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Weanling rats were fed diets containing raw lyophylized hand

deboned shank beef (HOS) supplemented with Caco3, retorted lyophylized 

mechanically deboned shank beef (MOS), or raw lyophylized MOS. Ca in 

the latter two diets originated from bone during the mechanical deboning 

process. Ca absorption, Ca retention, bone weight, and bone breaking 

strength were similar for comparative dietary levels of Ca regardless 

of the source. Bone ash and Ca content was significantly higher 

(P < .05) in the MOS 393 (3.93 g Ca/kg diet) diet and in the retorted 

MOS 460 diet compared with the HOS 488 diet. Relative biological 

values for the MOS diets calculated relative to the HOS diets ranged 

from 102 to 132 when the linear regression of Ca consumed, Ca retained, 

or dietary Ca level vs bone ash or bone Ca content was obtained. The 

retorted MOS 460 diet contained the highest Fe level and exhibited a 

lower percent absorption, terminal hemoglobin level, and liver Fe 

storage. Humerus F content increased as dietary F (also present from 

bone) level increased. Dietary F level did not determine humerus 

breaking strength. (74 pages) 



INTROOUCTI ON 

A process which mechanically retrieves meat from hand-deboned 

carcasses can contribute additional nutrients to the world's inadequate 

food supply. Mechanically-deboned red meats (MORM) were approved for 

human consumption in November, 1974, but a court injunction in 1976 

(Bryant, 1976) prevented their production in the U.S. because this 

food product had not yet been evaluated to determine its nutritional 

quality, composition and safety. 

Ca levels in mechanically-deboned meat (MOM) vary according to the 

cut of meat and the mechanical adjustment of the machine, but are 

generally higher than Ca levels in hand-deboned meat (HOM). Ca in 

MOM has been reported in the range of 0.02 to 1 .55 percent, though 

most samples of MORM average 0.5% Ca (Farmer et al, 1977; Hendricks 

et al, 1977; Kolbye and Nelson, 1977b; Kruggel and Field, 1977'; Field, 

1976). Hand-deboned beef (HOB) contains between 0.008 and 0.013% Ca 

(American Meat Institute Foundation, 1960; Composition of Foods, 

1963). Fluoride (F) concentration in mechanically-deboned beef 

(MOB) averages 5 ppm (Kolbye and Nelson, 1977a), in contrast with 

0.42 ppm in raw ground beef (Osis et al, 1974). MOB contains 24-38 

ppm Fe comparedw~ith 15-18 ppm Fe in HOB (Hendricks et al, 1977). 

Calcium, fluoride, and iron are three nutrients of particular importance 

relative to mechanical deboning. 

Mechanical deboning is a process designed to recover edible meat 

that is currently discarded as a by-product. Meat or fish retrieved by 

mechanical deboning could increase U.S. production by 25-92%, depending 
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on the physical condition of the flesh and the type of equipment involved. 

Whole or partial carcasses, such as (1) poultry necks and backs; (2) pork, 

beef and lamb necks and backs; (3) hand-deboned shanks; and (4) fish 

frames can be utilized in the mechanical process (Noble, 1974). Mechan

ical deboning of lamb breasts and mutton has been described as feasible 

and nutritionally sound (Anderson and Gillet, 1974; Field and Riley, 

1974). An automatic deboning system developed by the Japanese gives a 

35% yield from whole turkey carcasses (Food Engineering, 1970). The 

Bibun machine uses a meat separator with a rubber belt to force meat 

through a screen, and then a meat strainer to remove fine bone 

particles. The Prince machine uses a stationary screen with internal 

rotating scrapers in place of the rubber belt (Froning, 1976). After 

the whole or partial carcass is first coarsely ground, the Beehive 

deboner separates edible tissue from a residue high in bone and connec

tive tissue . The separation is accomplished by compressing a ground 

mixture of meat, marrow and bone into a conical sieve wi th holes 

approximately 0.5 mm in diameter. MOM is extruded through these 

perforations as a viscous paste. This technique results in 13-16 more 

pounds of meat from the average beef carcass (Hendricks, 1977; Field, 

1976), with a potential total yield of 737 million pounds annually from 

beef bones (Field and Riley, 1975; Field et al . , 1976). 

Mechanical separation of meat from bone results in additional 

minerals, water, fat and other materials being added to the meat. The 

yield of MOM increased (yield is the weight of MOM divided by the weight 

of bone plus meat) concurrent with the percent fat and calcium in the 

product (Field and Riley, 1974). The proximate composition of MOM -from a 

Beehive machine averages 0.2% Ca, 19% protein, 9.7% fat, 69.3% moisture, 
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and 1.1 % ash (Meiburg et al, 1976). The essential amino acid content 

(except for praline) of MOM is similar to that of the meat on the bone 

before mechanical deboning (Field, 1976). If the meat (e.g., beef shank) 

has a heavy concentration of connective tissue, mechanical deboning can 

enhance protein quality by removing 40-50% of the connective tissue 

(Hendricks et al, 1977; Field and Riley, 1974). Frankfurters made from 

40% MOM were acceptable on the basis of flavor and color (Meiburg et al., 

1976) . 

Mechanically-deboned turkey has been used for over ten years in 

turkey franks and bologna with 1% bone in the finished product 

(Hendricks et al, 1977). On April 27, 1976, the U.S.O.A. set definitions 

and standards, on an interim basis, for MORM and for MORM for processing, 

which was limited to 20% of the meat in the product. A maximum of 0.75% 

Ca and 30% fat and a minimum of 14% protein were proposed for MORM. The 

interim standards were temporarily adopted until additional data were 

developed to further evaluate the safety and quality of the product. 

However, a coalition of consumer-oriented organizations and the Attorney 

General of Maryland were successful in having the interim regulation 

legally repealed until the potential health hazards of MOM were evaluated 

(Bryant, 1976). The public expressed concern about the health and 

safety aspects of calcium and bone particles, toxic and essential trace 

minerals, pesticide residues, lipid qualfty and quantities and microbio

logical hazards of MOM (Kolbye and Nelson, 1977b). In general, the 

consumer tended to regard bone as a diluent. A panel of experts was 

formed to develop and evaluate the available data on the kinds and 

amounts of nutrients and substances present in MOM. The panel concluded 

that MOM was wholesome and safe and should be permitted in all foods 
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except baby, junior and toddler foods due to the F content (Kolbye and 

Nelson, 1977a). The exception was justified on the basis that (1) the 

concentration of F in MOM varies and may be higher than the average 5 

ppm, (2) a prediction of dietary F intake from meat and other foods 

based on quantity is difficult, and (3) infants' diets are typically 

supplemented with vitamins containing F (Kolbye and Nelson, 1977a). 

U.S.D.A. (Federal Register, June, 1978) ruled that a MDRM product was 

legal, and must contain a minimum of 14% protein, a maximum of 30% fat 

and 0.75%Ca and a PER of 2.5 calculated on the amino acid content. 

MDRM may also constitute up to 20% of the meat portion of any product, 

but may not be used in baby, junior or toddler foods, hamburger, corned 

beef, roast beef, etc. 

Recommended Dietary Allowances (Food and Nutrition Board, 1974) 

suggests that the minimum requirement for Ca normally be 800 mg/day, or 

1200 mg/day for lactating and pregnant women, and teenagers, Heaney et al. 

(1977) suggest that the Ca requirement for middle-aged women may be 1241 

mg daily. Since Ca is frequentl y low in the American dietary (Center for 

Disease Control, 1968-70) and some people cannot tolerate milk well 

(Albanese et al, 1973), MOM could be beneficial as a source of this 

essential mineral. Setting a requirement is difficult, since different 

populations have demonstrated an ability to adapt to various levels of 

dietary Ca (Walker, 1972). Experiments (Drake et al, 1949; Blosser 

et al, 1954) have shown that Ca from bone is retained well. A recent 

U.S.D.A. report on MOM indicates that Ca levels in most MDRM samples 

approaches 0.5% (Kolbye and Nelson, l977b). 

Field (1976) stated that commercial samples of MOM contain approx

imately twice as much Fe as HOM. Data from the Ten-State Nutritional 
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Survey (1968-70) and the First Health and Nutrition Examination Survey 

(1971-72) show that the American diet does not adequately meet the RDA 

for Fe, especially for women aged 12-44 (Guthrie, 1975). Recommended 

Dietary Allowances (Food and Nutrition Board, 1974) recommends an intake 

of 18 mg of Fe a day for women of child-bearing age, noting that the 

typical American diet doesn 1 t meet this requirement, and suggesting that 

other dietary factors could be used to enhance Fe absorption. Not only 

does the source of Fe affect its utilization (Waddell, 1974; Callendar, 

1971), but other nutrients consumed with the same meal, e.g., ascorbic 

acid, enhance its absorption in the human (Cook and Monsen, 1976; Cook, 

1977). 

The microscopic particles of bone added to MOM during the deboning 

process will also add F to the product, depending on the amount of 

F naturally occurring in the water, vegetation and feed consumed 

by the meat animal before slaughter (Kruggel and Field, 1977; 

Kolbye and Nelson, 1977b). Estimates of F concentration in MDRM 

range from 7-19 ppm when selected from specific geographical regions 

(Kruggel and Field, 1977). The Food and Nutrition Board (1974) 

recommends adding 1 ppm F to drinking water, and considers fluorine 

an essential element. In humans, chronic fluoride toxicity occurs 

after years of consuming 20-80 mg of fluo r ine daily. However, 

mottling of teeth in children can occur at F concentrations in the 

diet and drinking water of 2-8 ppm. Kruggel and Field (1977) conclude 

that F intake from MOM and other foods in the diet would be much 

less than the toxic amount. 
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The purpose of this ~esearch is to assess the bioavailability of 

Ca and the absorption of F and Fe from MOB shank, using rats as 

experimental animals. 
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REVIEW OF LITERATURE 

Calcium 

Physiology 

In the human, calcium represents 1.5 - 2% of the total body weight. 

Ninety-nine percent of the calcium is in the skeletal tissue and the 

rest is in body fluids. Calcium has other physiological functions in 

addition to structural support, including an essential role in 

1) converting prothrombin to thrombin in blood clotting, 2) activation 

of enzymes such as lipase and ATPase, 3) normal transmission of nerve 

impulses and 4) controlling cell wall permeability (Amens, 1973). Bone 

calcium is important in adults (after growth) because the processes of 

apposition and resorption continue throughout life in order to maintain 

mineral homeostatis. The recommended dietary allowance for Ca is 800 

mg/day, except for teenagers and pregnant or lactating women, for whom 

the RDA is 1200 mg/day(Food and Nutrition Board, 1974) . Older 

previous work on the minimum Ca requirements of adult men concludes 

that 100-200 mg of Ca was a reasonable requirement (Hegsted et al., 1952). 

Even though the majority of the population can adjust to levels of 

400-500 mg Ca/day, a significant number cannot (Rodahl et al., 1960, 

pp. 46-66). No definite acute Ca deficiency syndrome has been described, 

and different populations have demonstrated an ability to adapt to 

various levels · of dietary Ca (Walker, 1972). Therefore, a precise Ca 

requirement has been difficult to establish. 

Absorption 

Ca absorption in the human is approximately proportional to its 



8 

ionic concentration in the intestine (Cantaro and Schepartz, 1962). 

The intestinal mucosa plays a homeostatic role in controlling Ca 

absorption, since high levels of Ca excreted in the urine could cause 

renal calcinosis (Harrison, 1959). 

