
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

5-1989 

A Quantitative Assessment of Minerals of Toxicological A Quantitative Assessment of Minerals of Toxicological 

Importance in Utah Fast Foods Importance in Utah Fast Foods 

Lisa R. Williams 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Food Science Commons, Nutrition Commons, and the Toxicology Commons 

Recommended Citation Recommended Citation 
Williams, Lisa R., "A Quantitative Assessment of Minerals of Toxicological Importance in Utah Fast Foods" 
(1989). All Graduate Theses and Dissertations. 5373. 
https://digitalcommons.usu.edu/etd/5373 

This Thesis is brought to you for free and open access by 
the Graduate Studies at DigitalCommons@USU. It has 
been accepted for inclusion in All Graduate Theses and 
Dissertations by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F5373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/84?utm_source=digitalcommons.usu.edu%2Fetd%2F5373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/95?utm_source=digitalcommons.usu.edu%2Fetd%2F5373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/67?utm_source=digitalcommons.usu.edu%2Fetd%2F5373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/5373?utm_source=digitalcommons.usu.edu%2Fetd%2F5373&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


A QUANTITATIVE ASSESSMENT OF MINERALS OF 

TOXICOLOGICAL IMPORTANCE IN UTAH FAST FOODS 

by 

Lisa R.Williams 

A thesis submitted in partial fullfillment 

of the requirements for the degree 

of 

MASTER OF SCIENCE 

in 

Toxicology 

UTAH STATE UNNERSITY 

Logan, Utah ~ 

1989 



i i 

ACKNOWLEDGEMENTS 

I would like to thank my committee members, Dr. William Brindley and Dr. 

Roger Coulombe, for stimulating my education in toxicology and for their helpful 

evaluation of my thesis. Special thanks to my advisor, Dr. Arthur Mahoney, for his 

continuous encouragement, his smiles, and his scholarly example. 

I am particularly indebted to Dr. Kirk Nielson for coordinating vital data with me 

and for his assistance in handling discrepancies between methods, to Dr. Don Sisson for 

his assistance in statistical graphs, and to Daryl for assistance in cadmium analysis. 

My thanks to my parents, James and Yvonne, for the many calls helping me to 

feel love from home and for their special support in trying times. 

Thanks to my friends in Logan, Jennifer, Tina, Vicki, Vaughn, Ellen, Roger, 

Carol, and Don for keeping my focus on God. Thanks to Sileny for her friendship and 

her patient guidance during my many questions in writing and learning. 

My deepest thanks to my husband, Roger, for his love, comfort, and strength and 

for his confidence in my education, which allowed me to achieve this goal. 

Lisa R. Williams 



i i i 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS.................................................................. n 

LIST OF TABLES . ... ....... .............................. ...... ........ ... ... ..... .... ...... v 

LIST OF FIGURES .. . . .. . .. . . .. . . .. . .. . .. . . .. . .. . . . .. . .. . . .. . .. .. .. . . .. . .. . . .. . .. . . .. . . . . .. . . VI 

ABSTRACf.................................................................................... V1l 

INTRODUCTION . .. . . . . . . . . . .. . . . . . .. . .. . . .. . . .. .. . . . .. . . . . . . . . . . .. .. . . . . . . . . . .. . . . . .. . . . . . . 1 

OBJECfiVES .. . . . . . . . . . . .. . .. . . . . . . . . . .. . . .. . .. .. .. . .. . . .. . .. . . .. . .. . . . . . . .. . .. . . .. . . . . . .. . .. . 3 

LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

NEEDFORFASTFOODDATA ....... . ....... . ............................... . . .. . 4 

USDA Handbook No. 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
Fast foods . . . . . . . .. . . .. .. .. . . . . . .. . . .. .. . . . .. . . .. . .. . . .. . .. . . .. . . .. . .. . . . . . . .. . .. . 4 

SELENIUM................................ . ................................ .. ........... 5 

Nutritional requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Bio~v~ilability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
TOXICity . .. . . . . . .. . . .. . . .. . .. . . .. . ... . .. . . . . . .. . . .. ... . . .. . ... . . . . . .. . .. . . . . .. .. . .. . 8 
Deficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
Cancer ............................................................................. 9 
Interactions with other minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

ARSENIC.................................................................. .. ............. 12 

Nutritional significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
Bio~v~ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
ToXIcity . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . 13 
Cancer .............................................................................. 14 

ALUMINUM . . . .. .. . .. . . .. . . .. ... . ... . .. . ... . . ... .. . . .. ... .. .. ......... .. . .. .. .. ..... .. . 15 

Nutritional significance . .. . . . . . . .. . . . . . . .. . . .. . . . . . .. . . .. . . .. . . . . . . . . . . . . . .. . . . . . 15 
Bioavailability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
Toxicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

CADMIUM .............................................................................. 18 

Nutritional significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
Bioavailability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
Toxicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
Cancer .............................. . ................................. .. ........... 20 
Interactions with other minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 



iv 

ANALYTICALINSTRUMENTATION ............................................. 21 

Atomic absorption spectrophotometry ....... .. ..... ....... .. .. ......... ... . .. . 21 
X-ray fluorescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
Inductively coupled plasma ...... ......... .... .. ....... ........ .. .. . ............ 22 

MA TERIAI1) AND METIIODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 

FOOD COLLECITON AND PREPARATION 
STUDY ONE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
FAST FOOD COLLECITON 
STUDY TWO . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
DRY AS I-liNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
WET AS I-liNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
ATOMIC ABSORPTION ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
X-RAY FLUORESCENCE ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
INDUCITVEL Y COUPLED PLASMA ANAL YIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 
STATISTICALPROCEDURES ...................................................... 28 

RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 

FIRST OBJECTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
SECOND OBJECITVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

Maximum dietary intake estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 
Cadmium exposure ............................................................... 41 
Aluminum exposure .............................................................. 41 
Selenium exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 
Arsenic exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 
Possible toxicitiy from other minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

CONCLUSION................................................................................ 51 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 



v 

LIST OF TABLES 

Table Page 

1. Comparison of x-ray flourescence (XRF) mineral measurements with 
National Bureau of Standards (NBS )-certified concentrations . . . . . . . . . . . . . . . . . . . . . . 31 

2. Summary of atomic absorption spectrophotometry (AA) and x-ray 
flourescence (XRF) values for manganese, iron, copper, and zinc in 
96 food samples (ppm in dry matter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

3. Comparison of x-ray flourescence (XRF) selenium measurements 
with National Bureau of Standards (NBS)-certified concentrations . . . . . . . . . . . . . . . . 38 

4. Comparison of x-ray flourescence (XRF) arsenic measurements 
with National Bureau of Standards (NBS)-certified concentrations ................ 38 

5. Comparison of x-ray flourescence (XRF) aluminum measurements 
with National Bureau of Standards (NBS )-certified concentrations . . . . . . . . . . . . . . . . 39 

6. Summary of toxic mineral levels in each fast food type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 

7. Quantitative measurements of minerals by atomic absorption (AA), 
x-ray flourescence (XRF), and inductively coupled plasma (ICP) 
(ppm in dry matter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 



LIST OF FIGURES 

Figure 

1. Scatter plot comparison of manganese measurements by x-ray 
flourescence (XRF) vs. atomic absorption (AAS) in 96 food 
samples. Statistical analysis indicate correlation coefficient, 

vi 

Page 

slope, intercept, and standard error of analysis between methods................... 32 

2. Scatter plot comparison of iron measurements by x-ray 
flourescence (XRF) vs. atomic absorption (AAS) in 
96 food samples. Statistical analysis indicate correlation 
coefficient, slope, intercept, and standard error of analysis 
between methods .......................................................................... 33 

3. Scatter plot comparison of copper measurements by x-ray 
flourescence (XRF) vs. atomic absorption (AAS) in 96 
food samples. Statistical analysis indicate correlation 
coefficient, slope, intercept, and standard error of analysis 
between methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

4. Scatter plot comparison of zinc measurements by x-ray 
flourescence (XRF) vs. atomic absorption (AAS) in 96 
food samples. Statistical analysis indicate correlation 
coefficient, slope, intercept, and standard error of analysis 
between methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

5. Maximum levels of cadmium exposure in a diet composed 
of 40% fast foods/day as compared to average daily 
intake (ADI), provisional tolerable daily intake (PTDI), 
and levels of toxicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 

6. Maximum levels of aluminum exposure in a diet composed 
of 40% fast foods/day as compared to average daily 
intake (AD I) and levels of toxicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

7. Maximum levels of selenium exposure in a diet composed 
of 40% fast foods/day as compared to recommended 
dietary allowance (RDA) and levels of toxicity ....................................... 47 

8. Maximum levels of arsenic exposure in a diet composed 
of 40% fast foods/day as compared to average daily 
intake (AD I) and levels of toxicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 



ABS1RACf 

A Quantitative Assessment of Minerals 

of Toxicological Importance in 

Utah Fast Foods 

by 

Lisa R.Williams, Master of Science 

Utah State University, 1989 

Major Professor: Dr. Arthur Mahoney 
Department: Toxicology 

v 1 1 

X-ray flourescence (XRF) and atomic absorption spectrophotometry (AAS) 

measurements for manganese, iron, copper, and zinc were compared for 96 samples of 21 

foods from different sources. Correlation coefficients were 0.94 for manganese, 0.99 for 

iron, 0.93 for copper, and 0.91 for zinc for XRF vs. AAS determinations. 

Similiar comparisons were performed on 228 samples of fast foods purchased in 

Utah retail outlets. Correlation coefficients ranged from 0.91 for copper to 0.97 for iron 

and zinc. Comparisons of values generated by XRF for manganese, iron, copper, zinc, 

selenium, arsenic, and aluminum to values certified by the National Bureau of Standards 

indicated no significant differences by student's t tests. 

The simultaneous multielement capabilities of XRF allowed for an extensive 

screening study for high levels of toxic minerals in the fast foods. Levels of selenium, 

arsenic, and aluminum in fast foods were determined by XRF. Inductively coupled 

plasma was used to screen for high cadmium levels since cadmium detection limits by 

XRF were too high to be of value. 

(68 pages) 



INTRODUCTION 

Nutritional toxicology is concerned with the scientific basis and consequences of 

regulatory decisions relating to control of toxicants in fcxxls, e.g., setting legal tolerances 

for the maximum permissible levels of toxicants in order to assure optimal food safety. 

The levels of nutritional intake form a continuum from lethal deficiencies to lethal 

excesses. Optimal nutrient requirements of all organisms are for the level that will meet 

minimum nutrient needs but not in quantities large enough to be detrimental to health. A 

study of the full range of nutritional concerns cannot be complete without careful 

examination of the toxic excesses of minerals that can be found in some diets. 

At the present time, the Fcxxl and Drug Administration (FDA) accords the highest 

priority for studies of toxic elements in fcxxls to mercury, lead, cadmium, arsenic, and 

selenium (Jelinek and Comeliussen, 1977). In discussions of establishing Recommended 

Dietary Allowances (RDAs) for trace element intakes, the issue of whether a certain 

threshold would clearly delineate disease from health becomes the question. Selenium, 

for example, is an essential trace element that is toxic at high concentrations and that has 

demonstratable anticarcinogenesis properties at more moderate concentrations (Menkes et 

al. , 1986). The difference between beneficial and toxic levels for selenium is small 

(Scott, 1973). Arsenic, aluminum, and cadmium have no known physiological function 

and therefore do not have established RDAs. They are, however, causally implicated in 

several known human disease states. To avoid health risks to certain population 

segments, their presence in any cell must be regarded as something to be minimized. 

The FDA is charged with overseeing the foods and drugs on the market and those 

being introduced each year. It must test or order testing, assess the test results, and 

approve or disapprove of thousands of food products on the resulting evidence. The FDA 

is often under heavy pressure from food companies, which stand to gain or lose profits 

depending on the decisions, and the public, which wants information and protection. To 
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assess human consumption of a particular food substance, it is necessary to know the 

levels of the substance in the food and the daily intake of each food containing the 

substance. 

It becomes a major challenge to provide up-to-date data on the mineral 

composition of the food supply. A gap is evident in nutritional data for epidemiological 

studies of restaurant foods, which are dominated by franchised fast food products. Food 

frequency questionnaires indicate that up to 40% of food budgets are spent on fast food 

products in some population segments, and these foods have not been characterized for 

toxic mineral levels (Nielson, 1985). 

A priority goal of epidemiologists should be an improvement in the analytical 

methods needed to develop data on the composition of foods. Appropriate and validated 

methods should be used for determining the composition of foods, particularly the 

components whose dietary intake in the U.S., whether high or low, is of public health 

importance or scientific concern. 
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OBJECTIVES 

1. To establish and validate x-ray fluorescence as a non-destructive method of 

mineral analysis in dietary materials. 

2. To generate useful new data on toxic mineral levels of fast foods to support 

current epidemiological research. 



LITERATURE REVIEW 

NEED FOR FAST FOODS DATA 

USDA Handbook No. 8 
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The primary source of food composition data since 1963 has been the USDA 

Handbook No. 8 (Gebhardt et al., 1978). These food composition tables contain more 

than 3000 food items and recipes. The food items are placed in 16 food groups including 

baby foods, dairy and egg products, vegetables, beef products, etc. Foods are 

categorically researched and nutrient profiles for each food item are determined. 

Currently, the USDA Handbook contains information on the following: food energy, 

vitamins, lipids, amino acids, and some minerals. Information is available on calcium, 

iron, magnesium, manganese, phosphorus, potassium, sodium, zinc, and copper content 

of foods (Gebhart et al., 1978). Information regarding minerals of toxicological 

importance, such as arsenic, selenium, cadmium, and aluminum, are not available. 

The data used are based on values obtained from industry, government agencies, 

<.nd other scientific and technical literature and are prepared using the facilities of the 

Nutrient Data Bank. Revision and updating of the major nutrient tables are constantly 

underway to provide up-to-date tabulations on food composition which can be used in 

r.ational programs and government policies (Gebhardt et al., 1978). Food companies as 

well rely on nutrient data tables to increase the sales and acceptance of a product in any 

<pen market system (Rand et al., 1987). 

Fast foods 

Fast foods are quickly becoming a major source of nutrition for many Americans. 

Iriorities, in many cases, seem to be time and personal energy. Thus, we tend to rely on 

ftst foods and eating out for convenience and pleasure. There is a spiraling use of fast 

f•>ods, and the number of fast food chains has increased dramatically from only a handful 
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in the 1950s to tens of thousands today. Fast foods are those foods originating from the 

restaurant chains emphasizing quick preparation and service of food. On the average, 

about a fourth of the average teenager's total diet comes from snacks or fast foods 

(Hamilton et al., 1988). Busy parents find it easy to rely on fast foods to feed their 

children. 

The first question to ask about fast foods is, "How often do I use them?" If a fast 

food restaurant is visited only once a week, then the food consumed there accounts for 

only about one meal out of 20 and has little impact on overall diet. The more often fast 

food places are visited, the more important are the food choices made there. The 

traditional fast food meal of hamburger, fries, and soft drink has now expanded to include 

pizza, tacos, breakfast items, salads, and other foods, which are becoming important 

components of the American diet. 

For the most part, fast foods contribute substantial percentages of recommended 

intakes. However, consideration must be given to nutritional as well as toxicological 

levels of minerals contained in the food. Fast foods are not included as a group in USDA 

Handbook No. 8. 

