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ABSTRACT 

Fate of ~-Lactoglobulin, a-Lactalbumin, and Casein Proteins in Ultrafiltered Concentrated 

Milk after Ultra-high Temperature Processing 

by 

Mark Christopher Alleyne, Doctor of Philosophy 

Utah State University, 1994 

Major Professor: Dr. Donald J. McMahon 
Department: Nutrition and Food Sciences 

The problem of age gelation in ultra-high temperature (U1IT) sterilized milk 

retentate (ultrafiltered 3x concentrated) is investigated in this work. Transmission electron 

microscopy (1EM), utilizing the microcube encapsulation technique and protocols for 

irnmunolocalization of milk proteins, provides insight into the phenomenon of age gelation 

ofUHT-sterilized, ultrafiltered (UF) milk retentate. Primary antibodies (specific for the 

native as well as the complexed forms of milk proteins) and secondary antibodies 

(conjugated to gold probes) are used to elucidate the positions of the milk proteins in 

various samples of milk from the stage of milking through UHT sterilization and storage 

for 12 months, by which time gelation had occurred. The movement of the milk proteins is 

charted and these data are used to determine the role of the proteins in age gelation of UHT-

sterilized UF milk retentate. 

Heat-denatured ~-lactoglobulin and a-lactalbumin form complexes within the 

serum as well as with the casein components of the micelles. UHT sterilization not only 

denatures ~-lactoglobulin and a-lactalbumin, but catalyzes the reaction of these whey 

proteins and K-casein, leading to the successful formation of the complex. Complexing of 

~-lactoglobulin and K-casein competitively weakens the complex of K-casein to other casein 



X 

fractions of the micelle. This leads to migration of K-casein from the micelle to the serum, 

compromising the role of K-casein in stabilizing the casein proteins within the micellar 

moiety. The time-dependent loss of K-casein from the micelle would expose the calcium­

insoluble micellar <Xsl-casein and ~-casein to the serum calcium. Subsequent to this, some 

<Xsl-Casein and ~-casein are also released from the micelles, and gelation of the milk 

occurs. No information was obtained on location of as2-casein. The release of K-casein 

from the micelles thus apparently represents the critical factor in the phenomenon of age 

gelation in UHT-sterilized milk concentrates. 

(229 pages) 



UHT -Sterilized Milk 
Concentrates 

CHAPTER I 

GENERAL INTRODUCTION 

Advances in the processing and packaging of dairy foods have led to the production 

of milk and other dairy foods that can be stored at room temperature for up to six months 

(Miller, 1985). Ultra-high temperature (UHT) sterilization of milk, in combination with 

aseptic filling techniques and hermetically sealed packaging, have been used for many years 

in some foreign countries to produce shelf-stable milk (McBean and Speckmann, 1988). 

The success of dairy production in the United States requires that more attention be 

given to milk utilization and marketing. The thrust in recent years has been to develop new 

dairy products rather than concentrate on higher milk production. 

More international markets for dairy products could be established if success in 

manufacturing stable products from surplus dairy production could be achieved. This 

would assist in the reduction of surpluses of milk and enhance the competitive position of 

the USA in its production of new and better quality products. The production of such 

products having a long shelf life should be an established priority. In 1981 the FDA 

approved the aseptic packaging procedure used in packaging UliT-sterilized milk for use in 

the USA (McBean and Speckmann, 1988). 

The UliT-sterilized milk project at Utah State University includes the production of 

stable, rehydratable milk concentrates with long shelf life at ambient temperatures. The 

success of this project could assist in making USA dairy products more widely available on 

the world market. Another benefit from this project is that it will furnish information on 

extended shelf life of dairy products. Such information will be especially useful to dairy 

processors interested in entering the expanding food service business, where extension of 

shelf life is important. 



The objectives of this study were: 

1. To develop a more useful method of pre-fixation encapsulation of fluid milk for 

transmission electron microscopy. 

2. To establish an alternative protocol to low-temperature embedding methods for 

immunolocalization studies of milk proteins. 

3. To characterize the nature of immunogold-labeled a.-lactalbumin and ~-

lactoglobulin in dairy products. 

2 

4. To determine the usefulness of developed immunolocalization techniques in relating 

labeling of ~-lactoglobulin to the manufacture processes of dairy products. 

5. To determine the location of a.-lactalbumin, ~-lactoglobulin, a.s1-casein, CX.s2-

casein, ~-casein, and K-casein in milk at various stages from fresh whole milk to 

UF concentrated (3x), UHT-sterilized milk. 

6. To relate location of a-lactalbumin, ~-lactoglobulin, a.s1-casein, a.s2-casein, ~­

casein, and K-casein in UF concentrated (3x) UHT-sterilized milk with changes 

occurring in milk through UHT heating and storage, and thus propose a mechanism 

for age gelation. 

REFERENCES 

Miller JJ. (1985). Familiar product, new form describes UHT milk. National 

Food Rev. 28_, 10-14. 

McBean LD, Speckmann EW. (1988). Nutritive value of dairy foods. In: 

Fundamentals of Dairy Chemistry, 3rd Edition, Wong NP (ed.), VNR, New York, pp. 

343-407. 



CHAPTER II 

LITERATURE REVIEW 

Gelation of UHT -Sterilized 
Milk Concentrates 

Much research has been done to date on the production ofUHT-sterilized milk 

concentrates. However, irreversible gelation of UHT -sterilized milk concentrates has 

3 

hindered the commercial application of this process as a means of lowering transport costs. 

Gelation occurs when the product is stored at room temperature. The viscosity of the 

product usually remains constant for a period of time before suddenly rising as gelation sets 

in. This gel is the result of casein micelles forming a network, but why it happens is 

uncertain (Walstra and Jenness, 1984). 

Work has been done on developing stable, UHT-sterilized milk concentrates, but to 

date no satisfactory solution has been found to prevent age gelation. Many factors 

influence the time taken for age gelation of UHT-sterilized milk concentrates to set in 

(Harwalker, 1982). These include composition of milk (van Boekel et al., 1989), quality 

of milk (Adams et al., 1976), severity of heat treatment (Darling, 1980; Fox, 1982), 

homogenization (Sweetsur and Muir, 1980a; Muir, 1984), temperature of storage 

(Andrews, 1975), concentration of milk (Whitney, 1977; Muir and Sweetsur, 1978; 

Sweetsur and Muir, 1980a; Fox, 1982; McMahon and Brown, 1984b), addition of 

calcium-sequestering agents (Kocak and Zadow, 1985), addition of carbohydrates 

(Lonergan, 1978; Kudo, 1980a; de Wit, 1981), addition of reducing agents (Singh and 

Fox, 1987a), and enzyme treatment (Snoeren and Both, 1981). The precise mechanism of 

how these processing and storage conditions influence gelation is not fully understood. 

Milk gelation is also affected by pH (Singh and Fox, 1985 and 1987b ), ionic strength, and 

calcium and phosphate concentration (Tumerman and Webb, 1965). 



Hypothesized Mechanism 
of Age Gelation 

There are many hypotheses on the mechanism of age gelation of UHT -sterilized 

milk concentrates. Two different mechanisms have been suggested. One implicates 

proteolysis of casein, predisposing the micelles to aggregation (Creamer and Matheson, 
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1980; Snoeren and Both, 1981; Haque et al., 1987). The other involves physico-chemical 

reactions leading to chemical cross linkages between micelles (Dziuba, 1979; Creamer and 

Matheson, 1980; Doi et al., 1983). 

Proteolysis Hypothesis 

Proteolytic enzymes in milk, of microbial or native origin, survive UHT treatments 

or are reactivated during storage (Corradini, 1975). These cause flavor changes in the milk 

during storage (Renner, 1988). Some evidence supports the idea that age gelation occurs 

in a manner similar to rennet coagulation of milk in cheese manufacturing (Same! et al. , 

1971; Hostettler, 1972). The coagulation kinetics for both processes are similarly 

characterized by a lag phase during which viscosity decreases, followed by a period of no 

change, and finally undergoing rapid thickening. The kinetics for nonenzymic gelation 

would yield a linear increase in viscosity without a lag phase or the rapid increase in 

viscosity shortly before gelation (Payens, 1978 and 1982). When proteolysis is inhibited 

in unconcentrated milk samples, no gelation is observed, but the controlled samples 

(without protease inhibitors) age gelled (Driessen, 1983). The proteolysis hypothesis 

alone, however, does not adequately explain age gelation of concentrated milks. Age 

gelation of commercially sterilized products has occurred, where neither proteases nor 

proteolysis was detected (Samel et al., 1971). UHT-sterilized concentrated casein micelle 

dispersions, with and without proteolysis, gelled after identical storage periods (de Koning 

and Kaper, 1981 and 1985). The evidence suggests that unconcentrated sterilized milk age 



gels through proteolysis while concentrated sterilized milk age gels without proteolysis 

(Hostettler, 1972; de Koning eta/., 1985). 

Physico-chemical Hypothesis 

Many physico-chemical processes have been implicated in age gelation ofUHT­

sterilized concentrated milk (Samel eta/., 1971; de Koning and Kaper, 1981; Manji and 

Kakuda, 1988). 
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Whey proteins denature during heat processing in the range 70-90°C, and as milk is 

heated to ~ 70-90°C a complex is formed between denatured whey proteins and casein. 

When the milk is heated to temperatures between 120-140°C, much of the denatured whey 

protein is present uncomplexed with casein (Burton, 1984). It has been suggested that the 

~-lactoglobulin-casein complex has a tendency to aggregate with time, leading to 

sedimentation and coagulation (Morr and Richter, 1988). 

The breakdown of K-casein during storage leading to its inability to stabilize the 

casein micelle can also cause age gelation (Singh eta/., 1989). Dissociation of K-casein 

from the micelle surface during storage ofUHT-sterilized milk may nigger the loss of 

stability, and this may be caused by changes in salt equilibrium, especially calcium, 

magnesium, and phosphate, during storage (Singh eta/., 1989). During heat treatment, 

some protein dissociates from the casein micelles. Heating skim milk and whey protein­

free milk at sterilization temperatures causes a substantial increase in the level of soluble 

casein, consisting of 40% K-casein (Singh eta/., 1989). 

Changes in calcium and other mineral equilibria during storage have been suggested 

as factors affecting the stability of UHT products during storage (Corradini, 1975). 

Polymerization of casein and whey proteins by Maillard-type reactions has also 

been implicated in age gelation ofUHT concentrated milk (Andrews and Cheeseman, 1971; 

Andrews, 1975). 



Sulfhydryl-disulfide interchange reactions involving various proteins have also 

been implicated in age gelation ofUHT concentrated milk (Patrick and Swaisgood, 1976). 

A decrease in surface energy of some micelles with time, creating an electrostatic 

difference which promotes aggregation of micelles, has been suggested as contributing to 

nonenzymic age gelation (Graf and Bauer, 1976). 
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An increase in nonsedimentable casein (at >100,000 x g) due to partial 

disaggregation of casein micelles may modify surface properties of casein micelles and 

expose regions on their surfaces that promote micellar interaction (Harwalker, 1982). This 

has also been suggested as contributing to age gelation. 

Effect of Heating Milk 

Heat sterilization of milk produces several changes. UHT sterilization generally 

produces less severe changes than retort sterilization (Zadow, 1986). Changes that affect 

proteins (de Wit, 1981; de Wit and Klarenbeek, 1981; Fox, 1981a), enzymes (Snoeren and 

Both, 1981), and mineral balance (Mattick and Hallett, 1929; Pyne and McHenry, 1955; 

Tessier and Rose, 1964) of milk are the ones most likely to influence age gelation. 

Heat treatment results in an association between whey protein and casein (Sawyer, 

1969). Whey proteins become denatured and either interact with micellar K-casein to 

become sedimentable with casein or coprecipitate (with casein) at the isoelectric point of 

casein (Hostettler, 1972). 

The extent of complex formation between denatured 13-lactoglobulin and K-casein 

significantly modifies the properties of casein micelles. These complex formations are 

predominantly through disulfide bridges, but hydrophobic and ionic interactions are also 

involved (Haque eta/., 1987; Haque and Kinsella, 1987 and 1988; Hill, 1989). 

Some rearrangement of casein components within the micellar structure also occurs 

through UHT treatment of milk (Morr, 1969; Harwalker, 1982). The amount of casein not 

sedimentable on high speed centrifugation (> 100,000 x g) increases as does the size of 



sedimented micelles (Harwalker, 1982). These micelles increase two or three fold in size 

in UHT-sterilized concentrated milk (Schmidt, 1968; Harwalker, 1982). 
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Changes in the inorganic constituents of milk also occur as a result of heat treatment 

(Harwalker, 1982). Ionic calcium and magnesium concentrations decrease through their 

precipitation as phosphate and citrate salts (Aoki and Imamura, 1974). As a result of its 

association with casein micelles, heat-precipitated calcium phosphate does not sediment 

(Evenhuis and de Vries, 1956), and when the milk cools, colloidal calcium phosphate 

slowly dissolves to restore equilibrium (Pyne, 1958; Kannan and Jenness, 1961; Fox et 

al., 1967). The role of calcium in gelation is not clear (Harwalker, 1982). 

Effect of Additives 

The addition of calcium-sequestering agents such as phosphates or citrates reduces 

the availability of calcium and promotes gelation (Sweetsur and Muir, 1980b; McMahon et 

al., 1991). However, some protection against gelation has been achieved by adding 

polyphosphates to milk (Kocak and Zadow, 1985). This effect with the polyphosphates is 

thought to result from their ability to complex with casein micelles. This results in charge 

repulsion between micelles, thus preventing their interaction (Harwalker, 1982). 

Addition of lactose stabilizes f3-lactoglobulin (de Wit, 1981) and milk stability can 

be increased by hydrolyzing lactose or by adding other sugars. Replacement of lactose 

with glucose increases milk stability but replacement by sucrose does not (Lonergan, 1978; 

Kudo, 1980a). Lactose and other sugars inhibit denaturation of whey proteins (Hillier et 

al., 1979). 

Urea added to milk before heating stabilizes it (Pyne, 1958; Muir et al., 1978). 

Lactose and urea added simultaneously have a great stabilizing effect on milk (Kudo, 

1980a). 
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Effect of Storage 

The stability of the colloidal calcium-caseinate-phosphate complex in sterilized milk 

is susceptible to coagulation by agents such as ethanol, rennet, and calcium, and decreases 

on storage. This loss in stability is gradual with time. Sensitivity to calcium increases, but 

no consistent relationship between sensitivity of calcium and gelation of UHT -sterilized 

concentrated milk exists (Harwalker, 1982). 

No discernible pattern of mineral distribution satisfactorily explains the mechanism 

of gelation through storage. There is, however, a change in the distribution of mineral 

components in UHT-sterilized milk during storage (Parry, 1974). Initially, some of the 

calcium phosphate precipitated by UHT treatment dissociates. Prolonged storage causes 

precipitation of some forms of calcium phosphate (Fox, 1981a, 1981b and 1982). 

Colloidal calcium phosphate is necessary for the stability of casein micelles, and changes in 

the mineral balance affect the casein integrity (Lonergan, 1978; Fox and Hearn, 1978). 

The casein micelles of UHT -sterilized milk undergo a number of changes during 

storage. Such changes are measured using ultracentrifuge sedimentation, gel permeation, 

chromatography, and electron microscopy. In addition to an increase in amount of 

nonsedimentable casein there is an increased formation of protein polymers (Aoki and 

Imamura, 1974). Covalent bonding or cross linking of casein polypeptide chains through 

carboxyl intermediates produces these polymers. The carboxyl intermediates are produced 

by Maillard-type reactions (Andrews, 1975). Disulfide bonds may also link polypeptide 

chains. Time and temperature of storage determine the extent of polymerization. The 

relationship of polymerization to gelation is not clear. UHT-sterilized milk stored at 4°C 

gels sooner than milk stored at 30°C even though less polymerization occurs at 4°C 

(Andrews, 197 5). 

Changes in casein micelle distribution have been observed to occur with gelation. 

Microstructures seen through electron microscopy show that during storage casein micelles 



9 

associate increasingly during the period in which viscosity rapidly increases, leading to 

gelation (Harwalker and Vreenan, 1978). Gelation results from gradual changes in casein 

micelles rather than a sudden coalescence of micelles (Schmidt, 1968). A great increase in 

nonmicellar particles occurs with storage, but the effect of this on gelation is not clear (Aoki 

and Imamura, 1974; Harwalker, 1982). 

Effect of Concentration 

Gelation of milk is favored by a high concentration of milk solids (Morr, 1967b ). 

Heat coagulation of milk is a function of the milk solids concentration (Whitney, 1977). 

Concentration normally retards heat denaturation of protein solutions. Concentrating milk 

to total solid levels of 9, 28, and 44% reduces denaturation (at 80°C for 20 min) by 40, 60, 

and 80% (Whitney, 1977). Concentration affects individual proteins differently. As 

concentration is increased, denaturation of a-lactalbumin becomes easier while denaturation 

of ~-lactoglobulin becomes more difficult. The complex protein system of milk and whey 

is destabilized by increased concentration (Muir and Sweetsur, 1978; Sweetsur and Muir, 

1980a; Fox, 1982). The effects of concentration include the closer packing of casein 

micelles and the precipitation of calcium phosphate with a concomitant decrease in pH 

(Fox, 1982). The drop in pH causes the precipitation of proteins which are soluble at 

normal concentration. Flocculation of casein occurs within 3 weeks at -8°C in concentrated 

milk with 3x solids (Lonergan, 1978). 

a-Lactalbumin 

a-Lactalbumin constitutes ~4% of total milk protein and up to 25% of whey protein 

(Farrell, 1988). It exhibits a strong structural relationship to lysozyme (Farrell, 1988) and 

has the unique biochemical role as the specifier protein of the lactose synthetase system 

(Ebner and Schanbacher, 1974). In this system, it interacts with galactosyl transferase to 

promote the transfer of galactose from UDP galactose to glucose, producing lactose in the 



process (Walstra and Jenness, 1984). The Michaelis constant Km (of the enzyme) for 

substrate glucose in this reaction is lowered from -1400 mM to 4 mM by the presence of 

a-lactalbumin (Walstra and Jenness, 1984). Here the a-lactalbumin does not appear to 

participate directly in the catalytic reaction but acts as an enzyme modifier (W alstra and 

Jenness, 1984). 
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a-Lactalbumin is much more structurally stable than P-lactoglobulin because it has 

no free sulfhydryl groups although it does contain four disulfide bonds (Farrell, 1988). 

The secondary structure of a-lactalbumin confers compactness on the molecule, which has 

a monomer weight of 14.17 kDa (Farrell, 1988). a-Lactalbumin is a calcium-binding 

protein (Hiraoka et al., 1980), and removal of calcium results in profound conformational 

changes equivalent to those occurring through acid denaturation (Kronman et al., 1981; 

Permyakov et al., 1981). These changes include the irreversible unfolding of the molecule 

and a decrease in denaturation temperature by 20°C (Bernal and Jelen, 1984). An increase 

in the calcium ion concentration up to .4 mg/ml slows the heat denaturation of 

a-lactalbumin (Hillier et al., 1979). Calcium and other metal ions may strongly influence 

the stability of a-lactalbumin (Farrell, 1988). 

There is a slow conformational change at pH 4 as calcium is released from carboxyl 

groups on the protein surface. a-Lactalbumin is denatured at pH< 4 and then undergoes 

an association reaction which requires an elevated protein concentration (Kronman et al., 

1964). In whey concentrates, both calcium binding and acid denaturation of a-lactalbumin 

may play a role in the retention or loss of the protein functional properties (Farrell, 1988). 