Ca absorption results from the following two types of movement: 

peristalsis movement which limits the amount of time that Ca is in 

contact with absorptive surfaces, and transmural movement which 

carries Ca across the intestinal epithelium. There are two types of 

concentration-dependent transport across the epthelium. At a low 

concentration of Ca, an active (or saturable) process requires energy 

and a vitamin D dependent calcium binding protein (CaBP), and moves 

Ca against an electrochemical gradient. The second tYpe of transport 

is termed nonsaturable (or passive). It is predominant when the diet 

is high in Ca, and relies on passive, diffusion-dependent inward 

processes in the duodenum to accomplish Ca absorption (Bronner et al., 

1976). When dietary levels are below 300 mg Ca/day, a negative Ca 

balance may result, i.e. more Ca will be lost via intestinal secretions 

than will be absorbed (Harrison, 1959). 

When dietary Ca levels were altered, an adaptation to the previ.ous 

dietary level was reflected in the absorption pattern. If the previous 

diet was low in Ca, an increase in percent absorption was observed. A 

previous diet high in Ca decreased the percent absorptfon. This 

adaptation of the absorptive mechanism has resulted from a change in 

enzyme activity or membrane permeability. Some researchers believe 

that the parathyroids are necessary for adaptation to a low Ca diet 

(Winter et al, 1972), while another has postulated a hormone may be 

essential. The rate of this theoretical hormone's secretion was 



determined by the degree of bone mineralization and was shown to 

influence intestinal Ca absorption (Kemm, 1973; Kemm, 1972). 

9 

Since Ca must be in an ionic form to be absorbed, the solubility 

of a particular Ca compound also affects the rate of absorption. 

Calcium lactate, calcium gluconate, calcium chloride, hexacalcium 

inosite hexaphosphate, dicalcium phosphate and ca1cium glycerophosphate 

are absorbed at their respective rates beginning with lactate which is 

the fastest (Bliss and Morrison, 1935). The lactate ion increases Ca 

solubility by reducing the alkalinity in the intestine. Another study 

showed that the percentage of Ca retained was essentially the same when 

Ca sources were calcium carbonate, whole milk powder, calcium chloride, 

dicalcium phosphate, calcium gluconate, pablum, or calcium lactate 

(Tisdall and Drake, 1938). Calcium carbonate is absorbed at the same 

rate as calcium gluconate and should therefore give satisfactory results 

in a Ca balance study (Mahoney et al, 1975; Ivanovich et al , 1967). 

Factors other than the physical properties of the Ca salt affect 

absorption and retention. High protein levels in the diet seem to 

reduce Ca retention, probably due to higher Ca excretions through the 

urine (Bell et al, 1975; Chander and Linkswiler, 1974). Chander and 

Linkswiler (1974) conclude that a high protein level increased Ca 

absorption in man, but not retention. A sodium de~iciency 

imposed for one week on growing rats decreased Ca absorption, suggesting 

that sodium is required for Ca transport across the intestine (Thomasset 

et al, 1976). Ca absorption was enhanced by many sugars (xylose, 

glucose, lactose etc.), when the sugar concentration induced an osmotic 

pressure hdgher than 1 ,000 mOsm/l. The sugar increased permeability of 

the epithelium to Ca due to mechanisms involved in the regulation of 
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osroolarity (Pansu et al, 1976). Anions, e.g., oxylate, phytate, or 

phosphate, which precipitate Ca and decrease the amount of ionic Ca 

in the intestine, decrease the rate of absorption (Amens, 1973). The 

optimum ratio of Ca:P for absorption isl :1 to 1:2. An excess of 

phosphorus decreases the amount of ionic Ca by forming insoluble 

calcium phosphate (Cantarow and Schepartz, 1962). 

Assessment of Ca Bioavailability 

Calcium bioavailability has been measured by 1) assessing bone 

growth or strength, 2) determining the rate of exchange between dietary 

Ca and serum Ca, and 3) calculating Ca balance by subtracting total 

excretion from total intake. An understanding of bone structure and 

formation has led to numerous quantitative methods of measuring bone 

growth. Staining techniques can be used to reveal changes in bone 

ground substance related to the amount of growth (Baylfnk et al, 1970; 

Frost, l 969) . 

The fact that endosteal formation increased where resorption 

(induced by a previous lower Ca diet) had occurred, while no generalized 

bone increase at the perioteum or epiphyses occurred, is evidence for 

a local factor which stimulates bone formation (Stauffer et al, 1972). 

Phosphate esters which occur in plasma inhibit the formation of new 

bone mineral. Alkaline phosphatase, secreted in large quantities by 

osteoblasts when actively depositing bone mineral, hydrolyzes this 

polyphosphate fraction and is usually a good indicator of rate of bone 

formation (Fleisch and Newman, 1961). 

The percent ash and calcium in the bone and body is also an indica

tion of mineralization and dietary Ca level. l4illiams et al. (1957) 

reported that bone density on the ninth caudal vertebra, and total body 
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Ca both increased with dietary levels of 0.1, 0.3 and 0.5% Ca. They 

also found an increase in body Ca if the 0.5% Ca diet was fed ad libitum 

instead of pair-fed. Highly significant increases in percentage ash 

contents of bones were found when dietary Ca was increased from 0.13% 

to 0.74%. Greater differences in treatment responses to dietary Ca 

levels were evident when a poorly mineralized bone, such as a caudal 

vertebra, was analyzed (Toothill and Hosking, 1968). Slopes of a plot 

of carcass Ca content vs Ca intake leveled off when Ca intake increas

ed to 4 mg Ca/g diet (Bernhart et al, 1969). 

A direct correlation between dietary Ca content and breaking 

strength of the bones has been shown (Rowland et al, 1967). The 

difference in breaking strength between normal and low Ca bones increases 

with time, with the effect occurring after receiving the diet for 2 to 

4 weeks (Solomon and Volpin, 1972). \./hen dietary Ca level increased 

from 0.075 to 0. 36%, there was a progressive rise in Ca retention, 

weight of bone, cortical thickness of bone shell, and bending and 

torsional strengths of bone (Bell et al, 1941). 

As mentioned above, Ca bioavailability can also be assessed by the 

balance method (intake-fecal output - urinary output). When interpret

ing Ca balance data, the previous dietary Ca level must be considered for 

six days before the start of the experiment. If the experiment uses a 

low Ca diet, the fecal Ca may initially be higher than Ca intake. Even 

though fecal balance data are imperfect due to a small fraction of 

unabsorbed, endogenous Ca from digestive juices, they are a more accurate 

reflection of dietary Ca bioavailability than are urinary Ca balance data. 

Urinary Ca is usually low, and depends on renal function, acid-base 

balance, deposition of Ca in bone, rate of bone resorption, intestinal 
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absorption of Ca and previous Ca intake (Zipkin, 1973). Lentner et al. 

(1975) reported satisfactory results from a metabolic balance study on 

humans when conducted for 20 days if the patient's regular Ca intake is 

maintained and a liquid formula diet is given. Whittemore et al. (1973) 

found that the Ca retained by rats increased from 17.2 mg/d to 20.6 

mg/d when Ca levels were increased form .8 - 1.5%. 

Bone Meal 

Bone meal is a fine dry powder obtained by boiling bones to remove 

fat and organic material, drying with hot air, and grinding. Sixteen 

samples of edible bone meal from three processors contained an average 

of 33.0% Ca, 15.4% P, and 572 ppm F (Bartlet et al, 1952). Bone meal 

has been used as a Ca supplement in some enriched foods, and is widely 

used as a mineral supplement in livestock feeding. Blosser et al. 

(1954) concluded that bone meal was a good calcium and phosphorus 

supplement for an imal feed based on its content of essential nutrients. 

Interpretation of the analyses indicated that bone meal is a good 

source of Ca, P, Fe, Mn and Zn but a poor source of Cu and Co. If 

bone meal were added to a grain ration completely lacking in Ca, the 

ration would contain 0.3% Ca (more than adequate) based on average 

composition data. Drake et al. (1949), using human subjects, attempted 

to compare Ca balance when Ca was supplied from either milk or bone 

meal. The results were a net negative Ca balance for both groups, 

possibly due to the fact that this study was not designed to compensate 

for the test subject's adaptation to a previous dietary level of Ca. 

The researchers evaluated the results using only those subjects who 

exhibited a better Ca balance when consuming either milk or bone meal, 

and concluded that the availability of Ca in bone meal is approximately 
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that in milk. From a similar experiment using rats, it was concluded 

that the retention of Ca from bone is approximately 90% of that from 

milk (Drake et al , 1949). 

Fluoride 

Bone Mea 1 

Both bone meal and MOM contain F in addition to Ca. 

Dog litters fed 5 mg F/kg body weight as it occurs in purified bone 

powder (up to a period of about one year) produced superior teeth 

compared with litters fed the same F level provided as sodium fluoride 

(Greenwood et al, 1946). Eighteen samples of bone meal assayed for 

fluorine contained an average of 803 ppm, expressed as ppm of rehydrated 

ash (Blosser et al. 1954). When several different brands of bone meal 

tablets were analyzed in the Utah State University laboratory, their F 

content ranged from 1.08 to 2.77 mg F ingested along with the reconmended 

daily allowance of Ca. 

Physiology 

Dietary F readily accumulates preferentially in bone tissue and 

probably is incorporated into surface layers of existing hydroxyapatite 

crystals by replacing OH ions (Vaughan, 1970; Costeas et al, 1971; 

Faccini, 1969). As the concentration of Fin drinking water is increas

ed to 4 ppm, the concentration of F also increases in various bones, where 

95% of body F is found (Zipkin, 1973). Fl uorhydroxyapatite crystals are 

larger than calcium apatite crystals, which may be responsible for the 

more stable mineral systems noted with fluoride treatment in dentistry 

and osteoporosis. Fluoride stimulates resorption over formation on the 

endosteal surface (bone layer surrounding marrow cavity) but produces an 
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excess of bone formation on the periosteal surface (outside layer of bone) 

with little resportion (Spencer et al, 1974; Faccini, 1967). These 

effects are influenced by the dose, the solubility of fluoride, the 

duration of intake and the quantity of Ca and P in the diet. 

Fluoride absorption occurs by simple diffusion, and is most rapid 

for soluble salts such as NaF, HF, H2SiF6, Na 2SiF6 and Na2P03F. Not 

only is the entire GI tract a site of absorption, but ingestion also 

occurs through the skin and lungs via hydrogen fluoride. The major 

differences in the absorption of fluorides evidenced fn humans are 

(1) 86-97% of the Fin drinking water is absorbed, 2) 80% of the Fin a 

normal diet is absorbed, and 3) 37-54% of the F in bone meal is absorbed. 

Approximately 50% of the fluoride absorbed is retained. Fluoride is 

excreted through urine, shedding skin, sweat and feces. Infants excrete 

32-50% of the F ingested daily, since they are actively laying down 

bone mineral (WHO, 1970). Plasma F concentration is fairly stable as 

determined by the rate of absorption from the gut, excretion by the 

kidney and incorporation into calcified tissues (Faccini, 1969). About 

99% of F stored in the body is retained in the bone (Kruggel and Field, 

1977). At low concentrations in the drinking water (.l-.2 ppm), bone 

contains approximately 500 ppm F on a dry, fat-free basis in an adult 

human (Zipkin, 1973). 

Ca-F Interaction 

A complex Ca-F interaction exists, in which F has an effect on Ca 

metabolism, and the concentration of dietary Ca has an effect on F 

metabolism. Ca impedes the absorption of F (Faccini, 1969). The , 

percent retention of F by rats fed low Ca diets was 2-3 times the 
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amount of F absorbed by nts fed high Ca diets (Havivi, 1972). An in

crease in concentration of dietary Ca (in rats) from 0.23 to 0.73% de

pressed the total retention of F by 10-13%. An even greater depressed 

retention of F was evident in teeth and soft tissue (Lawrenz and 

Mitchell, 1941). Burhart and Jowsey (1968) reported that higher levels 

of Ca protect against the osteomalacic effects of high levels of F. 