SELENIUM 

Nutritional requirements 

Selenium (Se), a mineral present in foodstuffs in trace quantities, is essential for 

human growth and development and for maintenance of health in adults. Selenium occurs 

in all cells and tissues of the body in concentrations that vary with the tissue and the 

amount and form of Se in the diet (Levander, 1986). The following values for human 

autopsy specimens have been reported: kidneys 0.61-1.84 (mean 1.09), liver 0.28-0.81 

(mean 0.54) and muscle 0.11-0.38 (mean 0.24) ug Se/g of wet tissue (Schroeder et al., 

1970). The concentration of Se in blood is highly responsive to changes in the diet level. 
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The Se levels in whole human blood from 210 donors at 19 sites in the U.S. were 

reported to range from 0.10 to 0.34 ug/rnl (Allaway et al., 1968). 

The present RDA for Se is 50-200 ug/day for adults (Lane et al., 1983). The per 

capita dietary intake of Se for the U.S. has been estimated at 132 ug/day (Watkinson, 

1974). Certain areas of the U.S., such as Oregon, have been classified as "low Se", 

while other areas, such as South Dakota, have been classified as "high Se" (Christensen et 

al., 1988). In other parts of the world, extreme ranges are observed in China, with 

intakes from 30 ug/day to 4990 ug/day depending on the geographic origin of the food 

(Lane et al., 1983). For years, New Zealand and Finland have been known to have areas 

with low levels of Se in soils, plants, livestock, and human tissue (Luo et al., 1985). In 

addition to geographic origin, other factors that influence Se content of food include the 

class of food and the extent and type of processing and cooking. Ordinary cooking 

practices do not cause appreciable losses of the element (<14%) (Levander, 1975). Food 

is the major source of Se. Seafoods, organ meats, and muscle meats are generally good 

sources of Se (>0.2 ug/g). Grains and cereals contain variable amounts of Se depending 

on where they are grown. Seleniferous areas of China have levels as high as 6.9 ug!g in 

corn. Wheat and grains produced in other seleniferous areas, including South Dakota, are 

reported to have average concentrations of 0.4 to 1.0 ug/g (Lo and Sandi, 1980). Fruits 

and vegetables are mostly poor sources (<0.01 ug/g wet weight) (Levander, 1986). The 

human dietary requirement for Se is likely to be in the range of 0.1 to 0.2 ug/g (Levander, 

1975). 

Selenium has been implicated in many aspects of nutrition, toxicology, and 

medicine for much of this century. Although Se is an essential trace element, it is toxic at 

high concentrations (Menkes et al., 1986). Levels in the range of 2 to 10 ug/g produce a 

chronic toxicity, while levels above 10 ug/g produce drastic changes resulting in sudden 

death (Scott, 1973). The U.S. Department of Agriculture has placed the minimum dietary 

Se levels at which signs of toxicity will ultimately arise at 3-4 ug/g, but this will clearly 
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vary with the extent to which other dietary components with which Se interacts are present 

(Levander, 1986). 

Bioavailability 

Biological availability of Se ranges widely with the type of food and form of the 

element. Selenium in plant materials, such as corn and wheat, is readily available (79%), 

while in various fish and animal products, it is much less available (9-25%) (Combs and 

Combs, 1986). Selenium occurring naturally in foods is predominantly organic (e.g., 

selenoamino acids) rather than inorganic, and some inorganic Se compounds, such as 

selenous acid, are poorly retained ( 1-10% ). Other inorganic forms of Se, such as selenite 

and selenate, are highly absorbable (92-100%) (Combs and Combs, 1986). Some of the 

Se supplements which are being marketed contain inorganic Se and cannot be 

recommended for human use because they contain the element in a reduced form not 

normally found in foods. Loading studies with human subjects revealed the Se 

supplements do not produce a rise of the blood Se even after 5 weeks of continuous 

supplementation (Schrauzer and Ishmael, 1974). Selenite is generally regarded as the 

most toxic chemical form of Se. Of almost equal magnitude are the selenoamino acids and 

selenate. Organic Se exhibits less toxicity. Selenium in its most toxic form is toxic when 

supplied at a level of 1-5 mg Se/kg body weight (Martin and Gerlach, 1972). 

Selenium is rapidly absorbed and incorporated into the body pool. Approximately 

95% of Se is absorbed over a range of dietary Se intakes from deficient to mildly toxic 

levels (Levander, 1986). The liver concentrates more Se than any other organ. 

Detoxifying organs tend to accumulate the highest quantities of Se. Selenium excretion is 

primarily by way of the kidney. Significant quantities can be eliminated through the 

lungs, however (Martin and Gerlach, 1972). 
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Toxicity 

Selenium toxicity is rare and not a major problem in humans (Lane et al., 1983). 

An individual who had been ingesting 600 ug/day for prolonged periods was tested and 

demonstrated normal health (Schrauzer and White, 1978). Mild toxicity symptoms would 

be expected to become observable after the prolonged ingestion of 2000-3000 ug/day. In 

certain high Se areas, such as Venezuala, such high Se intakes are not uncommon (Jaffe, 

1976). In high Se areas of China with reported cases of chronic human selenosis, the 

daily intake averages 4990 ug/day (Levander, 1986). Acute Se poisoning produces 

central nervous system effects, liver and spleen damage, decayed teeth, gastrointestinal 

distress, loss of hair and nails, loss of fertility, and congenital defects (Goyer, 1986). 

Acute effects are found at a daily dietary Se intake of 8 ug/g food (Levander, 1986). A 

maximum daily intake of 500 ug/day has recently been suggested as the upper limit for the 

maintenance of good health (Schrauzer et al., 1977). 

Twelve cases of human selenosis resulting from ingestion of overly potent Se 

tablets meant to be consumed as a health food supplement were reported to the FDA in 

1984. The tablets contained 27-31 mg of Se, 75% in the form of organic Se. Symptoms 

reported were nausea, vomiting, nail changes, hair loss, cramps, diahrrea, and garlic 

breath. Liver function tests were normal (Levander, 1986). 

Deficiencies 

The only documented naturally occurring human Se deficiency diseases are a 

cardiomyopathy called Keshan disease and a degenerative joint disease called Kashin 

Beck disease, which is found in Chinese women and children who consume less than 30 

ug Se/day (Lane et al., 1983). The disease responds extremely well to Se 

supplementation, which reduces dramatically the number of deaths (Levander, 1986). 

In animals, Se has been found to be necessary for the prevention of various 

diseases. These include liver necrosis in rats; exudative diathesis and pancreatic fibrosis 

in poultry; muscular dystrophy in lambs, calves, and other species; and hepatosis dietetica 
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in pigs (Levander, 1986). 

Cancer 

An inverse relationship exists between serum Se levels and subsequent incidence 

of cancer (Knekt et al., 1988). Some human epidemiology studies show that a low Se 

concentration in serum increases the risk of human cancer (cancer of the stomach, 

esophagus, colon, lung, prostate, and breast) (Miyamato et al., 1987). Some case-control 

studies have demonstrated lower blood Se levels among cancer patients (Knekt et al., 

1988). Lung cancer patients have very low serum Se concentrations (Miyamato et al., 

1987). These reports do not prove a causal relationship, but they support the hypothesis 

that the human mortalities from certain neoplastic diseases are controlled by dietary Se 

intakes (Watkinson, 1974). Although Se may not be effective in the treatment of 

advanced human carcinoma, Se may be one of several trace elements which retard or 

prevent tumor development (Schrauzer, 1976). 

The epidemiological evidence that Se may produce cancer-protecting effects in 

humans is supported by the observed significant reduction of the incidence of 

spontaneous mammary tumors in Se-treated C3H mice (Schrauzer, 1976). The 

occurrence of mammary tumors in inbred tumor-prone mice dropped from 82 to 10% 

incidence when their water supply contained 2 ug/g Se (Shrauzer and Ishmael, 1974; 

Griffin, 1979; Shultz and Leklem, 1983; Lane and Medina, 1983; Temple and Basu, 

1987). This work, typical of many animal studies, may have relevant implications for 

human cancer mortalities. 

It should be mentioned that Se has been suspected of being a carcinogen. Based 

on early studies, Se was included as a carcinogen in the Delany Clause of the Food 

Additive Amendment of 1958 (Griffin, 1979). As reviewed by Shapiro, several authors 

have concluded that there exists only incomplete knowledge on which to base the 

assumption that Se is carcinogenic (Shapiro, 1973). 
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Selenium may have an anti-cancer effect as an integral part of glutathione 

peroxidase (Knekt et al., 1988). Glutathione peroxidase, one of the important enzymes in 

the prevention of oxidative damage to cellular membranes, contains four Se atoms per 

mole of protein (Oh et al., 1974 ). The enzyme participates in the elimination of hydrogen 

peroxide and other organic hydroperoxides. Such free radicals may damage cellular 

membranes and thus be promotors in the initiation of carcinogenesis. According to this 

concept, Se, by its antioxidative effect, has a blocking action in tumorogenesis 

(Sundstrom et al., 1984). Decreases in glutathione peroxidase correlate with lesions 

caused by Se deficiency (Oh et al., 1974). 

Selenium is required for the mixed function oxidase P-450 system, which is an 

important system in the elimination of xenobiotics involved in carcinogenesis. Selenium 

deficiency in rat liver has eliminated the classic induction of P-450 by phenobarbital (Oh et 

al., 1974). The mechanism of action is not fully understood. The altered P-450 system 

may be allowing the persistant presence of carcinogenic substances, which otherwise 

would be eliminated by the P-450 system (Oh et al., 1974). 

Some scientists have recommended 250-300 ug Se/day as an "optimal cancer 

protection level" against the most common cancers such as skin, colon, and mammary 

cancers (Schrauzer et al., 1977). The aim of experimental studies has been to examine the 

feasibility of nutritional prophylaxis to protect against cancer. Calculations indicate with 

remarkable internal consistency that the most common cancer mortality rates should 

decline significantly if the dietary Se intakes were increased to about twice the U.S. value. 

This amount would not be harmful and is estimated to lie between 200-300 ug/day for the 

average adult (Shrauzer et al., 1977). Supplementation of 200ug of organically bound Se 

for five weeks results in a rise of plasma Se levels which is not associated with an 

increase in glutathione peroxidase activity (Stead et al., 1985). 

The importance of dietary habits is indirectly emphasized by the fmding that mean 

serum Se concentration in patients with total cancer remission increased significantly 
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although they did not recieve medical Se supplementation (Sundstrom et al., 1984). The 

risk of developing cancer is higher with low Se intake over a lifetime (Miyamato et al., 

1987). 

Interactions with other minerals 

Complicating aspects of the nutrition of Se are the interrelationships with other 

minerals. Arsenic, mercury, cadmium, and copper render Se much less toxic than when it 

is present alone. The presence of arsenic shifts the excretion of Se to the bile (Griffin, 

1979). Selenium reduces the toxicity of heavy metal ions like cadmium and mercury 

(Pories, 1972). Selenium has been reported to protect against cadmium-induced 

hypertension in rats, although Se given alone results in increased blood pressure (Perry 

and Erlanger, 197 4 ). Selenium has been shown to protect against cadmium-induced 

injury of pancreatic B-islet cells (Vahouny, 1982). 

The joint administration of Se and arsenic (2 ug/g each) showed that the protecting 

effects of Se against cancer are significantly counteracted by arsenic, causing a tumor 

incidence essentially as high as normally observed in controls unsupplemented with Se 

(Griffin, 1979). 

The joint administration of zinc (200 ug/g) and Se (5 ug/g) with drinking water 

abolishes the cancer-protecting effects of Se and accelerates cancer growth presumably 

because Se uptake is prevented by zinc (Schrauzer and Ishmael, 1974). 

These observations in animals have given rise to epidemiological studies which 

suggest that trace minerals are also controlling human cancer mortalities. It is unsettling 

that the combined dietary intakes of arsenic and zinc alone .are as a rule higher than those 

of Se (Shrauzer and Ishmael, 1974). 
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ARSENIC 

Nutritional significance 

Arsenic (As) is one of the more common toxic trace metals in the environment 

(Brown et al., 1976). There are many ways in which a person can be exposed to arsenic. 

It can be ingested in drinking water, food, or medicine; inhaled; or absorbed through the 

skin through contact with arsenical dusts or solutions. Because small amounts of As are 

present in the environment, everyone is exposed (Jackson and Grainge, 1975). 

Most human foods contain <0.3 ug/g and rarely exceed 1 ug/g on a dry basis, 

with the exception of seafood, which commonly contains more that 1 ug/g As. The 

following ranges of As have been reported in foods (dry weight): cereals 0.05 - 0.4 ug/g, 

vegetables 0.05 - 0.8 ug/g, fruits 0.03 - 1 ug/g, meat 0.005 - .1 ug/g, milk 0.01 - 0.05 

ug/g, eggs 0.01 - 0.1 ug/g, and fish 2- 80 ug/g (Anke, 1986). The total amount of As 

ingested daily by humans is strongly influenced by the amount of seafood included in the 

diet. The total diet monitoring program carried out by the FDA since 1967 shows that the 

average daily intake of As has decreased drastically from about 130 ug/day in 1968 to 

about 20 ug/day in 197 4. It is believed that much of this drop may be due to the 

decreased use of As-containing pesticides on food crops since the late 1960s. In analyses 

carried out on individual foods, the highest levels were found in fish, with a mean level of 

1.47 ug/g of fish (Jelinek and Corneliussen, 1977). Seafood, especially crustaceans, may 

contain As in concentrations as high as 100 ug/g (Anke, 1986). Fortunately, almost all of 

this As is in the form of organoarsenic compounds, which are nontoxic and are not 

metabolized to toxic forms in the human body (Anke, 1986). 

Bioavailability 

For the assessment of toxicity and bioavailability of As, knowledge of the extent 

of absorption, excretion, and retention of the element is important. There are two 
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common forms of inorganic As in the environment: arsenite (As 3+) and arsenate (As 

5+). Arsenite is considered the more toxic of the two, but arsenate is the more common 

(Brown et al., 1976). In the 19th century, a number of lethal poisonings occurred in 

people who were inhaling minute amounts of trimethylarsenic from wallpaper. 

Trimethylarsenic has been reported as a volatile neurotoxic compound. Excretion of 

absorbed As is mainly via urine. The biologic half-life of ingested As is about 10 hours. 

Arsenic concentrates in the skin and is excreted by desquamation of the skin and in sweat 

(Goyer, 1986). Seafood contains As primarily as arsenobetaine, which is quickly 

absorbed and rapidly excreted by humans. Humans excrete 74% of 25 mg As ingested 

from lobster within 48 hours, and As in shrimp is completely excreted by humans within 

4 days after consumption (Anke, 1986). 

Toxicity 

Ingestion of large doses of As (70-180 mg) may be acutely fatal (Goyer, 1986). 

Large amounts of arsenate uncouple oxidative phosphorylation, resulting in impaired 

tissue respiration (Brown et al., 1976). It has been proposed that As inhibits energy 

-linked functions of mitochondria in two ways: competition with phosphate during 

oxidative phosphorylation and inhibition of energy-linked reduction of NAD (Mitchell et 

al., 1971). 