The free sulfhydryl of P-lactoglobulin can promote complex formation with a-lactalbumin 

through disulfide interactions at elevated temperatures (Hunziker and Tarassuk, 1965). 

a-Lactalbumin has a denaturation temperature of 62°C and an enthalpy of 

denaturation of 253 KJ/mol(17.8 J/g), making it the whey protein least resistant to 

unfolding when milk is heated (de Wit arrd Klarenbeek, 1984). Immunodiffusion of heated 
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skim milk determined that denaturation of a-lactalbumin is first order (Lyster, 1970), but 

because its heat denaturation at pH 6 is reversible, a-lactalbumin is considered the most 

stable serum protein (Larson and Rolleri, 1955; de Wit, 1981). It is in fact stable against 

heat-induced aggregation because it renatures easily when cooled (Brown, 1988). Heating 

of a-lactalbumin results in a reversible conformational change through four pairs of 

disulfide bonds within the molecule (Lyster, 1979). Denaturation of a-lactalbumin is 80-

90% reversible (Ruegg eta!., 1977). Addition of .28 mM p-chloromercuribenzoate to skim 

milk before heating reduces the rate of denaturation of a-lactalbumin from 25-fold at 85°C 

to -3-fold at 155°C (Brown, 1988). Denaturation of a-lactalbumin is slower at pH 4 than 

at pH 6 or 9 (Hillier et al. , 1979), but a-lactalbumin is partially denatured at pH 4 without 

heating (Kronman et al., 1964). There is no effect on the rate of denaturation of 

a-lactalbumin at 78°C or 100°C within the pH range 6.2-6.9 when NaOH or HCl is added 

to skim milk (Lyster, 1970). The rate of denaturation increases at these temperatures 

outside this pH range when these reagents are added to skim milk (Brown, 1988). 

f3-Lactoglobulin 

Frank and Braunitzer (1967) published their partial amino acid sequence for bovine 

f3-lactoglobulin A and B, which has since led to much of the understanding of the structure 

of f3-lactoglobulin. f3-Lactoglobulin is one of the most heat -stable serum proteins. It has a 

denaturation temperature of 78°C and exhibits another thermal reaction at -140°C caused by 

the breaking of disulfide bonds and further unfolding of the molecule (Watanabe and 

Klostermeyer, 1976; de Wit, 1981). A pH of 6 favors reversible denaturation at 78°C 

while a pH of 7.5 favors irreversible denaturation at 140°C (de Wit and Klarenbeek, 1984). 

f3-Lactoglobulin is sensitive to pH denaturation and is more stable at lower pH (e.g., 4) 

than at higher pH (e.g., 9) (Hillier eta!., 1979). 

f3-Lactoglobulin exists as an 18.3 kDa monomer below pH 3 but as a 36 kDa dimer 

above pH 3 (McKenzie, 1971 ). Each dimer contains four disulfide linkages and two thiol 
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groups. Increased thiol activity of f3-lactoglobulin at high pH results in decreased stability 

of the molecule. These thiol groups are unreactive in native f3-lactoglobulin, but when the 

dimer molecule reversibly dissociates through heating, a significant increase in activity 

occurs (de Wit and Klarenbeek, 1984). After dissociation, the monomers produced 

(Sawyer, 1969; McKenzie, 1971) unfold and then polymerize by sulfhydryl interchange 

followed by further aggregation (Harwalker, 1980b ). These complexes produced can be 

found in milk heated at 100°C for 30 min at pH 6.5 (Creamer et al., 1978). Less compact, 

thin strands of f3-lactoglobulin are produced when milk is heated at pH 6.8 since net 

negative charges on individual protein molecules at this higher pH hinder interaction. 

Above pH 6.8, however, there is increased ability of the free thiol groups to interact 

because of favorable conformational changes and this leads to more compact structures 

(Dunnill and Green, 1966). Irreversible denaturation of f3-lactoglobulin occurs above pH 

7.5 (Kinsella, 1984). 

Flavor changes occur in milk through heat treatment as free sulfhydryl groups 

appear on f3-lactoglobulin before the protein is completely denatured. Of all milk proteins, 

f3-lactoglobulin contains the highest sulfhydryl content (Hutton and Patton, 1952). 

Prolonged heating of f3-lactoglobulin results in more extensive unfolding of individual 

protein chains, leading to bond breaking at disulfide linkages and exchange reactions with 

other proteins. Heating conditions that lead to f3-lactoglobulin denaturation produce very 

active sulfhydryl groups which increase the rate of denaturation (Lyster, 1970). 

The heat stability of f3-lactoglobulin is affected by the ionic environment. As the 

ionic strength increases at specific pH, f3-lactoglobulin shows less stability to heat, and, as 

a result higher rates of precipitation are observed (Harwalker, 1980a and b). 

Addition of calcium up to .4 mg/ml causes a decrease in the solubility of 

f3-lactoglobulin at any pH (Hillier et al., 1979; de Wit 1981). 
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Lyster (1970) determined that the denaturation of J3-lactoglobulin is second order. 

More recently, Dalgleish (1990) demonstrated that in the heating range 75-90°C, it is 

pseudo-first order. Harwalker (1980a) determined that the enthalpies of denaturation at pH 

4.5 and 6.5 are 14.96 and 10.73 J/g. 

Casein 

It is difficult to defme caseins in a way that includes all proteins belonging to the 

class and excludes all others (Walstra and Jenness, 1984). For bovine milk, the common 

property of low solubility at pH 4.6 serves as a basis for a convenient operational 

definition. At this pH all caseins, except some of the proteolytic derivatives, precipitate 

(Walstra and Jenness, 1984). Their solubility is so much less than that of any of the whey 

proteins at this pH that a clear-cut separation is possible (Walstra and Jenness, 1984). 

Casein constitutes -80% of milk protein and is primarily found as a colloidal 

dispersion of large protein-mineral complexes called casein micelles. This high 

concentration of casein relative to other milk proteins results in its dominance in 

determining protein-dependent characteristics of milk during processing (Schmidt, 1980). 

None of the four kinds of caseins has a highly organized secondary structure (Walstra and 

Jenness, 1984). Analyses suggest the presence of short lengths of a-helix and J3-sheet 

structures (W alstra and Jenness, 1984) and recently molecular modeling of the caseins has 

been undertaken which presents their possible configurations (Farrell et al., 1993). Their 

ionizable groups are accessible to titration and other side chains to reaction. Neither the 

reactivity of such groups nor the optical rotation is materially increased in the presence of 

denaturing agents or by heating. Their conformation appears to be much like that of 

denatured globular proteins (Walstra and Jenness, 1984). The presence of uniformly 

distributed proline residues helps to prevent a close-packed orderly secondary conformation 

(Walstra and Jenness, 1984). The proteins of casein micelles are thus arranged in a 

complex quaternary conformation, which provides stability on the structure (most globular 



proteins are stabilized by their tertiary structures). Various casein proteins provide a 

protective environment for each other against solvents and other outside influences 

(McMahon and Brown, 1984a). 
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Casein micelles have been implicated in the age gelation of UliT -sterilized milk 

products through partial hydrolysis of milk proteins by residual proteolytic enzymes 

(Harwalker, 1982). Casein micelles in cooled milk show partial disaggregation, releasing 

~-casein and other components that may function as lipolytic enzymes (Morr and Richter, 

1988). This release of casein subunits causes several changes in the physicochemical 

properties of the casein micelles (Morr and Richter, 1988). These include increased 

solvation of the micelles (Morr, 1973a), release of inorganic phosphorous and calcium 

from the micelles on standing (Morr and Richter, 1988), and a reduction in the ratio of 

micelle to total casein content from 85-95% at 35-40°C to 75-80% at 0-5°C (Morr, 1973b). 

As a result of these changes, casein micelles reversibly disaggregate from 2-3 A at 35-40°C 

to .1-.25 A at 0-5°C. They also become less electron dense and more translucent (Morr, 

1973b). These chemical and physicochemical changes in casein micelles upon cooling of 

milk lead to a more viscous fluid with an increased tendency to foam (Morr and Richter, 

1988). 

Casein micelle proteins are represented primarily by as}-, as2-, ~-,and K-casein 

in approximate proportions of 3:.8:3:1 (Davies and Law, 1980). Compositionally, the 

hallmark of the caseins is ester-bound phosphate. All the casein polypeptide chains have at 

least one such group per molecule while none of the whey proteins have any (Walstra and 

Jenness, 1984). Depending on the genetic variant, as}-casein has 8 or 9 phosphate 

groups. as2-Casein has two disulfide bonds which can interact with the disulfide bonds of 

~-lactoglobulin on severe heat treatment. as2-Casein represents the most hydrophilic of 

the caseins and is very sensitive to calcium ion concentration. It has 10 to 13 phosphate 

groups (Swaisgood, 1982; Kinsella, 1984). 
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~-Casein has 4 or 5 phosphate groups depending on the genetic variant and is 

extremely dipolar and amphiphilic. It contains 16% proline and is mainly a random coil 

with two separate hydrophilic and hydrophobic domains (Swaisgood, 1982). Both heating 

and cooling have been reported to move J3-casein from serum into the micelles (Dzurec and 

Zall, 1985). It has also been reported that milk stored at 4°C can have as much as 40% of 

~-casein dissociated from the micelles (Schmutz and Puhan, 1981). Calcium added to milk 

prevents ~-casein from leaving the micelles regardless of the temperanrre treatment 

(Carpenter and Brown, 1985). Proteinases in milk cleave ~-casein to yield y-casein and 

proteose-peptone fractions (Pearce, 1980; Swaisgood, 1982). 

K-Casein like as2-casein has two disulfide bonds capable of interacting with those 

of ~-lactoglobulin to form cross-links. These disulfide groups are confined within the 

hydrophobic N-terminal two-thirds of the molecule. The charged, polar, hydrophilic 

C-terminal makes up the rest of the molecule. A varying number of carbohydrate moieties 

and one phosphate group are found in the molecule. Most recent models of the casein 

micelle have K-casein taking up most of its surface area (Heth and Swaisgood, 1982) from 

where it protects the other calcium-sensitive caseins from precipitation by calcium ions. 

K-Casein is not susceptible to calcium ion binding (Swaisgood, 1982). 

Milk casein also exists as serum casein (Rose, 1968; Downey and Murphy, 1970). 

Rose ( 1968) found that -10% of the total casein in warm milk was serum casein. His 

conclusion that the serum caseins appeared not to be in equilibrium with the micellar casein 

has been refuted by later research (Creamer eta!., 1977; Ali eta!., 1980; Davies and Law, 

1983). 

Casein and Serum Protein Interactions 

The properties of K-casein are altered as a result of heat denaturation of 

~-lactoglobulin (Zittle eta!., 1962). Interaction through disulfide linkages occurs between 

K-casein and ~-lactoglobulin when these are heated together or when K-casein is added to 
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heated ~-lactoglobulin (Morr et al., 1962; Morr, 1965; Sawyer, 1969; Snoeren and van der 

Spek, 1977). This interaction occurs optimally at pH 6.8 (de Wit, 1981) and at 85-90°C. 

Formation of these complexes decreases with ionic strength and as the pH is increased 

from 6.8 to 7.3 (Smits and Van Brouwershaven, 1980). The presence of calcium salt 

favors complex formation and more severe heat treatments increase the sensitivity of the 

serum protein to calcium ions. Ionic interactions, disulfide interchange, and hydrophobic 

bonding are all suspected to be involved in these complex formations (Hill, 1989). 

as2-Casein also forms disulfide bridges when heated with ~-lactoglobulin and this 

can interfere with the complex formation between K-casein and ~-lactoglobulin (Kudo, 

1980b; Kinsella, 1984 ). The total amount of whey protein attached to casein increases as 

heat treatment is intensified, but the ratio of individual whey proteins attached remains 

constant (Farah, 1979). Very little direct interchange occurs between a-lactalbumin and 

K-casein when these are heated together (Hartman and Swanson, 1965), but the complex 

formed between a-lactalbumin and ~-lactoglobulin interacts with K-casein (Hunziker and 

Tarassuk, 1965; Elfagm and Wheelock, 1977). The degree of denaturation of 

a-lactalbumin is greater when heated with ~-lactoglobulin than when heated alone and 

increases with pH from 6.4 to 7 .2. Denaturation is optimum between 70°C and 85°C. The 

denaturation of ~-lactoglobulin is not affected by the presence of a-lactalbumin, but 

formation of the complexes between a-lactalbumin and j3-lactoglobulin is facilitated by the 

presence of casein (Elfagm and Wheelock, 1978a and b). a-Lactalbumin reduces the direct 

interaction of K-casein and ~-lactoglobulin (Baer et al., 1976; Elfagm and Wheelock, 1977 

and 1978a). Complexes formed between K-casein and ~-casein, and between K-casein and 

as1-casein (Doi et al., 1979), may interfere with K-casein and ~-lactoglobulin complex 

formation. 

Three classes of micelle models exist (Farrell, 1988). These include the "Coat-Core 

Models" (Parry and Carroll, 1969; \Vaugh et al., 1970; \Valstra, 1979), the "Internal 
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Structure Models" (Rose, 1969; Garnier and Ribadeau-Dumas, 1970; Pepper and Farrell, 

1982), and the "Submicellar Models" (Shimmin and Hill, 1964; Morr, 1967a; Slattery and 

Evard, 1973). The most popular Coat-Core model with K-casein on the outer casein 

micelle surface (Waugh et al., 1970; Shahani, 1974; Walstra, 1979; Heth and Swaisgood, 

1982; McMahon and Brown, 1984a) allows the possibility of heat-induced coagulation of 

milk being the result of serum proteins interacting with K-casein on the micelle surface. 

The serum proteins further interact with each other to interconnect micelles (Brown, 1988). 

Ashoor et al. (1971) demonstrated that the other casein components also form part of the 

"coat" of the micelles. The other Coat-Core model (Parry and Carroll, 1969) has K-casein 

as the core molecule surrounded by the other casein molecules. The Internal Structure 

models are based upon the properties of isolated casein components which are responsible 

for the formation of the internal structures of the micelles (Farrell, 1988). The Submicellar 

models propose that the micelles are made up of many discrete submicelles (diameter -10 

nm) joined together by calcium phosphate linkages (Shimmin and Hill, 1964; Morr, 1967a; 

Farrell, 1988). 

Processes Involved in Making 
UHT -Sterilized Concentrated Milk 

UHT Sterilization 

Heat treatment of milk in dairy technology varies in intensity from pasteurization 

(72°C for 15 s) to sterilization (typically l20°C for 20 min or 142°C for several seconds) 

(Creamer and Matheson, 1980; Douglas et al., 1981). Retort sterilization uses 110- l20°C 

for 20-40 min while UHT sterilization is done at 120-140°C for several seconds (Creamer 

and Matheson, 1980). Sterilization is effective in inactivating enzymes and this effect can 

be used as a measure of the efficacy of the treatment. Pasteurization kills spoilage and 

pathogenic organisms in milk (Parnell-Clunies et al., 1988) while sterilization is meant to 

destroy all microorganisms, including spores (Walstra and Jenness, 1984). The efficacy of 



commercial sterilization naturally depends on the type and number of spores present 

(Walstra and Jenness, 1984). 
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UHT-sterilized milk is regarded as having superior organoleptic qualities compared 

to retort sterilized milk. UHT sterilization utilizes the higher thermal coefficient of 

biological reactions leading to faster destruction of microorganisms without compromising 

too much on flavor, color, and nutrient value of the product (Zadow, 1986). UHT 

treatment invariably results in some cooked flavor (Morr, 1985), Maillard browning and 

vitamin loss (Freeman and Mangino, 1981) occurring in the milk. Age gelation, however, 

represents the major problem resulting from UHT sterilization of milk (Corradini, 1975; 

Snoeren eta!., 1979). Gelation occurs more readily in UHT-sterilized concentrated milk 

than in UHT-sterilized milk (Harwalker, 1982). 

UHT sterilization can be affected through different combinations of temperature and 

time. Raw milk is usually forewarmed to 80-85°C in an indirect heat exchanger before 

being heated to the final UHT temperature (Morr and Richter, 1988). The UHT 

temperature can be achieved through direct heating or by indirect heat exchange. 

Direct heating is performed either by injecting steam into milk or vice versa (van 

den Berg, 1988). As a result of the direct contact of milk and steam, the steam gives up its 

latent heat to the cooler milk and very quickly (less than 1 s) brings the milk to the 

sterilization temperature (van den Berg, 1988). After holding for a period of 3-10 s, the 

milk passes to a vacuum chamber where excess water resulting from the condensed steam 

is removed by evaporation (van den Berg, 1988). Heat extracted from the milk is used to 

effect this evaporation, allowing instantaneous cooling to the immediate post-sterilization 

temperature (van den Berg, 1988). 

Direct heating at 142°C for 4 s is ineffective in inactivating native milk proteinases 

or those produced by psychrotrophic bacteria during cold storage of raw milk (Snoeren et 

a!., 1979: Snoeren and Both, 1981). These enzymes exhibit some reactivation after high-



temperature, short-time heat treatment (Walstra and Jenness, 1984). Sterilized milk 

produced under these conditions is therefore susceptible to age gelation via proteolysis 

(Snoeren et al., 1979; Snoeren and Both, 1981). 
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Indirect heating of milk requires a longer time to reach UHT temperature and this 

leads to more product defects than with direct heating (Freeman and Mangino, 1981 ). The 

longer heating time of indirect heating effectively inactivates proteinases found in milk. 

This may, however, lead to product "burn-on" on the heat exchanger, thus reducing its 

efficiency (Freeman and Mangino, 1981). 

Membrane Processes for Concentrating Milk 

Milk can be concentrated by evaporation of water from it (McKenzie and Murphy, 

1970) or by membrane processes such as reverse osmosis (RO) and ultrafiltration (UF) 

(Walstra and Jenness, 1984). 

Reverse osmosis or hyperfiltration differs from UF by the relative lower porosity of 

the membranes and in the application of a much higher pressure (Karel, 1975; Walstra and 

Jenness, 1984). When the "holes" within the membrane are about the same size as the 

diffusing molecules, it is usually accepted that transport occurs by "solution" or "activated" 

diffusion (Karel, 1975). The RO membrane does not act so much as a filter, but more as a 

material in which water "dissolves" and thus passes through, leaving the solutes behind 

(Walstra and Jenness, 1984). Its prime advantage over evaporative concentration is energy 

saving (Walstra and Jenness, 1984). 

Ultrafiltration was introduced initially to the world dairy industry as a means of 

separating protein from sweet and acid whey (Kosikowski, 1982). The process has 

become fmnly entrenched and large units are now in operation in many countries, including 

France, New Zealand, and the United States. 

Skim milk is cycled at a specific temperature or combination of temperatures across 

a membrane, cellulose acetate with polyvinyl chloride backing or polysulfone, in a forced 
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turbulent flow. The temperature used depends upon the concentration of protein solids 

desired (Kosikowski, 1982). The membranes may be plates, straight tubes, or spiraling 

spaghetti-like tubes, and are mounted for support on stainless steel standards. The 

membranes have a maximum average pore diameter of 30 A, and the milk moves under a 

pressure of 45-50 psi (Kosikowski, 1982). Cycling of the milk through the interior of the 

membrane is maintained until the concentrate on the inside attains the maximum protein 

solids desired or until the soluble components of the skim milk concentrate can no longer 

pass through. The material that passes through the membrane is the permeate or ultrafiltrate 

which has some of the properties of standard whey but is quite different otherwise. The 

material on the inner side of the membrane is the retentate or concentrate which moves 

across the membrane to the holding tank (Kosikowski, 1982). 

UF employs the same principle as RO in concentrating milk. The membrane is 

effectively a filter through which small molecules like sugars, salts, and flavor compounds 

can pass while colloidal particles and macromolecules are retained (Karel, 1975; Walstra 

and Jenness, 1984). For milk this implies that globular proteins, casein micelles, fat 

globules, and cells do not pass. The permeate is thus sterile (Walstra and Jenness, 1984). 