When a low Ca diet (0.4%) was supplemented with 0.075% F, Ca retention, 

growth rates, and bone ash increased in Japanese quail. From a second 

experiment, in which quail were fed a 1.2% Ca diet for 10 days, and 

then a diet containing 0.4% Ca supplemented with 0.075% F for 35 days, 

adequate mineralization of new bone, but a 30% decrease in bone tor

sional strengths was found. The researchers concluded that F increases 

Ca retention, but at this level did not increase bone strength or 

integrity (Chan et al, 1973). Spencer et al. (1974) report that F 

with a mineral-deficient diet reduces mineralizing surfaces, whereas 

F with a diet adequate in Ca and P increased these surfaces. Other 

researchers found an increased fluoride concentration in bone ash when 

the diet contained normal levels of Ca and P. Increased bone ash fluo

ride was accompanied by gradual decreases of cortical thickness, maxi

mal load, breaking strength and modulus elasti city (Guggenheim, 1976). 

To illustrate the complex effect of F, 77 ppm F (much higher than is 

present in MOM) added to a low Ca diet decreases ash concentration 

and mechanical strength, but 150 ppm F did not affect these parameters. 

F and Bone Strength 

As noted above, very large quantities of F generally decrease bone 

strength. Nordenberg et al. (1971) reported that NaF and Na2P03F 
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decreased the breaking strain in mobile tibiae. Strength of osteopenic 

bone was measured when a diet low in Ca (0.1 % Ca, 0.6% P) was supplement

ed with NaF (100 ppm). Bone strength was significantly reduced in all F 

supplemented rats, with no difference in cortical thickness (Riggins 

et al., 1975). Other researchers (Yamamoto et al, 1974) measured bone 

hardness in F-treated rats, with the supposition that an increase in 

microhardness is related to an increase in mineral concentration. Bone 

hardness was measured at different F levels (1, 30, 90, or 120 ppm) and 

the following observations were made. Bone microhardness was increased 

in bone formed during F treatment of 30 ppm in drinking water. Toxic 

doses of F delay, but do not prevent achievement of normal maximum 

microhardness. Changes in microhardness are seen only in bone formed 

during F treatment. Spencer et al. (1974), using electron microscopy 

techniques, concluded that more Ca and P were needed to achieve greater 

mineralization as the amount of F in the diet increased. Microscopy 

indicated that F reduces mineralization at osteoid seams unless adequate 

Ca and P is available, even though F stimulates a larger surface of 

osteoid seams. Chan et al. (1973) also reported greater formation of 

osteons with F treatment and state that this leads to a greater chance 

of bone fracture since there are more cement lines (sites for fractures). 

Chan et al. (1973) also found no body growth effect as the result 

of consuming F. However, other research reported that adding 1, 2.5 

and 7.5 ppm F to a basal diet increased growth rates 17, 30.8 and 27.9% 

respectively (Schwarz and Milne, 1972). As mentioned above (Chan et al, 

1973), F can increase Ca retention and bone ash. A balance trail was 

conducted using two groups of rats, with each grqgp receiving either 0.2 

ppm or 20 ppm F in the diet for 4 weeks and then an injection .of labeled 
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CaC1 2 to detennine the effect of F. No significant differences in in

take, total fecal excretion, endogenous fecal excretion, balance, % re

tention and true absorption of Ca din the two groups were observed. 

Humeri of the higher F group contained more water, and the breaking loads 

of femur shafts were 17% less than for controls. The Ca content of 

femurs of high F animals was less (P < 0.05) on a fresh weight basis 

than those of low F animals, but not on a dry weight basis. These re

searchers (Deshmukh et al, 1970) concluded that reports of increased 

ash or Ca in bone due to administration of F was related to a low Ca 

diet and that there was no F effect when dietary Ca is adequate. 

F Requirement 

The Food and Nutrition Board considers F an essential element due to 

experiments with rats showing a growth effect. The Board also advises 

fluoridation of the water supply, since this preventative measure results 

in a 50% decrease in tooth decay in children. Mottling of dental enamel 

can occur when 3 mg of fluoride per day are ingested, or when the drinking 

water contains greater than 1.4 - 1.6 ppm F. An intake of l .5 - 2.5 mg 

F/day or a l ppm F level in the drinking water is beneficial (Kolbye and 

Nelson, 1977a). Chronic toxicity, e.g., fluorosis of the skeleton, results 

with years of consuming 20 to 80 mg F/day, and there is evidence of possi

ble kidney damage when the kidney is excreting F in excess of the require

ment (Faccini, 1969). Dietary F ranged from 1.6 - 1.9 mg/day, when the 

intake was measured exclusive of the drinking water (Osis et al, 1974). 

Dietary F (including drinking water) in twelve cities fluoridating their 

water supplies ranged from 1.7 - 3.44 mg/day. In four cities where the 

water supply was not fluoridated, dietary F was approximately l mg/day 
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(Kramer et al, 1974). An analysis of Fin infant diets, where the 

recomnended intake is 0.5 mg/day, resulted in a gradually increasing F 

intake from 0.32 mg/day at one week to 1 .23 mg/day -at 6 months 

(Wiatrowski et al, 1975). The revised proposal for standards and 

labeling requirements for MOM states a maxi~um limit of 20% MOM in any 

product (Federal Register, 1978). The expert panel (Kolbye and Nelson, 

1977a) studying the safety of MOM has estimated the dietary effect of F 

from this source, andconsiders there to be no danger for adults. Assum

ing an intake of 2 franks and 2 oz. of bologna per day and 5 ppm F in 

MOM, 0.15 mg F would be added to the diet. Kruggel and Field (1977) 

conclude that F intake from MOM and other foods in the diet would be 

much less than the 20 to 80 mg F/day that is toxic. However, the panel 

did recommend that MOM not be incorporated into infant and junior foods 

due to the variability of F in MOM and other foods. 

Iron 

Regui rement 

Disagreement exists concerning the human requirement for iron, since 

a greater need prompt!) . a. larger percent absorption. Typically, two_ to ten 

percent of the iron content of food is absorbed, though individuals having 

a low hemoglobin concentration may absorb up to 60% of the iron consumed. 

The Food and Nutrition Board (1974) set the RDA at 10 mg for men, and 18 mg 

for women. Good sources of iron include liver, meat, leguminous plants, 

potatoes, green stalks and leaves (Guthrie, 1975). Data from the Ten State 

Nutrition Survey (1968-70) have been used to show that the American diet 

does not adequately meet the RDA for iron, especially for women aged 

12-44. In fact, the 18 mg requirement is impossible to ingest in a 



typical American diet. Meeting this requirement can be enhanced 

or hindered by other dietary factors. 

Iron Availability 
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Questions exist concerning what foods should be enriched with iron, 

and which iron compounds should be used (Bing, 1972). A comparison of 

the availability of different iron supplements in bread, expressed as 

a mean absorption ratio relative to ferrous sulfate (Waddell, 1974), was 

5% for sodium iron pyrophosphate, 31 % for ferric orthosphosphate and 95% 

for elemental iron. In 1970, phosphate salts comprised 1/3 of the iron 

used in food enrichment. Hussain et al. (1965) noted that the availa

bility of food iron is lower when the source was from a diet high in veg

etables compared to an experimental diet containing iron salts. Other 

research (Cowan et al, 1967) utilizing hemoglobin regeneration as a 

measurement of absorption indicated that iron in plant foods was much 

less available than that in ferrous sulfate. 

Callendar (1971) concludes that there i·s a 11 great superiority 11 of 

iron absorption from muscle and hemoglobin compared with vegetables and 

eggs. Heme iron is absorbed as a heme molecule, in which case iron is 

released by xanthine oxidase within the mucosal cell. Non-heme iron is 

absorbed to receptors in the brush border of mucosal cells, passing into 

the cell by an energy-dependent process. Iron absorption is regulated 

by individual iron status, erythropoietic rate, and other factors 

(Linder and Munro, 1977). A number of researchers have suggested that 

hemoglobin iron is absorbed via a different mechanism than is soluble 

food iron, and that this explains the greater efficiency of meat iron 

(Cook and Monsen, 1976; Turnbull et al, 1962). The relatively s-mall 



20 

amount of heme iron, compared with nonheme iron, in a meat diet may 

comprise up to 1/3 the total iron absorbed (Cook, 1977). In addition, 

animal proteins enhance the absorption of dietary nonheme iron (Cook, 

1977; Cook and Monsen, 1976; Cook and Monsen, 1975). 

Ca and Fe Interaction 

Dietary Ca affects Fe utilization, though the mechanism is not 

understood. Research was conducted to study the effect of high vs low 

Ca:P diets on bone and liver mineral composition. There was a 

significant decrease in iron content of the radius-ulna of pigs with a 

l .2% Ca and 1.0% P, compared to a 0.5% Ca and 0.4% P diet (Pond et al., 

1975). When Chapman and Campbell (1957a) fed diets made up of 80% bread, 

and containing Ca in the form of bone meal, calcium carbonate, calcium 

lactate, calcium chloride, disodium phosphate, or commercial sodiu~ 

hexametaphosphate, it was found that each of these calcium salts inter

ferred with iron utilization. The researchers suggested that the 

mucosal cells become blocked with Ca, interferring with iron absorption. 

However, this diet contained a relatively large amount of bone meal and 

a small amount of iron. Results of another experiment (Chapman and 

Campbell, 1957b) showed that the addition of bone meal had no significant 

effect on the iron content of livers or on hemoglobin level. Bing (1972) 

points out some contradictions in the research concerning the effect 

of Ca and Pon iron utilization. Generally, increasing the Ca content 

of the diet reduces iron retention, though the effect is not consistent 

or quantitatively predictable. 
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Iron in MOM 

The USDA Select Panel (Kolbye and Nelson, 1977b) considers the iron 

in MOM to be 11 nutritionally advantageous," and also that Ca does not 

interfere with its utilization. The Panel and Field (1976) both state 

that commercial samples of MOM contain approximately twfce as much iron 

as do HOM. By comparing iron levels in bone, marrow, MOM and HOM, 

Farmer et al. (1977) conclude that some of this iron must come from the 

deboning machinery. Relative biological values (relative to ferrous 

sulfate) of reduced (or elemental) iron have been reported as 70, 32 

and 25 (Coccodrilli et al, 1976), and between 20 and 70 (Pla and Fritz, 

1970). Shah and Belonje (1973) state that the biological availability 

of reduced iron depends on its particle size, and that at least 95% of 

the particles should be less than 10µ in diameter. Allred (1976) 

concluded that iron in mechanically-deboned turkey (18.8 ppm Fe) and 

in hand-deboned turkey (10.8 ppm Fe) was equally utilized when tested by 

hemoglobin regeneration. Therefore, the higher content of mechanically

deboned turkey makes it a better source of iron. Farmer et al. (1977) 

determined that mechanically-deboned shank contained 33% more metaboliz

able iron (as measured by hemoglobin regeneration) than hand-deboned 

shank, since there was 93. l mg Fe/k.g dry matter of mechanically deboned 

shank compared with 52 mg Fe/kg dry matter of hand-deboned shank. 
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METHODS AND PROCEDURES 

Experimental Design 

Seven diets were formulated for the purpose of comparing the 

absorption of Ca from mechanically-deboned shank (MOS) with that from Ca 

supplemented hand-deboned shank (HOS) diets (Table 1). Control diets 

were prepared by adding different levels of Caco3 to each of four HOS 

diets. The amount of MOS in the diet was determined according to the 

amount of Ca desired. The percent protein was maintained at the same 

level in all seven diets by the addition of the appropriate quantity of 

HOS. Na2HP04 was added in appropriate amounts to keep phosphorus 

levels constant. Beef kidney fat was rendered and added i"n appropriate 

amounts to balance the fat content in the seven diets. A mineral mix 

provided all the essential minerals except Ca, P and Fe. A standard 

vitamin mix was added. 