The symptoms of acute As poisoning in humans by the oral route include 

gastrointestinal effects, fever, anorexia, hepatomegaly, melanosis, and cardiac 

arrhythmia. Other features include upper respiratory tract symptoms and peripheral 

neuropathy (Goyer, 1986). The biological basis for these disturbances is probably an 

inhibition of a wide range of enzyme systems (Anke, 1986). Hamamoto reported the 

poisoning of Japanese infants who ingested an average of 3 mg of As per day over a 

period of 33 days (Anke, 1986). Absorbed As crosses the placenta and is transferred to 

the fetus, causing embryotoxic and teratogenic effects correlated with the dose reaching 
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the offspring. For example, a reported case of attempted suicide by arsenite ingestion at 

30 weeks of gestation resulted in the death of the infant following premature delivery 

(Hood et al., 1988). 

Cancer 

For at least 2500 years, As has been used in medicine. Over the past 150 years, it 

has been an important drug to treat dermatitis, asthma, syphillis, epilepsy, psoriasis, and 

amebiasis. Treatment for long periods of time with large amounts of As in the form of 

Fowler's solution has been clearly correlated with the development of malignant disease, 

particularly carcinoma of the skin (Jackson and Grainge, 1975). A selected review of the 

world literature on skin and internal cancer caused by ingestion of inorganic As shows 

that out of 916 individuals exposed to trivalent As, skin cancer developed in 642 and 

internal cancer in 58 (Jackson and Grainge, 1975). Clinical evidence that long-term 

ingestion of As predisposes one to skin cancer is also found in studies of populations 

whose drinking water has been contaminated with As (12.2 ug/g). In many of these 

people, Reichenstein's disease developed with gastrointestinal symptoms, mouth ulcers, 

and melanosis and skin tumors in high incidence. In Argentina, where well water has a 

high concentration of inorganic As (2.8-4.5 ug/g), Ayerza's disease often develops after a 

person has drunk the polluted water for five or six years. Keratosis and skin cancers 

develop, mainly in the trunk and limbs. Fatalities result from liver and kidney ailments 

(Jackson and Grainge, 1975). 

The relationships between ingestion of As with skin cancer and angiosarcoma and 

inhalation of As-containing particulates and lung cancer establishes As as a human 

carcinogen. Hepatic angiosarcoma has been considered rare in humans, although it is 

now known that exposure to inorganic arsenicals may be followed by development of 

these tumors (Popper et al., 1978). Arsenic has specific effects on the endothelial cells of 

the blood vessels in the liver, and angiosarcoma of the liver has been reported in vineyard 
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workers following many years of exposure to As-containing compounds, drinking water, 

Fowler's solution, wine, and As-containing pesticides. Skin cancers from occupational 

exposures have been well documented, particularly in the last 20 years. Available data 

suggest a dose response relationship. Workers engaged in the production of As

containing compounds, where exposure is very high, are reported to have an increased 

risk of dying from lung cancer (Goyer, 1986). 

ALUMINUM 

Nutritional significance 

Aluminum (AI) is the third most abundant naturally occurring element and the 

most common metallic element. Daily exposure to AI is inevitable due to its abundance 

and ubiquitous occurrence in nature and its diverse use by man. Food is a source of AI, 

as it is found in vegetation and in all vertebrae species (Koo and Kaplan, 1988). Early 

studies suggested that the daily ingestion of AI from food sources varies between 24 and 

36mg. However, later evidence points to ingestion of fewer than 3 to 5 mg/day. 

Aluminum is used as a filler in pickles and cheese and is a major component of baking 

powder (Alfrey, 1986). 

Another possible source of ingested AI is the leaching of this element from 

cooking utensils during the preparation of food. It is estimated that 20% of the daily 

intake of AI comes from cooking utensils. One pack of Chinese noodles is estimated to 

contain 3.3mg of AI, including 2.6mg of AI released from the AI pan (Inoue et al., 1988). 

The AI content of coffee brewed in a ceramic pot is 0.15 mg/cup as compared with coffee 

brewed in an AI perculator, which contains 0.55 mgjcup (Lione et al., 1984). However, 

despite all the exposure, little ingested AI is actually absorbed (Alfrey, 1986). The use of 

AI in the processing and storing of food increases its AI content but not enough to 

contribute significantly either to total body burden or toxic effects (Doull, 1982). 

There is no physiological role for Al in humans. Trace amounts of this element 
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are toxic to the nervous system. A growing number of reports suggest that toxic levels of 

Al can be derived from dietary sources and may accumulate in human tissues (Lione et al., 

1984). 

Bioavailability 

Normally, absorbed Al is excreted in the urine, so people with full kidney capacity 

easily eliminate the element. When this route is absent, Al accumulates in tissues and 

body fluids, giving rise to the clinical conditions of dialysis osteomalacia and dialysis 

encephalopathy (Garnrnelgaard and Sandberg, 1989). 

The absorption of Al in both normal patients and patients suffering from chronic 

renal failure was studied. Both groups of patients received approximately 2.5g of Al daily 

for 23-27 days. In the normal group, the maximum absorption of Al was approximately 

97 mg/day (3.9%), while in the renal-failure patients, it was 256 mg/day (10.2%) (Doull, 

1982; Gorsky et al., 1979). Balance studies show that subjects excrete more than 96% of 

ingested Al. This correlates with the fact that tissue Allevels have uniformly been found 

to be low in normal individuals (Alfrey, 1986). 

Small amounts of orally ingested Al are absorbed and deposited in the brain by 

humans with ostensibly normal renal function. Since Al is found in the environment, 

human diet, and in many commercial antacid preparations, it is possible that individuals 

might ingest enough AI during the course of their lives to cause behavioral or neurological 

impairment (Gorsky et al., 1979). 

Toxicity 

Aluminum is unquestionably neurotoxic (Birchall and Chappell, 1988). It is well 

established that Al is causally implicated in the generally fatal brain disease dialysis 

encephalopathy, a disease seen mostly in patients with chronic renal failure treated with 

hemodialysis (Flaten and Odegard, 1988). Aluminum in the water supply is a major 

source of Al contamination in dialysis fluid, since Al is used as a flocculant during water 
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purification procedures (Koo and Kaplan, 1988). It is estimated that as much as 2-4g of 

AI is given to patients during each dialysis (Alfrey, 1986). That AI is neurotoxic in 

patients with renal failure does not necessarily imply that AI is harmful for persons with 

normal kidney function since kidney patients are exposed to extremely large amounts of 

AI and lack the most important route of AI excretion (Flaten and Odegard, 1988). 

Abnormally high brain-Al content has been detected in hemodialysis patients who 

die of encephalopathy. An analysis of cerebral grey matter revealed an Allevel of 25 ug/g 

in dialysis patients as opposed to 2.2 ug/g in control groups of nondialyzed subjects 

(Gorsky et al., 1979). 

There is considerable evidence that Al is somehow related to Alzheimer's disease 

(Flaten and Odegard, 1988). Aluminosilicates have been identified at the core of senile 

plaques in Alzheimer's disease. Aluminum has been found to interact with silicic acid, a 

normal component of plasma, to form aluminosilicate species solubilized by citrate. 

Aluminum has been detected in neurons bearing neurofibrillary tangles both in 

Alzheimer's disease and in Parkinson's disease (Birchall and Chappell, 1988). 

Aluminum ingestion in chronic hemodialysis patients may result in bone disease 

suggestive of At-related osteomalacia. The entry of AI by the gut route is important 

clinically because two groups of patients, those on long-term hemodialysis and those with 

chronic peptic ulcer disease, frequently ingest large quantities of At-containing 

preparations. The gut barrier is permeable to AI under conditions of high oral intake. 

Idiopathic osteoporosis, a rare bone disease resulting in bone pain and disabling bone 

fractures, has been reported to coexist in patients with chronic peptic ulcer disease who 

are ingesting large quantities of At-containing antacids (Becker et al., 1977). 

The Council of the European Communities has made a resolution for the 

protection of dialysis patients calling for the minimization of the exposure to AI. 

However, these limits are not mandatory (Garnmelgaard and Sandberg, 1989). 
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CADMIUM 

Nutritional significance 

One of the trace elements not needed for normal metabolism in the human body is 

cadmium (Cd). Cadmium is virtually absent from the human body at birth, and 

accumulates with age up to approximately 50 years. Food is the major source of Cd for 

humans (Kostial, 1986). Normal daily intake from food in North America and Europe 

varies but generally averages 30-50 ug/day, with typical foods containing 0.06 ug/g Cd 

(Whanger, 1982). The greatest concentrations are found in liver and kidney, which 

contain 0.1 to 1 ug/g (Goyer, 1986). Even greater concentrations are found in shellfish, 

e.g., oysters, which have been reported to contain up to 5 ug Cd/g (Sharma et al., 1983). 

Cadmium pollution of soil in which normal crops are grown can originate from sewage 

sludge, phosphate fertilizers, or industrial waste (Sherlock, 1984). 

The WHO/FAO Joint Expert Committee on Food Additives has recommended a 

provisional tolerable weekly intake of 400-500ug (60-70 ug/day) of Cd. This intake is the 

daily intake, which during an entire lifetime, appears to be without appreciable risk 

(Sherlock, 1984). This margin of safety is small and leaves little room for intake from 

other environmental or occupational sources (Drury and Hammons, 1979). 

Because of the potential for accumulation in kidney, there is considerable concern 

for levels of dietary intake of Cd of the general population. Studies from Sweden have 

shown a steady increase in Cd content of vegetables over the years. Increase in body 

burden was detennined by an historic autopsy study (Goyer, 1986). Some individuals 

have consistently higher intakes because they have atypical dietary habits or from food 

grown in Cd-contaminated soil (Sherlock, 1984). 
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Bioavailability 

About 5% of Cd ingested by humans is absorbed (Sharma et al., 1983). The rest 

passes into the feces (Goyer, 1986). The half-life is not known but may be as long as 30 

years. About 50 to 75% of the body burden of Cd is in the liver and kidney. With 

continued retention, there is progressive accumulation in soft tissues (Goyer, 1986). 

Toxicity 

Cadmium is toxic to virtually every system of the human body. Acute toxicity 

may result from ingestion of the relatively high concentrations of Cd as may occur in 

contaminated foods and beverages. Initial symptoms include nausea, vomiting, diahrrea, 

muscle cramps, and salivation. When fatal intoxication occurs, these symptoms are 

followed either by shock due to the loss of liquid and death within 24 hours or by acute 

renal failure and cardiopulmonary depression and death within 7 to 14 days (Doull, 

1982). 

Acute exposure to a large Cd dose is known to result in liver injury. This is 

preceeded by the enhanced formation of metallothionein, a Cd-binding protein, and 

possibly by changes in cellular glutathione. These effects may contribute to deterioration 

in cellular metabolic integrity, resulting in subclinical liver dysfunction (Muller et al., 

1988). 

Of great importance are studies that investigate adverse health effects of chronic 

exposure at low levels as may be encountered in the environment. People exposed to high 

levels of Cd via polluted food or water typically develop damaged renal tubules. For the 

most part, intakes from food are the most important contributors to exposure (Sharma et 

al., 1983). The principal long-term effects of low-level exposure to Cd are chronic 

obstructive pulmonary disease and emphysema and chronic renal tubular disease. There 

also may be effects on the cardiovascular and skeletal systems (Goyer, 1986). 

Concentrations of 0.41-0.59 ug/g Cd in food would produce severe renal tubular damage 

by age 50 (Whanger, 1982). 
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Itai-Itai disease, which is characterized by osteomalacia and is prevalent among 

elderly women of Japan, is a disease caused by high oral intake of Cd for a long time 

(Kostial, 1986). Cadmium has been shown to induce hypertension and to cause 

cardiotoxicity in laboratory rats. Reports from the Soviet Union have shown a four-fold 

higher incidence of cardiovascular disease in factory workers exposed to cadmium oxide 

(J amall and Smith, 1985). 

Cancer 

Cadmium has been implicated in the increase in the incidence of prostate and other 

cancers in men exposed to high levels of Cd. A statistically significant difference in the 

incidence of prostate cancer was found, i.e., 10.6/100,000 population in low- and 

53.2/100,000 population in high-Cd-level areas. Cadmium is a known carcinogen for 

several tissues in animals, e.g., sarcomas, lung cancer, and Leydig cell tumors of the 

testis (Webber, 1985). Recent reports of lung carcinogenesis in rats following chronic 

inhalation of Cd are consistent with epidemiological data concerning lung tumor incidence 

in humans occupationally exposed to this metal (Waalkes et al., 1988). The role and 

mechanism of Cd action in carcinogenesis is not clear (Webber, 1985). 

Interactions with other minerals 

In several acute toxicity studies, it has been shown that Se is the most effective Cd 

antagonist when both agents are administered simultaneously. It has been suggested that 

Se may be useful in counteracting the effects of Cd-related carcinogenesis in humans since 

Se has a strong tendency to form complexes with metals (Webber, 1985). Cadmium 

affects the metabolism of the essential trace metal copper, and copper supplements protect 

against some of the toxic effects of Cd (Jamall and Smith, 1985). Simultaneously 

supplementing a diet with zinc, copper, and manganese results in decreased 

concentrations of Cd (Piscator, 1976). 
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ANALYTICAL INSlRUMENT A TION 

Atomic absorption spectroscopy 

The primary method of mineral analysis for USDA Handbook No. 8 is atomic 

absorption spectrophotometry (AAS). This is the most widely used method for 

determining mineral levels in biological samples (Hamley and Wolf, 1984). Attributes are 

instrument operation simplicity, excellent element specificity and sensitivity, capability of 

measuring about 70 elements, and moderate cost of basic instrumentation (Alvarez, 

1984). 

Atomic absorption deals with the excitation of the atom of interest and subsequent 

measurement of absorbed light energy. Energy in the form of heat within the atomization 

cell vaporizes and atomizes the sample, producing atoms in the ground state as well as 

some in the allowed excited energy states possessed by the element The excited level is 

reached by absorption of resonance radiation of a specific wavelength from an external 

source. The measurement of absorbed radiation is proportional to ground state and 

excited state atomic concentrations and thus to the total number of atoms (or 

concentration) of the element of interest. The absorbed radiation is characteristic of the 

element (Alvarez, 1984). 

The major drawback is that all of the spectrophotometric methods require sample 

destruction since the sample must be in solution prior to analysis. This process may 

introduce substances that interfere with the analysis of the element of interest. It is 

therefore necessary to use National Bureau of Standards (NBS) reference materials having 

similar inorganic matrices as test products alongside the sample. Other disadvantages of 

AAS have historically been its limited calibration range and its inability to analyze more 

than one element at a time (Hamley and Wolf, 1984). 

X-ray fluorescence 

An alternate method of analysis of food samples not routinely used by the Nutrient 
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Data Bank is x-ray fluorescence (XRF). In XRF, a beam of primary x-rays is directed 

onto a sample being investigated, causing it to emit secondary (fluorescent) x-rays. These 

x-rays are characteristic of each element in the sample, and the total number of x-rays is 

directly proportional to the concentration of the element from which they were produced 

(Hamley and Wolf, 1984). 

X-ray fluorescence has several major advantages over AAS. X-ray fluorescence 

may be applied directly to the biological sample to provide a non-destructive analysis of 

mineral levels. This is important since the labor-intensive steps of dissolving and diluting 

the sample in ash solution are eliminated by simply pressing the sample into a pellet and 

analyzing by the XRF system. Also, the most valuable food composition data are 

obtained by samples analyzed as consumed. The multielement analytical capabilities of 

XRF tremendously increase the information available from each sample without 

excessively increasing the individual sample cost. In addition, technician time per sample 

is reduced to 16-24 minutes per sample (Nielson and Kalkwarf, 1977). X-ray 

fluorescence instruments have traditionally been less available than those for AAS . 