Water and small solute molecules are forced through the membrane by the higher 

pressure on the inside of the porous barrier. The water and small solute molecules always 

flow in this direction in contrast to dialysis where, owing to osmosis, there is usually a net 

flow of solvent in the reverse direction. As with pervaporation, plugging of the membrane 

pores presents a problem with UF. Denaturation of protein at the surface of the membrane 

is also a possibility with UF and pervaporation (McKenzie and Murphy, 1970). 

UF does not affect serum casein nor the calcium and phosphate content of casein 

micelles (Yan et al., 1979); neither does it affect the size distribution of casein micelles. 

Combined with diafiltration, it can remove up to 99% lactose, 42% phosphate, and 36% 

calcium from skim milk (Lonergan, 1982). 
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Less than 10% whey protein is lost through UF, depending on the pore size of the 

membrane (Chapman eta!., 1974). No loss of fat globules or fat-soluble vitamins occurs. 

Through their association with proteins, vitamin B12, and folic acid are also retained (Yan 

eta!., 1979). 

Electron Microscopy 

The resolution of the modern transmission electron microscope approaches the 

theoretical limit of -5.A. This theoretical limit allows transmission electron microscopy 

(TEM) to be used in visualizing the smallest protein. However, the major problem with 

proteins is not resolution, but contrast. A protein may have a diameter of 50A, but may fail 

to scatter enough electrons out of the beam to produce a satisfactory image that can be 

clearly delineated from the instrument "noise". Contrast for protein may be increased by 

positive (electron) staining (McKenzie, 1970). 

The most obvious application of electron microscopy in milk protein studies is in 

elucidation of the structure of the casein micelle. Difficulties exist in preparing suitable 

specimen for examination without drastically altering the micelle structure in milk. The first 

use of electron microscopy in micelle studies appears to be by Nitschrnann (1949) who 

fixed the micelles with formaldehyde and showed that the particles were essentially 

spherical in shape (McKenzie, 1970). Since then many studies have been done with 

electron microscopy on elucidating structures of micelles. Some of the earlier studies are 

cited in the following literature: Hostettler and Imhof, 1952; Shimmin and Hill, 1965; Rose 

and Colvin, 1966a and b; Knoop and Wortmann, 1967; Carroll eta!., 1968; Buchheim, 

1969; Eggmann, 1969. 

Two methods of electron microscopy are widely used. These are scanning electron 

microscopy (SEM) and TEM. SEM is adequate for structure of surface morphology as 

well as internal structures of milk particles. TEM techniques such as freeze-fracturing and 
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thin sectioning are needed to identify individual constituents such as casein micelles and fat 

particles (Schmidt, 1982; Carie and Kalab, 1987). 

Immunolocalization of Proteins 
Using Gold Labeled Antibodies 

In 1971, Faulk and Taylor introduced their "immunocolloid" method for the study 

of cell surface antigens (Faulk and Taylor, 1971). Since then a large number of studies 

have documented the potential of colloidal gold as a marker for immunocytochemistry 

(Honsberger, 1979 and 1981; Goodman eta/. , 1980; De Mey, 1983). Much of the basic 

methodology for preparing standardized gold sols and stable gold probes has been 

established (DeWaele et al., 1983). Colloidal gold particles have undergone an enormous 

evolution since their introduction by Faulk and Taylor in 1971 (Leunissen and De Mey, 

1989). These are formed by chemical reduction of an aqueous solution of tetrachloroauric 

acid by condensation method. The gold particles are then converted to gold probes 

(Leunissen and De Mey, 1989) by reaction with a protein having the property of binding 

immunoglobulins (Bendayan, 1989). Two proteins, protein A isolated from staphylococci 

(Forsgren and Sjoquist, 1966) and protein G isolated from streptococci (Bjorck and 

Kronvall, 1984), are commonly used for this purpose to produce protein A-gold and 

protein G-gold complexes, respectively (Bendayan, 1989). Alternatively, 

immunoglobulin-gold complexes may be produced by reacting an immunoglobulin 

(secondary) with colloidal gold. The gold complexes are used as components in indirect 

two-step immunolabeling. The first step involves the interaction of a specific (primary) 

immunoglobulin with the antigen under investigation in the prepared tissue section. In the 

second step, the molecules of protein A or G surrounding the gold particle or the molecules 

of immunoglobulin-gold complex interact with the Fe fragment of the primary 

immunoglobulin. The presence of the gold particle thus allows the indirect localization of 



the antigenic site. Electron microscopy can then be used to elucidate the position of the 

antigen under investigation (Bendayan, 1989). 
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CHAPTER III 

AN APPARATUS FOR A NEW MICROCUBE ENCAPSULATION 

OF FLUID MILK IN PREPARATION FOR TRANSMISSION 

ELECTRON MICROSCOPY1 

ABSTRACT 

A simple apparatus has been developed for a new "microcube" encapsulation of 

fluid milk samples in their prefixation preparation for electron microscopy. The new 
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technique is based on making cubic wells in an agar gel layer, filling them with fluid milk 

samples, and sealing them with another agar gel layer. The individual wells are then 

separated by cutting from the initial block, providing .5 mm walls around the samples. The 

embedded material (milk, buttermilk, yogurt, etc.) is fixed, dehydrated, and embedded in a 

resin for transmission electron microscopy. The procedure is simpler, more versatile, 

reliable, and reproducible than other encapsulation methods used to prepare similar food 

samples. Agar gel tubes used in the other methods have several disadvantages such as the 

need for manual dexterity of the experimenter to make them, and difficulty in sealing the 

filled capsules properly. Results obtained by the microcube procedure were compared with 

results obtained by two methods using agar gel tubes and also by mixing a warm agar sol 

with fluid food samples. This latter method is simpler than agar encapsulation, but shows 

agar strands in the micrographs of the milk samples. This is particularly undesirable when 

investigating, for example, intermicellar strands of gelled UHT-sterilized milk concentrates. 

Microcube encapsulation produces superior quality images of the fluid food structure. 

1 Coauthored by M. C. Alleyne, D. J. McMahon, N. N. Youssef and S. Hekmet. Reprinted by permission of SMI 
Publications. 
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INTRODUCTION 

Preparation of fluid milk for electron microscopy requires the use of specific 

techniques in order to obtain artifact-free images of the samples (Carroll et al., 1968; 

Stewart et al., 1972; Andrews et al., 1977; Davies et al., 1978, Kalab, 1983; Heertje et al., 

1985; Farah and Ruegg, 1989). Fluid or gelled milk samples destined for electron 

microscopic examination must not disintegrate while they are fixed, dehydrated, and 

mounted or embedded. Various methods have been employed to achieve this objective 

both in scanning electron microscopy (SEM) and transmission electron microscopy (TEM). 

Mixing of fluid milk with agar sol followed by gelling the mixture and treating the 

resulting gel as a solid sample has often been used in TEM because this procedure is 

simple. However, dilution of the sample with the agar sol alters the distribution of 

structural elements in the sample and agar strands present in the gel contaminate the sample 

and are visible under the electron microscope (Kalab, 1981; Harada et al., 1991). Their 

images may interfere with other structural components such as fat globule membrane 

fragments (Kalab, 1980). Enclosing a small volume of the sample in a capsule permeable 

for fixatives and dehydrating agents promised to avoid some of the problems. Agar 

encapsulation was pioneered by Salyaev (1968) and his technique has been adapted and 

modified by several authors (Henstra and Schmidt, 1970 and 1974; Jewell, 1981; Allan­

Wojtas and Kalab, 1984; Kalab, 1987 and 1988; Veliky and Kalab, 1990), particularly for 

use in SEM. In the original and modified procedures, the sample is aspirated into a narrow 

agar tube (Henstra and Schmidt, 1970 and 1974; Jewell, 1981; Allan-Wojtas and Kalab, 

1984). The sample may alternatively be aspirated into a Pasteur pipette, which is 

subsequently coated with agar gel and the sample transferred from the Pasteur pipette into 

the gel tube formed by withdrawing the pipette from the agar gel coating (Kalab, 1987 and 

1988). The sample-containing gel tube is sealed with warm agar sol. 
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Other hydrocolloids (sodium alginate) with low-temperature gelling properties have 

also been used to encapsulate viscous food samples (Veliky and Kalab, 1990). A 

somewhat different encapsulation procedure for SEM was used by Teggatz and Morris 

(1990). Holes (2 rnrn diameter x 2 rnrn depth) drilled into aluminum SEM stubs were filled 

with fluid food samples and the stubs were dipped into 3% agar sol at 45°C which 

subsequently solidified. After fixation and dehydration, the agar layer on top of each stub 

was lifted off and mounted upside-down on a clean SEM stub using double-coated tape. 

The samples were surrounded by a coat of carbon paint and coated with a layer of gold­

palladium before being viewed in a scanning electron microscope at 6 kV (Teggatz and 

Morris, 1990). 

All reported agar encapsulation procedures require a relatively high degree of 

manual dexterity of the experimenter both during preparation and sealing of the capsules, 

particularly because capsules used in TEM are considerably smaller than those used for 

SEM. Perfect sealing of fluid milk samples is difficult to achieve and the samples may 

slowly leak out. 

The objective of this study was to develop a more practical method of encapsulating 

fluid milk samples in prefixation preparation for electron microscopy. The new method of 

encapsulation milk samples of both low and high viscosity is described in this chapter. The 

problematic aspiration step of other encapsulation methods is eliminated and the samples 

are sealed more efficiently. Results obtained using this new method are compared with 

those obtained by other methods. 

MATERIALS AND METHODS 

Reagents 

Agar was purchased from Difco Laboratories (Detroit, Michigan); glutaraldehyde, 

osmium tetroxide, propylene oxide, and Epon-Araldite epoxy resin were obtained from 
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Electron Microscopy Sciences (Fort Washington, Pennsylvania). All other chemicals were 

analytical reagent grade. 

Samples 

Whole milk, stirred yogurt, and 8-month-old ultra-high temperature (UHT) 

sterilized ultraftltered milk retentate (concentrated 3x by volume) were obtained from the 

Gary H. Richardson Dairy Products Laboratory, Utah State University. Cultured 

buttermilk was a commercial sample. 

Microcube Encapsulation Compared 
with Encapsulation in Agar Gel Tubes 

A kit for microcube encapsulation was designed and constructed. It consists of (a) 

a stainless steel mold with a row of 12 or 24 teeth of dimensions 1 x 1 x 2 mm (height x 

width x length) separated by 2-mm gaps (Figure 3.1) for simultaneous preparation of wells 

in agar gel, and (b) a fiberglass mask (bottomless rectangle) of inner dimensions 2 x 10 x 

100 mm (height x width x length) for casting a block of agar gel of similar dimensions. 

The ends of the mold project 1 mm below the teeth so that when positioned over the block 

of agar gel, there is a 1-mm thick agar gel layer left beneath the bottoms of the wells. 

Microcube Encapsulation 

The fiberglass mask was placed on a square sheet of fiberglass (side: 200 mm) and 

the joints were sealed with a 4% agar sol kept at 50°C and stirred continuously with a 

nagnetic bar. Two milliliters of the same agar sol was deposited in the opening of the 

nask using a plastic transfer pipette. After 5 s when gelation had just begun, the mold was 

Jressed into the 2 x 10 x 100 mm (height x width x length) block and held in place for 5 s 

)efore being carefully removed to leave cubic wells impressed in the agar block (Figure 

3.2a). All the wells in the block were filled with 2 mm3 aliquots of one fluid food sample 

through a 250 7/8 needle (Becton Dickinson, New Jersey) from a 1-ml syringe. In each 



Figure 3.1. Stainless steel mold used to prepare microcube samples (a) stereographic 

view, (b) lateral view. 
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Figure 3.2. Steps involved in the preparation of microcube samples: (a) filling empty 

cubic wells impressed in the agar gel block, (b) sealing filled wells in agar gel block, (c) 

trimming "cubes" from agar gel block, (d) gel "microcube" with encapsulated sample. 
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case the sample was drawn into the syringe before attaching the needle to dispense 

materials into the wells. Preliminary studies compared results of filling wells with different 

gauge needles to determine if the shear forces on sample using the smaller bore needles 

affected the extended structures of samples. No detected differences in the extended 

structures of the samples were observed in samples dispensed with 16G 1, 21G 1/2, and 

2507/8 needles. The 25G 7/8 needles were subsequently used because they filled the 

wells more efficiently than the other needles. Mter the last well was filled, another layer of 

agar sol at 50°C was placed over the block to a depth of 1 mm where it gelled, thus 

covering and sealing the samples in the wells (Figure 3.2b). A razor blade was used to 

trim the agar seal from the top of the mask and the entire solidified agar gel block was 

removed from the mask. The block was cut with a razor blade .5 mm around each well 

(Figure 3.2c) to produce "cubes" with 2 mm3 of the sample (Figure 3.2d). The "cubes" 

were examined for leaks and other defects, then fixed and processed for TEM as described 

below in the Electron Microscopy section. Preliminary studies had shown that (a) agar sol 

concentrations < 4% were unsuitable for sealing the wells since they displaced the sample 

(especially the less viscous ones) from the wells and (b) 3 x 3 x 2 mm agar "cubes" with 2 

~ of milk sample were small enough to allow satisfactory fixation and dehydration. 

Salyaev Encapsulation in 
Agar Gel Tubes 

Capsules were made by dipping a stainless-steel rod (.5 mm in diameter) repeatedly 

into a 4% agar sol (stirred continuously with a magnetic bar at 45°C) and manipulating the 

rod to form a thin (-.5 mm) agar gel tube around it. The lower end of the solid tube was 

then cut off with a razor blade. Milk samples were aspirated into the tube by immersing its 

open end into the sample and pulling the steel rod upwards as a piston. Mter enough milk 

sample had been aspirated into the tube (a length of approximately 12 mm), its bottom end 



48 
was wiped with tissue paper and the tube was sealed with warm (45°C) agar sol producing 

a capsule. 

A 4-mm length portion of the capsule was cut off from the bottom and a drop of 

agar sol was applied with a transfer pipette to seal the upper end, producing a 

microcapsule. This was repeated to produce three microcapsules from each capsule. All 

microcapsules were examined for leaks and other defects. 

Kalab Encapsulation in 
Agar Gel Tubes 

A glass Pasteur pipette with inner diameter of 1 nun was drawn out into a capillary 

tube with inner diameter of - .5 mm. The milk sample was aspirated into the capillary tube 

to a length of -2 mm. The lower end of the tube was wiped clean with tissue paper and 

sealed with a droplet of the agar sol. Mter the sealed end had solidified, the capillary tube 

was dipped into the agar sol and then manipulated to form a thin layer of agar gel on the 

glass surface around the sample. Dipping was repeated twice to form a uniform agar gel 

layer around the glass surface. This agar gel sleeve was trimmed at the upper end of the 

sample and removed. The capillary tube was then withdrawn from the agar gel sleeve 

resulting in the sample sliding from the glass tube into the gel tube. The freed upper end of 

the agar gel tube was then trimmed with a blade approximately .5 nun above the sample and 

sealed with a droplet of the agar sol producing a microcapsule. This was repeated for each 

milk sample to produce the desired number of microcapsules. All microcapsules were 

examined for leaks and other defects. 

Electron Microscopy 

Agar gel capsules obtained by three encapsulation methods (Salyaev, 1968; Kalab, 

1987 and 1988, and our new microcube method) containing whole milk, buttermilk, and 

yogurt samples were fixed at 20°C for 24 h in 1.5% glutaraldehyde in .1 M phosphate 

buffer (pH 6.6 for whole milk and pH 4.5 for buttermilk and yogurt). After the fixation 
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had been completed, these samples as well as samples obtained by mixing milk with agar 

sol were washed with .1 M phosphate buffer, pH 6.6, and post-fixed with a buffered (.1 M 

phosphate buffer, pH 6.6) 1% osmium tetroxide, dehydrated in a graded ethanol series of 

30, 50, 70, 95, and 100% ethanol, infiltrated with propylene oxide, and embedded in 

Epon-Araldite epoxy resin. Thin sections (90 nm thick, Sorvall MT-2 Porter-Blum 

ultramicrotome) from the epoxy resin blocks were stained with a uranyl acetate solution in 

methanol for 15 min, followed by lead acetate staining for 5 min (Youssef, 1985). TEM 

was carried out using a Zeiss CEM 902 electron microscope operated at 80 kV. 

Micrographs were taken on Kodak SO 163 sheet film and printed on Kodak polycontrast 

III RC paper. 

Microcube Encapsulation Compared 
with Agar Sol Mixing 

Microcube encapsulation of UHT-UF milk retentate and yogurt was performed as 

described in Experiment (a). Half of these samples were placed in vials containing 1.5% 

glutaraldehyde in .1 M phosphate buffer (pH 6.6 for UHT milk and pH 4.5 for yogurt) at 

4°C for 1 hand subsequently refrigerated at 6°C for 24 h in a fresh 1.5% glutaraldehyde 

solution. The other half were placed in vials containing 1.5% glutaraldehyde in .1 M 

phosphate buffer (pH 6.6 for UHT milk and pH 4.5 for yogurt) at 45°C for 1 hand 

subsequently refrigerated at 6°C for 24 h in a fresh 1.5% glutaraldehyde solution. 

Mixing with Agar Sol 

UHT-sterilized concentrated milk and yogurt were each divided into two 5-mi 

aliquots and prepared as follows: 

Fixation with ~lutaraldehyde at 45°C 
followed by solidification with a~ar 

The samples were fixed in a 4.5% glutaraldehyde solution by mixing 5 ml of sample 

with .5 mi of a 50% aqueous glutaraldehyde solution. Fixation proceeded for 10 min at 
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20°C. The samples were heated to 45°C and 5 ml of a warm ( 45°C) 3% agar solution were 

added. The samples were vortex mixed, poured into Petri dishes, and allowed to solidify. 

The sample-agar gel was cut into 1 mm3 cubes and placed in labeled vials containing 1.5% 

glutaraldehyde in .1 M phosphate buffer (pH 6.6 for UHT milk and pH 4.5 for yogurt) at 

6°C for24 h. 

Solidification of samples with agar 
followed by glutaraldehyde fixation at 4°C 

The UHT milk and yogurt samples were mixed with 3% agar sol at 45°C, solidified 

by cooling in Petri dishes and cut into 1 mm3 cubes. These cubes were fixed with 1.5% 

glutaraldehyde at 4°C for 1 hand subsequently refrigerated at 6°C in a fresh 1.5% 

glutaraldehyde solution for 24 h. 

RESULTS AND DISCUSSION 

Microcube Encapsulation Compared 
with Encapsulation in Agar Gel Tubes 

The first criterion used to assess the quality of encapsulation was to evaluate how 

well the samples were sealed inside the agar gel capsules. Results obtained by the 

microcube encapsulation method were compared with results obtained from the methods of 

Salyaev (1968) and Kalab (1987 and 1988). The numbers ofleaky capsules detected after 

glutaraldehyde fixation for each method are shown in Table 3.1 . The x2 analysis of these 

data shows the proportion of intact capsules to be significantly higher (P = .05) for the 

microcube method when compared to the other methods singly and collectively. There was 

no significant difference between the Salyaev and Kalab methods. After the production of 

milk-filled agar gel capsules using both methods, buttermilk and yogurt samples were 

found adhering to the inner walls of the microcapsules in the form of rings rather than 

uniformly filling the capsules (Figure 3.3). This phenomenon may be attributed to 

inadequately filled capsules. This problem was also observed with less viscous milk 



Table 3. 1. Percentage of intact capsules produced from three 
methods of encapsulating milk samples. 

Salyaev Kalab Microcube 
Method Method Method 

Intact Capsules 28 33 50 

Leaky Capsules 22 17 0 

Percentage Intact 56% 66% 100% 

Table 3. 2. Percentage of good blocks produced from three 
methods of encapsulating milk samples. 

