

White, J.W. 1976. 
and nitrite. 

Relative significance of dietary sources of nitrate 
J. Agric. Food Chem. 24:202. 

Woodburn, M.J., E. Somers, J. Rodriguez and E.J. Schantz. 1979. 
Heat inactivation rates of botulinum toxins A, B, E, and F in some 
foods and buffers. J. Food Sci. 44:1658. 



74 

APPENDICES 



75 

Appendix A 

Bacteriological Media and Procedures 

Chopped Liver Media 

Ground beef liver ••••••••••••••••••••••••••••••••••••••••••• 500g 

Soluble Starch .............................................. 1 .Og 

Pep tone •• •••••••••••••••••••••••••••••••••••••••••••••••••• 1 O. Og 

Dipotassium phosphate ...................•................••. 1 .Og 

Distilled water •••••••••••••••••••••••••••••••••••••••••.••• 1 .01 

Add finely ground beef liver to the distilled water and boil for 1 

hr. Adjust broth to pH 7.0 and boil another 10 minutes. Press through 

cheese cloth and make broth to 1 liter with distilled water. Add 

peptone and dipotassium phosphate and adjust to pH 7.0. Place liver 

particles from the pressed cake in the bottom of culture tubes (about 

cm deep), cover with 8-10 ml broth. Sterilize for 20 min. at 121C. 

Before use, exhaust for 20 minutes in flowing steam. 

Peptone Water Diluent 

Mix 1 g peptone in 1 liter distilled water. Adjust to pH 6.8. 

Prepare dilution blanks with this solution, dispensing a sufficient 

quantity to allow for loss during autoclaving. 



76 

Anaerobic Egg Agar 

Fresh eggs .. ............................................... 3 

Yeast estract .. ..................................... .... 5.0g 

Tryptone ........ ..................................... ... 5.0g 

Protease peptone •.•••••••.••••.••••••••••.••••••••••••• 20.0g 

Sodium chloride ••••••••••••••••••••••••••••••••••••••••• 5.0g 

Agar ................................................... 20.0g 

Distilled water ........................................... 11 

Wash eggs with a stiff brush and drain. Soak in 70% alcohol 10 to 

15 min.; remove and allow eggs to air dry. Crack eggs aseptically; 

separate and discard the whites. Add the yolks to an equal volume of 

sterile saline (0.9%) and mix thoroughly. 

Combine the remainder of the ingredients, dissolve, adjust to pH 

7.0, dispense, and sterilize at 121C for 15 min. Let the agar mixture 

cool to 45 to 50C, add 80 ml of the egg yolk emulsion, mix thoroughly, 

and pour plates immediately. 

Gram Stain 

Reagents: 

Crystal Violet: Mix 0.8 g of ammonium oxalate with 80 ml water. Mix 

together with 2 g crystal violet dissolved in 20 ml of 95% ethyl 

alcohol. 

Iodine: Mix together 1g iodine, 2 g KI, and 300 ml water. 
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Alcohol: Mix together 80 ml 95% ethyl alcohol and 20 ml acetone. 

Safranin: Dissolve 2.5 g of Safranin 0 in 100 ml of 95% ethyl alcohol. 

Mix 10 ml of first solution with 100 ml water. 

Procedure: 

1. Cover the smear with crystal violet for 1 /2 to 1 min. 

2. Rinse with water and shake any excess water off. 

3. Cover with grams iodine for 1 min. 

4. Rinse with water. 

5. Blot excess water with a blotter but not to dryness. 

6. Hold the slide over a sink and let acetone-alcohol flow evenly over 

the smear for about 10 s. Do not overdo this step. 

7. Rinse and blot almost dry. 

8. Counterstain with safranin for about 1/2 min. 

9. Rinse and blot dry. 

Plate Count Agar 

Tryptone (Pancreatic digest of casein USP) or Trypticase ••..•. 5.0g 

Yeast extract ................................................. 2. 5g 

Glucose ......•..•.•.•... ..........•.....•......•............. . 1 . Og 

Agar ..•......•..........•..........•..•..•................... 15 .Og 

Distilled water ............................................... 1 .01 

Dissolve ingredients in distilled water by boiling, and adjust to 

pH 7.1. Dispense into tubes or flasks and autoclave 15 min. at 121C. 

Final pH should be 7.0. 
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Gel Phosphate Buffer 

Ge la tin ................................. ................... 2. Og 

Disodium phosphate ......................................... 4.Qg 

Distilled water ............................................ 1 .01 

Dissolve gelatin and phosphate in distilled water with gentle heat • . 

Sterilize at 121C for 20 minutes. Final pH should be 6.2. 

Reference: Leininger, 1976. 

Sporulation Media 

Tryptone .... ............................................ 50g 

Pep tone .. ................................................ 5g 

Distilled water .......................................... 11 

Sodium thioglycollate, 1g in 10 ml water. 

Mix first 3 ingredients together. Adjust to pH 7.0. Autoclave 15 

min. at 121C. Just prior to inoculation, each bottle of medium (100 ml) 

receives 1 .O ml of 10% sodium thioglycollate. Sterilize again 5 min. at 

121 c. 