However, the numbers of instruments have recently been increasing due to their cost 

compared to AAS instruments and to their potential to become an important approach to 

mineral assays. 

Inductively coupled plasma 

A third approach to mineral analysis of environmental samples relies on 

inductively coupled plasma (ICP) instrumentation. In this technique, radio frequency 

energy is coupled inductively to a stream of ionized argon gas, causing it to be heated to 

temperatures of up to lO,OOOOC. When a sample is introduced into the very hot central 

region of the plasma, the atoms are excited and emit characteristic radiation. This 

radiation is measured by a scanning monochromator, which moves rapidly from 

wavelength. to wavelength, locating the peak of the mineral beiug analyzed and integrating 
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the intensity for the desired time. The integrated readings are then converted to 

concentrations by computer (IL Plasma 200 ICP Spectrometer Manual). As with XRF, 

ICP is capable of multielement analysis. It can determine up to 70 elements, 24 elements 

in one sample within one minute after plasma torch equilibration. Detection limits are 

comparable to those for AAS for most elements. However, as with AAS, sample 

destruction is involved since the sample must be in solution prior to analysis. This may 

produce chemical interference with accurate mineral analysis. However, due to the long 

sample residence time and extremely high temperatures of the ICP discharge, chemical 

interferences are greatly reduced compared to AAS (IL Plasma 200 ICP Spectrometer 

Manual). 
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MATERIALS AND METHODS 

FOOD COLLECTION AND PREPARATION: 
STUDY ONE 

Twenty-one foods were selected from each of 3 to 5 different sources (fresh, 

processed, home stored, etc.) for a total of 96 food samples. The foods included beets, 

broccoli, cake, carrots, com, enriched white bread, green beans, oatmeal, onions, peas, 

potato, rice, saltines, shrimp, sour cream, spinach, squash, tomato, waffles, whole wheat 

bread, and zucchini. Foods were prepared for consumption, blended in a glass blender 

equipped with a stainless steel cutter, weighed, and lyophilized. The lyophilized foods 

were ground with a mortar and pestle and stored in plastic one-pound containers until 

sampled for analyses. A lOg aliquot of each ground food sample was transported in 

individual plastic bags to Salt Lake City (Rogers and Associates Engineering Corp.) for 

XRF analysis. Canned food samples were drained of fluid before blending. 

Demineralized water was used whenever water was added for cooking using methods, 

cooking times, and temperatures recommended for vegetables. Onions were peeled and 

analyzed raw. Potatoes and winter squash were baked. Moisture in the stored, 

lyophilized food materials was determined whenever an aliquot was sampled for analysis 

by oven-drying a separate, equivalent aliquot for 2h in a forced-air oven at 1050C. 

Analyzed mineral values were reported on a dry-weight basis, with total moistures 

reported from the combined lyophilization and oven-drying losses (Nielson et al., 1988). 

FAST FOOD COLLECTION: STUDY lWO 

The fast food outlets included common take-out establishments and included 

breakfast items, lunch items (hamburger, hot dog, taco, pizza, chicken, fish, sandwiches, 

salad bars, etc.), snack items (ice cream, cakes, candies, chips, etc.), and popular 
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beverages (soft drinks, coffee, dairy drinks, juices, tea, etc.). The sampling frame 

included a total of 228 samples. Sample collection of all perishable items involved 

immediately sealing the item in a heavy-gauge plastic bag, labeling, and freezing the item 

on dry ice for transport to a storage freezer. Labels included the item, vendor, location, 

date, and other comments relating to the item description. 

Initial collection and freezing was done by Rogers and Associates Engineering 

Corp., Salt Lake City, UT. After transport to Utah State University, foods were stored in 

a deep freeze until ready for analytical preparation. 

Foods were sampled as whole-serving menu items without separation into 

components. The items were removed from the deep freeze, weighed, and freeze dried 

for approximately 48h with the shelf temperature set at 400C. Dried samples were 

weighed to determine moisture contents. Samples were then manually ground with a 

porcelain mortar and pestle until homogeneous and stored in plastic containers until ready 

for analysis. Ten-gram aliquots were weighed into sterile 6-oz Nasco plastic whirl-pak 

bags and sent to Rogers and Associates Engineering for independent mineral 

determination by XRF. 

DRY ASHING 

Triplicate 2g aliquots of the ground homogeneous sample items were weighed 

( +/-0.0001g) and placed in porcelain crucibles for ashing. The samples were ashed in a 

muffle furnace at 5500C for at least 48h or until a white ash formed. To any samples that 

appeared grey or black, 3 drops of nitric acid and 3 drops of 30% hydrogen peroxide 

were added. The solution was dissolved on a hot plate and reashed at 5500C for another 

24h. The ash was dissolved in 5 ml of a 1:1 mixture of 6N HCl and demineralized water 

over a low heat on a hot plate. The solution was then transferred to a 25-ml glass 

volumetric flask and diluted to volume with demineralized water. The prepared samples 
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were then stored in plastic 100-ml bottles until ready for analysis. 

Between ashings, crucibles were cleaned by soaking in a 1: 1 solution of 6N 

hydrochloric acid and demineralized water in a 4-1 Pyrex beaker. The solution was heated 

over low heat to a slow boil for approximately 12h. Crucibles were individually removed 

and rinsed thoroughly, using demineralized water, and dried at room temperature. 

WET ASI-ITNG 

Triplicate 0.5g aliquots of the ground homogeneous sample items were weighed 

(+/-O.OOOlg) and placed in 50-rnl glass Erlenmyer flasks. To each flask was added 20-30 

rnl of 70% nitric acid and 2-3 boiling beads. Flasks were placed on a hot plate at low heat 

for 3-4 days. Nitric acid was added as needed to keep samples wet. To any sample that 

was not clear after 48h, 0.5 rnl 6N HCl per day was added. The clear solution was then 

transferred to a 25 ml volumetric flask and brought to volume with demineralized water. 

Prepared samples were then transferred to 1 00-ml plastic-capped bottles until ready for 

analysis. 

Between ashings, flasks were cleaned by soaking in a 1 :2 mixture of 70% nitric 

acid to demineralized water for approximately 12h. Flasks were removed and rinsed 

thoroughly with demineralized water and allowed to dry at room temperature. 

ATOMIC ABSORPTION ANALYSIS 

Each mineral-ash solution was analyzed in triplicate by AAS (Instrumentation 

Laboratories Model 457 dual-beam atomic-absorption spectrophotometer). Dry-ashed 

samples were used to analyze for manganese (Mn), copper (Cu), and zinc (Zn). Wet

ashed samples were used to analyze for iron (Fe) since dry ashing is known to cause Fe 

losses during oven heating (Clegg et al., 1981). Manganese, Fe, Cu, and Zn standard 

curves were obtained using stock solutions containing 1000 ppm of the mineral diluted to 

4 increments of concentrations covering the working range of the mineral. Flame 
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atomization was used with an air-acetylene flame and the following wavelengths: Mn, 

27 4 nm; Fe, 245 nm; Cu, 319 nm; and Zn, 213 nm. 

The AAS procedure was verified by repeated analysis with NBS standard 

materials with each set of food samples. The means of these determinations in rice flour 

(SRM-1568) and wheat flour (SRM-1567) were 19.8 and 7.6 ug/g Mn (20.1+/-0.4 and 

8.5+/-0.5 ug/g certified), 8.4 and 17.2 ug/g Fe (8.7+/-0.6 and 18.3 +/-1.0 ug/g certified), 

2.5 and 2.8 ug/g Cu (2.2+/-0.3 and 2.0+/-0.3 ug/g certified), and 19.6 and 10.5 ug/g Zn 

(19.4 +/-1.0 and 10.6+/-1.0 ug/g certified). 

X-RAY FLUORESCENCE ANALYSIS 

Multielement mineral detenninations were performed on lyophilized sample 

aliquots sent to Salt Lake City independent of AAS determinations. The samples were 

analyzed directly by weighing 0.5g aliquots of the dry powder into a 3.2 em. diameter 

hardened steel die and pressing self-supporting sample pellets at 2300 kg/cm2 pressure. 

Four replicate pellets were prepared from each standard reference material, and 3 replicate 

pellets were prepared from each food. Four analyses were performed on each of the 4 

NBS standard reference material pellets, and one analysis was performed on each of the 

food pellets. Each analysis consisted of collection of 4 separate XRF spectra under 

vacuum using gadolinium, silver, and germanium (Ge) secondary excitation and 5 kV 

direct excitation (30, 20, and 10 minutes, respectively, with a Kevex Model 700 

spectrometer system). Only the Ge spectrum was used to obtain the Mn, Fe, Cu, and Zn 

x-ray intensities. The other 3 spectra provided data on additional elements, which were all 

used in the CEMAS calculation. The CEMAS approach to quantitation relies on 

fundamental parameters of x-ray physics for quantitation of x-ray intensities. Mineral 

concentrations were stored directly on disk for subsequent statistical analysis (Nielson et 

al., 1988). 
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INDUCTIVELY COUPLED PLASMA ANALYSIS 

An Instrumentation Laboratory Plasma 100/200 ICP Emission Spectrometer was 

used in the determination of Cd in fast foods since the limit of determination by XRF was 

too high to generate data of value. Typical foods contain 0.05 ug/g Cd, and the limit of 

determination by XRF is 5 ug/g. Samples were wet ashed and analyzed with the 

assistance of a technician trained in mineral analysis by ICP. Calibration curves for a 

working range of 0.05 - 1.0 ug/g were obtained after each set of 4 samples was analyzed. 

Inductively coupled plasma procedure was verified by analysis of NBS standard reference 

materials with each set of food samples. With a lower limit of determination of 0.05 ug/g 

Cd, ICP showed values for non-fat milk powder (SRM-1549), wheat flour (SRM-1567), 

and rice flour (SRM-1568) to be below detection limits. Certified values are 0.0005 +/-

0.0002 ug/g for non-fat milk powder, 0.032 +/- 0.007 ug/g for wheat flour, and 0.029 +/-

0.004 ug/g for rice flour. 

STATISTICAL PROCEDURES 

Mineral determinations by XRF were compared to 9 NBS standard reference 

materials in Study One, including powdered milk (SRM - 1549), oyster tissue (SRM -

1566), wheat flour (SRM - 1567), rice flour (SRM - 1568), orchard leaves (SRM -

1571), citrus leaves (SRM- 1572), tomato leaves (SRM- 1573), pine needles (SRM-

1575), and bovine liver (SRM- 1577a). Mean differences, standard deviations of the 

means, and mean relative bias (mean difference/NBS value x 100) were obtained for Mn, 

Fe, Cu, and Zn (Nielson et al., 1988). 

Values obtained by AAS were compared to independent determinations by XRF 

for Mn, Fe, Cu, and Zn in the 96 food samples under investigation. Means, standard 

deviations, and mean differences were calculated. F tests were performed at a 95% 

confidence interval to determine significance of difference between means obtained by the 

two methods. Scatter plots were also obtained for these foods to show linear 
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comparisons between methods. 

Detailed quantitative information was then obtained by XRF and AAS on Mn, Fe, 

Cu and Zn contents for the 228 fast-food items. Means, standard deviations, correlation 

coefficients (R2), slopes, and intercepts were calculated. 

X-ray fluorescence was then used to determine toxic mineral concentrations in 

NBS standard reference materials. Selenium was determined in oyster tissue (SRM-

1566) by 16 determinations and in wheat flour (SRM-1567) by 3 determinations. 

Similarly, As was determined in citrus leaves (SRM-1572), oyster tissue (SRM-1566), 

and orchard leaves (SRM-1571) by 16 determinations. Aluminum was determined in pine 

needles (SRM-1575) and tomato leaves (SRM-1573) by an average of 16 determinations. 

In the analysis of fast foods by XRF for Mn, Cu, Zn, and Fe, simultaneous data were 

generated for 43 other minerals including Cd, AI, Se and As. Bar graphs were generated 

by Harvard Graphics to indicate regions of average daily intake, maximum dietary 

exposure from fast foods, and toxic levels of mineral. A summarized table of average 

toxic mineral levels in each type of fast food was then recorded. 
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RESULTS AND DISCUSSION 

FIRST OBJECTIVE 

One of the most powerful and convincing ways to establish the reliability of an 

analytical technique is to use quality control standards analyzed by another laboratory. 

External standards in the form of Certified Reference Materials provide the most 

comprehensive means for establishing analytical competence and accuracy (Parr, 1985). 

The National Bureau of Standards provides reference materials intended primarily for use 

in calibrating instrumentation and evaluating the reliability of analytical methods from the 

determination of major, minor, and trace elements. The certified values for the element of 

interest are based on results obtained by reference methods of known accuracy and 

performed by 2 or more analysts or, alternately from results obtained by 2 or more 

independent, reliable analytical methods (Rasberry, 1985). 

The comparison of data obtained by XRF against NBS-certified concentrations in 

Table 1 indicates agreement between methods that is consistently within the quoted NBS 

uncertainties. Student's t test indicates no significant difference between NBS-certified 

values and values obtained by XRF. The mean of the differences in the analysis ranged 

from 0.7 ug/g for Cu to 3.4 ug/g for Mn; or, on a relative basis, it ranged from 0.9% for 

Fe to 2.3% for Mn. These agreements are the main basis for validating the XRF method. 

To further establish the validity of XRF, scatter plots were made to compare data 

from 96 food samples against the most conventional means of analysis, atomic absorption 

spectroscopy. The comparisons of XRF with AAS yielded correlation coefficients of 

0.94 for Mn (Fig. 1), 0.99 for Fe (Fig. 2), 0.93 for Cu (Fig. 3), and 0.91 for Zn (Fig. 