Salyaev Kalab Microcube 
Method Method Method 

Good Blocks 37 38 50 

Defective Blocks 13 12 0 

Percentage Good 74% 76% 100% 
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Figure 3.3. Diagram comparing (a) defective microcapsule with (b) nondefective 

microcapsule. Defective microcapsule shows large vacuole within the sample matrix. 
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samples. This was due to the relatively low total solids content of milk. Replacement of 

the milk serum with aqueous glutaraldehyde during fixation and, in particular, dehydration 

in organic solvents destabilized the casein micelle suspension and resulted in sedimentation 

and adherence of the casein micelles to the well inner walls. This phenomenon was not 

evident with the microcube method since it apparently produced sedimentation only onto 

the "bottom" walls of the cubes resulting in intact samples. Throughout the fixation and 

dehydration processes, the "rnicrocubes" were kept in a fixed position and the liquids 

removed and added using transfer pipettes. This method was also used with the capsules, 

but their shapes resulted in shifts of position which could cause sedimentation of sample 

around the insides of the capsules. 

Of 50 blocks per method examined, the proportions that displayed this defect are 

shown in Table 3.2. From x2 analysis, the proportion of defective blocks was 

significantly lower (P = .05) for the microcube method compared to the other methods 

singly and collectively. There was no significant difference between the Salyaev and Kalab 

methods. Micrographs produced from the three techniques were quite similar (Figures 3.4 

to 3.6). Distortion of fat globules shape observed in Figure 3.5 is due to melting of fat 

globules when the microcapsules and microcube were sealed using hot agar. The top layer 

of agar in this procedure cools rapidly after being poured, but some melting of fat does 

occur as is evident in Figure 3.5. The microcube technique can, however, be used with 

low-gelling-temperature agarose (Goff et al., 1987; Liboff et al., 1988) and (with slight 

modification) ultralow-gelling-temperature agarose. With these agaroses the procedure 

would be suitable for sample encapsulation of cold samples. 

In addition to being simpler than the techniques of Salyaev and Kalab, the 

microcube method proved more reliable. It does not require a high degree of manual 

dexterity, produces reproducible results, and enables encapsulation of a wider viscosity 

range of fluid dairy foods. 



Figure 3.4. Transmission electron micrographs of whole milk prepared using (a) 

Salyaev method, (b) Kalab method, (c) microcube method. 

c: casein micelles. 
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Figure 3.5. Transmission electron micrographs of cultured buttermilk prepared using 

(a) Salyaev method, (b) Kalab method, (c) microcube method. 

c: casein micelles; small arrows: fat globule membrane fragments; large arrows: intact fat 

globules. 
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Figure 3.6. Transmission electron micrographs of stirred yogurt prepared using (a) 

Salyaev method, (b) Kalab method, (c) microcube method. 

c: casein micelles. 
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Microcube Encapsulation Compared 
with Agar Sol Mixing 
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The agar sol method was simplest of all the techniques examined. Problems 

associated with Salyaev and Kalab encapsulation techniques include difficulties in 

aspiration (especially with viscous materials), sealing the capsules, and handling bulky 

capsules resulting from strengthening them with additional agar gel. These problems can 

adversely affect the quality of micrographs. The agar sol mix method avoids these 

problems, but it has other drawbacks such as dilution of the samples and presence of 

visible agar strands. 

Both methods under study showed casein micelles in aged ultra-high temperature 

(UHT) treated milk samples (Figures 3.7a, 3.7b, 3.8a, and 3.8b) to be connected by 

strands (tendrillar appendages), giving them a characteristic star shape while casein micelles 

in yogurt were seen as discrete round structures (Figures 3.7c, 3.7d, 3.8c, and 3.8d). 

Agar strands were noticeable in the micrographs of agar sol mix samples (Figure 3.8) and 

in the case of the UHT milk samples (Figures 3.8a and 3.8b) it was difficult to distinguish 

the tendrillar appendages (connecting micelles) from these agar strands. These strands 

were present even when purified agarose (electrophoretic grade) was used to solidify milk. 

No artifacts caused by polymerization of glutaraldehyde through heating to 45°C were 

observed. 

No artifacts of electron-dense granules as observed by Harwalkar and Kalab (1986 

and 1988) and McMahon eta/. (1991) were found in any of the micrographs produced in 

this investigation. The granules have been shown to be a complex of osmium tetroxide and 

glutaraldehyde (Pamell-Clunies eta/., 1986). The use of low concentrations of the 

fixatives (1.5% glutaraldehyde and 1% osmium tetroxide) are believed to be partially 

responsible for this result. 
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Figure 3.7. Transmission electron micrographs of (a) UHT milk concentrate fixed at 

4°C, (b) UHT milk concentrate fixed at 45°C, (c) yogurt fixed at 4°C, (d) yogurt fixed at 

45°C, all prepared by microcube encapsulation. 

b: bacteria; c: casein micelles; arrows: tendrillar appendages connecting casein micelles. 
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Figure 3.8. Transmission electron micrographs of (a) UHT milk concentrate fixed at 

4°C, (b) UHT milk concentrate fixed at 45°C, (c) yogurt fixed at 4°C, (d) yogurt fixed at 

45°C, all prepared by mixing with agar sol. 

b: bacteria; c: casein micelles; f: fat globules; large arrows: tendrillar appendages; small 

arrows: agar strands. 
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CONCLUSION 

The microcube encapsulation method is a simple, versatile, reliable, and 

reproducible method for preflxation preparation of fluid dairy products. It is more reliable 

than the agar gel tube methods of Salyaev and Kalab in sealing the encapsulated fluid and 

does not require the production of individual agar gel tubes into which the sample is 

aspirated. The microcube method will prove beneficial to researchers in structural studies 

of fluid foods because it allows a greater number of samples to be prepared in a simpler 

way and ensures a considerably lower incidence of sample leakage. 

There was no apparent effect of fixing with glutaraldehyde at 45°C rather than at 

4°C. Fixation at 20°C to 25°C is therefore adequate unless the state of the material at 

another temperature is under investigation. 
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CHAPTER IV 

COMPARING ANTIGENICITY OF ~-LACTOGLOBULIN IN ULTRA-

HIGH TEMPERATURE-STERILIZED ULTRAFIL TERED (3x) 

MILK CONCENTRATE AND WHEY AFTER DIFFERENT 

MODES OF ALDEHYDE FIXATION1 

ABSTRACT 
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A protocol has been established for aldehyde fixation and immunogold labeling of 

~-lactoglobulin in milk samples, using trichloroacetic acid precipitated milk whey protein 

from direct ultra-high-temperature sterilized milk retentate (ultrafiltration concentrated 3x by 

volume reduction). Microcube prefixation encapsulation was used for all samples. 

Aldehyde degradation of antigen was investigated using enzyme-linked immunosorbent 

assay (ELISA). Antigenicity of the samples is reduced by both aldehyde fixatives, but 

paraformaldehyde is less deleterious than glutaraldehyde. Paraformaldehyde (4%) with 

fixation times of 2 h, 3 h, 4 h, and 5 hand glutaraldehyde (1.5%) with fixation times of 

.5 h, 1 h, 2 h, and 3 h were investigated to determine the optimal fixation time for 

maximum protein antigenicity. The 4 h fixation with paraformaldehyde (4%) and 1 h 

fixation with glutaraldehyde (1.5%) best preserves antigenicity while providing adequate 

fixation of the protein. The paraformaldehyde fixation results in better sections at labeling. 

LR White resin polymerized at 50°C was satisfactory for the embedding of samples. 

Teleosteam fish gelatin (.1%) with normal goat serum (.1%) in 20 mM Tris buffer without 

bovine serum albumin proved to be an adequate blocking agent. The protocol localizes 

~-lactoglobulin in gelled and fresh UHT-sterilized UF milk retentate. 

1 Coauthored by M. C. Alleyne, D. J. McMahon and W. McManus. 
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INTRODUCTION 

Fixation is the process which preserves the fine structures of biological materials 

with minimal alterations to the morphology and is used for electron microscope 

immunochemistry to avoid the artifactual diffusion of soluble tissue components (Beesley 

and Dougan, 1991), and to allow prolonged storage of the biological specimen (Leenan et 

a!., 1982). It must be recognized, however, that fixation itself is a major artifact 

(Brandtzaeg, 1982) since the fluid or semifluid nature of the living cell is lost. 

Except for formaldehyde, the use of aldehydes as fixatives is a comparatively recent 

development (Hayat, 1989) pioneered mainly by Sabatini et al. (1963), who demonstrated 

the usefulness of aldehydes (particularly glutaraldehyde) to electron microscopy (Hayat, 

1989). For electron microscopic immunochemistry, the fixative should stabilize the antigen 

without destroying its antibody-binding capacity (antigenicity); aldehyde fixation is usually 

used for this process (Beesley and Dougan, 1991). Osmium tetroxide reduces or even 

destroys antigenicity (Sitte et al., 1989) and is not used for this purpose. 

Aldehyde fixation is used to preserve as much antigenicity as possible, but the 

resulting ultrastructure can be very poor especially with formaldehyde alone (Beesley and 

Dougan, 1991). The fixation method used depends on the antibody. Formaldehyde (4%) 

is used to stabilize antigens prior to immunolabeling with monoclonal antibodies while the 

stronger fixative glutaraldehyde (2.5%) is used when employing polyclonal antibodies, 

which have much wider specificity (Beesley, 1988). 

The optimal duration of fixation for most tissues is not known, and an arbitrary 

standardized duration of 1-4 h at room temperature or 4°C is often used (Hayat, 1989). 

The optimal duration of fixation for a specific tissue is controlled by the type of fixative, 

specimen size, type of specimen, temperature, buffer type, staining method, and the 

objective of the study. Very little is known of the effects of over-fixation except that the 

extraction of tissue constituents increases. Fixation times now used are safe, but are longer 



than necessary and should be modified to retain as much cellular materials as possible 

(Hayat, 1989). 
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Immunological labeling seeks to adjust the concentration of reagents to obtain a 

high signal with minimal noise (Beesley and Dougan, 1991). A high concentration of 

reagents results in considerable background or nonspecific labeling, which can be 

prevented by pretreating the antigens with blocking agents that attach to any sticky 

nonimmunological sites. Preincubating the sample with gelatin in buffer containing bovine 

serum albumin (BSA) reduces background labeling (Beesley and Dougan, 1991). 

Phosphate buffered saline (PBS) is usually used for all incubations (Slot and Geuze, 

1984). 

Low-temperature embedding techniques have been used to study protein 

interactions in biological systems (Armbruster and Kellenberger, 1986; Carlemalm and 

Villiger, 1989; Rudick eta/., 1991) and to study food ultrastructure (Armbruster and Desai, 

1992). The low-temperature resin, Lowicryl K4M, appears to be the resin of choice for 

these procedures (Carlemalm eta/., 1982), which include the progressive lowering of 

temperature (PLT) technique (Carlemalm eta/., 1982 and 1986; Chiovetti eta/., 1986; 

Hobot, 1991) and the freeze-substitution method (Rebhun, 1972; Sitte eta/., 1986; 

Steinbrecht and Muller, 1987). 

The PLT technique requires aldehyde fixation. After fixation, dehydration, and 

embedding, the temperature of the medium is progressively lowered to inhibit leaching of 

components and to preserve the antigens in situ (Sitte eta/., 1989). Finally after the 

specimen has been transferred into pure monomeric mixture at between -35°C and -80°C, 

UV light polymerization is carried out (Sitte eta/., 1989). 

Freeze-substitution may be conducted in closed capsules in dry ice at -79°C (Sitte et 

a/., 1989). It does not require aldehyde fixation, but stabilizing compounds may be added 

to the substitution medium. Ice in the frozen tissue is replaced with an organic solvent 
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(usually acetone) at a temperature higher than that at which the specimen was frozen 

(Hayat, 1989). The solvent is replaced by a resin. Fixation occurs at a low temperature 

during the substitution process, and the procedure apparently involves less extraction and 

translocation of solutes than with fixation and dehydration at room temperature. 

It is also possible to use ultrathin frozen sections that do not require the use of 

resins (Slot and Geuze, 1984). The tissue is frozen and sectioned at -100°C, and the 

sections are thawed before immunolabeling (Beesley and Dougan, 1991). This may be the 

most sensitive method for antigen preparation. 

It is preferable to test the responsiveness of the antibody using Western blot 

analysis, ELISA, or immunoelectrophoresis before the sample is immunolabeled (Beesley 

and Dougan, 1991 ). This test is best done under immunocytochemical conditions using 

known positive samples. 

It is not known whether the advantages of low-temperature embedding in polyacryl 

justify the additional labor (Sitte et al., 1989). 

The objective of this study was to establish an alternative protocol to low­

temperature embedding for immunocytochemical studies of ~-lactoglobulin in UHT-

sterilized concentrated milk, using LR White resin as the embedding medium with a 

polymerization temperature of 50°C. 

MATERIALS AND METHODS 

Reagents 

Agar was obtained from Difco Laboratories (Detroit, Michigan); paraformaldehyde, 

glutaraldehyde, normal goat serum (NGS), secondary antibody (goat anti-mouse) IgG 

conjugated to 10 nm gold probes (batch# 9458), and LR White resin (medium grade) were 

obtained from Electron Microscopy Sciences (Fort Washington, Pennsylvania). 

Teleosteam fish gelatin was obtained from Sigma Chern. Co. (St. Louis, Missouri). 
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Primary antibodies (mouse anti-P-lactoglobulin and mouse anti-as1-casein) were obtained 

from J. J. Statsny, University of Illinois, Chicago. These monoclonal antibodies were 

raised against purified proteins (Kuzmanoff et al., 1991; Kuzmanoff and Beattie, 1991). 

All other chemicals were analytical reagent grade. 

Samples 

A 10-month-old gelled ultra-high temperature (UHT) sterilized milk sample 

(ultrafiltration concentrated 3x by volume reduction) was obtained from the Gary H. 

Richardson Dairy Products Laboratory, Utah State University, and divided into two parts. 

One part was used without further treatment. The other part was ultracentrifuged at 

100,000 x g (38,500 rpm) for 1 h at 20°C in a Sorvall Ultracentrifuge to sediment all the 

casein micelles. The whey proteins in the supernatant were precipitated by addition of 24% 

trichloroacetic acid (TCA) in the volume ratio of 1:1 and filtered to separate the precipitate. 

A 6-hour-old ungelled UHT-sterilized milk sample (ultrafiltration concentrated 3x 

by volume reduction) and fresh skim milk were also obtained from the Gary H. Richardson 

Dairy Products Laboratory, Utah State University. 

ELISA 

This procedure was used to screen fixatives in order to optimize antigenicity of 

P-lactoglobulin. Skim milk, as a source of P-lactoglobulin, was adsorbed to ELISA plates 

(Coming Inc., Coming, New York). The ELISA procedure from "Monoclonal Antibody 

Screening Kit, Mouse Immunoglobulins" (Hyclone Laboratories, Inc., Logan, Utah) was 

followed with modifications: A fixation step was added after the milk proteins had 

adsorbed to the plates. Glutaraldehyde in concentrations of .25%, .5%, and 1% and 

paraformaldehyde in concentrations of 1%, 2%, and 4% were used as fixatives in PBS 

buffer (pH 6.6) for 6 min . Blocking was done with .1% Teleosteam fish gelatin with .1% 

NGS in PBS buffer. The primary antibody (mouse anti-P-lactoglobulin) was diluted 
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1:5000 (antibody:PBS buffer). ELISA plates were read to determine the optical density at 

490 nm (OD490) on a Biotek EL 309 Microplate Autoreader (Bio Tek Instruments, 

Winooski, Vermont). There were six replicates of each aldehyde concentration. A positive 

control (with no fixative) and a negative control (with a primary antibody to a non-milk 

protein) were utilized to establish the optical density range for the system. Data were 

analyzed using ANOV A. Treatments were structured as one factor with eight levels. 

Various differences between controls, aldehydes, and concentrations were evaluated. 

Preparation of Blocks 

Glutaraldehyde (1.5%) and paraformaldehyde (4%) fixatives were prepared in .1M 

phosphate buffer (pH 6.6) to fix samples. Each of the three samples (TCA-precipitated 

whey, gelled UHT-sterilized UF rnilkretentate, and fresh UHT-sterilized UF milk 

retentate) were encapsulated in agar (4%) using the rnicrocube technique (Alleyne et al., 

1993). After encapsulation each sample was divided into groups and subjected to eight 

methods of aldehyde fixation as follows: (1) glutaraldehyde (1.5%) for .5 h, (2) 

glutaraldehyde (1.5%) for 1 h, (3) glutaraldehyde (1.5%) for 2 h, (4) glutaraldehyde 

(1.5%) for 3 h, (5) paraformaldehyde (4%) for 2h, (6) paraformaldehyde (4%) for 3 h, (7) 

paraformaldehyde (4%) for 4 h, and (8) paraformaldehyde (4%) for 5 h. They were then 

dehydrated in an ascending ethanol series (50%, 70%, 95%, 100%), infiltrated in LR 

White resin and embedded at 50°C for 21 h. 

Immunogold Labeling 

We conducted preliminary studies to determine (1) the most efficient blocking 

agent, (2) the optimal ratio of primary and secondary antibodies to buffer dilution, (3) the 

optimal duration of each step in the labeling procedure, and (4) the optimal duration of 

staining. 
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Thin sections, 90 nm thick (Sorvall MT-2 Porter-Blum ultramicrotome), from the 

LR White blocks were floated for 15 min on the blocking agent (.1% fish gelatin with .1% 

NGS in 20 mM Tris buffer without BSA) at pH 6.6 and then rinsed for 5 min in 50 mM 

Tris saline buffer (pH 7.4) (Zymed, 1991). They were floated on the primary antibody 

(mouse anti-f3-lactoglobulin) in buffer, ratio 1:2000 (antibody:50 mM Tris saline buffer), 

and refrigerated for 24 h in a humidity chamber. The control was floated on PBS (in place 

of the primary antibody) in the humidity chamber. All grids were then rinsed for 5 min in 

50 mM Tris saline buffer (pH 7.4) (Zymed, 1991) and floated on the secondary antibody 

(goat anti-mouse) IgG conjugated to 10 nm gold probes in buffer, ratio 1:38 (antibody:50 

mM Tris saline buffer) in a humidity chamber at room temperature for 3 h. Preliminary 

investigations to select the optimum probe size for these investigations showed that 10 nm 

probes gave reduced labeling density compared to 5 nm probes, in agreement with other 

researchers (van Bergen en Henegouwen and Leunissen, 1986; Yokota, 1988; Gu and 

D'Andrea, 1989; Ghitescu and Bendayan, 1990; Hansen eta!., 1992; Giberson and 

Demaree, 1994). However, similar labeling patterns were observed with both sizes of 

probes, and the 10 nm probes were much more distinguishable in the micrographs. Grids 

were rinsed (6 x 5 min) with double-distilled water and stained with uranyl acetate (20 min) 

followed by lead acetate (5 min) (Youssef, 1985). Transmission electron microscopy 

(TEM) was carried out using a Zeiss CEM 902 electron microscope operated at 80 kV. 

Micrographs were taken on Kodak SO 163 sheet film and printed on Kodak polycontrast 

III RC paper. 

RESULTS AND DISCUSSION 

ELISA 

Tests of the specificity of anti-f3-lactoglobulin for f3-lactoglobulin determined that a 

dilution of 1:5000 (primary antibody:PBS buffer) yielded conclusive results with an 
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antigen concentration of ~5 mg/rnl. Under these conditions the ELISA of ~-lactoglobulin 

vs. anti-~-lactoglobulin had an OD490 of .280 ±.0076, the ELISA of skim milk vs. anti-

~- lactoglobulin had an OD490 of .260 ± .0076, and the ELISA of ~-lactoglobulin vs. anti­

asi-casein (the negative control) had an OD 490 of .017 ±.0039. 