Animal weight gains and dry matter absorption were calculated 

during a three-week feeding trial. Ca bioavailabil ity was assessed by 

comparing percent Ca retention, percent Ca apparent absorption, Ca 

retention, Ca consumed, Ca and P in blood, Ca, P and ash of bone, and 

bone strength. Infonnation on Fe utilization was gathered from percent 

Fe absorption, terminal hemoglobin levels, liver Fe content, Fe per 

gram of liver and liver weight. F bioavailability was assessed by 

comparing percent F absorption, percent F retention and F content of 

humeri. 
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Table 1. Composition of mechanically-deboned shank (MOS) and hand
deboned shank (~ps) _ meat diets. 

MOS a MOS MD Sb HOS HOS HOS HOS 
393 221 460 016 264 488 718 

Ingredient (g/kg) 
Meat - total 758 660 758 562 562 562 562 

MOS 571 285 571 
HOS 187 375 187 562 562 562 562 

Rendered Beef Kidney 
Fat 81 162 81 243 243 243 243 

Dextrose 76 90 76 103 97 91 85 
Cellulose c 50 50 50 so 50 so 50 
Mineral Mix 11. 6 11. 6 11. 6 11. 6 11. 6 11. 6 11. 6 
Na 2HP04 6.6 5.9 6.6 10. 0 10.0 10. 0 1o.0 
CaC03 6.0 12.2 18.5 
v·t · w d 20 20 20 20 20 20 20 1 am1 n 1· 1 x 

Nutrient Level (g/kg) 
Fat 420 419 417 414 416 414 417 
Protein 3S2 365 317 348 332 347 350 
Ash 40 35 42 31 35 40 44 
Mai sture 50 50 24 46 44 42 42 
Ca 3.93 2.21 4.60 0.16 2.46 4.88 7 .18 
p 4.60 4.32 4.73 4.27 4.14 4.02 4.02 
Fe (mg/kg) 53.50 48.50 60.40 39.00 42.90 46.30 47.70 
F (mg/kg) 1o.70 6. 28 15 .10 0.66 

alevel of dietary calcium (3.93 g/kg) 
bProcessed at 121°c for 90 minutes in quart glass horre canning jars. 

cThe mi nera 1 mixture contained ( g/ kg): KCl , 296. 7; MgC03, 121.0; MnS04 , 
12.7; C0Cl2.6H20. 0.7; ZnS04.7HzO, 38.0; CuS04.H40. 1 .6; KI, 0.8; 
Na2Moo4.2H2o, 0.1; and glucose 5281 .1. 

dVitamin Diet Fortification Mixture, Nutrition Biochemicals Corp., 
Cleveland, Ohio. The mixture contained (in g/kg of mixture); 
Vitamin A concentrate (200,000 IU retinyl acetate per gram), 4.5; 
Vitamin D concentrate (400,000 IU calciferol per gram), 0.25; 
a.-tocopherol, 5.0; ascorbic acid, 45.0; inositol, 5.0; choline 
chloride, 75.0; menadione, 2.2; p-aminobenzoic acid, 5.0; niacin 
4.5, riboflavin, 1.0; pyridoxine hydrochloride, 1.0; thiamfn 
hydrochloride, 1 .O; calcium pantothenate, 3.0; and in mg/kg: 
biotin, 20; folic acid, 90; and vitamin B12 , 1.4. 
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Preparation of Diets 

Meat Preparation 

Beef shank (femora and humeri) from a commercial packing house was 

utilized for the MOS and HOS diets. Hand-deboning was done by the U.S.U. 

Meat Laboratory. Meat tissues were ground twice through a 1/8 inch plate 

and stored at -20°c. Mechanical deboning was done by Beehive Machinery, 

Inc. (9100 South 500 West, Salt Lake City, Utah) by patting the whole 

shanks through a bone cutter having a cutting plate with 1/2 inch 

perforations and then deboning with an AU6173 Beehive machine using an 

AU0.018 inch head (0.457 mm perforations). The MOS extruded through 

the perforations was inmediately quick-frozen and stored at -20°c. 

Both the MOS and HOS were cut into 1/2 inch thick sections, deleted 

by lyophilized to a moisture content of 2-5%, reground, and stored in 

plastic bags at -20°c. Some of the MOS was thawed, reconstituted with 

deionized water, processed at 121°c. for 90 minutes, relyophilized and 

stored similarly. 

Analyses of Meat 

Moisture, fat, protein, ash, Ca, P and Fe content were determined 

on the fresh meats before lyophilization. Five replicate samples 

of meat were analyzed (AOAC, 1970) for moisture, fat, 

protein and ash using the vacuum oven at 6o0 c. and 15 inches vacuum 

(A.O.A.C., 7.003), the Soxhlet apparatus for 24 hours wi.th petroleum 

ether (A.O.A.C., 7.045), the ~eldahl method (A.O.A.C., 2.049), and 

the muffle furnace at 575°c. for 16 hours (A.O.A.C., 7.010) respectively. 

The ash from each sample was boiled in 5 ml of 6 N HCl acid for a 

few minutes and diluted to 25 ml with deionized water. Deionized water 
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and acid-rinsed equipment were always used for mineral analyses. Fifty 

µl aliquots (five replications for each meat) of these ash solutions 

were mixed with 2 ml of a SrC1 2 solution (31 g of SrC1 2 plus 10.33 g 

of NaCl dissolved up to one liter with deionized water). The samples, 

along with Ca standards, were quantitated using a Varian Techtron AA 
0 

120 atomic absorption (AA) spectrophotometer at 4226.7A. The Ca 

concentrations were calculated using regression equations developed from 

standard curve data obtained at the same time as the samples were assayed. 

The method of Gomori (1942), with some modification in the reagents, 

was used to determine P in the meat (Appendix A). Twenty-five µl of 

the ashed solution was mixed with 5 ml of MS and .5 ml of elon. 

One ml of the ashed solution was mixed with 2 ml of defonized 
0 

water and assayed on the AA spectrophotometer at 2483.3 A to determine 

Fe concentration. 

Fin the lyophilized meats was analyzed by the method described 

by Orion Research, Inc. (1977) on 2-2.5 g samples (Appendix B). 

Diet Analysis 

The diets were analyzed in triplicate for nutrient content to 

ensure that they conformed to the specifications of the experi"mental 

design. Adjustments in the content of the diets were made where 

necessary and reassayed for nutrient content. Resampling was used to 

confirm the adjustments in nutrient content. Dietary moisture, fat, 

ash and protein content were determined as prevfously des·cribed for 

the meat except that only three samples of approximately 4 g diet 

each were analyzed. 

Fifty µl aliquots of each ashed solution, excepti"ng the ashed 
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solution of one HOS diet, were mixed with 5 ml of Src1 2 and Ca was 

quantitated on the AA spectrophotometer. In the case of the one HOS 

diet, a 0.5 ml aliquot was taken because of the low Ca content (0.16 

g/Kg). Ca, P, F and Fe content were determined as described above 

for meat analysis. P was determined using 10 µl aliquots of these 

ashed solutions. F in the diets was measured after adjusting an 

aliquot of these ashed solutions to the appropriate pH. Iron was 

determined as described for meat analysis on the ashed solutions 

without dilution. 

Animal Care and Sample Collection 

Seven groups of ten weanling, Sprague-Dawley, male rats were each 

fed one of the seven diets. The animals were fed the assigned diet for 

24 hours before the start of the experiment. Forty-eight rats were 

housed in stainless steel Wahman rat metabolism cages and twenty-two 

in glass metabolism cages. The rats were weighed at the start of the 

experiment and at the end of each week of the three week metabolism 

study. Food and deionized water were provided ad libitum. Records 

were kept of food consumed with corrections for spillage. 

Urine and feces for each rat were collected separately at the end 

of each week. Each urine collection flask contained approximately 2 ml 

of a 2% boric acid solution and approximately 2 ml of toluene to 

prevent bacterial growth and evaporation. After recording urine volume, 

the weekly collection was frozen. Spi 11 age and feces were separated, 

dried and weighed. 
0 Weekly feces samples were dried overnight at 105 C., 

ground by mortar and pestle, and stored at room temperature. 

Hemoglobin was determined the day before sacrifice by co11 ecti_ng 



Table 2. Animal and liver weights (g) of weanling male rats fed 
mechanically-deboned shank (MOS) and hand-deboned shank 
(HOS ) die.ts. 

Initial Day 8 Day 15 Day 22 Wt. Liver 
Diet Wt. Wt. Wt. Wt. Gain Wt. 

MDS393a 52 103 149d 204 152 8.94 
MDS22lb 58 106 145 196 139 8.80 
MDS460 59 110 143 201 143 8.65 
HDSOl 6 56 101 117 124 68 4.24 
HDS246 56 101 145 182 126 8.59 
HDS488 54 102 137 184 130 8.70 
HDS718 54 101 145 206 152 8.93 

LSD .05c N.S. N.S. 12.7 15. 9 16.8 0.99 
.01 16.8 21.2 22.3 1.32 

F (6/63)d 2.09 1.81 5.81 26.06 23.73 24.03 

aLevel of dietary calcium (3.93 g/kg). 
bProcessed at 121°c. for 90 minutes in glass quart canning jars. 
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cMean differences must exceed or equal the least significant difference 
values to be statistically significant at the 5 or 1% levels of 
probability. NS means not statistically significant. 

dTreat df /Error df 
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blood in a haparinized capillary tube from the retro-ocular capillary bed. 

At sacrifice blood was collected in test tubes containing an applicator 

stick. The stick was removed later along with the adhering blood clot, 

and the remaining blood centrifuged at 5000 rpm for 15 minutes. 

Serum was collected and frozen. 

At sacrifice, humeri, tail and liver were dissected from the body 

and frozen. The humeri and tails were later boiled (for about 20 

minutes) and the bones cleaned of tissue and air-dried at room tempera

ture. The second through fourth caudal vertebrae were retained, one 

of them being analyzed for Ca, P and ash content. 

Analytical Procedures for Collected Samples 

Approximately 2 g of the feces collected each week were ashed 

at 55o0 c. for 16 hours and solubilized in 5 ml of 6 N HCl before 

diluting to 25 ml with deionized water. (Some samples selected on the 

basis of low Ca content or small fecal collections were diluted to 

20 ml). Aliquots of the ashed solutions were added to a SrC1 2 solution 

and Ca content was determined as previously described. Fe was measured 

in the fecal ashed solutions as described for diet analysis. An aliquot 

of the weekly urine output of each rat was diluted with a SrC1 2 solution 

and analyzed for Ca. 

One of the caudal vertebrae was air-dried at room temperature for 

at least two weeks, weighed, ashed at sso0 c. for 16 hours, solubilized 

in 5 ml of 6 N HCl, and diluted to 100 ml with deionized water. Ca 

content of the vertebra was determined from a mixture of 0.5 ml ashed 

solution plus 4.5 ml SrC1 2 solution. Phosphorus was analyzed using a 

200 µl aliquot of the ash solution. 
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Bone strength was determined by placing each humerus across a 1.5 

cm span and measuring the weight of sand necessary to break the bone. 