Reference: Schmidt and Nank, 1960. 
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Appendix B 

Nitrite Analysis 

Reagents and Apparatus: 

1. NED reagent. Dissolve 0.2g N-(1-naphthyl)-ethylenediamine 2HC1 in 

150 ml 15% (v/v) acetic acid. Filter, if necessary, and store in brown 

glass bottle. 

2. Sulfanilamide reagent. Dissolve 0.5 g sulfanilamide in 150 ml 15% 

(v/v) acetic acid. Filter, if necessary, and store in brown glass 

bottle. 

3. Nitrite Standard. 

a. Stock solution; 1000 ppm sodium nitrite. Dissolve 1 .O g sodium 

nitrite in water and dilute to 1 liter. 

b. Intermediate solution; 100 ppm sodium nitrite. Dilute 100 ml stock 

solution to 1 liter with water. 

c. Working solution; 1 ppm sodium nitrite. Dilute 10 ml intermediate 

solution to 1 liter with water. 

4. Test filter paper for nitrite contamination by analyzing 3-4 sheets 

from box. Filter about 40 ml water through each sheet. Add 4 ml 

sulfanilamide reagent, mix, let stand 5 min, add 4 ml NED reagent, mix, 

and wait 15 min. If any sheets are positive, discard entire box. 

Procedure: 

1. Weigh 5 g finely comminuted and thoroughly mixed sample into 50 ml 

beaker. 

2. Add about 40 ml of 80C water. Mix thoroughly with glass rod, 

breaking up all lumps, and transfer to 500 ml volumetric flasks. 
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3. Wash beaker and rod with successive portions of the hot water, adding 

all washings to the flask. 

4. Add enough hot water to bring volume to about 300 ml, transfer flask 

to steam bath, and let stand 2 hr., shaking occasionally. 

5. Cool to room temperature, dilute to volume with water, and remix. 

6. Filter, add 2.5 ml sulfanilamide reagent to aliquot containing 5-50 

µg sodium nitrite in 50 ml volumetric flask and mix. 

7. After 5 min., add 2.5 ml NED reagent, mix, dilute to volume, mix, and 

let color develop 15 min. 

8. Transfer portion of solution to photometer cell and read A
540 

against blank of 45 ml water, 2.5 ml sulfanilamide reagent, and 2.5 ml 

NED reagent. 

9. Prepare standard curve by adding 10, 20, 30, and 40 ml of working 

sodium nitrite solution to 50 ml volumetric flasks, add 2.5 ml 

sulfanilamide reagent, mix, and proceed as above, beginning with step 

7.Standard curve is a straight line to 1 ppm sodium nitrite in final 

solution. 

Reference: AOAC, 1980, Method 24.041-24.042. 
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Iron Analyses 

Total Iron 

1. Weigh 3-5 g sample into tared crucibles. 

2. Ash in muffle furnace at 550C for 48 hrs. 

3. Solubilize ash in 5 ml of 6N HCl. 

4. Dilute ash solution to 25 ml. 

5. Analyze for iron content by atomic absorption spectrophotometry at 

2483 Angstroms. 

Soluble Iron 

1 • Weigh 5 g sample into a 50 ml polypropylene centrifuge tube. 

2. Macerate with a glass rod and add 20 ml demineralized water. Shake 

vigorously and let stand hr. at room temperature. 

3. Centrifuge at 5C for 15 min. at 3,000G. 

4. Remove fat from top of sample. 

5. Analyze for iron content by atomic absorption spectrophotometry at 

2483 Angstroms. 

Reference: Farmer et al., 1977. 
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Appendix D 

Meat Pigment 

Reagents: 

Acetone a: Place 90 ml distilled water in a 1 liter volumetric 

. flask; add acetone, mix and bring to volume. 
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Acetone b: Mix water with 20 ml concentrated HCl and bring to 100 

ml volume. Transfer the diluted HCl to a 1 liter volumetric flask, add 

acetone, mix and bring to volume with additional acetone. 

Procedure: 

Do the following in subdued light to lessen fading of pigment: 

1. Weigh out 2.0 g sample in 50 ml polypropylene centrifuge tube. 

2. Pipet 9.0 ml acetone a into centrifuge tube. 

3. Macerate meat mass for 2-3 min. with a glass rod. 

4. Stopper centrifuge tube and mix by gentle swirling. 

5. Let stand 10 min., then filter through two Whatman #42 filter papers 

into a test tube. 

6. Transfer filtrate into 1 cm cuvette and read Absorbance within 1 hr 

at 540 mu and calculate as nitroso pigment. 

7. Prepare another 2.0 g sample, using acetone b. 

8. Macerate and allow to stand 1 hr before filtering. 

9. Filter the extract into another test tube and read Absorbance at 640 

mu. Calculate as total pigment. 
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Calculations: The calculations were made using extinction coefficients 

from Hornsey (195 6). 

ppm nitroso pigment 

ppm total pigment = A
640 

X 680 

If volume or sample sizes were varied: 

ppm nitroso pigment = 57.7 X A
540 

X Total vol. (ml)/sample (g) 

ppm total pigment = 135.8 X A640 X Total vol. (ml)/sample (g) 

References: Hornsey, 1956; Kramlich et al., 1973. 
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