Results of the ELISA procedure allowed us to optimize the antigenicity of 

~-lactoglobulin. The positive control sample (with no fixative used) yielded an average 

optical density of .070 ±.0065. The negative control sample yielded an average optical 

density of .003 ±.0039. There was no significant difference (P = .90) between 

~-lactoglobulin treated with either 1%, 2%, or 4% concentrations of paraformaldehyde 

(Figure 4.1) although all had lower OD490 than the positive control. There were significant 

differences (P = .016) between the ~-lactoglobulin treated with .25%, .5%, and 1% 

concentrations of glutaraldehyde (Figure 4.2). Paraformaldehyde fixation reduced the 

antigenicity of ~-lactoglobulin compared to the native unfixed protein and antigenicity was 

~67% that of the positive control. The antigenicity of all paraformaldehyde treatments was 

similar and acceptable for immuno-electron microscopy (Hayat, 1981). The greater the 

concentration of glutaraldehyde, the greater was the reduction of antigenicity of 

~-lactoglobulin. Only at the lowest concentration of glutaraldehyde (.25%) was 

antigenicity similar to that of paraformaldehyde. Antigenicity at glutaraldehyde 

concentrations of .5% and 1% was 52% and 28% of the positive control. 

Immunogold Labeling 

In preliminary studies, various combinations and concentrations of Tween 20 and 

Tris buffered saline (TBS) with NGS failed to satisfactorily reduce nonspecific labeling. 

We tested Teleosteam fish gelatin (Armbruster and Desai, 1992) .1% in 20 mM Tris buffer 

without BSA (pH 6.6), with and without .1% NGS as a blocking agent. We used samples 

of TeA-precipitated whey gel fixed for 4 h with 4% paraformaldehyde. The blocking 

efficiencies of the fish gelatin with and without NGS are shown in Figure 4.3. There was 



Figure 4.1. Least square means for average optical density of ELISA with 

paraformaldehyde-treated P-lactoglobulin. Negative control was a non-species primary 

antibody (anti-Nosema locustae in mouse). 
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No treatment is equivalent to a positive control. a,b,c: within main effects, means with no 

common letters differ significantly (P < .05). Error bar= 1 standard deviation. 



78 

0.08 c 

~ 
00 0.06 

+ --s 
c 0.04 

Q 
0'\ 
-.::t 
'-' 

~ 0 0.02 

a 

negative control 4.00 % 2.00 % 1.00 % no treatment 

Paraformaldehyde Fixation Treatments 



Figure 4.2. Least square means for average optical density of ELISA with 

glutaraldehyde-treated ~-lactoglobulin. Negative control was a non-species primary 

antibody (anti-Nosema locustae in mouse). 
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No treatment is equivalent to a positive control. a,b,c,d,e: within main effects, means with 

no common letters differ significantly (P <. 05). Error bar= 1 standard deviation. 
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Figure 4.3. Transmission electron micrographs of controls: immunogold-labeled TeA­

precipitated whey gel fixed for 4 h with 4% paraformaldehyde comparing the blocking 

efficiency of the fish gelatin (a) without NGS, (b) with NGS. With NGS (b) there was 

less labeling (noise) than without NGS (a). 
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much more labeling (noise) without the NGS so we used fish gelatin with NGS as the 

blocking agent. Preliminary studies using fish muscle sample as a control showed no 

labeling for f3-lactoglobulin when f3-lactoglobulin antigen was used at concentration levels 

of 1:3000 to 1:500 (antibody:buffer). 

TCA-precipitated whey gel fixed for 4 h with 4% paraformaldehyde required higher 

concentrations of primary antibody than that used in the ELISA test because the embedded 

material contained a lower concentration of f3-lactoglobulin antigen. The probe density 

with an antibody: buffer dilution of 1:2000 was similar to that with 1:1000 dilution. The 

1:3000 dilution markedly reduced probe density (Figure 4.4). Consequently, a dilution of 

1:2000 was used for the primary labeling of f3-lactoglobulin. 

Among the glutaraldehyde (1.5%) fixed samples (Figure 4.5) , 1 h of fixation 

resulted in more dense labeling of the protein matrix of TCA-precipitated whey gel (Figure 

4.5b). With paraformaldehyde (4%) fixed samples (Figure 4.6), 4 h of fixation resulted in 

more dense labeling of the protein matrix (Figure 4.6c). The shorter periods of fixation 

(.5 h for glutaraldehyde, 2 and 3 h for paraformaldehyde) did not adequately stabilize the 

protein and therefore allowed leaching during dehydration and embedding, resulting in 

reduced gold labeling. The longer periods of fixation (2 and 3 h for glutaraldehyde, 5 h for 

paraformaldehyde) reduced the antigenicity of the protein through diffusion of enzymes and 

extraction of cellular materials (Hayat, 1981). This also reduced labeling of the samples. 

As shown in Figures 4.5b and 4.6c, the probe density and micrograph quality are similar, 

but fixation with paraformaldehyde generally resulted in a cleaner labeled section than those 

fixed with glutaraldehyde. Samples fixed with glutaraldehyde had positive fixed charges 

because all surface cations are not masked (Hayat, 1981). These charges may attract 

extraneous materials during immunolabeling and produce dirtier sections. Consequently, 

we used paraformaldehyde ( 4%) with a fixation period of 4 h for our studies of 

f3-lactoglobulin. 
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Figure 4.4. Transmission electron micrographs of immunogold-labeled, TeA­

precipitated whey gel fixed for 4 h with 4% paraformaldehyde comparing the dilutions of 

primary antibody with buffer (a) 1:1000, (b) 1:2000, (c) 1:3000. Dilution of 1:2000 

produced similar probe density as the 1:1000 while the 1:3000 dilution resulted in a marked 

reduction in probe density. 
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Figure 4.5. Transmission electron micrographs of immunogold-labeled, TeA­

precipitated whey gel fixed with 1.5% glutaraldehyde for periods of (a) .5 h, (b) 1 h, (c) 

2 h, (d) 3 h. There was a higher density of labeling with the 1-h fixation (b). 
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Figure 4.6. Transmission electron micrographs of immunogold-labeled, TeA­

precipitated whey gel fixed with 4% paraformaldehyde for periods of (a) 2 h, (b) 3 h, (c) 

4 h, (d) 5 h. There was a higher density of labeling with the 4-h fixation (c). 



a 

' .. 

-~ · . 

:· ( ·. : 

·· . -•: 

'· 

>., 

,: .... 

.~ ... .. 

... ·. 

--':: ·:·· 

... , ... 

.· 
:·. :'i·/·. 

, • . . 
:· ..... :.:· ·. · 

,. 
.. .. :.::·: · . :" · 

.... ,. 

.... ... ~: -~\ . 
·-·: .. 

•;t •• · • •• r , . 

.... . . ·.· ~ .. 

b 

' . 

. , 

.. • d ·· ..(• 

, . , 
.-.~ · ·. 

.. ~ .. 

:- ::· . 

. .. :· 

I ' ' :: ~·-~: .... • 

: · ...• · 
! 

.: .. · . 

··,.· 
. ,. , .. 1pm 



90 

We investigated the optimal poststaining procedure for uranyl acetate and lead 

citrate by varying the staining times of combinations of these two reagents. Twenty 

minutes (5 min at 45°C and 15 min at room temperature) with uranyl acetate and 5 min with 

lead acetate produced the best stains. 

The labeling of ~-lactoglobulin in fresh UHT and gelled UHT milk samples (Figure 

4.7) showed that the paraformaldehyde fixation alone did not appear to adversely affect the 

ultrastructure. The gelled sample had more label on the intermicellar matrix than on the 

micelles, and the label on the micelles appeared mainly on the surface (Figure 4.7a). The 

micelles of the fresh sample appeared smaller than those of the gelled sample, and there 

was more dense labeling on the micelles than on the matrix between micelles (Figure 4.7b). 

The labeling of the micelles was mainly on the surface. 

Label on the micelles was presumed to be from the formation of the complex 

between ~-lactoglobulin and K-casein (Morr eta/., 1962; Morr, 1965; Sawyer, 1969; 

Snoeren and van der Spek, 1977) and/or as2-casein and ~-lactoglobulin (Kudo, 1980; 

Kinsella, 1984 ). The labeled matrix between micelles in the fresh UHT sample suggests 

that a complex, probably between ~-lactoglobulin and a-lactalbumin (Elfagm and 

Wheelock, 1978a and b) and/or ~-lactoglobulin and serum K-casein (Morr eta/., 1962; 

Morr, 1965; Sawyer, 1969; Snoeren and van der Spek, 1977), was present. As the UHT 

samples aged, the ~-lactoglobulin-K-casein complex on the micellar surface migrated to the 

intermicellar spaces and some coalescence of smaller micelles was observed. This 

migration and the possible interaction with the existing complex of the intermicellar spaces 

(Hunziker and Tarassuk, 1965; Elfagm and Wheelock, 1977) partially explain why and 

how age gelation occurs in UHT -sterilized milk. 
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Figure 4.7. Transmission electron micrographs of immunogold-labeled, gelled, UHT 

milk and fresh UHT milk. (a) The micrograph of the gelled sample showed labeling 

generally between micelles (small arrows) with reduced density on the micelles (large 

arrows). (b) The micrograph of the fresh sample showed labeling concentrated mainly on 

the surface and within the micelles (large arrows). 

me: micelles; mx: matrix. 



a 

.. 

. 

: 

·• 

b 

• 

. . . . • 
• 

. . 

. . 
•. 

• 

. . . 

. .. 

.. 

• 

. . 

~ 

. 

~ 

• •• 

.. 

.. . 

. . 

• •• ••• 

. 

• ... 
•• 

. 

• 

\ 

. 

. . 

~-. 
. .. 

:: 
·. . . .. .. . . 

• 

• 
~· • 

• 
I/ 
• 

• •: 

. . 

.. 
·: 

• • .. . • 

. . 

. 

. ... 

• 

: . . 

. 

.. 

. ' .... .. 
• • . . 



CONCLUSION 

The results of both the ELISA and immunolocalization assay indicate that 

paraformaldehyde is superior to glutaraldehyde as a fixative for immunogold labeling of 

~-lactoglobulin. Paraformaldehyde, at 4% concentration and 4 h incubation, provides 
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adequate fixation and preserves antigenicity. The effectiveness of .25% glutaraldehyde as a 

fixative warrants additional study. Teleosteam fish gelatin and NOS in buffer adequately 

blocked samples. Uranyl acetate (20 min) followed by lead citrate (5 min) adequately 

stained immunogold-labeled milk samples. Samples embedded in LR White resin at 50°C 

were as good as samples embedded in polyacryl at low temperature. Our procedures, 

however, are considerably less laborious and tedious than the low-temperature embedding 

methods. 
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CHAPTER V 

CHARACTERIZATION OF IMMUNOLOCALIZED ~-LACTOGLOBULIN 

AND a-LACTALBUMIN IN WHEY SAMPLES1 

ABSTRACT 

Samples of anti-~-lactoglobulin and anti-a-lactalbumin were used in Western blot 

analyses and immunolocalization studies of whey at various stages of preparation from 

fresh samples to ultra-high-temperature sterilized samples. The antibodies were specific for 

the native as well as the complexed forms of ~-lactoglobulin and a-lactalbumin. The native 

form of the whey proteins was more susceptible to leaching through the fixation, 

dehydration, and embedding processes prior to electron microscopy, than was the 

complexed form. Most of the labeling for ~-lactoglobulin and a-lactalbumin was on these 

proteins complexed with each other or with other milk proteins. 

INTRODUCTION 

~-Lactoglobulin is denatured at 78°C and disulfide bonds break and when the 

molecule unfolds further at 140°C (Watanabe and Klostermeyer, 1976; de Wit, 1981). 

~-Lactoglobulin is sensitive to pH denaturation and is more stable at lower pH than at 

higher pH (Hillier et al., 1979). Irreversible denaturation of ~-lactoglobulin occurs above 

pH 7.5 (Kinsella, 1984). Increased thiol activity of ~-lactoglobulin at high pH reduces the 

stability of the molecule. These thiol groups are unreactive in native ~-lactoglobulin, but 

the dimer molecule reversibly dissociates when heated (de Wit and Klarenbeek, 1984), and 

the monomers produced unfold (Sawyer, 1969; McKenzie, 1971), polymerize by 

sulfhydryl interchange, and undergo further aggregation (Harwalk:er, 1980). Prolonged 

heating of ~-lactoglobulin results in more extensive unfolding of individual protein chains, 

1 Coauthored by M. C. Alleyne, D. J. McMahon, W. McManus and L. Burgess. 
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leading to bond breaking at disulfide linkages and exchange reactions with other proteins. 

Heating conditions conducive to ~-lactoglobulin denaturation produce very active 

sulfhydryl groups which increase the rate of denaturation (Lyster, 1970). In-container 

sterilization and vat heating almost completely denature ~-lactoglobulin, whereas UHT 

processes denature to an intermediate level (Burton, 1988; Parnell-Clunies et al., 1988). 

Pasteurization processes cause very little denaturation (Burton, 1988). Heat-denatured 

~-lactoglobulin forms complexes with a-lactalbumin (Hunziker and Tarassuk, 1965), 

as2-casein (Kudo, 1980; Kinsella, 1984 ), ~-casein (Elfagm and Wheelock, 1978a and b) 

and K-casein (Doi et al., 1979). The presence of a-lactalbumin reduces the direct 

interaction of ~-lactoglobulin and K-casein (Baer et al., 1976; Elfagm and Wheelock, 1977, 

1978a and b), but does not affect the denaturation process of ~-lactoglobulin (Elfagm and 

Wheelock, 1978a and b). 

a-Lactalbumin is more stable than is ~-lactoglobulin and contains four disulfide 

bonds but no free sulfhydryl groups (Farrell, 1988). Denaturation of a-lactalbumin occurs 

at 62°C but is reversible upon cooling (de Wit , 1981). In-container sterilization and vat 

heating, which utilize long residence times, extensively denature a-lactalbumin (Burton, 

1988; Parnell-Clunies et at., 1988). a-Lactalbumin heated with ~-lactoglobulin 

experiences more denaturation than when heated alone (Elfagm and Wheelock, 1978a and 

b). The complex formed between ~-lactoglobulin and a-lactalbumin results from a 

temperature-induced disulfide reaction, promoted by the free sulfhydryl group of 

~-lactoglobulin (Hunziker and Tarassuk, 1965). The presence of casein facilitates these 

reactions (Elfagm and Wheelock, 1978a and b). 

~-Lactoglobulin and other whey proteins have been localized using gold-labeled 

antibodies and various immunolocalization techniques. These include embedding in 

Araldite resin polymerized at 60°C to localize denatured a-lactalbumin and denatured 
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~-lactoglobulin on the micellar surfaces in yogurt (Mottar et al., 1989), embedding in 

Lowicryl K4M resin polymerized at -35°C to localize ~-lactoglobulin in the ultrastructure of 

low fat frozen desserts, salad dressing, and process cheese (Armbruster and Desai, 1992), 

and embedding in LR White resin (London Resin Co., Basingstoke, UK) polymerized at 

50°C, to localize ~-lactoglobulin in whey and UHT-sterilized UF milk retentate (Alleyne et 

al., 1994). Immunolocalization probably locates ~-lactoglobulin complexed with other 

milk proteins. The complexes are more stable than are the free proteins during extraction, 

fixation, and dehydration processes required for electron microscopy. 

The objectives of this study were (1) to compare the specificity of primary 

antibodies: anti-~-lactoglobulin and anti-a-lactalbumin in the native and the complexed 

forms of the complementary protein and (2) to compare the susceptibility of native and 

complexed forms of ~-lactoglobulin and a-lactalbumin to leaching from the samples during 

the fixation, dehydration , and embedding processes of electron microscopy preparation. 

We made these comparisons using Western blot analyses and immunolocalization 

procedures (Alleyne et al ., 1994) with embedding in LR White and polymerization at 50°C. 

MATERIALS AND METHODS 

Reagents 

Agar was obtained from Difco Laboratories (Detroit, Michigan); paraformaldehyde, 

secondary antibody (goat anti-mouse) IgG conjugated to 10 nm gold probes (batch# 

9458), and LR White medium grade were obtained from Electron Microscopy Sciences 

(Fort Washington, Pennsylvania). Teleosteam fish gelatin was obtained from Sigma 

Chern. Co. (St. Louis, Missouri). Primary antibodies (mouse anti-~-lactoglobulin and 

mouse anti-a-lactalbumin) were obtained from J. J. Statsny, University of Illinois, 

Chicago. These monoclonal antibodies were raised against purified proteins (Kuzmanoff et 

al., 1990; Kuzmanoff and Beattie, 1991). ~-Lactoglobulin and a-lactalbumin were 



prepared using FPLC (Hollar et al., 1991). All other chemicals were analytical reagent 

grade. 

Samples 
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Fresh whole milk and skim milk at room temperature were obtained from the Gary 

H. Richardson Dairy Products Laboratory, Utah State University. The fresh whole milk at 

-25°C was treated with .1M HCl to reduce the pH to 4.6, the point at which casein 

precipitated. The clear serum was decanted, filtered through cheese cloth, and filtered 

under reduced pressure through Whatman #4 filter paper (Whatman International Ltd., 

Maidstone, England). The serum was adjusted to pH 6.6 with .1M NaOH and collected 

for analysis. The skim milk was treated with .1 M HCl until the pH reached 4.6. The acid­

treated milk was left for 2 h. It was decanted and the clear serum was collected. The clear 

serum was filtered through cheese cloth and, under reduced pressure, through Whatman #4 

filter paper (Whatman International Ltd., Maidstone, England), and adjusted to pH 6.6 

with .1 M NaOH. A sample of this serum was collected for analysis. The rest of the skim 

milk serum was pasteurized (63°C for 30 min), cooled to 50°C, and collected for analysis. 

A three-module in-series UF system with spiral wound polysulfone membranes (Osmonics 

Inc., Minnetonka, Minnesota; 20 kDa nominal molecular weight cutoff, 15 m2 membrane 

area) was used to concentrate the skim milk serum, and a sample of this was collected for 

analysis. The rest of the concentrated milk was homogenized (Model 3DDL Homogenizer, 

Crepaco Inc., Chicago, Illinois) at 13.8 MPa with 3.4 MPa second stage pressure and 

sterilized in an Alfa-Laval SteriLab® UHT Pilot System for UHT processing. The sample 

was heated to 140°C and held for 4 s by indirect and direct heat exchange to aseptic 

conditions. The UHT-sterilized samples (direct and indirect) were packaged in sterile 

plastic containers in an Alfa-Laval SteriCab® filling station and collected for analysis. 
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Western Blot 

Samples of whole milk whey, skim milk whey, pasteurized skim milk whey, UF 

(3x concentrated) whey, direct UHT-sterilized whey, indirect UHT-sterilized whey, 

~-lactoglobulin, and a-lactalbumin were used as the protein samples. The nondenaturing 

gel (15% acrylamide) was run at 15 rnA for stacking and at 20 rnA for separation until blue 

dye precipitated to the bottom. The gel protein (.1 mg/lane) samples were transferred to 

nitrocellulose membrane at 14-15 V for 5 h in transfer buffer (pH 6.6) consisting of 800 ml 

methanol, 9.66 g Tris base, 44.6 g glycine in 4 L distilled water. All preceding steps were 

done on a shaker at room temperature. Blocking was done in PBS and 1% fish gelatin for 

3 h and washed three times in PBS and .5% Tween 20 for 10 min per wash. The primary 

antibody was diluted at 1:750 in PBS and was added and left on a shaker for 1 h. The 

membrane was washed three times in PBS and .5% Tween 20 for 10 min per wash. The 

secondary antibody was diluted at 1:2000 in PBS, and was added and left on a shaker for 

1 h. The gel was again washed three times in PBS and .5% Tween 20 for 10 min per 

wash. Diaminobenzidine (DAB) substrate, consisting of 50 mg 3, 3' diaminobenzidine, 

10 ml .3% CoCl2, 90 ml PBS, and 100 J...Ll 30% H202, was added to blot until bands 

developed. The reaction was stopped by rinsing in distilled water. The blot was ;>reserved 

by drying it on filter paper at 50°C. Samples of whole milk whey, skim milk whey, 

pasteurized skim milk whey, UF (3x concentrated) whey, direct UHT-sterilized whey , 

indirect UHT-sterilized whey, ~-lactoglobulin, and a-lactalbumin were stored in a freezer 

at -70°C for 2 months and the Western blot analyses were repeated after this storage period. 