4). The comparisons were linear for all4 elements over the entire ranges of data (1 - 100 

ug/g Mn, 3- 1600 ug/g Fe, 0.5- 50 ug/g Cu, 2- 140 ug/g Zn). 
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Table 1 - Comparison of x-ray flourescence (XRF) mineral measurements with National 
Bureau of Standards (NBS)-certified concentrations 

Mineral Concentration, ug/g 

Manganese Iron Copper Zinc 

Sample XRFaNBSb diff XRF NBS diff XRF NBS diff XRF NBS diff 
--------------------------------------------------------------------------------------------------------
SRM 1549 d 

SRM 1566 17.2 17.5 -0.3 198 195 3 

SRM 1567 8.5 8.5 0.0 19.3 18.3 1 

SRM 1568 20.6 20.1 0.5 8.2 8.7 -0.5 

SRM 1571 90.2 91.0 -0.8 291 300 

SRM 1572 23.2 23.0 0.2 94 90 

SRM 1573 250 238 12 690 690 

SRM 1575 691 675 16 208 200 

SRM 1577 9.9 9.9 0.0 202 194 

students's t test NSf 
mean diff 3.4 
st dev of mean 2.3 
mean rei. bias %& 2.3 

a XRF values are means of 16 determinations 
b NBS-certified concentrations 

-9 

4 

0 

8 

8 

NS 
1.6 
1.7 
0.9 

c Difference between XRF mean and NBS value 

62.8 63.0 -0.2 

2.0 2.0 0.0 

20. 2.2 -0.2 

12.6 12.0 0.6 

16.5 16.5 0.0 

11.8 11.0 0.8 

2.9 3.0 -0.1 

163 158 5.0 

NS 
0.7 
0.6 
2.2 

d Some or all determinations were below XRF detection limits 
e Zn not certified by NBS 
f No significant difference at 95% confidence level 
&(Mean difference/NBS value) x 100 

45.2 46.1 -0.9 

867 852 15.0 

10.1 10.6 -0.5 

19.3 19.4 -0.1 

23.9 25.0 -1.1 

29.2 29.0 0.2 

66.0 62.0 4.0 

60.0 e 

125 123 2.0 

NS 
2.3 
1.9 
1.6 
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Figure 1. Scatter plot comparison of manganese measurements by x-ray 
fluorescence (XRF) vs. atomic absorption (AAS) in 96 food samples. 
Statistical analysis indicate correlation coefficient, slope, intercept, and 
standard error of analysis between methods. 
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Figure 2. Scatter plot comparison of iron measurements by x-ray fluorescence 
(XRF) vs. atomic absorption (AAS) in 96 food samples. Statistical analysis 
indicate correlation coefficient, slope, intercept, and standard error of analysis 
between methods. 
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Figure 3. Scatter plot comparison of copper measurements by x-ray fluorescence 
(XRF) vs. atomic absorption (AAS) in 96 food samples. Statistical analysis indicate 
correlation coefficient, slope, i[\tercept, and standard error of analysis between methods. 
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Figure 4. Scatter plot comparison of zinc measurements by x-ray fluorescence (XRF) 
vs. atomic absorption (AAS) in 96 food samples. Statistical analysis indicate correlation 
coefficient, slope, intercept, and standard error of analysis between methods. 
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The scatter plots yielded slopes that were within 10% of unity for Mn, Fe and Zn, with a 

lower slope (0.7) for Cu suggesting a bias in the copper data. 

A statistical comparison of XRF and AAS data is presented in Table 2, with the 

mean mineral concentrations in each of 96 food samples analyzed. Average overall biases 

were 0.4 ug/g for Mn, -1.9 ug/g for Fe, -2.1 ug/g for Cu, and -0.8 ug/g for Zn. The 

sample standard deviations give an estimate of intersample variability. F tests using an 

alpha of .05 revealed no significant differences among the 4 minerals measured by the 2 

methods. These statistical comparisons are a second means of validating XRF since 

results were obtained by 2 independent analytical methods. 

Table 2- Summary of atomic absorption spectrophotometry (AA) and x-ray flourescence 
values for manganese, iron, copper, and zinc in 96 food samples (ug/g in dry matter). 

manganese iron copper ZinC 

AAa XRFb diffc M XRF diff M XRF diff M XRF diff 

mean 
std dev 
Ft,9sd 

17.7 18.2 0.4 
18.7 18.2 4.6 

NS 

88.7 86.8 -1.9 
126 136 16.1 

NS 

8.0 6.0 
6.2 4.4 

-2.1 
2.5 
NS 

27.3 26.6 -0.8 
20.2 23.5 5.6 

NS 

aAtomic absorption values are an average of determinations for each of the 96 food 
samples. 
Each determination is a mean of triplicate analytical values. 
bX-ray flourescence values are an average of determinations for each of the 96 food 
samples. 
Each determination is a mean of triplicate analytical values. 
cA verage overall difference of values determined by the two methods. 
dF test indication of significant difference between methods. NS=no significant 
difference. 

Additional comparative values between XRF and AAS were obtained for the 228 

fast foods under investigation. Mean values for Mn, Fe, Cu, and Zn are indicated in 

Appendix 1, Table 7. Correlation coefficients between methods ranged from 0.97 for Fe 
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and Zn to 0.91 for Cu. The correlation coefficient for Mn was 0.94. The quantitative 

information presented in Table 7 is important since a complicating factor in toxic element 

research is interaction. The nutritional or toxic physiology of the trace element is rarely 

confined to a single element in isolation from others. This can affect minimum 

requirements and influence maximum tolerances. Tables 3, 4, and 5 show comparisons 

of XRF mineral measurements with NBS certified values for Se, As, and AI, 

respectively, again indicating agreement consistent within NBS uncertainties. 

As indicated above, XRF has been proven to be a reliable method of multielement 

analysis of biological materials. High-resolution XRF instruments are now available at 

prices as low as $30,000 - $40,000, suggesting an initial investment comparable to that 

for AAS instruments. Consideration should also be given to the unique advantage XRF 

offers of avoiding sample dissolution, matrix calibrations, and related labor-intensive 

aspects of mineral analyses commonly encountered in AAS and ICP procedures. 

SECOND OBJECTIVE 

X-ray fluorescence was validated as a method in Study One, then used to 

determine levels of minerals of toxicological interest in fast foods in Study Two. 

Analytical challenges to the investigator were compounded by the very low concentrations 

usually involved. The only characteristic that trace elements have in common is that they 

normally occur in biological samples in very low concentrations. 

The increasing use of processed fast foods has resulted in a need for increased 

toxicological awareness and understanding by nutritionists and other professionals 

concerned with food safety. Analysis of foods as eaten provides the most meaningful 

data on the composition of foods. Much of today's analytical data were obtained by 

analyses of raw foods or components of whole food items. Most chemical compounds 

are not uniformly distributed throughout the food system. Specific compounds are usually 



Table 3- Comparison of x-ray flourescence (XRF) selenium measurements 
with National Bureau of Standards (NBS).certified concentrations 

Selenium, ug/g 

Sample No. obs. XRFa 

Oyster tissue 16 
(SRM 1566) 

Wheat flour 3 
fSRM 1567) 

2.11 

1.79 
0.52 

axRF means and standard deviations 
bNBS means and standard deviations 

NBSb 

2.1 
0.63 

1.1 
0.2 

Table 4 - Comparison of x-ray flourescence (XRF) arsenic measurements 
with National Bureau of Standards (NBS)-certified concentrations 

Arsenic, ug/g 

Sample No. obs. XRFa NBSb 

Citrus leaves 16 3.07 3.10 
(SRM 1572) 0.99 

Oyster tissue 16 12.8 13.4 
(SRM 1566) 1.04 

Orchard leaves 16 10.4 14.0 
(SRM 1571) 1.2 

axRF means and standard deviations 
bNBS means and standard deviations 

38 
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concentrated in a few foods and occur at very low concentrations in others. 

In these regards, XRF has two very important advantages over AAS as an 

analytical tool for mineral analysis. Information regarding quantitative levels of toxic 

minerals in foods is greatly lacking and is questionable in accuracy as determined by AAS 

since sample dissolution by ashing techniques may cause chemical interferences and thus 

inadequate data on minerals of toxicological importance. X-ray fluorescence by non-

destructive analysis can be used to directly analyze foods for accurate mineral content. 

The second advantage is that XRF, through its multielement capabilities, can be used to 

screen for high levels of minerals without relying on a preconceived hypothesis to 

determine the critical elements of determination. 

Eating habits in the U.S. have changed dramatically since the turn of the century. 

Changes in per capita consumption rates of specific food categories could result in a 

change in the total intake of trace minerals. With the awareness that specific human 

diseases are induced by high levels of certain trace minerals, it becomes of major public 

health importance to know not only the mineral level but the maximum level of the mineral 

Table 5 - Comparison of x-ray fluorescence (XRF) aluminum measurements 
with National Bureau of Standards (NBS)-certified concentrations 

Aluminum, ug/g 

Sample No. obs. XRFa NBSb 

Tomato leaves 16 
(SRM 1573) 

Pine needles 16 
(SRM 1575) 

1037 12()()c 
194 

600 545 
40.7 30 

aXRF means and standard deviations 
bNBS means and standard deviations 
cNon-certified value 
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exposure a person can have without risk of disease. Also, the concept of a critical 

concentration of metal has very important implications with regards to establishing 

maximum levels that human populations may be exposed to with some margin of safety. 

Maximum dietary intake estimates 

Excessive exposure to trace metals has been associated with various diseases in 

humans, and several potential at-risk groups have been identified that would benefit from 

knowledge of levels of those minerals found in foods that are causally implicated in 

disease associated with high levels of exposure. Before the dietary intake of any chemical 

can be estimated, it is essential to know the weight of the diet consumed and the 

concentration of the chemical in the diet as well as the daily percentage of the intake of that 

particular food group or item. 

An extreme consumption may be defmed once the average weight of the adult diet 

is known and a maximum intake of the food group is estimated. Some individuals may 

have consistently higher intakes of toxic minerals because they have atypical dietary 

habits. Food frequency questionaires have indicated a high of 40% of total diet comprised 

of fast food items for some segments of the population (Nielson, 1985). A hypothetical 

diet may be designed for a person who is considered to have the highest intake of the food 

group and therefore a high intake of food contaminants. The concentrations of the 

contaminant in the diet may be determined by the analysis of individuals foods or by the 

analyses of food groups comprising like foods, e.g., processed fast foods. 

The weight of adult diets used to estimate contaminant intakes in various countries 

usually lies between 1500 and 3500g; this refers to the weight of food and beverages 

consumed daily (Sherlock, 1984). Usually intake is estimated assuming a high ingestion 

of the food and multiplying this by maximum dietary exposure of the mineral in the food. 

The accuracy of the analyses of the diets and the limits of determination of the analytical 

methodology are critical if intakes are to be reliably determined. 
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Cadmium exposure 

If the limit of determination for Cd were 0.05 ug/g and findings at or below this 

level were considered to be 0.05 ug/g for the purpose of estimation, then the estimated 

range of daily intake from fast foods might be 0.05 ug/g (maximum dietary exposure) x 

1500g (minimum weight of adult diet) x .40 (maximum percentage of diet composed of 

fast foods)= 30ug minimum dietary exposure from diets composed of 40% fast foods. 

The maximum dietary exposure would then be calculated as 0.05 ug/g (maximum dietary 

exposure) x 3500g (maximum weight of adult diet) x .40 (maximum percentage of diet 

composed of fast foods) = 70ug maximum dietary exposure from diets composed of 40% 

fast foods. The lower limit of determination for Cd by ICP is 0.05 ug/g. The WHO/FAO 

Joint Expert Committee on Food Additives has recommended a provisional daily intake of 

60-70 ug Cd/day (Sherlock, 1984). The results for fast foods show no findings of values 

over 0.05 ug/g for Cd. Therefore, based on average daily intake (ADI) and maximum 

provisional limits, Cd appears to be without risk as a component in fast foods. The 

abbreviation ADI used in Fig. 5 indicates the average intake of Cd in the U.S and should 

not be confused with allowable daily intake, also abbreviated ADI, which is commonly 

used in toxicology literature. As Fig. 5 indicates, 200-300 ug Cd/day would be required 

to induce toxicity. There is, however, a clear need for monitoring of Cd in food since Cd 

is a toxic mineral at high levels and is related to several diseases including severe renal 

tubular damage. 

Aluminum exposure 

For Al, recent evidence points to consumption of 20-30 mg/day in the normal diet 

(Greger, 1988b). Using the estimate of 1500-3500g as the weight of adult diets per day, 

we would calculate average foods to contain 5.7-20 ug/g AI. Much higher values were 

obtained by XRF for Al in fast foods, as indicated in Appendix 1, Table 7. These higher 

values might be anticipated since aluminum is a major component of baking powder 
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Figure 5. Maximum levels of cadmium exposure in a diet composed of 40% 
fast foods/day as compared to average daily intake (ADI), provisional tolerable 
daily intake (PTDI), and levels of toxicity. 
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(23,000 ug/g), and foods such as pizza, hamburger, burritos, donuts, and rolls are 

prepared with baking powder as an ingredient (Table 6) (Greger, 1988a). Baked goods 

prepared with chemical leavening agents and certain processed cheeses are the foods that 

contribute the greatest amounts of AI to diets of Americans (Greger, 1988b). Other 

possible sources might be in AI cookware and storage bins typically used in fast food 

restaurants. Foods stored or cooked in AI pans, trays, or foil accumuate some AI 

(Greger, 1988b). The variation of Al content in similar foods observed in Table 7 may be 

explained by the variable degree of storage in AI bins or by the variation in amounts of 

baking powder used as a cooking ingredient. 

To calculate maximum AI exposure from fast foods, we would use the formula 

previously used for Cd. The highest level of AI detected was 583 ug/g in the 228 fast 

foods investigated. Other values are indicated in Appendix 1, Table 7. Using a range of 

1500-3500g as the weight of adult diets and 40% as the maximum intake of diet 

consumed as fast foods, we would estimate a range of 320-816mg as the maximum daily 

exposure of Al consumed from fast foods. 

This range of exposure is well above the range of consumption in the normal diet 

(Fig. 6). Systemic toxicity would be expected in the range of 2000-3000 mg Allday. 

With the ever-increasing knowledge of involvement of A1 in dialysis encephalopathy and 

possibly Alzheimer's progression, those at-risk patients should be wary of this high 

source of AI and favor low AI foods such as grains, fruits, and vegetables (Greger, 

1988a). Sensitive individuals, i.e. those on dialysis treatment for impaired kidney 

function, are already receiving 2000-4000 mg Al/dialysis treatment. Other at-risk groups 

would include ulcer patients who are receiving 840-5000mg AI and 126-728mg AI daily 

doses in antacids and buffered analgesics (Greger, 1988b). These patients may suffer 

long-term consequences from high dietary intakes of AI since they are chronically 

receiving potentially toxic daily doses phannacologically. 
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Table 6 - Summary of toxic mineral levels in each fast food type 
------------------------------------------------------------------------------------------------------
Food type No. Ave. Se As AI Cd 

obs. size (g) ug/g ug/g ug/g uglg 
------------------------------------------------------------------------------------------------------
Baked beans 2 361 nda ndb ndc ndd 
Chili 2 230 nd nd 184.5e(1)f nd 
Chef salad 8 327 nd nd 439.2 (1) nd 
Clam chowder 2 285 nd 0.59 (2) 272.0 (2) nd 
Garden salad 5 245 nd nd 228.0 (1) nd 
Potato salad 5 316 nd nd nd nd 
Cheese pizza 8 220 0.89 (3) nd 162.4 (4) nd 
Combo pizza 15 276 0.79 (4) nd 139.4 (13) nd 
Bean burrito 4 221 nd nd 150.8 (1) nd 
Combo burrito 8 237 nd nd 212.0 (6) nd 
Nachos 5 166 nd nd nd nd 
Taco 13 87 nd nd 265.5 (1) nd 
Chicken nuggets 7 114 nd nd 126.0 (1) nd 
Chicken&biscuit 3 246 nd nd 299.8 (2) nd 
Fish fillet 5 124 0.44 (2) 3.33 (5) 116.9 (2) nd 
Fish&chips 1 87 nd 0.95 (1) nd nd 
Orange juice 4 188 nd nd nd nd 
Strawberry shake 4 345 nd nd 174.1 (1) nd 
Onion rings 4 92 nd nd nd nd 
Hash browns 2 52 nd nd nd nd 
French fries 5 92 nd nd nd nd 
Apple pie 4 100 nd nd 177.5 (1) nd 
Choc. chip cookie 5 65 nd nd 133.4 (2) nd 
Choc. sundae 3 179 nd nd nd nd 
Ice cream cone 4 123 nd nd nd nd 
Donut 11 112 nd nd 155.5 (2) nd 
Cinnamon roll 7 161 0.44 (1) nd 218.7 (4) nd 
Country breakfast 3 297 0.46 (1) nd 346.5 (1) nd 
EggMcMuffm 1 143 0.66 (1) nd nd nd 
Sausage biscuit 4 160 0.71 (2) nd 443.0 (2) nd 
Hamburger 14 109 nd nd 164.6 (13) nd 
Deluxe burger 15 242 nd nd 138.8 (10) nd 
Hot dog 6 108 nd nd 145.5 (1) nd 
Classic dog 4 176 nd nd 240.7 (1) nd 
Roast beef sand. 10 172 nd nd 196.0 (2) nd 
Club sandwich 1 236 0.45 (2) nd 189.3 (4) nd 
Chicken sandwich 5 197 nd nd 185.6 (4) nd 
Fish sandwich 7 175 0.51 (2) 1.43 (5) 139.2 (3) nd 
-------------------------------------------------------------------------------------------------------
aAll measurements below detection limit of 0.4 ug/g Se by x-ray flourescence 
hAil measurements below detection limit of 0.4 ug/g As by x-ray flourescence 
cAll measurements below detection limit of 90 uglg AI by x-ray flourescence 
dAil measurements below detection limit of 0.50 ug/g Cd by inductively coupled plasma 
eA verage of measurements above detection limit 

fNumber of detectable measurements from total observations 
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Figure 6. Maximum levels of aluminum exposure in a diet composed of 40% 
fast foods/day as compared to average daily intake (ADI) and levels of toxicity. 
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Selenium exposure 