The distance from the fulcrum to the bucket of sand was 39.5 cm, and 

from the fulcrum to the blade was 5.0 cm. The following formula was 

used to calculate bone strength in Kg. 

Lon Lever 39.5 cm X Wt. of sand (g) = kg to break 
Short Lever 5.0 cm 1000 g/kg 

The pieces of each broken humerus were weighed, ashed at 550°c. for 

16 hours, solubilized in approximately 5 ml of 6 N HCl, and diluted 

up to 25 ml with deionized water. A 15 ml aliquot of the ashed solution 

was adjusted to a pH range of 4.5 to 5.5 in order to analyze F content 

(Appendix B). 

Hemoglobin was analyzed according to the cyanmethemoglobin method 

of Crosby, Munn and Furth (1954). The 20 ml sample of fresh blood was 

well mixed with Drabkin's reagent (1 gm NaHC03, 52 mg KCN and 198 mg 

K3Fe(CN) 6 made to 1 liter volume with deionized water), allowed to 

stand for 30 minutes and quantitated at 540 wavelength with a spectro

photometer. A 5 ml standard of 15.8 g Hb/100 ml was analyzed similarly. 

The following formula was used to calculate the Hb concentration of the 

fresh blood. 

15.8 g Hb/100 ml X O.D. sample= g Hb/100 ml 
O.D. standard 

The serum collected at sacrifice was used to determine serum Ca and 

P. The serum was deproteinized by mixing l ml serum with 4 ml of 12.5% 

trichloracetic acid, waiting 10 minutes and centrifuging at 5000 rpm 

for 15 minutes. Two ml of the supernatant were mixed witn 2 ml SrC1 2 
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(31 g Srcl 2 plus 10.33 g NaCl dissolved up to 0.5 liters), and the 

readings from the AA were used to calculate mg Ca/100 ml of serum. 

Appropriate standards were prepared using double strength SrC1 2 solution 

also. Serum phosphorus (Appendix A) was analyzed using 0.5 ml of the 

TCA supernate plus 0.2 ml of elon and 5 ml of MS. 

After recording the fresh liver weight, each liver was charred 

in a porcelain crucible and then ashed at 575°c. for 16 hours. The 

ash was solubilized in approximately 5 ml of 6 N HCl and diluted to 

25 ml with deionized water. The solutions and appropriate standards 

were quantitated using the AA spectrophotometer for Fe as before and 

the data used to compute liver Fe content. 

Nutrient Balance Computation 

Balance data were calculated for Ca, F and Fe. Retention in 

milligrams was calculated by subtracting fecal plus urinary Ca from Ca 

intake (I-[F+U] =Retention). Apparent absorption for Ca, Fe and F 

were calculated according to the following formula: 

Intake-Fecal 
Intake x 100 = % apparent absorption 

Apparent retention was calculated for Ca and F according to the 

following formula: 

Intake - (Fecal + Urinary) 
Intake x 100 = %apparent retention 

Ory matter absorption was calculated for each of the 3 weeks by 

computing total dry diet ingested and using the following formula: 
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Diet Wt. - Fecal Wt. x 100 = Diet Wt. % dry matter absorption 

Statistical Analysis 

Analyses of variance were used to determine whether significant 

differences existed among the groups. If the treatment F ratio was 

significant (P < .05), post hoc comparisons using Least Significant 

Differences (LSD) were computed to detennine which treatment groups 

were significantly different (Steel and Torrie, 1960). 

Regression analyses (Mendenhall, 1971) were used on the diets 

containing HOS to obtain a prediction equation for the parameters 

measured. The test was used to determine if a linear relationship 

existed between bone ash (or bone Ca) content and dietary Ca level, 

Ca consumed, or Ca retained. Where the correlation coefficient 

indicated a 11 good fit, 11 relative biological values of the three dfets 

containing MOS were calculated relative to the caco3 supplemented 

diets by the following steps: 

1. The independent variable, i.e., dietary Ca level, for 
each of the test diets was substituted into the predic
tion equation to get an expected dependent variabl~, _ 
i.e., bone ash. 

2. The actual experimental dependent variable was divided 
by the expected value and multiplied by 100 to give 
relative biological value. 
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RESULTS 

Meat and Djet Analvses 

The results of analyses of HOS and MOS used in the diets are 

in the order of moisture (g/Kg), fat (g/Kg), protein (g/Kg), ash (g/Kg), 

Ca (mg/g), P (mg/g), Fe (µg/g), and F (µg/g) for MOS/HOS: 620/698, 

208/110, 163/193, 16/9, 3.4/0.l, 2.3/l .4, 36.8/32.7 and 11.43/0.27. 

Water and protein content were higher for HOS than for MOS, while fat 

and ash content were higher for MOS than for HOS. All the minerals 

assayed (Ca, F, Fe and P) were present in larger quantities in MOS 

than in HOS. 

The compositions of MOS and HOS diets are found in Table 2. 

According to the experimental design, fat, protein and phosphorus 

contents of the diets were found by analysis to be similar, e.g., 

414-420 g fat/kg diet, 332-371 g protein/kg diet, and 4.02-4.73 g 

P/kg diet. Ca levels in the four diets containing HOS only were 0.16, 

2.46, 4.88 and 7.18 g/kg. Ca level in the diets containing MOS were 

2.21, 3.93 and 4.60 g/kg. The ratio of MOS:HOS is about 3:4 for the 

diet labeled MOS221 while the other two diets containing MOS have a 

ratio of 3:1. F level in the HOS diet analyzed was 0.66 mg/kg, while 

levels in the MOS diets were 6.28, 10.74 and 15.12 mg/kg. Fe levels 

in the diets containing only HOS ranged from 39.03 to 47.69 mg/kg with 

a mean of 43.97 mg/kg. Fe levels in diets containing MOS were 48.53, 

53.64 and 60.44 mg/kg. 
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Animal Responses 

Body Weight 

The body weights of the animals fed the HDS016 diet with essentially 

no Ca reflected a very poor weight gain in comparison with all other 

treatment groups (Table 2). The two diets resulting in the greatest 

weight gains were the MDS393 and the HDS718 diets. 

There were no significant differences in mean body weight among 

the treatments at the start of the feeding period, or one week after. 

On day 15, body weight of the animals receiving the HDS016 diet was 

significantly lower (P < .01) than all other treatment groups. On 

Day 22, this difference (P < .01) was again noted. Also lower (P < .01) 

body weight (g) was revealed in the rats fed l) HOS 246 diet in 

comparison with those fed the MDS393 diet or the HOS 718 and 2) HDS488 

diet in comparison with the HDS718 diet. Lower (P < .05) body weights 

(g) were revealed in the l) HDS246 diet in comparison with the MDS460 

diet and 2) the HDS488 diet in comparison with the processed MOS diet . 

and 2) the HDS488 diet in comparison with the processed MOS diet 

containing 4.60 g Ca/kg diet or the MOS diet containing 3.93 g Ca/kg diet. 

Statistical analyses of weight gain over the 3-week period again was 

used to .show a significantly lower (P < .01) value for the HDS016 diet. 

A lower (P < .Ol) weight gain (g) was noted for the HOS diets containing 

either 2.46 or 4.88 g Ca/kg diet in comparison with the HOS diet contain

ing 7.18 g Ca/kg diet or the MOS diet containing 3.93 g Ca/kg diet. 

Liver Weight 

Liver weight also reflected the inadequacy of the low Ca diet 

(Table 2), since the HDS016 diet had a lower (P < .01) liver weight (g) 
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than all other treatment groups. As seen in comparisons of weight gain, 

the highest liver weights were found in rats fed the HDS718 diet and 

the MDS393 diet. 

Dry Matter Absorption 

Dry matter absorption (g/kg) generally increased as dietary Ca 

level decreased (Table 8). For each of the three weeks, rats fed the 

HDS718 diet had a lower (P < .01) efficiency of dry matter absorption 

(g/kg) than all other treatment groups. For weeks 2 and 3, dry matter 

absorption was lower for the HDS488 and MDS(P)460 groups. 

Calcium Bioavailability 

Balance 

Ca absorption and retention from MOS and HOS diets are given in 

Table 4. Apparent absorption of Ca from the HDS016 diet was always 

lowest among the groups (P < .05). The general trend over the three

week balance period was for those diets containing from 2.21 - 4.88 g 

Ca/kg to yield the highest percent absorption. Rats fed the HDS718 

diet had a lower apparent absorption (P < .05). When considering the 

total three week period, animals displayed the same significant 

differences among groups for apparent retention as for absorption of Ca. 

Statistical analyses of the three-week means for Ca consumed (mg) 

and Ca retained (mg) yielded similar results (Table 4). In both cases, 

all groups were different (P < .05) from each other except for the 

groups fed the MDS221 and the HDS246 diets. With the exception of 

the HDS016 die4 Ca retained or consumed was inversely related to 

absorption. 
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Table 3. Dry matter absorption (g/kg) consumed by weanling male . 
rats fed mechanically-deboned shank (MOS) and hand-deboned 
shank (HOS) meat diets. 

Diet Week 1 Week 2 Week 3 

MDS393a 871 880 902 
MDS221 883 892 908 
MDS(P)460b 876 861 882 
HDSOl 6 887 892 884 
HDS246 881 892 896 

HDS488 846 856 886 

HDS718 807 835 828 

LSD . 05/. 01 c 14/18 16/21 20/27 

F 35.62 16. 76 13.37 

Treat df /Error df 6/63 6/63 6/62 

aOietary calcium level (3.93 g/Kg) 
bProcessed at 121°c for 90 minutes in glass quartz canning jars. 
cMean differences must exceed or equal the Least Significant Difference 
values to be statistically significant at the 5 or 1% levels of 
probability. NS means not statistically significant. 



Table 4. Calcium absorption and retention by weanling male rats f ed mechanically-deboned shank 
{MOS) and hand-deboned shank (HOS) meat diets. 

Three Week Means 

Absoq~tion (g/kg consumed) Ca Consumed Ca Retained Absorption Retention 
Hk l Wk 2 Wk 3 (mg) {mg) (g/kg consumed) (g/kg consumed) 

MDS393a 504 688 752 7263 482 3 663 662 

MDS212 560 763 864 390 285 730 729 
MDS(P)460b 664 706 662 884 567 674 672 

HDS016 -1700 149 597 l8 -10 -526 -546 

HDS246 639 818 833 416 324 781 779 

HDS488 584 714 732 915 629 687 686 

HDS7l 8 449 591 593 1549 858 557 556 

LSD .05/.0lc 208/276 190/253 199/265 65/87 56/80 128/170 128/171 

F 134 11 2 430 16 95 97 

Treat df I 
Error df 6/63 6/63 6/62 6/62 6/62 6/62 6/62 

aDietary calcium level (3.93 g/kg) 
bProcessed by autoclaving MOS at 121°c for 90 minutes 
cMean differences must exceed or equal the Least Significant Diff8rence values to be statistically 
significant at the 5 or 1% levels of probability. NS means not statistically significant. 

w 
°' 
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Relative Bioavailability of Ca in MOS 

The relative biological values of the diets containing MOS were 

always greater than 100, i.e., the Ca contributed by the deboning process 

was as biologically available as calcium from calcium carbonate (Table 5). 

Regression analyses were performed for various measures of Ca intake vs 

a bone response (Table 5). Graphs of bone ash and bone Ca levels vs 

dietary Ca level illustrate the correlation between dietary treatment 

and these bone parameters (Figures 1 and 2). 