Electron Microscopy 

Prepared samples of whole milk whey, skim milk whey, pasteurized milk whe:Y, 

UF (3x concentrated) whey, direct UHT-sterilized whey, and indirect UHT-sterili:ed whey 

were encapsulated in 4% agar using the microcube technique (Alleyne et al., 1993 . The 

samples were fixed in parafonnaldehyde (4%) for 4 h (Alleyne et al., 1994). The~ wretre 



dehydrated in an ascending ethanol series (50%, 70%, 95%, 100%), infiltrated in LR 

White resin, and embedded at 50°C for 21 h. 

lmmunogold Labeling 
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Thin sections (90 nm thick, Sorvall MT-2 Porter-Blum ultramicrotome) from the 

LR White blocks were immunogold labeled according to Alleyne et al. (1994). Sections 

were floated for 15 min on the blocking agent (.1% fish gelatin with .1% NGS in 20 mM 

Tris buffer without BSA) at pH 6.6 and rinsed for 5 min in 50 mM Tris saline buffer (pH 

7.4) (Zymed, 1991). They were floated on the primary antibody (mouse anti­

~-lactoglobulin or anti-a-lactalbumin) in buffer, ratio 1:2000 for ~-lactoglobulin, 1:1000 

for a-lactalbumin (antibody:50 mM Tris saline buffer), and refrigerated for 24 h in a 

humidity chamber. The control was floated on PBS in the humidity chamber in place of the 

primary antibody. All grids were rinsed for 5 min in 50 mM Tris saline buffer (pH 7.4) 

(Zymed, 1991) and then floated on the secondary antibody (goat anti-mouse) IgG 

conjugated to 10 nm gold probes in buffer, ratio 1:38 (antibody:50 mM Tris saline buffer) 

in a humidity chamber at room temperature for 3 h. Grids were rinsed (6 x 5 min) with 

double-distilled water and stained with uranyl acetate (20 min) followed by lead acetate (5 

min). Transmission electron microscopy (TEM) was carried out using a Zeiss CEM 902 

electron microscope operated at 80 kV. Micrographs were taken on Kodak SO 163 sheet 

film and were printed on Kodak polycontrast III RC paper. 

RESULTS AND DISCUSSION 

Western Blot 

The results of the Western blots (Figure 5.1) for anti-~-lactoglobulin and anti­

a-lactalbumin were similar, but the staining with anti-~-lactoglobulin was more intense 

than that with anti-a-lactalbumin. This indicates that anti-~-lactoglobulin bound more 

strongly to protein than did anti-a-lactalbumin. The negative controls (a-lactalbumin for 
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Figure 5.1. Western blot for antibodies vs. whey samples: (a) anti-~-lactoglobulin vs. 

fresh samples, (b) anti-a-lactalbumin vs. fresh samples, (c) anti-~-lactoglobulin vs. 

freeze-stored samples, (d) anti-a-lactalbumin vs. freeze-stored samples. 

LANES: 1. whole milk whey, 2. skim milk whey, 3. pasteurized whey, 4. ultrafiltered 

whey, 5. direct UHT whey, 6. indirect UHT whey, 7. a-lactalbumin (control), 8. 

~-lactoglobulin (control). There was interaction between the antibodies and the narrow 

bands (uncomplexed protein) and diffused bands (complexed proteins) of the fresh 

samples, and the narrow bands (uncomplexed protein) of the freeze-stored samples. There 

was interaction between antibodies and the corresponding positive controls, but no reaction 

with the corresponding negative controls. 



a 
b 

123 4 56 78 1 2 3 4 5 6 7 8 

c d 

12 34 5 67 8 123 4 567 8 
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anti-~-lactoglobulin and ~-lactoglobulin for anti-a-lactalbumin) for all blots did not react 

with the antibodies. 

In the fresh whey samples anti-~-lactoglobulin reacted with the two native bands of 

~-lactoglobulin in the samples of whole milk whey, skim milk whey, pasteurized whey, 

and UF whey. The antibody also reacted with the wider diffused band of the UF 

concentrated milk (suggesting some polymerization of ~-lactoglobulin during UF) and the 

UHT-sterilized samples (Figure 5.1a). In the UHT-sterilized samples the lower band of 

~-lactoglobulin was almost completely replaced by the wider diffused band (especially in 

the indirect UHT-processed samples using plate heat exchangers), indicating that most of 

the native protein was converted to the complexed or denatured state. Anti-a-lactalbumin 

reacted with the single native band of a-lactalbumin in all samples and with the wider 

diffused band of the UF and UHT-sterilized samples (Figure 5.1b). The lower band of 

a-lactalbumin was still present in the UHT-sterilized samples, indicating that considerable 

native a-lactalbumin remained after these treatments. 

These results suggested whey proteins start to complex during the UF stage of 

sample preparation and that complexing intensifies through UHT sterilization. The labeling 

of the narrow and diffused bands showed that both antibodies are specific for the native as 

well as the complexed forms of the whey proteins. 

In the blots for the freeze-stored samples, the antibody reacted with the native 

double band of ~-lactoglobulin (Figure 5.1c) and the native single band of a-lactalbumin 

(Figure 5.1d). These were the only reactions between antibody and protein and were the 

only distinct bands in the samples. The reason for the absence of the diffused band (which 

had been presumed to represent high molecular-weight polymers) is not understood at this 

time. 

The multiple bands observed for the controls reflect the presence of impurities in 

these samples. 



Immunogold Labeling 

There was no labeling in any of the controls. The intensity of labeling for 

a-lactalbumin (Figure 5.2) generally reflected the following order: whole< skim< 
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pasteurized < UF < direct UHT < indirect UHT. The increased labeling between 

pasteurized and UF (3x) samples was partially due to the differences in concentration of 

a-lactalbumin and by the occurrence of some aggregation of a-lactalbumin as shown by 

Western blots (Figure 5.1). 

Figure 5.3 shows labeling of whey samples for ~-lactoglobulin. Labeling intensity 

was generally higher than with a-lactalbumin at every stage of the experiment, but the 

order of labeling intensity was similar. This suggests that native or uncomplexed whey 

proteins (predominant in whole milk, skim milk, and pasteurized milk samples) were more 

easily lost than were complexed whey proteins (predominant in UHT-sterilized milk 

samples), during fixation , dehydration, and embedding. More complexing apparently 

occurred with indirect UHT sterilization than with direct UHT sterilization, perhaps due to 

the longer exposure to high temperature with the indirect method of heating (97 s residence 

time compared with > 1 s with direct steam injection). The labeling in the whole milk whey 

and skim milk whey samples suggested that a small percentage of uncomplexed whey 

proteins is, however, retained during sample preparation. 

CONCLUSION 

The antibodies that we used were specific for the native as well as the denatured and 

aggregated forms of ~-lactoglobulin and a-lactalbumin. The native form of these proteins 

were, however, more susceptible than were the complexed form to leaching through the 

fixation, dehydration, and embedding processes of electron microscopy preparation. 
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Figure 5.2. Transmission electron micrographs of immunogold-labeled a-lactalbumin 

in whey samples (a) whole milk, (b) skim milk, (c) pasteurized, (d) UF, (e) direct 

UHT, (t) indirect UHT. Labeling for a-lactalbumin showed a general increase in labeling 

intensity in the order: whole < skim < pasteurized < UF < direct UHT < indirect UHT. 
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Figure 5.3. Transmission electron micrographs of immunogold-labeled P-lactoglobulin 

in whey samples (a) whole milk, (b) skim milk, (c) pasteurized, (d) UF, (e) direct 

UHT, (f) indirect UHT. Labeling for P-lactoglobulin showed a general increase in 

labeling intensity in the order: whole< skim< pasteurized< UF <direct UHT <indirect 

UHT. 
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CHAPTER VI 

IMMUNOLOCALIZATION OF ~-LACTOGLOBULIN IN PROCESSED 

MILK, YOGURT, AND CHEESE SAMPLES1 

ABSTRACT 

We identified complexed ~-lactoglobulin in Ricotta cheese, evaporated milk, 

condensed milk, yogurt, cottage cheese, Feta cheese, Queso Blanco cheese, Mozzarella 

cheese, Cheddar cheese, process cheese, and process cheese food using 

immunolocalization techniques and embedding in LR White resin polymerized at 50°C. 

The location and relative abundance of ~-lactoglobulin corresponded to the effect of the 

manufacturing process on causing denaturation and aggregation of the whey proteins in the 

processed dairy foods. More stable ~-lactoglobulin complexes were produced around an 

optimum temperature and low pH Identifying ~-lactoglobulin complexes in other food 

systems should be useful in determining how manufacturing affects this protein in foods. 

INTRODUCTION 

Localization of Milk Proteins 

Various microscopy methods have been employed to identify milk proteins in 

foods, including the use of periodic acid-methenamine to localize K-casein in fresh milk 

(Kudo et al., 1979), gold-labeled lectin to localize K-casein in micelles of milk (Honsberger 

and Vonlanthen, 1980; Honsberger and Rouvet-Vauthey, 1984), gold particles to label 

CXsl-, ~-,and K-casein components before allowing these to reassemble into micelles 

(Schmidt and Both, 1982), ferritin-labeled antibodies to localize K-casein on micelles of 

milk (Carroll and Farrell, 1983), gold-labeled antibodies to locate K-casein in micelles of 

milk (Honsberger and Vauthey, 1984), fluorescent dye Eosin Y to locate milk proteins in 

1 Coauthored by M . C. Alleyne and D. J. McMahon. 
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milk chocolate samples (Heathcock, 1985), fluorescent dye Acridine Orange to detect 

structural differences between casein matrices of various cheeses (Yiu, 1985), fluorescent 

dyes Acridine Orange and Fast Green FCF to reveal the distribution of compact protein, 

which caused grittiness in cheese preparations (Modler eta!., 1989), and gold-labeled 

antibodies to localize K-casein on the surface of micelles in milk (Schmidt and Buchheim, 

1992). 

~-Lactoglobulin and other whey proteins have been localized using gold-labeled 

antibodies and various immunolocalization techniques. These include embedding in 

Araldite resin polymerized at 60°C to localize denatured a-lactalbumin and denatured 

~-lactoglobulin on the micellar surfaces in yogurt (Mottar et al., 1989), embedding in 

Lowicryl K4M resin polymerized at -35°C, to identify ~-lactoglobulin in the ultrastructure 

of low fat frozen desserts, salad dressing, and process cheese (Armbruster and Desai, 

1992) and embedding in LR White resin (London Resin Co., Basingstoke, UK) 

polymerized at 50°C, to localize f3-lactoglobulin in whey and UHT-sterilized UF milk 

retentate (Alleyne et al., 1994a and b). 

Resin Embedding 

LR White and Lowicryl K4M embedding with colloidal gold techniques are two 

very sensitive methods of processing tissue into resin while retaining tissue structure and 

reactivity (Newman and Hobot, 1989). Low-temperature embedding techniques have been 

successfully used to study protein interactions in food ultrastructure (Honsberger and 

Yauthey, 1984; Honsberger and Rouvet-Vauthey, 1984; Armbruster and Desai, 1992). 

The low-temperature resin, Lowicryl K4M, appears to be the resin of choice for these 

procedures (Carlemalm et al., 1982), which involve the progressive lowering of 

temperature (Carlemalm et al., 1982 and 1986; Chiovetti et al., 1986; Hobot, 1991). 

Following aldehyde fixation of the sample at -0°C, dehydration commences at 0°C and 

continues while inc;easing the concentration of ethanol until the temperature is lowered to 
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-35°C to -50°C (Hayat, 1989). This inhibits leaching of components and preserves the 

antigens in situ (Sitte eta!., 1989). Lowering of temperature is achieved through several 

methods, including the use of Blazers low-temperature embedding apparatus, ice mixed 

with sodium chloride, household chest-type freezer, and mixtures of o- and m-xylene with 

crushed ice (Chiovetti, 1987). After the specimen has been transferred into pure resin, 

which has been degassed with a vacuum pump (Fryer eta!., 1983), UV light 

polymerization at between -35°C and -80°C is carried out for at least 24 h. Samples may be 

polymerized in either Beem or gelatin capsules. A capsule holder must allow the capsules 

to receive UV radiation from all sides. If volume of the capsule exceeds 1 ml, temperatures 

may increase during polymerization (Chiovetti, 1987). Polymerization is carried out in 

specially constructed chambers that fit into a deep chest-type freezer. After polymerization 

at low temperature, the capsules are cured under UV radiation for another 2-3 days at room 

temperature. Sectioning must be performed with a diamond knife. An excellent review on 

Lowicryls and low-temperature embedding for colloidal-gold methods is given by Hobot 

(1989). 

It is easier, quicker, cheaper, and safer to fix and embed samples in LR White resin 

(Newman, 1987 and 1989; Newman and Hobot, 1989; Newman eta!., 1983) than to 

utilize low-temperature techniques with Lowicryl K4M resin. 

Denaturation of P-Lactoglobulin 

P-Lactoglobulin has a denaturation temperature of 78°C. Heating conditions 

conducive toP-lactoglobulin denaturation produce very active sulfhydryl groups, which 

increase the rate of denaturation (Lyster, 1970). Another thermal reaction occurs at -140°C 

when disulfide bonds break and the molecule unfolds (Watanabe and Klostermeyer, 1976; 

de Wit, 1981). In-container sterilization and vat heating cause almost complete 

denaturation of P-lactoglobulin; UHT processes produce an intermediate level of 
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denaturation while pasteurization processes cause very little denaturation (Burton, 1988; 

Parnell-Clunies et al., 1988). 

a-Lactalbumin is more structurally stable than f3-lactoglobulin and contains four 

disulfide bonds but no free sulfhydryl groups (Farrell, 1988). The free sulfhydryl of 

f3-lactoglobulin can promote complex formation with a-lactalbumin through disulfide 

interactions at elevated temperatures (Hunziker and Tarassuk, 1965). 

f3-Lactoglobulin also forms complexes with as2-casein (Kudo, 1980b; Kinsella, 

1984), f3-casein (Elfagm and Wheelock, 1978a and b) and K-casein (Doi eta/., 1979). 

f3-Lactoglobulin and K-casein interact through disulfide linkages when heated together or 

when K-casein is added to heated f3-lactoglobulin (Morr eta/., 1962; Morr, 1965; Sawyer, 

1969; Snoeren and van der Spek, 1977). As well as disulfide interchange, ionic 

interactions and hydrophobic bonding may be involved in these complex formations (Hill, 

1989). f3-Lactoglobulin is identified in foods using irnrnunolocalization techniques mainly 

as part of these complexes (Alleyne eta/., 1994b ). 

Whey Proteins in Dairy Foods 

Ultrafiltration (UF) in dairy processing allows increased incorporation of whey 

proteins into traditional dairy products (Mortensen, 1984). UF is also employed to isolate 

whey proteins and to produce whey protein concentrates (WPC), which are then used in 

non-dairy and dairy products like ice cream and baby foods. Chapman et al. (1974) used 

UF concentrated whole milk to make hard cheese, soft cheese, and yogurt. They found the 

yield of soft cheese to be 41% greater than that from normal whole milk and the make time 

to be half that of the normal process. 

Yogurt is heated before fermentation to denature whey proteins. f3-Lactoglobulin 

and whey proteins may be necessary components in the formation of protein matrices and 

core-and-shell structures in acid-heat-induced milk gels (Harwalker and Kalab, 1988; 

Kalab et al., 1991). 
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We employed imrnunolocalization procedures involving LR White with 

polymerization at 50°C using the protocol of Alleyne eta/. (1994a) for immunolocalization 

of ~-lactoglobulin. The objective of this study was to localize complexed ~-lactoglobulin 

in different dairy products, and to correlate the manufacturing process with the location and 

relative abundance of this whey protein. 

MATERIALS AND METHODS 

Reagents 

Agar was obtained from Difco Laboratories (Detroit, Michigan); paraformaldehyde, 

secondary antibody (goat anti-mouse) IgG conjugated to 10 nm gold probes (batch# 

9458), and LR White medium grade were obtained from Electron Microscopy Sciences 

(Fort Washington, Pennsylvania). Teleosteam gelatin was obtained from Sigma Chern. 

Co. (St. Louis, Missouri). Monoclonal primary antibody (mouse anti-~-lactoglobulin), 

raised against purified protein (Kuzmanoff and Beattie, 1991), was obtained from J. J. 

Statsny, University of illinois, Chicago. All other chemicals were analytical reagent grade. 

Samples 

Commercial samples of stirred yogurt, cottage cheese, process cheese food, and 

Cheddar cheese were obtained from the Gary H. Richardson Dairy Products Laboratory, 

Utah State University. Commercial samples of sweetened condensed milk, evaporated 

milk, Mozzarella cheese, Queso Blanco cheese, process cheese, and Ricotta cheese were 

obtained from a supermarket. Feta cheese was made at Utah State University. 

Samples of yogurt, cottage cheese, sweetened condensed milk, and evaporated milk 

were encapsulated in 4% agar using the microcube technique (Alleyne eta/., 1993). The 

other cheese samples were cut into cubes of sides -1 mm. All samples were then fixed in 

paraformaldehyde (4%) for 4 h (Alleyne eta/., 1994a). They were then dehydrated in an 
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embedded at 50°C for 21 h. 

lmmunogold Labeling 
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Thin sections (90 run thick, Sorvall MT-2 Porter-Blum ultramicrotome) from the 

LR White blocks were irnmunogold labeled according to Alleyne et al. (1994a). Sections 

were floated for 15 min on the blocking agent (.1% fish gelatin with .1% NGS in 20 mM 

Tris buffer without BSA) at pH 6.6 and then rinsed for 5 min in 50 mM Tris saline buffer 

(pH 7.4) (Zymed, 1991). They were floated on the primary antibody (mouse anti­

~-lactoglobulin) in buffer, ratio 1:2000 (antibody: 50 mM Tris saline buffer), and 

refrigerated for 24 h in a humidity chamber. The control was floated on PBS in the 

humidity chamber in place of the primary antibody. All grids were rinsed for 5 min in 50 

mM Tris saline buffer (pH 7.4) (Zymed, 1991) and floated on the secondary antibody (goat 

anti-mouse) lgG conjugated to 10 nm gold probes in buffer, ratio 1:38 (antibody:50 mM 

Tris saline buffer) in a humidity chamber at room temperature for 3 h. Grids were then 

rinsed (6 x 5 min) with double-distilled water and were stained with uranyl acetate (20 min) 

followed by lead acetate (5 min). Transmission electron microscopy (TEM) was carried 

out using a Zeiss CEM 902 electron microscope operated at 80 kV. Micrographs were 

taken on Kodak SO 163 sheet film and were printed on Kodak polycontrast III RC paper. 

RESULTS AND DISCUSSION 

Resin Embedding 

The quality of labeled micrographs produced using LR White resin was comparable 

to that obtained by Armbruster and Desai (1992) who used low-temperature embedding 

techniques with Lowicryl K4M. Newman and Hobot (1989) also compared 

immunocolloidal gold labeling on LR White and Lowicryl K4M using sections of pancreas. 