Selenium is the only mineral discussed that has a known physiological role and 

thus an RDA. The RDA for Se has been established as 50-200 ug/day (Lane et al., 

1983). The human dietary requirement for Se is in the range of 0.1 to 0.2 ug!g 

(Levander, 197 5). Of the 228 fast food items studied, pizza showed the maximum Se 

content, particularly those purchased from Peter Piper (Table 7). Possible explanations 

for variation in Se content of similar foods may be in the source of flour used in cooking 

since grains and cereals contain variable amounts of Se depending on where they are 

grown (Lo and Sandi, 1980). Appendix 1,Table 7 shows values ranging from 0.43 to 

0.91 ug/g Se. All other foods investigated may be assumed to contain between 0.0 and 

0.40 ug!g Se (limit of determination by XRF). 

The estimated daily intake range from fast foods is calculated as 0.91ug/g x 1500g 

x 40% = 546 ug Se/day as the lower limit and 0.91ug/g x 3500g x 40% = 1274ug as the 

upper limit of exposure. It is doubtful that fast foods as a whole could be considered 

harmful from the standpoint of Se content since such a small range of the fast food items 

fall above the low detection limit. As Fig. 7 indicates, mild toxicity would not be 

expected until levels of 2000-3000 ug Se/day were regularly consumed in the diet. It is 

even possible to include the recommendation that those foods with high Se content be 

included regularly in the diet based on experimental data that indicate lower cancer 

mortality rates with increased Se intakes over an entire lifetime (Miyamato et al., 1987). 

Arsenic exposure 

Average daily intake of As is estimated as 20-30 ug/day, with most foods 

containing <0.3 ug/g (Anke, 1986). Of the fast food items studied, maximum As values 

were consistently found to be above the detection limit in fish products (Table 6). This 

was expected since foods of marine origin are much richer in As than other foods (Anke, 

1986). Values ranged from 0.51 to 7.32 ug/g as shown in Appendix 1, Table 7. All 
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Figure 7. Maximum levels of selenium exposure in a diet composed of 40% 
fast foods/day as compared to recommended dietary allowance (RDA) and 
levels of toxicity. 
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others fell below the detection limit of 0.40 ug/g by XRF. 

At the maximum level of 7.32 ug/g and average daily food intake of 1500g, we 

would calculate a daily intake of7.32 ug/g x 1500g x .40 = 4.4mg as the minimum level 

of As exposure and 7.32 ug/g x 3500g x .40 = 10.2mg as the maximum level of As 

exposure from fast foods. This level of As is unlikely since the majority of the foods 

analyzed fell into the 0.0 to 0.40 ug/g range, and only the limited category of fish 

products ranged above detection limits by XRF. Furthermore, toxicity is unlikely since 

seafood contains As in the form of organoarsenic compounds, which are nontoxic and are 

not metabolized to toxic forms in the human body (Anke, 1986). Fig. 8 indicates that 

levels of 18-42 mg As/day would be required for mild toxicity, and levels of 70-180mg 

would be required for acute toxicity (Goyer, 1986). Those people at high risk of 

developing skin cancer might consider reducing As exposure via the diet since increasing 

evidence points to As as a human carcinogen, particularly of the skin. 

Possible toxicity from other minerals 

It should be mentioned that the minerals, Fe, Mn, Cu, and Zn could be considered 

toxic at extreme levels of exposure, although they are not accorded priority as toxic 

minerals by the FDA (Jelinek and Comeliussen, 1977). The main purpose of measuring 

these levels in fast foods was to use the data as a comparative tool between AAS and XRF 

to validate XRF as a method of mineral analysis. 

Acute Fe intoxication is rare. Doses of 5g have been shown to result in metabolic 

alterations affecting multiple organ systems. The lethal dose of ferrous sulfate in adults is 

12g (Wallack and Winkelstein, 1974). At the average level of 32 ug/g Fe in fast foods 

(Appendix 1, Table 7), maximum estimated exposure would be 0.1 g Fe/day. Hemo

chromatosis is a known form of liver disease associated with increased Fe stores in 

patients with cirrhosis (Grace, 1973). When the Fe burden exceeds the body's capacity 

for safe storage, the result is widespread damage to the liver, heart, joints, pancreas, an.d 
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Figure 8. Maximum levels of arsenic exposure in a diet composed of 40% 
fast foods/day as compared to average daily intake (ADI) and levels of toxicity. 
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other endocrine organs. It is estimated that 0.25-0.5% of persons in various populations 

have the genetically determined form of iron overloading called hereditary hemo

chromatosis (Britton et al., 1987). 

Dietary Mn is of low toxicity to animals, and levels greater than 1000 ug/g are 

needed to produce even slightly toxic signs. The average level of Mn found in fast foods 

is 5 ug/g (Appendix 1, Table 7). Manganese toxicity has not been observed as a 

consequence of dietary intake in humans (Levander, 1988). 

The lethal dose of Cu in humans is thought to be in the range of 3.5 to 35g, with 

excesses of 250mg considered emetic (Solomons, 1988). Toxicological considerations 

are important in terms of accidental acute exposures or industrial exposure (Goyer, 1986). 

Daily consumption of 10-35mg of Cu is considered to be safe indefinitely (Solomons, 

1988). At an average level of 1.8 ug/g (Appendix 1, Table 7), fast foods contribute a 

maximum of 6.5mg Cu to the diet. 

Long-term ingestion of 150 mg Zn/day predisposes humans to anemia, and copper 

deficiency with 1.6g is considered the lethal dose (Solomons, 1988). Fast foods contain 

an average of 24 ug/g Zn (Appendix 1, Table 7) and contributes a maximum of 84mg Zn 

to the diet at the maximum level of exposure. 
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CONCLUSION 

X-ray fluorescence was established to be an accurate, reliable method for non

destructive multielement analysis of biological samples via detenninations of Mn, Fe, Cu, 

and Zn in a variety of food materials and standard reference materials and by comparison 

with independent detenninations by AAS. 

In general, the concentrations of toxic minerals in fast foods are not a hazard to the 

average consumer. There are, however, certain segments of the population who are at 

increased risk for toxic mineral overload. The geriatric patient with renal impairment 

would be prudent to restrict excess sources of AI intake commonly seen in fast foods 

since AI has been associated with progression of dialysis encephalopathy and Alzheimer's 

disease, and the major route of AI excretion is missing in these patients. 

The concentrations of Cd found in fast foods were low as a whole. This 

knowledge is important because of the potential for Cd accumulation in the kidney over a 

lifetime, resulting in severe renal tubular failure. Caution should be exercised to lower the 

exposure to this mineral in the diet to minimize body burden in high-risk groups. 

Arsenic is not believed to pose a hazard since most foods contain the mineral in a 

nontoxic form, and the majority of fast foods contained arsenic at a level below detection 

limits. The role of As in the development of skin cancers should be considered when 

selecting dietary materials known to be high in As, such as seafood 

The human dietary requirement for Se appears to be easily met with the inclusion 

of fast foods in the diet without risk of toxicity to the consumer. 

For the future, food toxicologists should plan to continue to measure toxic 

minerals in total diet studies to determine whether there are any trends in levels in the 

average U.S . diet and to follow up on any unusually high findings. Continued 

surveillance for these minerals in the food supply is necessary to assure optimum food 

safety. 
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Table 7 - Quantitative measurements of minerals by atomic absorption (AA), x-ray flourescence (XRF), and 
inductively coupled plasma (ICP) (ug/g in dry matter). 

--------------------------------------------------------------------------------------------------------------------------------------------------------
Food Retail Serving DM Se As AI Cd Zn Zn Cu Cu Mn Mn Fe Fe 

Outlet size (g) % XRF XRF XRF ICP AA XRF AA XRF AA XRF AA XRF 
--------------------------------------------------------------------------------------------------------------------------------------------------------
Baked beans KFC 468 48.57 nda ndb ndc ndd 25.1 25.4 3.0 2.8 9.0 9.1 60.8 59.7 BBQ beans Smith's 254 50.41 nd nd nd nd 21.0 25.1 4.2 3.4 10.3 9.5 54.7 54.1 Chili Naugle's 129 33.73 nd nd 184 nd 70.7 69.7 1.4 1.7 4.6 4.6 49.0 61.5 Chili Blimipie's 332 51.73 nd nd nd nd 28.6 30.7 3.6 3.0 8.2 8.6 41.0 51.4 Chef salad Wendy's 333 25.69 nd nd nd nd 57.9 52.4 1.2 1.1 2.3 2.7 20.1 19.2 
Chef salad Wendy's 359 18.99 nd nd nd nd 44.1 40.5 nd nde 4.8 4.4 41.0 37.8 Chef salad Wendy's 338 25.32 nd nd nd nd 40.2 43.2 nd nd 3.9 3.5 22.5 22.0 
Chef salad Wendy's 408 24.95 nd nd nd nd 35.6 37.9 nd nd nd ndf 31.7 28.1 Chef salad Hardees 381 40.95 nd nd nd nd 41.8 41.5 nd nd 6.4 6.6 22.7 22.2 Chef salad Burger King 264 34.66 nd nd nd nd 48.3 45.4 1.8 1.6 4.9 5.0 27.6 30.3 Chef salad Arby's 266 14.21 nd nd 439 nd 56.1 50.8 1.6 2.2 nd nd 223 198 Chef salad McDonald's 270 52.79 nd nd nd nd 28.9 29.7 nd nd nd nd 13.2 15.2 

Chicken soup Smith's 202 8.64 nd nd nd nd 10.3 12.8 nd nd 6.7 5.9 21.2 33.1 Clam chowder Skipper's 318 41.20 nd nd 272 nd 45.4 49.7 nd nd 4.0 4.2 28.5 28.5 Clam chowder Blimpie's 252 40.43 nd 0.7 nd nd 13.9 15.6 nd nd nd nd 15.2 11.5 

Garden salad McDonald's 184 50.23 nd 0.5 nd nd 20.3 22.3 nd nd 5.1 4.6 19.5 19.4 Garden salad Hardees 337 50.42 nd nd nd nd 54.5 46.7 nd nd 4.4 3.9 12.6 15.9 Garden salad Burger King 241 22.95 nd nd nd nd 47.4 42.6 nd nd 5.8 5.0 20.4 22.4 Garden salad Wendy's 288 9.16 nd nd nd nd 22.5 23.3 4.8 4.9 9.4 13.3 36.9 37.3 Garden salad Arby's 177 9.17 nd nd 228 nd 22.1 27.5 1.5 1.5 4.9 5.6 22.0 35.2 

(continued) 
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Table 7 (continued) 

--------------------------------------------------------------------------------------------------------------------------------------------------------
Food Retail Serving OM Se As Al Cd Zn Zn Cu Cu Mn Mn Fe Fe 

outlet size (g) % XRF XRF XRF ICP AA XRF AA XRF AA XRF AA XRF 
--------------------------------------------------------------------------------------------------------------------------------------------------------

Potato salad KFC 432 30.77 nd nd nd nd 7.9 8.3 nd nd nd nd 8.7 11.3 Potato salad Smith's 257 41.30 nd nd nd nd 9.9 10.2 nd nd 5.9 5.7 21.4 23.2 Potato salad Smith's 245 31.71 nd nd nd nd 6.9 8.7 0.9 1.0 5.4 5.3 16.4 15.5 Potato salad Blimpie's 211 34.65 nd nd nd nd 10.8 10.9 nd nd 3.2 3.2 16.6 15.9 Potato salad Albertson's 435 34.47 nd nd nd nd 8.2 8.5 nd nd 2.5 2.9 13.7 13.2 

Cheese pizza Peter Piper 176 54.61 0.8 nd 165 nd 24.6 23.7 1.5 1.3 6.9 6.6 46.6 35.6 Cheese pizza Peter Piper 187 61.30 0.9 nd nd nd 28.0 20.9 nd nd 6.9 6.7 45.4 46.3 Cheese pizza Peter Piper 168 55.91 0.9 nd nd nd 23.9 23.9 1.7 1.1 5.9 5.5 37.1 36.9 Cheese pizza Pizza Hut 228 59.20 nd nd nd nd 35.3 32.9 nd nd 2.6 2.6 24.0 27.7 Cheese pizza Godfather's 260 57.83 nd nd nd nd 27.8 27.6 nd nd 5.3 5.5 43.6 33.9 Cheese pizza Godfather's 261 59.59 nd nd 191 nd 25.9 24.6 nd nd 5.1 4.6 37.9 39.1 Cheese pizza L.Caeser's 217 59.67 nd nd 113 nd 22.7 22.7 1.1 0.9 4.8 5.2 29.3 27.6 Cheese pizza Domino's 263 56.15 nd nd 180 nd 24.1 16.7 nd nd 4.1 4.9 40.9 41.7 

Combo pizza L.Caeser's 283 54.88 nd nd 119 nd 26.1 26.3 1.0 0.9 7.3 6.3 31.6 31.9 Combo pizza L.Caeser's 262 58.73 0.6 nd 122 nd 23.2 26.2 1.3 0.9 5.3 5.3 31.6 32.4 Combo pizza L.Ceaser's 268 49.53 nd nd 171 nd 24.8 24.5 1.1 1.6 7.0 6.7 38.8 40.1 Combo pizza Godfather's 287 51.13 nd nd 137 nd 33.5 33.0 1.7 1.8 5.0 5.4 50.5 38.6 Combo pizza Godfather's 261 62.46 nd nd nd nd 35.0 31.8 1.9 1.6 5.8 6.6 37.9 38.4 Combo pizza Domino's 360 49.15 nd nd 129 nd 27.1 27.9 1.4 1.7 5.9 5.4 42.4 36.1 Combo pizza Domino's 412 49.10 nd nd 205 nd 31.1 31.4 1.6 1.2 4.1 4.8 34.9 35.1 Combo pizza Pizza Hut 242 54.62 nd nd 125 nd 27.2 29.9 1.6 0.9 5.7 5.0 36.1 35.1 Combo pizza Godfather's 342 53.98 nd nd 117 nd 30.6 33.7 1.4 1.5 5.0 5.8 41.0 40.5 
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Table 7 (continued) 
--------------------------------------------------------------------------------------------------------------------------------------------------------
Food Retail Serving DM Se As AI Cd Zn Zn Cu Cu Mn Mn Fe Fe 

outlet size (g) % XRF XRF XRF JCP AA XRF AA XRF AA XRF AA XRF 
--------------------------------------------------------------------------------------------------------------------------------------------------------