Serum Ca and P 

Animals fed the HOS016 diet had a lower (P < .01) serum Ca and P 

value than all other treatment groups. Dietary Ca did not appear to 

be related to serum Ca or P levels (Table 6). 

Bone Parameters 

Statistical analyses of bone ash, Ca and P were used to indicate 

differences (P < .05) paralleling dietary Ca level. However, the MOS393 

diet was higher (P < .05) in bone Ca concentration than the HOS488 diet. 

In addition, rats fed the MOS(P}460 diet showed a higher (P < .05) 

bone P content, than those fed the HDS488 diet (Table 7). 

The weight of the humerus appears to be directly related to dietary 

Ca level, as does breaking strength of the humerus (Table 8). Dietary 

Ca levels of 0.16 - 2.46 g Ca/kg revealed significant differences in 

strength (P < .05) when compared with levels of 3.93 to 4.88 g Ca/kg. 

A comparison of breaking strength per gram bone for the seven diets 

reveals increasing strength with increasing dietary calcium level. 
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Table 5. Relative biological values for mechanically-deboned shank 
(MOS) diets calculated relative to the hand-deboned shank 
(HOS) diets supplemented with Caco3 . 

Relative Biological Value 
Linear Regression of: MDS(P)460 MDS393 MDS221 

Ca consumed(mg)vs Vert Cab(g/kg)a 132 132 l 04 
Hum Ca 116 138 111 

Ca retained(mg)vs Vert Cac 127 129 102 
Hum Cad 113 136 l 09 

Dietary Ca vs Vert Ca~ 127 130 l 06 
( g/ kg) Hum Ca 113 135 110 

Ca consumed vs Vert Ash~ 128 114 l 08 
(mg} Hum Ash 111 l 05 l 04 

Ca retained vs Vert Ashj 121 110 104 
(mg) Hum Ash 110 106 105 

Dietary Ca vs Vert Ash~ 121 l 09 l 07 
( g/ kg) Hum Ash l 08 l 04 l 04 

aPrediction Equation (developed using data from caudal vertebrae or 
humeri measured in g/kg Ca or ash: y = 0.04x + 51.94 (r=0.96) 

by=0.05x + 139.26 (r = 0.80) 
cy=0.07x + 49.0l (r = 0.97) 
dy=0.09x + 135.8 (r = 0.82) 
ey=9.47x + 45.35 (r = 0.98) 
f y=l0.92x + 134.60 (r = 0.84) 
gy=0.12x + 105.61 (r = 0.95) 
hy=0.14x + 343.59 (r = 0.81) 
iy=0.2lx + 98.05 (r = 0.94) 
jy=0.25x + 322.34 (r = 0.70) 
ky=27.08x + 94.06 (r = 0.95) 
1y=3l.56x + 330.60 (r = 0.82) 





Figure 1. Graph of linear regression analysis of dietary Ca level vs 
bone ash content for hand-deboned shank (HOS) meat diets 
containing CaCO~, and biological values of mechanically
deboned shank (MOS) meat diets calculated relative to 
the HOS me3t diets. MOS (P) was prepared by autoclaving 
MOS at 121 C for 90 minutes. 
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Figure 2. Graph of linear regression analysis of dietary Ca level vs 
bone Ca concentration for hand-deboned shank (MOS) meat 
diets containing Caco3, and biological values of mechanically
deboned shank (MOS) meat diets calculated relative to the 
HOS meat diets. MOS (P) was prepared by autoclaving MOS 
at 121°C for 90 minutes. 
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Table 6. Serum calcium and phosphorus in weanling rats fed MOS and 
HOS diets. 

Serum Ca Serum P 
Diet mg/dl mg/dl 

MDS393a lo. 7 10.0 
MDS221 11.8 8.88 
MOS ( P )460b 10.6 10.4 
HDS016 6.84 7 .81 
HDS246 10.4 9.39 
HDS488 lo. 3 9.52 
HDS718 11. 2 10. 8 

LSD .05/ .Ol c 1. 42/l . 90 .76/1.02 

F 7. 72 11. 57 

Treat df /Error df 6/60 6/60 

aDietary calcium level (3.93 g/kg ) 
bProcessed at 121°c for 90 minutes i n glass home canning jars. 
cMean differences must exceed or equal the Least Significant Difference 
values to be statistically signi f i cant at the 5 or 1% levels of 
probability. NS means not sta t i st i cally significant. 
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Table 7. Ash, calcium and phosphorus content of caudal vertebra and 
humerus of weanling rats fed MOS and HOS diets. 

Vertebra Humerus 

Diet Ash ( g/kg) _ Ca ( g/ kg) p. ( g/ kg) Ash (g/kg) Ca (g/kg) 

MDS393a 2193· 1074 43.53 471 3 2405 

MDS221 1652 7o.o2 33.72 4162 175
2

•
3 

MDS(P)460b 2464 1134 49.94 5124 2094 

HDSOl 6 941 46. 71 28.01 3261 1331 

HDS246 1692 70.82 31. o2 4182 1652 

HDS488 2223 96.23 43.03 487
3

•
4 1902,3,4 

HDS718 2894 1104 52.44 5534 2104 

LSD .05/ .Ole 23/31 6.5/8.6 3.4/4.6 42/55 28/37 

F 64.22 122.8 60.48 153. l 28/71 . 7 

Treat df / 
Error df 6/63 6/63 6/63 6/60 6/60 

aDietary calcium level (3.93 g/kg). 
bProcessed at 121°c for 90 minutes in glass quart canning jars. 
cMean differences must exceed or equal the Least Significant Difference 
values to be statistically significant at the 5 ot 1% levels of 
probability. NS means not statistically significant. 

l- 5Groups with the same superscript are not different (P < .05). 
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Table 8. Humerus weight and breaking strength of weanling rats fed 
MOS and HOS diets. 

lfoi ght Strength Breaking Strength 
Diet (mg) (kg) g Bone 

MOS393a 104. 13 2.l 19./' 3 

MDS221 91 .o2 1 . 531 16.91' 2 

MOS(P)460b 115. o4 2.533 21 .83' 4 

HDSOl 6 65.61 1 . 14 1 15.31 

HDS246 91.62 1. 441 15. 61 

HDS488 111 . 54 2.523 22.43•4 

HDS718 128. 55 3.21 4 25.04 

LSD .05/.0lc 6.8/9.0 0.46/0.62 3.5/4.6 

F 69 .1 19.99 52.3 

Treat df /Error df 6/61 6/62 6/61 

aDietary calcium 1 evel (g/kg). 
bProcessed at 121°c for 90 minutes in glass quart canning jars. 
cMean differences must exceed or equal the Least Significant Difference 
values to be statistically significant at the 5 or 1% levels of 
probability. NS means not statistically significant. 

l- 5Groups with the same superscript are not different (P < .05). 
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Fluoride 

Balance 

No significant differences were found between the three MOS diets 

and the HOS diet containing 0.66 mg F/kg for F absorption for week 1 

(Table 9). For the three week balance period, the MOS diet containing 

2.21 g Ca and 6.28 mg F/kg revealed the higher (P < .05) absorption 

efficiencies, and the MOS diet containing 3.93 g Ca and 10.74 mg 

F/kg revealed the lowest (P < .05) absorptions except for week 3. 

Whereas F absorptions (g/kg) were highest for the MOS diet contain

ing 6.28 mg F/kg, F retention (g/kg consumed) tended to be higher for 

the processed MOS diet containing 15.12 mg F/kg (ignoring data for the 

diet with 0.66 ppm F) (Table 10). The MOS diet containing 10.7 mg 

F/kg was always one of the significantly lower treatment groups for F 

absorption, and was also lowest for F retention (except for week 2). No 

significant differences were found among the three-week means, because 

shifts throughout the balance period cancelled out the differences. 

Bone Parameters 

Table 11 contains data relating F level and bone parameters. 

Statistical analysis of humerus ash reveals that significant differences 

are related to an increase in di'etary Ca level rather than dietary F 

level. The exception is that the MOS(P)460 diet containing 15.12 mg 

F/kg is higher (P < .01) than the HOS488 diet containing 0.66 mg F. 

Breaking strength measured in kg force necessary to break the 

humerus reflected the same patter~ as humerus ash. Breaking strength 

increased as dietary Ca level increased, except that the HOS diet 

containing 4.88 g Ca and 0.66 mg F/kg was not higher (P < .05) than 
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Table 9. Fluoride absorption by weanling male rats fed diets contain
ing mechanically-deboned shank (MOS) and hand-deboned shank 
(HOS) meats. 

Diet F ppm \~k 1 
Gm F Absorbed/kg Ingested 

Wk 2 Wf< 3 3 Wks 

HDS488a 0.66 707 6921 , 2 8101,2,3 7441 ,2 

MDS221 6.28 802 8753 9053 8723 

MDS393 1o.74 611 6541 7521 6851 

MDS(P)460b 15. 12 776 7631 , 2, 3 7251,2 762
1 

•2 

LSD :o5/.0lc ns 123/172 101/136 81/120 

F 2.88 4.70 5. 16 5.74 

Treat df /Error df 3/32 3/36 3/36 3/32 

aDietary Ca level (4.88 g/kg). 
bProcessed by autoclaving MOS at 121°c for 90 minutes in glass quart 
canning jars. 

cM~an differences must exceed or equal the Least Significant Difference 
values to be statistically significant at the 5 or 1% levels of 
probability. NS means not stati sti ca lly significant. 

l- 3Groups with same superscript are not different (P < .05). 
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Table 10. Fluoride r~tention by weanling male rats fed diets contain
irg mechrnically-deboned shank (MOS) and hand-deboned 
srarl< (H)S ) meats. 

Gm F Retained/kg Ingested 
Diet F ppm Wk 1 Wk 2 Wk 3 3 vJks 

HDS488a 0.66 421 l, 2 2621 3763 328 

MDS221 6.28 5522 419 2' 3 2351 ' 2 385 

MDS393 ' 0.74 3841 2861 ' 2 1761 303 
MOS(P)460b . 5 .12 5832 431 3 292 2' 3 436 

LSD .05/ .01 158/ns 142/191 111 /149 ns 

F 3.32 3 .13 4.50 2.50 

Treat df /Error :if 3/30 3/35 3/36 3/31 

aDietary Ca lev~l (L. 88 g/kg). 

bProcessed by aitoc-a\'i ng MOS at 121°c for 90 minutes in glass quart 
canning jars. 

cMean differe1c:s must exceed or equal the Least Significant Difference 
values to :>e s:a:i st ically significant at the 5 or 1% levels of 
probabilit; . ~Smears not statistically significant. 

1- 3Groups wi th : he sane superscript are not different (P < .05). 
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Table 11. Dietary fluoride; body weight at sacrifice; humerus ash, 
fluoride and breaking strength of bones from weanling 
male rats fed MOS and HOS diets. 

Humerus Breaking Strength 
Dietary Terminal Ash Humerus Strength kg/g 

Diet F ppm Body Wt. (g/kg) F ppm (kg) Bone 

HDS488 0.66 184.4 187.43 191 2.522 22 .4 2 

MDS221 6.28 196.5 415.71 1562 l. 531 19.31 ' 2 

MDS393 10.70 204. 5 470.52 1902 2. 031 ' 2 16 .81 

MDS(P)460b 15 .10 201 .2 512.34 3133 2.5/ 21 .82 

LSD .05/.01 c ns 14.3/19.3 37.2/50.l 0.58/0.78 4.22/ns 

F 2.51 63.74 93.07 5.29 3.02 

Treat df /Error df 3/36 3/34 3/33 3/35 3/35 

aDietary Ca level (4.88 g/kg). 
bProcessed by autoclaving MOS at 121°c for 90 mi'nutes in glass quart 
canning jars. 

cMean differences must exceed or equal the Least Significant Difference 
values to be statistically significant at the 5 or 1% levels of 
probability. NS means not statistically significant. 

l-4Groups with same superscipt are not different (P < .05). 
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the MOS diet containing 3.93 g Ca and 10.74 mg F. These similar 

strengths probably are not related to dietary F, because the processed 

MOS diet containing 4.60 g Ca and 15.12 mg F/kg also was not different 

(P < .05) from the MOS diet with only 3.93 g Ca and 10.74 mg F. 