Thc:y found little difference in microstructure or gold particle counts and concluded that LR 
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White resin was excellent for routine cytochemical and immunocytochemical problems. 

We would recommend the use of LR White resin because fixation, dehydration, and 

infiltration are performed at room temperature, polymerization in gelatin capsules is done at 

50°C, and sectioning can be performed with a glass knife. Use ofLowicryl K4M and the 

progressive lowering of temperature would be recommended if fixation reduces sensitivity 

and where a radical reduction in glutaraldehyde concentration to .2% or less is required. 

Ricotta Cheese 

Ricotta cheese is a soft, bland, semi-sweet whey cheese made from the coagulable 

whey proteins from cheese such as Cheddar, Swiss, and Provolone. The Ricotta cheese 

used in this experiment was made with 10% pasteurized whole milk added to pasteurized 

whey (according to the label). The milk-whey mixture was then acidified and the 

temperature raised to 80-100°C (Bassette and Acosta, 1988). We observed two types of 

diffused core-and-shell micellar matrix (Figures 6.1a and 6.1 b) and a diffused intermicellar 

whey protein matrix (Figure 6.1c). In Ricotta cheese the core-and-shell matrix of Figure 

6.1a was more dense and more compact than that of Figure 6.1b. A core-and-shell matrix 

has been observed for such acid-heat coagulated cheeses (Harwalker and Kalab, 1988; 

Kalab et al., 1991; Kalab, 1993). The matrices all showed relatively heavy labeling for 

~-lactoglobulin. The use of whey as the main ingredient in this cheese and the formation of 

larger ~-lactoglobulin aggregates accounted for the overall heavy labeling of this product. 

Figure 6.1d shows the ultrastructure of Ricotta cheese used as a control for labeling. The 

general lack of labeling for this control (compared to Figures 6.1a and 6.1b) typified the 

results of all controls in this experiment. 
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Figure 6.1. Transmission electron micrographs of irnmunogold-labeled Ricotta cheese: 

(a) compact core-and-shell structure with heavy labeling for f3-lactoglobulin , (b) extended 

core-and-shell structure with heavy labeling for f3-lactoglobulin, (c) diffused intermicellar 

whey protein matrix with heavy labeling for f3-lactoglobulin, (d) irnmunogold-labeled 

control for Ricotta cheese showing slight background labeling for f3-lactoglobulin. 

cr: core, sh: shell, mx: intermicellar matrix. 
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Evaporated Milk 

Evaporated milk is sometimes called unsweetened condensed milk and is produced 

by vacuum evaporating -60% of water from whole milk (Lampert, 1965). Standardized 

milk is warmed to a temperature of 88-99°C and is then drawn into a vacuum pan where it 

is condensed to the required concentration. After evaporation the milk is homogenized, 

cooled, canned, and pressurize sterilized at 117°C for 15 min, 126°C for 2 min, or up to 

150°C for -5 s (Bassette and Acosta, 1988). The ultrastructure of evaporated milk (Figure 

6.2) showed round micelles, an irregular intermicellar matrix, and fat globules with 

membranes mostly surrounded by attached micelles. This characteristic ultrastructure is 

similar to that observed by Heintzberger eta/. (1972). Gold-labeled ~-lactoglobulin 

appears on the micellar surfaces and within the intermicellar spaces. Labeling appears more 

dense within the intermicellar spaces than on the micellar surfaces. This is probably due to 

a higher concentration of ~-lactoglobulin complex within the intermicellar matrix. 

Sweetened Condensed Milk 

Sweetened condensed milk is essentially sweetened evaporated milk. The addition 

of 18% sucrose to evaporated milk confers adequate preservation without pressurized 

sterilization (Bassette and Acosta, 1988). After whole milk is warmed for 15-30 min at a 

temperature of 82-93°C (Lampert, 1965), syrup of 65% sucrose or a mixture of sucrose 

and dextrose is added at -88°C. The sugar-milk mixture is evaporated in a vacuum pan at 

-57°C to the required concentration and is then cooled rapidly to -27°C and canned. The 

ultrastructure of condensed milk (Figure 6.3) resembled that of evaporated milk (Figure 

6.2), but had a less dense intermicellar matrix and less labeling. A similar structure was 

observed in gels of UF homogenized milk retentate (Gavaric eta/., 1989), gels made from 

UHT-UF homogenized milk retentate (McMahon eta/., 1991), and Labneh made from 

homogenized milk (Tamine et al., 1989 and 1991). Labeling of ~-lactoglobulin was 

mainly on the micelles and appeared to be on the smface a~ well as throughout the micelle 
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Figure 6.2. Transmission electron micrograph of immunogold-labeled evaporated milk 

showing even distribution of labeling for ~-lactoglobulin. 

me: micelles; f: fat globule; mb: membrane, mx: intermicellar matrix. 
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Figure 6.3. Transmission electron micrograph of immunogold-labeled sweetened 

condensed milk showing slight labeling for ~-lactoglobulin on the micelles and in the 

intermicellar spaces. 

me: micelles; f: fat globule; mx: intermicellar matrix. 
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interior. Less ~-lactoglobulin complexing would occur because of lower processing 

temperature and slower denaturation through the stabilizing effect of added sugar 

(Lonergan, 1978; Hillier eta/., 1979; Kudo, 1980a). 

Yogurt 
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Yogurt is produced by controlled fermentation of milk (whole, part skim, or 

skimmed) by a mixed culture of lactic acid bacteria (Schmidt, 1992). Manufacture typically 

involves heating of the milk to 85°C and holding for 20 min. Denaturation of whey 

proteins, and cornplexing with caseins, improves behavior of the gel particles and produces 

a smoother gel (Modler eta/., 1983). At Utah State University, the milk was fortified with 

skim milk powder, homogenized, mixed with sugar, inoculated with active cultures, 

poured into cans, and incubated until pH decreased to 5.2. It was cooled to 4°C overnight 

and then stirred, at which time pH was 4.2. The ultrastructure of the low-fat, stirred 

yogurt (Figure 6.4) showed round micelles of various sizes linked in an irregular protein 

matrix. This structure is characteristic of yogurt as reported by others (Kalab eta/., 1983; 

Tamine et al. , 1984). 

There was moderately heavy labeling of ~-lactoglobulin, distributed evenly on the 

micelles and within the intermicellar spaces. Labeling that appeared within the micelle may 

actually be surface ~-lactoglobulin that is present on the sectioned surface of the specimen, 

rather than ~-lactoglobulin present in the interior of the micelles. The low pH of the 

product stabilizes ~-lactoglobulin (Hillier eta/., 1979), and the holding temperature of 85°C 

is optimum for cornplexing between ~-lactoglobulin and K-casein (de Wit, 1981). 

Cottage Cheese 

Cottage cheese is a soft, unripened, acid cheese made with coagulated curd from 

various combinations of skim milk, partially condensed skim milk, and/or reconstituted 

low-heat nonfat, dry milk. The curd can be formed by either lactic acid produced by starter 
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Figure 6.4. Transmission electron micrograph of immunogold-labeled stirred skim milk 

yogurt showing labeling for ~-lactoglobulin on the micelles and in the intermicellar spaces. 

me: micellar matrix, mx: intermicellar matrix. 
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cultures or edible food grade acids (Bassette and Acosta, 1988). At Utah State University, 

direct acid cottage cheese is manufactured from skim milk pasteurized at 80°C for 28 s and 

cooled to 4°C. After addition of phosphoric acid the milk is warmed to 32°C and glucono-

8-lactone is added. After 1 h the curd is cut at a pH of 4.8 and allowed to stand for 10 min 

before cooking for 90 min at 57°C to a final pH of 4.5. After cutting and draining, the curd 

is washed twice, first with cold water at 32.2°C for 5 min, and then with ice water/ice for 5 

mm. The curd is then drained and dressing added. 

The ultrastructure of the cottage cheese (Figure 6.5) had a micellar matrix somewhat 

similar to that of yogurt (Figure 6.4 ), but with a more dense packing of micellar residue. 

This difference is a consequence of curd cutting and drainage. The micellar matrix was 

interspersed with fat globules and membranes. There was some labeling for 

~-lactoglobulin probably as a consequence of pasteurizing the milk at a temperature higher 

than legally required. This would cause some denaturation of f3-lactoglobulin and its 

complexing with K-casein. 

Feta Cheese 

Feta cheese is a white, soft, brine-ripened cheese (Bassette and Acosta, 1988). 

Calcium chloride and yogurt starter cultures are added to pasteurized whole milk, which is 

heated to 37°C at pH 6. Rennet is added and the milk allowed to set at 37°C for 30 min. 

After coagulation the curd was cut and allowed to heal for 20 min before the whey was 

drained. The final pH of the cheese was -5.0. The Feta cheese (Figure 6.6) had an 

extended protein matrix which was very sparsely labeled for ~-lactoglobulin. This is due 

to the absence of high-temperature processing and the drainage of whey after healing. 

Queso Blanco Cheese 

Queso Blanco cheese is a white, soft, creamy cheese that can be made in a variety 

of ways. It may be ripened or unripened and made from whole or part skim milk. The 
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Figure 6.5. Transmission electron micrograph of immunogold-labeled cottage cheese 

showing sparse labeling for ~-lactoglobulin. 

me: micellar matrix, f: fat globule, mx: intermicellar matrix. 
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Figure 6.6. Transmission electron micrograph of immunogold-labeled unripened Feta 

cheese showing sparse labeling for ~-lactoglobulin . 

me: micellar matrix, v: void area. 
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milk may be heated to 82°C and dilute food grade acid added to give instantaneous 

precipitation, or it can be rennet coagulated. The whey is quickly drained and the curd 

salted and pressed (Kosikowski, 1982). No information on the make procedure of the 

Queso Blanco used in this study was available. The ultrastructure of the Queso Blanco 

cheese (Figure 6.7) had an extended protein matrix without any core-and-shell structures. 

Labeling for ~-lactoglobulin was similar to that of Feta cheese (Figure 6.6). From this it 

can be concluded that this Queso Blanco cheese had been made using rennet coagulation 

rather than heat coagulation. 

Mozzarella Cheese 

Mozzarella cheese is a soft, plastic-curd cheese that may be eaten fresh with little or 

no ripening or used in cooking. In the manufacture of Mozzarella cheese, pasteurized milk 

is heated to 34°C, inoculated with active cultures and set with rennet. The curd is cut and 

gently agitated and heated to 38°C. After drainage the curd is cheddared or dry stirred, then 

stretched in water at 82°C (with the cheese being heated to -57°C), molded, cooled, and 

brined. The ultrastructure of fresh Mozzarella cheese (Figure 6.8) had an extended protein 

matrix surrounded by void spaces showing evidence of the stretching process involved in 

its manufacture. As shown by Oberg et al. (1993), the void spaces originate from columns 

of emulsified fat droplets. The matrix and void spaces showed sparse labeling for 

~-lactoglobulin. It was expected that there would be little if any heat-denatured whey 

protein in Mozzarella cheese because of the absence of high-temperature steps in its 

manufacture. The emulsification of fat globules during stretching may, however, cause 

capture of ~-lactoglobulin onto the fat/water interface, and this would explain the observed 

labeling in the void spaces. 
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Figure 6.7. Transmission electron micrograph of immunogold-labeled ripened Queso 

Blanco cheese showing sparse labeling for P-lactoglobulin on the protein matrix. 

me: micellar matrix, v: void area. 
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Figure 6.8. Transmission electron micrograph of imrnunogold-labeled, fresh Mozzarella 

cheese showing sparse labeling for ~-lactoglobulin on the protein matrix. 

me: micellar matrix, sp: intermicellar space. 
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Cheddar Cheese 

We manufactured this hard, close-textured, bacteria-ripened cheese (Bassette and 

Acosta, 1988) by adding starter, color, and rennet to ultra-pasteurized (80°C for 28 s) milk 

at a temperature of 31 °C. Curd was cut and cooked at 39°C for 30 min before the whey 

was drained. The curd was kept at this temperature for 30 min before cheddaring, then 

milled, salted, and pressed. The ultrastructure of Cheddar cheese (Figure 6.9) showed an 

extended protein matrix with void spaces. The matrix and void spaces showed sparse 

labeling for ~-lactoglobulin. The higher-than-standard pasteurization conditions would 

cause a small amount of denaturation of whey proteins. These would then be incorporated 

into the curd, providing an increased yield. The presence of such ~-lactoglobulin 

aggregates was evident in the appearance of doublet and triplet labeling in the void areas, as 

well as complexing with K-casein in the casein matrix. 

Pasteurized Process Cheese 

Pasteurized process cheese results from mixing and heating several lots of natural 

cheese with suitable emulsifying salts, color, and salt into a homogenous plastic mass. The 

sample of process cheese used contained Cheddar cheese, milkfat, sodium citrate, sodium 

phosphate, and sorbic acid. The cooking temperature was 71-80°C. The ultrastructure of 

the process cheese (Figure 6.10) was a diffused compact protein matrix showing very 

sparse labeling for ~-lactoglobulin. No labeling of ~-lactoglobulin would be expected in 

U. S.A . pasteurized process cheese because whey proteins cannot legally be added. An 

exception would be if the cheese had been made using ultrafiltration, which would capture 

the whey proteins as well as the caseins. The extended microstructure showed cheese 

material interspersed with void spaces, which would presumably have contained the 

emulsified fat droplets. 
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Figure 6.9. Transmission electron micrograph of immunogold-labeled Cheddar cheese 

showing sparse labeling for ~-lactoglobulin. 

me: micellar matrix, sp: intermicellar space. 
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Figure 6.10. Transmission electron micrograph of immunogold-labeled, pasteurized, 

process cheese showing sparse labeling for ~-lactoglobulin on the protein matrix. 

me: micellar matrix, sp: intermicellar space. 
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Pasteurized Process Cheese Food 

Pasteurized process cheese focxi is similar to process cheese, but additives such as 

skim milk, whey, cream, albumin, skim milk cheese, and organic acids are allowed. Our 

sample contained -70% Cheddar cheese, 4% whey powder, taco sauce, and jalapefia 

peppers. The cooking temperature was 80°C. The ultrastructure of the process cheese 

food (Figure 6.11) was similar to that of process cheese (Figure 6.10), but with a less 

compact protein matrix. This was expected because of the increased moisture content and 

addition of whey powder. The extended microstructure showed cheese material (Figure 

6.11a) interspersed with non-cheese materials (Figure 6.11b) and void spaces. Labeling 

for ~-Lactoglobulin was distributed throughout the cheese and non-cheese material, and 

was more dense than that of process cheese (Figure 6.1 0). This higher degree of labeling 

was because of the higher cook-temperature of the process cheese food and the addition of 

whey powder to the product. The higher cook-temperature is optimum for complexing 

between ~-lactoglobulin and K-casein (de Wit, 1981). When whey proteins are added to 

process cheese, the meltability of process cheese is reduced (Savello eta!., 1989), which 

can be an advantage when the cheese is used as the protein portion of hot meals and snacks 

(Lankveld, 1984). 

CONCLUSION 

Immunolocalization, with embedding at 50°C in LR White resin, identified 

~-lactoglobulin complexes in dairy prcxiucts. These data allowed conclusions to be drawn 

about the relationship between manufacturing processes and the location and relative 

abundance of this protein in the product. Labeling for ~-lactoglobulin was observed when 

the products had received a high heat treatment during processing, or when whey proteins 

were added. Embedding at 50°C in LR White allowed for the immunolocalization of 
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Figure 6.11. Transmission electron micrographs of immunogold-labeled, pasteurized, 

process cheese food showing labeling for ~-lactoglobulin mainly on the protein matrix (a) 

typical cheese matrix, (b) atypical matrix. 

me: micellar matrix, sp: intermicellar space. 





~-lactoglobulin without the need to use low-temperature embedding. It avoids the 

laborious and tedious steps necessary for low-temperature embedding in polyacryl. 
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CHAPTER VII 

IMMUNOLOCALIZATION OF CASEINS AND WHEY PROTEINS IN 

MILK AT VARIOUS STAGES OF TREATMENT FROM FRESH WHOLE 

MILK TO ULTRA-HIGH TEMPERATURE-STERILIZED 

ULTRAFIL TERED (3x) MILK CONCENTRATE1 

ABSTRACT 

Immunolocalization techniques were employed to elucidate the positions of 

~- l actoglobulin, a -lactalbumin, as1-casein , as2-casein, ~-casein, and K-casein in fresh 

whole milk, skim milk, pasteurized milk, ultrafiltered milk, and direct and indirect sterilized 

(110, 120, 130, and 140°C) milk. 

Heating of milk during pasteurization and UHT sterilization affected the distribution 

and altered the conformational state of some milk proteins, especially of ~-lactoglobulin 

whose interactions with whey and micellar casein protein depended on processing 

temperature. a -Lactalbumin and K-casein were less affected by temperature. a s1-Casein 

and ~-casein were localized on the micelles, but heating did not affect the distribution of 

these proteins. a s2-Casein did not respond to these immunolocalization procedures. 

INTRODUCTION 

Milk contains ~3 .5% protein, of which 78% is casein and 22% is whey proteins 

(Johnson, 1974). Casein primarily occurs as a colloidal dispersion of large protein-mineral 

complexes called casein micelles. In bovine milk, caseins are insoluble at pH 4.6 and all 

except some of the proteolytic derivatives will precipitate. None of the four kinds of 

caseins has a highly organized secondary structure (Walstra and Jenness, 1984). They 

appear to contain short a-helices and ~-sheets. Their conformation appears to be similar to 

1 Coauthored by M. C. Alleyne and D. J. McMahon. 
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that of denatured globular proteins. The complexed quaternary conformation provides 

structural stability. Casein micelle proteins are represented primarily by as1-, as2-, ~-, 

and K-casein in approximate proportions of 3:.8:3:1 (Walstra and Jenness, 1984). 

K-Casein is not susceptible to calcium-ion binding, and it apparently occupies most of the 

micelle surface area (Heth and Swaisgood, 1982), protecting the other calcium-sensitive 

caseins from precipitation by calcium ions (Swaisgood, 1982; McMahon and Brown, 

1984). 

The composition of serum proteins is approximately 55% ~-lactoglobulin, 12% 

a-lactalbumin, 10% proteose-peptone, 10-15% casein, and 8-13% immunoglobulins and 

enzymes (Parry, 1974). ~-Lactoglobulin has a denaturation temperature of78°C and 

exhibits another thermal reaction at -140°C caused by the breaking of disulfide bonds break 

and the molecule unfolds (Watanabe and Klostermeyer, 1976; de Wit, 1981). 

~-Lactoglobulin can exist as an 18.3 kDa monomer, a 36 kDa dimer (McKenzie, 1971) or 

various polymers (Sawyer, 1969; McKenzie, 1971; Harwalker, 1980; de Wit and 

Klarenbeek, 1984). 

a-Lactalbumin is a molecule with a monomer weight of 14.17 kDa (Farrell, 1988) 

and has a denaturation temperature of 62°C (de Wit and Klarenbeek, 1984). This 

conformational change is 80-90% reversible (Ruegg eta/., 1977), because a-lactalbumin 

has four pairs of disulfide bonds and no free sulfhydryl group through which it could 

aggregate (Lyster, 1979). 