Special pizza Peter Piper 211 57.11 0.9 nd nd nd 30.7 25.8 1.9 1.5 7.5 7.6 85.5 86.1 
Special pizza Peter Piper 225 48.80 0.8 nd 142 nd 25.2 28.6 2.9 2.1 6.8 6.2 36.9 46.2 
Special pizza Peter Piper 268 54.73 0.9 nd 116 nd 28.6 28.3 1.7 1.5 7.5 7.2 37.7 36.7 
Supreme pizza Pizza Hut 246 57.80 nd nd 148 nd 45 .8 42.2 1.2 1.0 5.3 5.0 37.3 40.2 
Supreme pizza Pizza Hut 262 55.53 nd nd 138 nd 23.3 30.9 nd nd 4.7 4.0 29.9 36.5 
Supreme pizza Pizza Hut 218 63.20 nd nd 131 nd 25.5 24.4 nd nd 4.6 4.4 42.2 32.9 

Bean burrito Taco Bell 185 45.40 nd nd nd nd 16.5 17.9 2.8 2.6 6.5 6.8 42.5 41.2 
Bean burrito Taco Bell 182 48.96 nd nd 151 nd 24.5 21.6 2.3 2.6 7.4 7.5 54.2 46.1 
Bean burrito Naugle's 255 47.99 nd nd nd nd 23.6 27.3 4.0 3.2 8.8 8.0 42.7 40.7 
Bean burrito Naugle's 263 55.76 nd nd nd nd 19.0 20.1 2.9 2.4 10 .. 18.2 37.8 46.4 
Bean burrito Lynn Wilson 150 49.35 nd nd nd nd 23.9 17.9 nd nd 6.2 6.6 39.4 32.8 

Combo burrito Circle K 275 52.59 nd nd 134 nd 23.2 25.2 1.4 0.9 6.1 6.4 42.4 38.2 
Combo burrito Naugle's 279 53.82 nd nd 190 nd 43.6 33.4 1.9 1.8 6.2 6.0 37.3 43.6 
Combo burrito Naugle's 262 47.23 nd nd 208 nd 43.2 42.6 1.9 1.6 6.5 6.9 49.7 43.4 
Combo burrito Taco Time 227 48.83 nd nd 195 nd 25.7 27.3 2.8 3.1 9.3 9.1 39.3 39.1 
Combo burrito Taco Time 275 46.69 nd nd 210 nd 29.5 36.6 4.9 4.0 9.8 9.2 56.9 51.2 
Combo burrito Taco Time 222 44.15 nd nd nd nd 39.9 38.1 3.2 3.8 10.910.4 38.9 44.6 
Combo burrito Taco Time 213 40.87 nd nd 336 nd 34.6 36.4 2.6 2.8 8.8 8.9 48.2 51.6 

Nachos/cheese Naugle's 121 82.80 nd nd nd nd 28.7 30.5 nd nd 3.6 3.3 10.4 14.8 
Nachos/cheese Seven 11 189 67.86 nd nd nd nd 15.4 15.3 nd nd 3.4 3.8 17.5 13.9 
Nachos/cheese Taco Bell 104 49.66 nd nd nd nd 18.0 18.8 1.7 0.8 4.2 4.9 12.6 11.0 
Nachos/cheese Kmart 245 50.85 nd nd nd nd 24.4 18.7 nd nd nd nd 6.0 8.7 
Nachos/cheese Taco Time 171 58.23 nd nd nd nd 33.H 35.9 nd nd 3.4 3.8 17.1 15.6 
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Table 7 (continued) 

--------------------------------------------------------------------------------------------------------------------------------------------------------
Food Retail Serving DM Se As AI Cd Zn Zn Cu Cu Mn Mn Fe Fe 

outlet size (g) % XRF XRF XRF ICP AA XRF AA XRF AA XRF AA XRF 
--------------------------------------------------------------------------------------------------------------------------------------------------------

Taco Taco Bell 82 43.12 nd nd nd nd 61.1 60.8 nd nd 4.9 4.9 31.4 35.2 Taco Taco Bell 75 46.40 nd nd nd nd 77.0 72.8 nd nd 2.7 2.8 41.5 45.7 Taco Taco Bell 66 45.47 nd nd nd nd 56.7 56.2 nd nd 2.8 3.4 39.3 30.1 Taco Taco Bell 55 39.95 nd nd nd nd 65.5 60.3 1.8 1.1 3.6 3.5 34.9 33.3 

Taco Taco Time 111 37.85 nd nd nd nd 56.4 54.7 3.2 3.0 8.2 8.3 37.7 39.7 Taco Taco Time 84 34.52 nd nd 265 nd 43.4 47.6 3.1 2.8 9.0 9.5 31.2 32.4 Taco Taco Tune 63 38.10 nd nd nd nd 42.9 46.2 3.2 2.7 8.8 8.1 28.7 37.3 Taco Taco Tune 98 45.32 nd nd nd nd 51.5 53.7 3.6 2.9 9.2 8.0 40.2 37.8 

Taco Naugle's 51 51.70 nd nd nd nd 65.9 51.4 nd nd 4.7 4.5 32.1 35.1 Taco Naugle's 100 41.20 nd nd nd nd 61.0 59.5 nd nd 4.7 4.7 34.8 36.8 Taco Naugle's 82 45.14 nd nd nd nd 63.5 62.3 nd nd 3.8 3.6 36.4 37.8 Taco Naugle's 95 40.11 nd nd nd nd 66.7 65.9 nd nd 4.5 4.2 28.9 30.4 Taco Kman 173 31.91 nd nd nd nd 71.4 70.0 0.9 1.1 3.6 3.1 45.9 50.2 

Ch. nuggets KFC 106 51.92 nd nd nd nd 18.7 16.8 nd nd nd nd 15.2 12.0 Ch. nuggets KFC 144 55.74 nd nd nd nd 20.3 23.2 nd nd 2.3 2.9 14.3 15.9 Ch. nuggets KFC 148 49.88 nd nd nd nd 17.8 18.4 nd nd nd nd 13.6 11.9 Ch. nuggets McDonald's 154 54.93 nd nd 126 nd 15.4 13.6 nd nd 2.4 2.3 13.2 13.2 Ch. nuggets Wendy's 87 56.03 nd nd nd nd 9.7 8.6 nd nd nd nd 17.3 15.3 Ch. nuggets Dairy Queen 74 60.94 nd nd nd nd 6.5 11.0 nd nd 3.2 3.6 77.2 65.7 Ch. nuggets Burger King 86 47.29 nd nd nd nd 19.4 12.5 nd nd 2.5 2.7 12.4 13.1 Chicken biscuit KFC 267 73.15 nd nd nd nd 21.1 22.9 nd nd nd nd 18.7 13.6 Chicken biscuit KFC 199 75.31 nd nd 230 nd 18.7 20.2 nd nd nd nd 20.8 20.8 Chicken biscuit KFC 274 80.01 nd nd 369 nd 13.7 20.1 nd nd 3.5 3.4 18.9 18.9 
(continued) 
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Table 7 (continued) 
--------------------------------------------------------------------------------------------------------------------------------------------------------
Food Retail Serving DM Se As AI Cd Zn Zn Cu Cu Mn Mn Fe Fe 

outlet size (g) % XRF XRF XRF ICP M XRF M XRFM XRF M XRF 
--------------------------------------------------------------------------------------------------------------------------------------------------------

Fish fillet Skipper's 129 47.50 nd 1.9 nd nd 11.5 9.6 nd nd nd nd 16.4 12.4 
Fish fillet Skipper's 123 50.72 0.5 2.5 nd nd 11.2 10.8 nd nd nd nd 11.1 13.1 
Fish fillet Skipper's 158 46.35 nd 1.9 134 nd 12.3 9.5 nd nd 2.4 2.7 15.3 14.4 
Fish fillet Orange Julius 79 50.22 nd 7.3 99 nd 11.1 9.4 nd nd 3.2 3.1 8.0 8.5 
Fish fillet KFC 133 52.82 0.4 2.9 nd nd 10.9 10.7 nd nd nd nd 9.6 8.1 
Fish&chips A&W 87 76.11 nd 0.9 nd nd 11.0 9.5 nd nd 4.6 4.6 16.2 14.5 

Orange juice Naugle's 186 10.43 nd nd nd nd 2.7 4.2 2.8 2.2 nd nd 17.3 10.1 
Orange juice McDonald's 200 12.05 nd nd nd nd 2.8 3.4 2.9 2.0 nd nd 9.3 9.9 
Orange juice Wendy's 180 17.13 nd nd nd nd 3.5 3.7 2.0 2.1 nd nd 7.9 11.4 
Orange juice Burger King 186 11.27 nd nd nd nd 3.4 3.9 1.5 1.4 nd nd 17.2 15.0 
Orange julius Orange Julius 381 8.95 nd nd 144 nd 5.4 2.9 nd nd nd nd 4.7 3.7 

Straw. shake Hardees 346 7.65 nd nd nd nd 11.9 13.2 nd nd nd nd 5.4 3.5 
Straw. shake McDonald's 309 22.06 nd nd 174 nd 14.5 13.8 nd nd nd nd 4.8 6.6 
Straw. shake Wendy's 328 28.05 nd nd nd nd 10.0 12.3 nd nd nd nd 10.4 10.4 
Straw. shake Dairy Queen 397 17.19 nd nd nd nd 16.9 13.9 nd nd nd nd 17.3 17.6 

Onion rings KFC 88 69.15 nd nd nd nd 4.6 6.4 0.9 1.3 2.9 3.2 18.7 11.8 
Onion rings Burger King 59 70.67 nd nd nd nd 9.8 7.4 nd nd 4.2 5.2 14.3 13.7 
Onion rings Arctic Circle 125 54.73 nd nd nd nd 7.7 7.9 nd nd 4.8 5.9 13.6 12.8 
Onion rings Dairy Queen 99 62.27 nd nd nd nd 9.9 8.3 nd nd 6.9 6.9 49.1 58.7 

Hash browns McDonald's 50 52.96 nd nd nd nd 9.3 9.6 nd nd 3.5 3.9 17.1 16.4 
Hash browns Burger King 55 77.72 nd nd nd nd 9.2 6.7 nd nd nd nd 10.6 10.7 
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Table 7 (continued) 
--------------------------------------------------------------------------------------------------------------------------------------------------------
Food Retail Serving DM Se As Al Cd Zn Zn Cu Cu Mn Mn Fe Fe 

outlet size (g) % XRF XRF XRF ICP M XRF M XRFM XRF M XRF 
--------------------------------------------------------------------------------------------------------------------------------------------------------

French fries McDonald's 77 69.82 nd nd nd nd 6.5 7.2 1.5 1.6 5.6 5.2 20.7 17.3 
French fries Hardees 112 68.98 nd nd nd nd 7.1 7.4 1.4 1.9 4.8 4.3 12.2 11.5 
French fries Arctic Circle 117 79.16 nd nd nd nd 9.0 6.9 nd nd 2.8 2.7 15.2 14.4 
French fries Wendy's 85 58.05 nd nd nd nd 9.1 7.2 nd nd 5.1 5.1 21.9 16.5 
French fries Burger King 71 56.72 nd nd nd nd 9.9 10.3 nd nd 3.5 3.5 23 .7 20.8 

Apple pie Burger King 117 97.36 nd nd 177 nd 3.8 3.4 nd nd 2.5 2.6 5.9 6.6 
Apple pie McDonald's 92 92.15 nd nd nd nd 3.4 3.9 nd nd nd nd 7.6 7.0 
Apple pie Arby's 93 98.42 nd nd nd nd 6.6 6.2 nd nd 3.3 3.9 37.5 29.0 
Apple pie Hardees 98 99.11 nd nd nd nd 3.8 3.5 nd nd 3.2 2.9 5.9 6.0 

Choc. cookie Seven 11 64 93.75 nd nd nd nd 6.0 8.3 1.3 1.8 4.9 4.9 25.3 21.3 
Choc. cookie Arby's 59 98.70 nd nd nd nd 7.9 7.6 2.0 2.0 5.9 5.6 21.3 19.3 
Choc. cookie Hardees 54 99.52 nd nd nd nd 3.7 5.5 nd nd 4.7 4.0 15.1 15.6 
Choc. cookie McDonald's 64 91.78 nd nd 146 nd 6.4 5.6 1.5 1.3 4.5 5.1 34.7 27.9 
Choc. cookie Grandma's 84 92.96 nd nd 120 nd 3.3 5.2 nd nd 5.7 5.6 33.3 31.6 

Choc. sundae Arctic C 164 29.36 nd nd nd nd 16.2 8.6 nd nd nd nd 12.7 12.3 
Choc. sundae Dairy Queen 157 33.16 nd nd nd nd 12.7 11.9 0.9 0.9 nd nd 21.9 25.1 
Choc. sundae Dairy Queen 218 23.10 nd nd nd nd 12.4 12.2 1.3 1.4 4.1 3.0 22.4 29.3 

Ice cream cone Naugle's 139 27.38 nd nd nd nd 7.9 9.9 nd nd nd nd 6.7 3.6 
Ice cream cone McDonald's 78 38.35 nd nd nd nd 17.5 13.7 nd nd nd nd 7.0 4.7 
Ice cream cone Dairy Queen 159 30.15 nd nd nd nd 19.6 12.2 nd nd nd nd 17.3 21.4 
Ice cream cone Arctic Circle 116 29.29 nd nd nd nd 12.4 11.8 nd nd nd nd 4.7 3.5 
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Table 7 (continued) 
--------------------------------------------------------------------------------------------------------------------------------------------------------
Food Retail Serving DM Se As Al Cd Zn Zn Cu Cu Mn Mn Fe Fe 

outlet size (g) % XRF XRF XRF ICP M XRF M XRFM XRF M XRF 
--------------------------------------------------------------------------------------------------------------------------------------------------------

Cake donut Winchell's 85 77.40 nd nd nd nd 4.8 6.6 nd nd 3.1 4.4 9.1 14.9 
Cake donut Winchell's 51 79.07 nd nd nd nd 7.6 6.6 nd nd 4.4 4.1 22.8 19.2 
Cake donut Winchell's 82 56.57 nd nd nd nd 6.7 6.3 nd nd 3.9 3.9 12.7 17.8 
Glazed donut Winchell's 63 57.13 nd nd nd nd 6.0 7.1 nd nd 3.9 3.4 21.0 23.6 
Glazed donut Winchell's 105 35.52 nd nd 149 nd 3.2 5.8 nd nd 3.7 3.9 11.6 17.7 
Glazed donut Winchell's 79 49.73 nd nd 164 nd 6.6 6.3 nd nd 4.5 4.2 18.4 18.8 