Humerus F (mg/kg) increased as dietary F level increased (Table 11). 

Significant differences (P < .01) were found among all treatment groups 

except the MOS diet containing 6.28 mg F/kg diet and the MOS diet 

containing 10.74 mg F/kg diet. 

Fe Bioavailability 

Balance 

The lowest Fe absorption was generally exhibited by animals fed 

diets with characteristics such as 1) being processed, 2) containing 

the highest Fe level (60.4 mg/kg), and 3) containing a relatively 

low dietary Ca level (Tabl e 12) . Although no dietary Fe level appeared 

to exhibit a high Fe absorption, generally the diets containing 2.21 or 

2.46 g Ca/kg diet, levels below the recommended amount for the rat 

(National Research Council, 1972) exhibited the highest Fe absorptions. 

The processed MOS diet was lower (P < .05) than all other groups for 

Fe absorption in week 2 and over t he entire three weeks. 

Hemoglobin 

Terminal hemoglobin (Hb) concentrations were similar to the 

pattern exhibited by Fe absorption, in that the processed MOS diet 

containing 60.44 and 4.60 g Ca/ kg diet had a signi'ficantly lower (P <.05) 

concentration than all othe r t reat ment groups excepting the HOS016 

diet (Table 12). The other two MOS diets exhibited relatively high 

terminal Hb concentrations when compared with the HOS diets. 



Table 12. Iron absorption, hemoglobin concentrations and liver iron in weanling male rats fed 
mechanically-deboned shank (MOS) and hand-deboned shank (HOS) meats. 

Dietary Fe Absor~tion {g/kg} Terminal Liver Fe Liver Fe 
Diet Fe ppm Wk l Wk 2 Wk 3 3 Wks Hb (g/dl) µg µg Fe/ g Liver 

MDS393a 53.54 235 398 467 381 11. 74 549 60 
MDS:HDS221 48.53 335 456 517 447 11.22' 536 6i 
MOS (P)460b 60 .44 165 156 262 218 9.94 369 43 
HDS016 39.03 161 423 382 315 10.59 354 · 84 
HDS246 42.90 412 534 367 441 11. 04 56G 64 
HDS488 46.27 224 406 503 426 11 .46 512 59 
HDS718 47.69 241 409 229 320 11 . 30 450 50 

LSD .05/ .01 ns 118/157 179/ns 125/166 0.94/1.24 149/ns 19/25 

F 1. 34 7.73 2.49 3.63 3.29 2.62 3.66 

Treat df / 6/63 6/63 6/62 6/62 6/63 6/61 6/61 
F.rror f 

aDietary Ca level (3.93 g/kg). 

bProcessed by autoclaving at 121°c. for 90 minutes in glass quart canning jars. 

cM~an differences must exceed or equal the Least Significant Difference values to be statistically 
significant at the 5 or 1% levels of probability. NS means not statistically significant. 

U1 
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Liver Fe 

When the quantity of Fe in the liver was measured the processed 

MOS diet containing the highest Fe level exhibited the next to lowest 

Fe storage (Table 12). The low liver Fe exhibited by animals receiving 

the HDS016 diet could be a reflection of the significantly lower weight 

gain and liver weight of this group (see Table 3). Though significant 

differences among groups exhibited no particular pattern that could be 

linked with dietary Fe level, those diets with the greatest Fe storage 

also contained dietary Ca levels in the mid-range. 

• 

When compared on the basis of liver iron concentration, the animals 

that consumed the HDS016 diet exhibited the best storage due to their 

very low liver weight (Table 12). However, the processed MOS diet 

containing the highest dietary Fe level again revealed the lowest Fe 

storage. The same pattern of high Fe storage occurring in diets wi.th 

3.93, 2.21 or 2.46 g Ca/kg diet was again seen. 
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DISCUSSION 

Composition of Meat 

Nutrient contents of hand-deboned shank (HOS) and mechanically

deboned shank (MOS) fall within the normal ranges (Hendricks et al, 1977; 

Meiburg et al, 1976; Field 1976; American Meat Institute, 1960). The 

MOS in this study contained 0.34% calcium on a fresh weight basis, 

which is slightly less than the average value for mechanically-deboned 

red meat (MORM) (Kolbye and Nelson, 1977b). A fluoride level of 11.4 

ppm is higher than the average value of 5 ppm reported by Kolbye and 

Nelson (1977b) but within the 7-19 ppm range reported by Kruggel and 

Field (1977). Iron levels in this HOS (32.7 ppm) and MOS (36.8 ppm) 

do not agree with reports of MDRM containing nearly twice as much fron 

as hand-deboned red meat (HDRM) (Field, 1976). Kol bye and Nelson 

(1977b) reported a 54 ppm iron level in MOM which is slightly less than 

twice that in lean pork and beef. 

Animal Responses 

Body Weight 

Generally, body weight was positively influenced by increasing 

dietary calcium levels. There are two specific exceptions to the 

pattern of dietary calcium level resulting in a higher weight gain. 

Weight gain over the three week period for animals receiving the MDS3B3 

diet was higher (P < .0.) than for those receiving the HOS488 diet. 

Body weight at sacrifice (Day 22) was higher (P < .05) for animals 

receiving the MDS393 than for those receiving the HDS488 diet. Allred 

(1976) suggested that the significantly lower weight gains noted for 
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animals fed meat diets was due to oxidation lowering the digestibility 

of meat diets. These data do not support this theory, since 

animals fed the MDS(P)460 diet, which would be expected to be more 

rancid than the HDS488 that was kept frozen more consistently, did 

not have depressed weight gains. 

Solomon and Volpin (1972) established that animals receiving a 

diet deficient in calcium exhibited a lower body weight than animals 

receiving sufficient calcium. In their study, animals receiving 0.43% 

calcium in the diet gained more weight than those receiving 0.02 -

0.03% calcium. It can be seen from this study that weight gain should 

increase up to a dietary level of 0.393%calcium if the calcium source 

is MOS, and up to a dietary level of 0.718 calcium if the calcium 

source is caco3. In contrast, Bernhart et al (1969) concluded from 

a graph of weight gain vs calcium intake, that a dietary level of 0.342% 

calcium was sufficient for maximal growth. However, their experimental 

design did not include a dietary level above 0.362% calcium. The 

National Research Council (1972) has set 0.5% calcium as the requirement 

for the growing rat. 

Dry Matter Absorption 

Dry matter absorption decreased as calcium concentration increased; 

e.g., animals fed the HDS718 diet exhibited a lower dry matter absorption 

than the other animals for each of the three weeks (Table 3). This is 

expected, since the formation of insoluble complexes, possibly calcium 

complexes of either organic or inorganic matter, lowers absorption 

(Pike and Brown, 1975). The pattern of an inverse relationship between 

dietary Ca level and dry matter absorption is consistent. In week l, 
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the animals receiving the HDS488 diet had a lower (P < .01) dry matter 

absorption than did all other diets with a lower dietary calcium level. 

Even the animals receiving the MDS(P)460 diet had a lower (P < .05) dry 

matter absorption than those receiving the MDS393 diet for week 3. This 

latter difference may be due to the effects of processing and not to 

dietary calcium level, however. 

Serum Calcium and Phosphorus 

Serum calcium and phosphorus levels were within the normal range, 

except for the animals fed the HDS016 diet containing essentially no 

Ca (Table 6). Kemm (1972) reported no significant differences in 

fasting serum calcium among animals fed 1 .6, 0.8, 0.4 or 0.2% calcium in 

the diet. Animals receiving a dietary level of 0.64% calcium had a 

serum calcium of 10.82 mg%, while those receiving a dietary level of 

0.099% calcium had a serum calcium of 9.35 mg%. In this study, 

animals receiving a dietary level of 0.016% calcium had serum calcium 

and phosphorus levels lower (P < .01) than all other treatment groups. 

Analyses of the serum for this low calcium group was questionable, 

since the volume of blood obtained at sacrifice was small. Occasionally, 

the aliquot was halved, or data for an animal were dropped. 

Calcium Bioavailability 

Balance 

As previously cited, lower dietary calcium levels lead to higher 

percent calcium absorption. Calcium from the MDS221 and HDS246 diets 

were absorbed more efficiently (P < .01) than the HDS718 or HDS016 diets 

(Table 4). Obviously, the dietary calcium level in this latter dfet is 
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too low for meaningful comparison. During the third week, calcium from 

the MOS 221 diet was absorbed more efficiently than from the MDS(P)460 

diet. Apparent absorption of calcium during the entire three-week 

period supports the conclusion of others that lower dietary levels of 

calcium are absorbed more efficiently (Bronner et al, 1976; Harrison, 

1959; Bell et al, 1941). Results for apparent retention of calcium 

were almost identical to those for absorption, since very little 

calcium is lost in the urine. 

Calcium absorption from the bone in MOM is similar to that from 

Caco3. Absorptions of animals fed MDS393, MOS221, HOS246 and HOS488 

diets were similar (P < .05) at the end of the three-week balance study 

when rats are adapted to their respective dietary calcium levels. 

Rats fed the MOS(P)460 diet have a somewhat lower absorption. When 

Drake et al (1949) measured retention by rats of calcium in Caco3 and 

in various bone sources, they found that calcium from beef bones had a 

relative biological value of 99% when compared with that of CaC03 (100%). 

The biological availability of calcium relative to that for Caco3 was 

133-138% for bonemeal fed to cattle and 109% for bone meal fed to 

chicks (Peeler, 1972). Therefore, bone material from MOM is as good 

a source of dietary calcium as is Caco3. 

Prediction Equations 

Relative biological values, calculated relative to the HOS diets 

supplemented with Caco3, were consistently greater than 100 for diets 

containing MOS (Table 5). Thus, calcium bioavailability from MOS is 

at least as good as that from Caco3. The correlation coefficients 

were higher when caudal vertebral, rather than humeral, response was 
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the dependent variable. When caudal vertebral ash rather than bone Ca 

is the dependent variable, the MOS(P)460 diet has a higher relative 

biological value than the unprocessed MOS393 diet. The two MOS diets 

differed in fluoride level as well as processing. This study supports 

the conclusion of others that the retention of calcium from bone 

material is good (Blosser et al, 1954; Drake et al, 1949). 

The use of prediction equations to evaluate calcium bioavailability 

is valuable since control and experimental dietary levels do not have 

to be identical to obtain meaningful data. In addition, these data 

can be used to maintain that only bone ash content and dietary calcium 

levels are necessary for valid comparisons of calcfum sources (r = 0.95). 

This procedure would be much less tedious and expensive to excute than 

a balance study using metabolism cages. 

Bone Parameters 

In general, caudal vertebral ash (g/kg), caudal verteoral calcium 

(g/kg), humerus weight (g), and breaking strength of humerus (kg) was 

relatively high in animals fed a high calcium level (Table 13). These 

bone responses are good indicators of biologi·cal availability of 

ingested bone calcium in the MOM diets. A direct relationship between 

dietary calcium level and bone weight has been demonstrated (Solomon 

and Volpin, 1972; Toothill and Hosking, 1968; Bell et al, 1941). Toothill 

and Hosking (1968) report a highly significant increase in percent 

ash of bone when dietary calcium level is increased from 0.13% to 0.74%. 