Choc. donut Seven 11 201 47.65 nd nd nd nd 5.0 5.4 nd nd 2.8 2.1 20.1 17.1 
Choc. donut Circle K 209 58.36 nd nd nd nd 13.9 7.1 1.9 1.2 5.2 4.4 27.6 29.7 
Choc. donut Dolly Madison 112 60.02 nd nd nd nd 5.9 8.6 2.4 2.2 4.9 4.6 39.3 31.8 
Choc. donut Dolly Madison 139 75.96 nd nd 153 nd 4.8 5.5 nd nd nd nd 17.1 17.3 

Donut gems Hostess 103 83.46 nd nd nd nd 8.1 8.1 1.6 1.6 5.1 5.3 38.2 33.3 
Danish pastry Albertson's 99 76.65 nd nd nd nd 10.7 9.9 nd nd 3.3 3.2 23.6 18.8 

Cinnamon roll Farmer Jack 153 84.79 nd nd 249 nd 7.9 8.4 nd nd 4.6 4.5 27.6 32.7 
Cinnamon roll Farmer Jack 180 72.54 0.4 nd 243 nd 5.3 8.1 nd nd 6.2 6.1 31.9 35.3 
Cinnamon roll Smith's 220 79.59 nd nd nd nd 6.8 6.6 nd nd 5.2 4.8 32.2 32.4 
Cinnamon roll Smith's 213 71.72 nd nd nd nd 11.5 10.6 1.7 1.5 6.7 7.5 38.2 30.9 
Cinnamon roll Albertson's 110 66.02 nd nd 217 nd 6.6 7.5 nd nd 5.1 5.5 17.4 16.7 
Cinnamon roll Albertson's 154 55.55 nd nd 166 nd 8.6 8.1 nd nd 4.9 5.8 27.3 24.8 

Country brkfst. Hardees 356 58.12 0.5 nd 346 nd 25.0 27.4 nd nd nd nd 38.5 34.8 
Big breakfast McDonald's 294 53.81 nd nd nd nd 28.5 23.4 nd nd 2.4 2.3 38.1 33.8 
Egg McMuffin McDonald's 143 66.26 0.7 nd nd nd 22.5 25.6 nd nd 4.1 3.1 39.3 41.6 
Ham bagel Burger King 201 76.17 0.7 nd nd nd 33.1 30.6 nd nd 3.1 3.4 42.5 36.3 
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Table 7 (continued) 
--------------------------------------------------------------------------------------------------------------------------------------------------------
Food Retail Serving DM Se As AI Cd Zn Zn Cu Cu Mn Mn Fe Fe 

outlet size (g) % XRF XRF XRF ICP AA XRF AA XRF AA XRF AA XRF 
--------------------------------------------------------------------------------------------------------------------------------------------------------

Ham croussant CircleK 124 77.20 0.7 nd 303 nd 20.8 22.9 nd nd 3.8 3.1 39.9 36.3 
Sausage&biscuit CircleK 122 88.19 nd nd nd nd 16.6 14.7 nd nd 3.0 4.5 53.4 43.7 
Sausage&eggs Burger King 241 48.06 nd nd nd nd 20.8 25.1 nd nd 2.4 3.3 34.1 36.9 
Sunrise biscuit Hardees 195 70.93 nd nd 583 nd 19.0 19.6 nd nd nd nd 19.6 25.2 

Hamburger Wendy's 105 50.43 nd nd 148 nd 32.1 34.8 nd nd 3.9 4.5 60.7 58.8 
Hamburger Wendy's 96 47.04 nd nd 145 nd 38.3 38.3 nd nd 4.5 4.3 56.9 51.4 
Hamburger Wendy's 177 48.29 nd nd nd nd 46.8 47.5 nd nd 2.6 3.5 56.9 57.5 
Hamburger McDonald's 107 56.05 nd nd 185 nd 30.7 26.2 nd nd 4.9 4.6 30.7 30.7 
Hamburger McDonald's 102 53.81 nd nd 146 nd 27.8 27.3 nd nd 4.6 4.6 43.0 36.2 
Hamburger Arctic Circle 99 58.94 nd nd 158 nd 31.6 32.0 nd nd 4.1 4.1 45.7 46.8 
Hamburger Arctic Circle 107 61.18 nd nd 165 nd 38.6 37.0 nd nd 3.5 3.4 38.9 42.4 
Hamburger Arctic Circle 100 57.76 nd nd 144 nd 18.1 18.3 nd nd 5.4 5.2 55.6 48.3 
Hamburger Burger King 110 58.84 nd nd 198 nd 34.0 34.6 1.9 1.4 4.2 4.4 51.0 50.7 
Hamburger Burger King 107 57.75 nd nd 158 nd 32.7 30.7 1.4 1.2 4.8 4.7 47.8 43.6 
Hamburger Burger King 107 53.54 nd nd 174 nd 27.7 28.2 nd nd 4.9 4.6 39.4 47.9 
Hamburger Hardees 113 51.79 nd nd 153 nd 31.9 29.2 1.3 1.2 4.0 4.7 57.7 46.5 
Hamburger Hardees 97 55.06 nd nd 133 nd 38.1 31.6 1.6 1.0 5.3 4.9 58.4 46.2 
Hamburger Hardees 105 58.32 nd nd 232 nd 25.6 23.4 nd nd 4.9 5.0 46.9 47.1 

Big classic Wendy's 239 48.43 nd nd 110 nd 33.8 36.7 nd nd 2.4 2.7 45.4 45.4 
Big classic Wendy's 249 36.83 nd nd nd nd 57.7 52.5 1.6 1.4 5.1 4.8 51.4 51.7 
Big classic Wendy's 290 50.43 nd nd 146 nd 29.2 26.6 nd nd 3.7 4.1 44.5 44.2 
Whopper Burger King 309 47.13 nd nd 114 nd 29.2 29.6 1.1 1.1 4.0 3.7 48.8 39.0 
Whopper Burger King 297 59.40 nd nd nd nd 19.5 19.6 1.5 1.5 5.5 5.8 43.9 43.2 
Whopper Burger King 287 47.92 nd nd 134 nd 32.6 34.8 nd nd 2.4 2.9 30.9 38.6 
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Table 7 (continued) 
--------------------------------------------------------------------------------------------------------------------------------------------------------
Food Retail Serving DM Se As Al Cd Zn Zn Cu Cu Mn Mn Fe Fe 

outlet size (g) % XRF XRF XRF ICP AA XRF AA XRF AA XRF AA XRF 
--------------------------------------------------------------------------------------------------------------------------------------------------------

Big deluxe Hardees 240 45.73 nd nd nd nd 32.3 47.1 nd nd 4.9 4.7 47.8 47.2 
Big deluxe Hardees 231 60.96 nd nd nd nd 45.7 43.7 1.6 0.9 5.8 5.9 47.1 44.9 
Big deluxe Hardees 254 40.35 nd nd 116 nd 45.0 47.6 1.7 1.5 3.7 3.5 50.2 52.0 
Big Mac McDonald's 220 57.72 nd nd nd nd 26.9 29.3 nd nd 3.9 3.3 36.8 33.4 
Big Mac McDonald's 209 50.91 nd nd 132 nd 52.1 50.7 nd nd 3.0 3.0 38.6 36.7 
Big Mac McDonald's 199 50.83 nd nd 154 nd 33.4 36.5 nd nd 3.5 3.1 40.2 39.4 
Bounty burger Arctic Circle 214 51.02 nd nd 170 nd 38.8 37.6 nd nd 3.5 4.2 48.0 47.5 
Bounty burger Arctic Circle 194 50.62 nd nd 145 nd 29.0 27.0 1.6 1.1 4.5 4.2 54.2 51.4 
Bounty burger Arctic Circle 202 61.77 nd nd 166 nd 27.6 26.6 nd nd 4.4 4.4 45.3 41.2 

Hotdog Dairy Queen 89 70.82 nd nd nd nd 16.1 21.1 nd nd 2.5 2.9 29.3 31.6 
Hotdog Arctic Circle 145 67.78 nd nd nd nd 22.7 17.4 nd nd 5.0 4.5 33.9 37.2 
Hotdog Seven 11 156 52.25 nd nd nd nd 32.5 31.3 nd nd 4.1 4.2 45.0 45.0 
Hot dog Weinersch. 88 63.30 nd nd nd nd 19.5 21.2 nd nd 5.2 4.6 39.7 40.4 
Hotdog Weinersch. 85 62.43 nd nd nd nd 20.4 20.6 nd nd 3.5 3.5 44.5 40.9 
Hotdog Weinersch. 89 52.63 nd nd 145 nd 22.6 21.6 nd nd 4.5 5.2 49.5 43.4 
Classic dog Weinersch. 173 57.00 nd nd nd nd 31.0 29.7 nd nd 2.9 3.3 36.6 38.7 
Classic dog Weinersch. 207 51.52 nd nd nd nd 46.4 40.4 nd nd 4.2 4.0 35.8 36.9 
Classic dog Weinersch. 182 54.21 nd nd nd nd 30.1 29.4 nd nd 3.0 3.0 45.7 43.7 

Roast beef CircleK 144 49.31 nd nd 241 nd 29.3 33.2 nd nd 7.2 6.3 47.5 42.6 
Roast beef Arby's 162 51.08 nd nd nd nd 48.3 49.8 1.6 1.0 4.4 3.9 57.4 51.6 
Roast beef Arby's 153 52.48 nd nd nd nd 37.9 34.9 nd nd 3.4 3.3 45.8 43.0 
Roast beef Arby's 142 52.57 nd nd 151 nd 38.4 28.3 nd nd 3.3 3.1 43.4 48.9 
Roast beef Hardees 169 45.51 nd nd nd nd 26.8 47.8 nd nd 4.0 4.3 47.4 48.8 
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Table 7 (continued) 
--------------------------------------------------------------------------------------------------------------------------------------------------------
Food Retail Serving OM Se As Al Cd Zn Zn Cu Cu Mn Mn Fe Fe 

outlet size (g) % XRF XRF XRF ICP M XRF M XRFM XRF M XRF 
--------------------------------------------------------------------------------------------------------------------------------------------------------

Beef&swiss Subway 213 47.46 nd nd nd nd 50.9 53.9 nd nd 4.9 4.6 48.5 50.3 
Beef&swiss Arby's 168 46.93 nd nd nd nd 31.7 35.8 nd nd 3.4 3.2 37.6 42.4 
Beef&swiss Arby's 164 49.55 nd nd nd nd 35.6 38.5 nd nd 3.8 3.9 32.5 38.4 
Beef&swiss Arby's 168 47.42 nd nd nd nd 34.4 39.8 0.9 1.0 3.1 3.3 33.3 36.1 
Beef&cheese Seven 11 240 56.89 nd nd nd nd 30.1 33.0 nd nd 4.3 4.2 47.8 51.6 

Sub sandwich Kmart 233 44.54 nd nd nd nd 20.9 18.3 nd nd 4.1 4.8 35.2 39.5 
Italian sub L. Caeser's 275 43.00 0.5 nd nd nd 23.6 29.5 0.6 0.9 5.1 5.8 35.6 34.5 

Best sandwich Blimpie's 245 59.80 0.4 nd 196 nd 20.4 24.0 nd nd 5.2 6.0 49.9 44.7 
Best sandwich Blimpie's 226 43.17 nd nd 149 nd 24.5 21.9 nd nd 4.6 4.5 41.0 39.6 
Best sandwich Blimpie's 272 38.57 nd nd 179 nd 30.0 31.3 1.5 1.6 5.2 5.8 45.0 43.6 
BMT sandwich Subway 203 43.39 nd nd nd nd 26.7 28.1 nd nd 4.7 4.6 32.4 34.4 
BMT sandwich Subway 233 43.16 nd nd nd nd 33.7 30.2 nd nd 4.5 4.6 37.5 37.7 
BMT sandwich Subway 228 38.23 nd nd 233 nd 29.8 26.8 nd nd 3.5 4.6 36.2 33.7 

Club sandwich Blimpie's 249 36.68 nd nd nd nd 24.7 22.8 nd nd 6.2 6.1 46.3 48.1 
Club sandwich Blimpie's 244 43.52 nd nd nd nd 28.7 22.8 nd nd 8.4 7.0 60.8 52.6 
Club sandwich Subway 200 39.83 nd nd nd nd 46.1 40.7 nd nd nd nd 33.7 35.6 
Club sandwich Subway 229 33.85 nd nd nd nd 29.5 33.2 nd nd 4.6 4.9 31.7 35.8 

Chicken sand. Arctic Circle 203 64.05 nd nd nd nd 8.2 9.4 nd nd 4.3 5.3 26.4 32.0 
Chicken sand. Dairy Queen 205 53.03 nd nd 116 nd 9.4 9.8 nd nd 3.9 3.9 39.0 48.5 
Chicken sand. Wendy's 195 49.47 nd nd 134 nd 7.8 10.0 nd nd 5.6 4.5 24.5 27.9 
Chicken sand. Burger King 194 53.80 nd nd 343 nd 13.3 11.6 nd nd 4.3 3.7 20.0 28.0 
Chicken sand. Hardees 190 53.17 nd nd 149 nd 7.2 8.9 nd nd 4.9 4.7 26.4 25.3 

(continued) 0"1 
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Table 7 (continued) 

--------------------------------------------------------------------------------------------------------------------------------------------------------
Food Retail 

outlet 
Serving DM 
size (g) % 

Se As AI Cd Zn Zn Cu Cu Mn Mn Fe Fe 
XRF XRF XRF ICP AA XRF AA XRF AA XRF AA XRF 

--------------------------------------------------------------------------------------------------------------------------------------------------------

Fish sandwich McDonald 138 58.26 0.5 0.9 153 nd 11.3 12.3 nd nd 4.8 4.9 24.2 21.8 Fish sand./cheese Skipper's 182 60.95 nd nd nd nd 16.3 15.9 nd nd 4.2 3.6 18.2 18.9 Fish sand./cheese Skipper's 163 58.93 0.6 0.9 135 nd 19.1 16.3 nd nd nd nd 21.9 28.1 Fish sand./cheese Skipper's 158 52.86 nd nd 129 nd 23.3 28.0 nd nd 2.6 2.5 20.9 22.2 Fish sand./cheese Arctic Circle 176 54.67 nd 3.3 nd nd 8.7 10.0 nd nd 4.2 4.9 28.7 27.2 Fish sand./cheese Hardees 219 53.37 nd 0.6 nd nd 10.6 12.0 nd nd 7.8 8.1 37.8 35.3 Fish sandwich Burger King 195 48.89 nd 1.3 nd nd 8.6 9.0 nd nd 4.1 3.8 20.7 22.9 

Mean 24.6 24.5 1.9 1.8 4.9 4.9 32.6 32.2 

No. samples 228 74 192 228 

Correlation (R2) .97 .91 .94 .97 

Slope .95 .83 .93 .90 

Intercept 1.03 .15 .36 2.8 
-------------------------------------------------------------------------------------------------------------------------------------------------------
aAll measurements below detection limit of 0.40 ug/g Se by XRF 
bAll measurements below detection limit of 0.40 ug/g As by XRF 
cAll measurements below detection limit of90 ug/g AI by XRF 
dAll measurements below detection limit of 0.05 ug/g Cd by ICP 
eAll measurements below detection limit of 0.7 ug/g Cu by XRF 
fAll measurements below detection limit of 0.8 ug/g Mn by XRF 
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