Solomon and Volpin (1972) report a decrease of from 180g to 85g in 

metatarsal bone strength with dietary calcium levels of 0.43% and 0.02 -

0.03% respectively. This study can be used to show a direct relation-



Table 13. Bone parameters of humeri and vertebrae as a reflection of dietary Ca and F 
levels. MOS and HOS diets fed weanling male rats. 

Vertebra Humerus 
Dietary F Ash Ca Wt. Ash Ca F Breakin{ 

Diet {mg/kg) (g/kg) (g/kg) (mg) ( g/kg) {g/kg) (mg/kg) Strength kg) 

MDS22la 6.28 1652 7o.o2 91.02 4162 
174

2
•3 1562 l . 531 

MDS393 lo. 74 2193 l 074 l 04. 13 471 3 2405 1902 2.032 

MDS(P)460b 15. 12 2644 1134 115. o4 5124 2084 3133 2.533 

HDS016 - 941 46. 71 65. 61 3261 1331 - l. 141 

HDS246 - 1692 70.82 91.62 4182 1652 - l .441 

HDS488 0.66 2223 96.23 111. 54 487 3•4 1902,3,4 191 2.523 

HDS718 - 2894 1104 128. 55 5524 2104 - 3.21 4 

LOS .05/.0lc 23/31 6.5/8.6 6.8/9.0 41.6/55.4 27.9/37.2 37.2/50.l .46/.62 

F 64.22 122.8 69.07 153. 09 71. 72 93.07 19. 99 

Treat df / 6/63 6/63 6/61 6/60 6/60 3/33 6/62 
Error df 

aDietary calcium level (2.21 g/kg). 
bProcessed at 121°C for 90 minutes in glass quart canning jars. 

Breaking Strength 
{kg/g bone) 

16.881•2 

19.322•3 

21.81 3•4 

15. 291 

15.631 

22.443•4 

24.994 

3.49/4.64 
52.27 
6/60 

cMean differences must exceed or equal the Least Significant Differences values to be statistically 
significant at the 5 or 1% levels of probability. NS means not statistically significant. 

l-5Groups with the same superscript are not different (P < .05). 
Ul 
co 
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ship when comparing bone ash, bone calcium, bone weight and 

breaking strength of bone with dietary calcium levels up to 0.718%. 

However, the reliability among experiments of relating these bone 

parameters to dietary calcium levels as high as 0.718% is questioned. 

Recall that Bernhart et al (1969) set a calcium level of 0.342% as 

maximal for growth. In conjunction, Bell et al (1941) report no 

increase in size, calcium content or strength of bone above an intake of 

0.36% calcium when comparing data from diets ranging from 0.075 to 

l.390% calcium. However, a maximal effective Ca level of 0.36% is 

lower than that of 0.5% Ca or greater already cited as increasing 

total body Ca in rats (Williams et al, 1957). 

Similar to the relative biological values, bone parameters can be 

used to indicate that calcium from MOS is at least as biologically 

available as calcium from CaC03. The calcium from the MDS(P)460 diet 

is especially available to the bone, and must be due to a processing 

effect, rather than dietary Ca level. Bone Ca (g/kg) is higher 

(P < .05) in animals fed MDS393 or MDS(P)460 than in those fed HDS488. 

In addition, bone ash (g/kg) is higher (P < .05) in animals fed 

MDS(P)460 than in those fed HDS488. 

Fluoride Bioavailability 

Dietary fluoride in the MOS diets was examined for its possible 

role in increasing bone response to dietary calcium levels higher than 

might be expected. Schwarz and Milne (1972) report an enhanced growth 

rate of 17, 30.8 and 27.9% with dietary levels of 1, 2.5 and 7.5 ppm 

fluoride fed to animals that were f luoride-deficient. In this study, 

recall that weight gain was not di f ferent (P < .05) for the three MOS 
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diets in comparison with the HOS718 diet containing substantially more 

calcium, but were somewhat higher than the HOS diets containing comparable 

dietary Ca levels and no F (Table 2). Lawrenz and Mitchell (1941) 

reported heavier bones with significantly higher percentages of ash 

and calcium when animals were fed a high calcium (0.73%) diet with 9.4 

ppm F than a low calcium diet (0.23% Ca) with 9.4 ppm fluoride. 

In general, fluoride retentions (g/kg consumed), though not 

absorptions, were higher (P < .05) for the animals fed the MOS(P)460 

diet. However, retentions over the entire three weeks were not 

different (P < .05). Jackson et al (1950) reported that the retention 

of fluoride from bone meal varied from 17-43% for young rats. 

Stillings et al (1973) found that fluoride retention is 32% for rats 

fed a diet of fish protein concentrate containing 7 µg fluoride/g. 

These reported data compare well with the 30-44% fluoride retention 

from MOS diets in this study. 

In conclusion, 20% of the MOS used in this study would add 0.13 

mg fluoride to two ounces of bologna, or 0.26 mg to two frankfurters. 

Even in cities where the water contains no fluoride, this would 

increase consumption by only 25%, and would be far less than the 3 mg 

fluoride/day limit for mottling of children's teeth (Kramer et al, 1974). 

Iron Bioavailability 

Iron absorption (g/kg), terminal Hb (g/dl), and liver tron 

storage were generally lowest (P < .05) in animals fed the MOS(P)460 diet 

(Table 12). Since this diet contained the highest dietary iron level, 

these responses are not a result of dietary iron level. The greatest 

responses to iron occurred in animals fed diets containing 2-3 g 
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calcium/kg diet. This agrees with the theory cited earlier that dietary 

calcium interferes with iron utilization. Even though Chapman and 

Campbell (1957b} reported no significant effect of bone meal on liver 

iron content or on hemoglobin level, they did note a tendency for 

increasing amounts of dietary bone meal to be correlated with decreas

ing amounts of iron in the liver. A dietary level of 7.23 g calcium 

from bone meal/kg diet and 43.3 ppm Fe resulted in animals with 69 µg 

Fe/g liver, while 3.20 g calcium from bone meal and 36 ppm Fe resulted 

in animals with 116 µg Fe/g liver (Chapman and Campbell, 1957b} 

Other reasons why iron bioavailability does not reflect its 

dietary level have been suggested. Iron from MOS may be less biological

ly available due to the form that the iron is in. The conclusion of 

Farmer et al (1977) that some of the iron in MOS must come from the 

machinery (stainless steel) means that part of the iron is elemental 

iron or possibly ferric oxide, both of which are poorly absorbed 

(Ammerman and Miller, 1972). A comparison of data from this study 

(a dietary level of 7.18 g calcium from bone material/kg diet and 

47.7 ppm iron resulted in 50 µg Fe/g liver) and that from Chapman and 

Campbell (1957b) (a dietary level of 7.23 g calcium from bone meal/kg 

diet and 43.3 ppm Fe resulted in 69 µg Fe/g liver) indicates a 

superior utilization of iron from Feso4 in the latter case. 
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CONCLUSIONS 

Determinations were made of the biological availability of calcium 

from mechanically-deboned shank diets with 2.21 - 4.60 g calcium from 

bone particles in relation to hand-deboned shank diets with 0.16-7.18 g 

calcium from Caco3/kg. Percent absorption, relative biological values, 

bone ash content, bone Ca content, bone weight, and breaking strength 

of bone support the conclusion that the calcium naturally occurring in 

MOS as a result of the deboning process is as biologically available as 

the calcium added to HOS as calcium carbonate. This study indicates 

that a correlation of dietary Ca level vs caudal vertebral bone ash is 

a valid measure of the biological availability of a calcium source when 

compared with standard diets containing Caco3. Calcium from the 

processed MOS diet is more biologically available than the HOS diet 

with a similar dietary calcium level from calcium carbonate. 

The 30-44% retention of fluoride in MOM from the bone material is 

very similar to other data for rats, and should pose no health hazard 

for children (with the possible exception of infants) or adults. 

Iron bioavailability from MOS, as determined by percent absorption, 

terminal Hb (g/dl), and liver iron was similar to that from HOS with 

the exception of the autoclaved MOS. An alteration of the iron state 

to Fe2o3 due to the autoclaving is a possible explanation. A decreased 

iron bioavailability has also been observed in processed HOS diets 

(Tso, 1979). 
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APPENDICES 



APPENDIX A 

Inorganic Phosphorus Procedure 

Reagents 

Prepare MS solution of 1% MgC1 2, 1% (NH4)2Moo4.2H2o, and 2.8% 

concentrated H2so4. 
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Prepare elon solution by dissolving 1 g of elon (p-methyl-aminophenol 

sulfate) in 100 ml of 3% sodium bisulfite (NaHS03). (Prepare elon fresh 

monthly and store in refrigerator). 

Procedure 

Make standards of 10, 25, 50, 100, 150, 200 and 250 ppm P from a 

1000 ppm P solution of dipotassium hydrogen phosphate (K2HP04). Prepare 

blank and standards by mixing 50 µl of deionized water and the P 

standards each with 5 ml MS and .5 ml elon. Mix well. Prepare 

appropriate dilutions of samples using same amounts of MS and elon. 

Mix well. Allow tubes to stand 45 minutes and read at 700 mµ on a 

spectrophotometer. Calculate ppm P in sample using the prediction 

equation from the standards. 

Reference: G~m~ri, G. 1953. 
vol. 1, pp. 84-87. 

Standard Methods of Clinical Cbemistry. 
Academic Press. New York. 
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APPENDIX B 

Fluoride Procedure 

Preparation of TISAB 

Prepare a total ionic strength adjuster (TISAB) to provide a 

constant background ionic strength, decomplex fluoride and adjust 

solution pH. Place about 500 ml distilled water in a 1 liter beaker. 

Add 47 ml glacial acetic acid, 58 g NaCl and 4 g COTA (cyclohexylene 

dinitrilo tetraacetic acid or l, 2-diaminocyclohexane N, N, N', N'

tetraacetic acid). Stir to dissolve. Cool the beaker in a water bath. 

Slowly add approximately 5 M NaOH until pH is between 5.0 and 5.5. 

Cool to room temperature and dilute to l liter with distilled water. 

Procedure 

Prepare standards of 0.1, 1.0 and 10.0 ppm F solutions in 

plastic bottles. (All samples and standards must be prepared in 

plastic since fluoride reacts with glass.) 

Weigh 25-50 g of sample ashed 16 hr. at 550°c. into a polyethylene 

cup. Dissolve with 5 ml of 0.25 M HCl. Neutralize with 10 ml of 

0.125 M NaOH. Add 5 ml of 0.05 M NaOAC buffer, 5 ml distilled H2o, 

and 25 ml TISAB. (If the pH has been adjusted by the addition of acid 

or base, add an equ-1 volume of TISAB, carefully noting the total volume). 

Using a magnetic stirrer, read samples and standards using a 

fluoride specific ion electrode with a digital pH/mv meter with the 

function switch set to REL MV. Wait for a stable reading (approximately 

5 minutes) and record. Rinse electrodes with distilled water and 

blot dry between readings. 



F content was calculated using the following formula: 

(Total g ash) 
(Total ml soln) 
g ash in soln 
g sample 

( µg F /ml) 
= µF/g sample 
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Reference: Ori on Research, Inc. 1977. Instruction Manua 1. Form 
lM 94, 96-09/7721. U.S.A. 
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