~-Lactoglobulin forms complexes with a-lactalbumin (Hunziker and Tarassuk, 

1965), as2-casein (Kudo, 1980; Kinsella, 1984), ~-casein (Elfagm and Wheelock, 1978a 

and b) and K-casein (Doi eta/., 1979). a-Lactalbumin interferes with interaction of 

~-lactoglobulin and K-casein (Baer eta/., 1976; Elfagm and Wheelock, 1977, 1978a and 

b), but does not affect the denaturation of ~-lactoglobulin (Elfagm and Wheelock, 1978a 



and b). Complexes formed between K-casein and ~-casein, and between K-casein and 

<XsJ-casein (Doi et al., 1979) may interfere with the formation of complexes between 

K-casein and ~-lactoglobulin. 
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Various methods involving microscopy have been employed to identify milk 

proteins in foods, the most recent of which employed gold-labeled antibodies to identify 

~-lactoglobulin and casein in the ultrastructure of low fat frozen desserts, salad dressing, 

and process cheese (Annbruster and Desai, 1992), and to localize ~-lactoglobulin in whey, 

UHT-sterilized UF milk retentate (Alleyne et al., 1994a and b) yogurt, processed milk, and 

cheese (Alleyne and McMahon, 1994 ). 

The objective of this study was to localize the ~-lactoglobulin, a-lactalbumin, 

as }-casein, as2-casein, ~-casein, and K-casein in samples of milk at various stages of 

treatment, from fresh whole milk to UHT-sterilized UP-concentrated milk retentate, using 

the technique of Alleyne and McMahon (1994) and Alleyne eta!. (1994a and b) of 

embedding in LR White resin (London Resin Co., Basingstoke, UK) with polymerization 

at 50°C. 

MATERIALS AND METHODS 

Reagents 

Agar was obtained from Difco Laboratories (Detroit, Michigan); paraformaldehyde, 

secondary antibody (goat anti-mouse) IgG conjugated to 10 nm gold probes (batch# 

9458), and LR White medium grade were obtained from Electron Microscopy Sciences 

(Fort Washington, Pennsylvania). Teleosteam fish gelatin was obtained from Sigma 

Chern. Co. (St. Louis, Missouri). Primary antibodies (mouse anti-protein) for proteins, 

a-lactalbumin, ~-lactoglobulin, as }-casein, <Xs2-casein, K-casein, and ~-casein, were 

obtained from J. J. Statsny, University of Illinois, Chicago. These monoclonal antibodies 

were raised against purified proteins (Kuzmanoff et al., 1990a and b; Kuzmanoff et al., 
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1991; Kuzmanoffand Beattie, 1991; Leung et al., 1991). All other chemicals were 

analytical reagent grade. 

Samples 

Samples of fresh ( 4°C) whole milk and skim milk were obtained from the Gary H. 

Richardson Dairy Products Laboratory, Utah State University. Skim milk was pasteurized 

(63°C for 30 minutes), cooled to 50°C, and concentrated by ultrafiltration to 3x (volume 

reduction) to contain approximately 10% protein. Pasteurized and UF samples were 

collected for immunolocalization studies. Skim milk was concentrated with a three-module 

in-series UF system with spiral wound polysulfone membranes (Osmonics Inc., 

Minnetonka, Minnesota; 20 kDa nominal molecular weight cutoff, 15m2 membrane area). 

The concentrated milk was homogenized (Model3DDL Homogenizer, Crepaco Inc., 

Chicago, lllinois) at 13.8 MPa with 3.4 MPa second stage pressure. Indirect and direct 

heating of UF milk was accomplished with an Alfa-Laval SteriLab® UHT Pilot System for 

UHT processing (McMahon et al., 1993). The concentrated milk was heated to high 

temperatures (l10°C, l20°C, 130°C, and l40°C held for 4 s) by indirect (plate heat 

exchanger, residence time 97 s) and direct (steam injection, residence time< 1 s) heat 

exchange to aseptic conditions. The milk samples were packaged in sterile plastic 

containers in an Alfa-Laval SteriCab® filling station and samples were collected for 

immunolocalization studies. 

Sample Preparation for 
Electron Microscopy Analysis 

The 12 milk samples were (1) fresh whole milk, (2) skim milk, (3) pasteurized 

skim milk, ( 4) ultrafiltered pasteurized skim milk, (5) indirect 110°C concentrated milk, ( 6) 

indirect l20°C concentrated milk, (7) indirect 130°C concentrated milk, (8) indirect 140°C 

concentrated milk, (9) direct 110°C concentrated milk, (10) direct l20°C concentrated milk, 

(11) direct 130°C concentrated milk, and (12) direct l40°C concentrated milk. The 
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microcube technique (Alleyne et al., 1993), a modification of the microencapsulation 

technique (Salyaev, 1968; Kalab, 1988), was used to contain the 12 milk samples for 

transmission electron microscopy (TEM). 

Electron Microscopy 
and Immunogold Labeling 

Our previously developed method for imrnunolocalization of milk proteins (Alleyne 

et al., 1994a and b) was followed. Agar gel capsules obtained by the microcube method 

(Alleyne eta/. , 1993) were fixed at 20°C for 4 h in 4% formaldehyde in .1 M phosphate 

buffer (pH 6.6). After completion of fixation, samples were washed with .1 M phosphate 

buffer, pH 6.6, and dehydrated in a graded ethanol series of 50, 70, 95, and 100% 

ethanol, infiltrated with LR White resin, and polymerized at 50°C for 21 h. Thin sections 

(90 nm thick, Sorvall MT-2 Porter-Blum ultramicrotome), from the LR White blocks, were 

collected on nickel grids. These were floated for 15 min on the blocking agent (.1% fish 

gelatin with .1% NGS in 20 mM Tris buffer without BSA) at pH 6.6 and rinsed for 5 min 

in 50 mM Tris saline buffer (pH 7.4) (Zymed, 1991). They were floated on the primary 

antibody, mouse anti-protein (for proteins: a-lactalbumin, ~-lactoglobulin, as1-casein, 

as2-casein, K-casein, and ~-casein) and refrigerated for 24 h in a humidity chamber. 

(ELISA was used to determine the appropriate dilution of antibodies in 50 mM Tris saline 

buffer for each protein. An antibody: buffer ratio of 1:2000 was optimum for 

~-lactoglobulin, as 1-casein, and ~-casein, and 1: 1000 was optimum for a-lactalbumin, 

as2-casein, and K-casein.) The controls were floated on PBS in the humidity chamber in 

place of the primary antibody. All grids were rinsed for 5 min in 50 mM Tris saline buffer 

(pH 7.4) (Zymed, 1991) and were floated on the secondary antibody (goat anti-mouse) 

IgG conjugated to 5 nm gold probes in buffer, ratio 1:38 (antibody:50 mM Tris saline 

buffer) in a humidity chamber at room temperature for 3 h. Grids were rinsed (6 x 5 min) 

with double-distilled water and stained with uranyl acetate (20 min) followed by lead 
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acetate (5 min) (Youssef, 1985). Transmission electron microscopy (TEM) was carried 

out using a Zeiss CEM 902 electron microscope operated at 80 kV. Micrographs were 

taken on Kodak SO 163 sheet film and were printed on Kodak polycontrast ill RC paper. 

RESULTS AND DISCUSSION 

The micelles of all milk samples were generally spheroid but varied considerably in 

size. Some had a more open micellar structure (Figure 7.1a) (compare with Figures 3.4 to 

3.8) due to the lack of osmium tetroxide staining in these preparations. Fixation with 

osmium tetroxide significantly reduces antigenicity of protein but imparts heavy metal 

staining to the samples. This staining confers a compact appearance on the micelles, which 

may be artifactitious. The open structure of the micelle is believed to be more 

representative of the actual structure. The outline of micelles in many samples appeared 

rough as though with short tendrillar appendages as reported by other investigators 

(Mohammad and Fox, 1987; Mottar et al. , 1987). 

There was little labeling for a-lactalbumin, the order of which was whole= skim< 

pasteurized= UF < UHT ll0°C < UHT l20°C < UHT 130°C < UHT 140°C. The labeling 

occurred mainly within the intermicellar matrix. Figure 7.1 shows the labeling of whole 

milk, pasteurized milk, and indirect UHT (140°C) samples. The heat treatment during 

pasteurization and UHT sterilization created complexes of a-lactalbumin, thus retaining 

more of this protein during sample preparation. Complexing of a-lactalbumin appeared to 

increase with temperature. At pH values below the isoionic point, the dimers, trimers, and 

aggregated polymers formed by a-lactalbumin are reversible (Kronman and Andreotti, 

1964; Kronman et al., 1964). A similar association may be responsible for the complexing 

of a-lactalbumin in this experiment (the labels were frequently observed as doublets and 

triplets), with aggregation increasing at higher temperatures. 
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Figure 7.1. Transmission electron micrographs of milk samples immunogold labeled 

for a-lactalbumin (a) whole milk, (b) pasteurized milk, (c) indirect UHT (140°C) milk. 

Labeling was concentrated on the intermicellar spaces. 
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~-Lactoglobulin was labeled more intensely than was a-lactalbumin, but both 

exhibited similar trends in labeling density (Figure 7.2). The labeling density of the UHT 

samples from 11 0-140°C or from direct to indirect did not differ much, but there was a 

definite trend in the pattern of labeling. From whole milk through UHT (110°C) samples 

(Figures 7.2a to 7.2c), the labeling was concentrated within the intermicellar matrix and 

often appeared as doublets, triplets, and higher order linear multiples. From UHT (120°C) 

to UHT (140°C) (Figures 7.2d to 7.2f), labeling occurred mainly on the surface of the 

micelles as well as on some intermicellar material. Complexing of ~-lactoglobulin 

apparently increased at higher temperatures and complexing with the micellar casein 

occurred at higher UHT treatment. ~-Lactoglobulin may initially complex with itself, 

a-lactalbumin, and/or serum caseins and complex with micellar K-casein and/or as2-casein 

as temperatures increase. ~-Lactoglobulin exists primarily as a dimer in the pH range 5.2-

7.5 but dissociates into monomers below pH 3.5. The dimer dissociates to monomers and 

eventually aggregates above pH 8.0 (Whitney, 1988). 

In all samples, there was considerable labeling for as1-casein, especially on the 

micelles (Figure 7.3). There appeared to be no change in labeling through heat treatment 

for this protein, and there was labeling throughout the micelles showing an even 

distribution of as}-casein. The UHT (140°C) sample had less labeling density near the 

surface of large micelles which, after UHT-induced complexing, would be predominantly 

~-lactoglobulin complexed with K-casein. 

From ELISA testing, the antibodies were observed to be active against as2-casein 

(with some cross reactivity with as1-casein) (Leung et al., 1991), but none of our samples 

labeled for as2-casein perhaps because serum as2-casein may have been completely 

leached from the samples during prelabeling TEM preparation, or because the epitote of 

both micellar and serum as2-casein was not accessible to the primary antibody, due to 



166 

Figure 7.2. Transmission electron micrographs of milk samples immunogold labeled 

for ~-lactoglobulin (a) whole milk, (b) pasteurized milk, (c) indirect UHT (110°C) milk, 

(d) indirect UHT (l20°C) milk, (e) indirect UHT (130°C) milk, (f) indirect UHT (140°C) 

milk. The whole milk, pasteurized milk, and UHT (110°C) samples showed labeling 

concentrated within the intermicellar matrix, but from UHT (120°C) to UHT (140°C) the 

labeling density was mainly on the surface of the micelles. 
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Figure 7.3. Transmission electron micrographs of milk samples immunogold labeled 

for as 1-casein (a) whole milk, (b) pasteurized milk, (c) indirect UHT (110°C) milk, (d) 

indirect UHT (140°C) milk. All samples showed heavy labeling for as1-casein, especially 

on the micelles. 
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conformational or steric restrictions. This occurs when the antibody is raised to a different 

form of the protein than that found in the intact material. Figure 7.4 shows the labeling 

density on the direct UHT (130°C) sample (a), and the direct UHT (130°C) control sample 

(b). The degree of labeling in this control was typical of all controls in this experiment. 

Labeling for 13-casein was similar to that for as 1-casein. In all samples, labeling 

was concentrated on the micelles (Figure 7 .5) as well as some intermicellar labeling of the 

non-UHT samples. The absence of label from certain areas of the micelles indicated that 

13-casein was not uniformly distributed. The :mlcelles in the indirect UHT (140°C) sample 

(Figure 7.5d) appeared to be more heavily labeled than the micelles in the other samples, 

perhaps because the higher temperature caused serum 13-casein to migrate to the micellar 

surface and participate in complex formation with 13-lactoglobulin and K-casein. 

All samples showed sparse labeling concentrated mainly in the intermicellar matrix 

forK-casein (Figure 7.6). This suggests that only the serum K-casein was being labeled. 

The micellar K-casein through conformational or steric hindrances was not accessible to the 

primary antibody. No K-casein was labeled within the micelle interior, supporting other 

work (Waugh et al., 1970; Shahani, 1974; Walstra, 1979; Heth and Swaisgood, 1982) 

which suggested that K-casein is located predominantly on the micelle surface. Being 

located on the micelle surface, the K-casein molecules have a small probability of being 

oriented correctly to bind with the antibody, since labels attach only to proteins on the 

sectioned surface. The antibody for K-casein may have been raised against parts of the 

K-casein molecule that were hidden due to aggregation within the micelle surface. The 

antibody may have been raised against para-K-casein. Heated samples were more heavily 

labeled than were the whole milk and skim milk samples due to heat-induced formation of 

more stable K-casein/whey protein complexes. 
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Figure 7.4. (a) Transmission electron micrograph of direct UHT (130°C) milk sample 

immunogold labeled for as2-casein. None of the samples labeled for as2-casein. (b) 

Transmission electron micrograph of direct UHT (130°C) control milk sample imrnunogold 

labeled. This level of labeling was typical of all the controls in this experiment. 
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Figure 7.5. Transmission electron micrographs of milk samples immunogold labeled 

for ~-casein : (a) whole milk, (b) pasteurized milk, (c) indirect UHT (110°C) milk, (d) 

indirect UHT (140°C) milk. All samples showed heavy labeling concentrated on the 

micelles. 
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Figure 7.6. Transmission electron micrographs of milk samples immunogold labeled for 

K-casein: (a) whole milk, (b) pasteurized milk, (c) indirect UHT (ll0°C) milk, (d) 

indirect UHT (140°C) milk. All samples showed sparse labeling concentrated mainly in the 

intermicellar matrix forK-casein. 
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CONCLUSION 

We labeled milk proteins by employing immunolocalization techniques. Heating of 

milk during pasteurization and UHT sterilization affected the distribution and 

conformational state of some milk proteins, particularly in ~-lactoglobulin where heating 

induced interactions with whey and casein protein. Heating had less effect on 

a-lactalbumin and K-casein. Labeling of as1-casein and ~-casein was concentrated on the 

micelles, and heating did not affect the distribution of these proteins. as2-Casein did not 

respond to these immunolocalization procedures. 
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CHAPTER VIII 

IMMUNOLOCALIZA TION OF CASEINS AND WHEY PROTEINS IN 

ULTRA-HIGH TEMPERATURE-STERILIZED UL TRAFIL TERED 

(3x) MILK CONCENTRATE STORED AT ROOM 

TEMPERATURE UNTIL GELA TION1 

ABSTRACT 

Immunolocalization techniques were employed to elucidate the positions of 

~-lactoglobulin, <Xsl-casein, ~-casein, and K-casein in stored UHT-sterilized UF milk 

retentate from the day of preparation through to age gelation. The milk retentate had been 

stored at room temperature and sampling done bimonthly. Denatured ~-lactoglobulin 

complexed on the micellar surface during UHT preparation and moved back to the 

intermicellar spaces during prolonged storage. The labeling of K-casein was negligible just 

after UHT preparation, but began to increase with storage time forming linear patterns 

within the intermicellar matrix. <Xsl-Casein and ~-casein labeled heavily throughout the 

experiment. Labeling for these two casein moieties appeared very specific for the micelles 

just after UHT preparation until-10 months of storage. At this time the labeling appeared 

on the intermicellar matrix, but still showed high specificity for portions of the micelles. 

Much of the structural integrity of the micelle was retained in the coagulum. Labeling for 

a-lactalbumin and <Xs2-casein was slight and indeterminate. 

A mechanism of age gelation ofUHT-sterilized UP-concentrated milk was 

proposed. The loss of the ~-lactoglobulin-K-casein complex from the micelles to the serum 

exposed the calcium-insoluble micellar <Xsl-casein and ~-casein to the serum calcium. This 

reduced micelle stability and promoted coalescence of the micellar proteins, leading to 

coagulation. The tendrillar appendages appeared to be the ~-lactoglobulin-K-casein 

1 Coauthored by M. C. Alleyne and D. J. McMahon. 
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complex, which entrapped the micellar residues at gelation. 

INTRODUCTION 

Irreversible age gelation ofUHT-sterilized milk concentrates has hindered the 

commercial application of this process. Gelation occurs when the product is stored at room 

temperature. The reason for this gelation is uncertain, but it is thought to be the result of 

casein micelles forming a network (Walstra and Jenness, 1984). 

Factors which influence the time taken for age gelation ofUHT-sterilized milk 

concentrates include composition of milk (van Boekel eta/., 1989), quality of milk (Adams 

et al., 1976), severity of heat treatment (Darling, 1980; Fox, 1982), homogenization 

(Sweetsur and Muir, 1980; Muir, 1984), temperature of storage (Andrews, 1975), 

concentration of milk (Muir and Sweetsur, 1978; Sweetsur and Muir, 1980; Fox, 1982; 

McMahon and Brown, 1984), addition of calcium-sequestering agents (Kocak and Zadow, 

1985), addition of carbohydrates (Lonergan, 1978; Kudo, 1980; de Wit, 1981), addition of 

reducing agents (Singh and Fox, 1987a), and enzyme treatment (Snoeren and Both, 1981 ). 

Milk gelation is also affected by pH (Singh and Fox, 1985 and 1987b), ionic strength, and 

calcium and phosphate concentration (Tumerman and Webb, 1965). 

Two different mechanisms of age gelation of UHT -sterilized milk have been 

suggested. One implicates proteolysis of casein, predisposing the micelles to aggregation 

(Creamer and Matheson, 1980; Snoeren and Both, 1981; Haque et al., 1987). The other 

involves physico-chemical reactions leading to chemical cross linkages between micelles 

(Dziuba, 1979; Creamer and Matheson, 1980; Doi eta/., 1983). 

The proteolysis hypothesis implicates the survival or reactivation of proteolytic 

enzymes in unconcentrated sterilized milk during storage (Corradini, 1975), leading to age 

gelation in a manner similar to rennet coagulation of milk in cheese manufacturing (Samel et 
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a/., 1971; Hostettler, 1972). The proteolysis hypothesis, however, does not explain age 

gelation in concentrated sterilized milk (Hostettler, 1972; de Koning et al., 1985). 

Physico-chemical processes implicated in age gelation ofUHT-sterilized 

concentrated milk include complex formation between denatured whey proteins and casein 

(Burton, 1984), the breakdown of K-casein during storage leading to its inability to 

stabilize the casein micelle (Singh et al., 1989), changes in calcium and other mineral 

equilibria during storage affecting the stability ofUHT products (Corradini, 1975), 

polymerization of casein and whey proteins by Maillard-type reactions (Andrews and 

Cheeseman, 1971 ; Andrews, 1975), sulfuydryl-disulfide interchange reactions involving 

various proteins (Patrick and Swaisgood, 1976), a decrease in surface energy of some 

micelles with time creating an electrostatic difference which promotes aggregation of 

micelles (Graf and Bauer, 1976), and an increase in nonsedimentable casein due to partial 

disaggregation of casein micelles leading to micellar interaction (Harwalk:er, 1982). 

Heat sterilization of milk produces several changes in proteins (de Wit, 1981; de 

Wit and Klarenbeek, 1981; Fox, 1981), enzymes (Snoeren and Both, 1981), and mineral 

balance (Mattick and Hallett, 1929; Pyne and McHenry, 1955; Tessier and Rose, 1964) 

that are likely to influence age gelation. Heat treatment results in an association between 

whey protein and casein (Sawyer, 1969). Whey proteins become denatured and either 

interact with micellar K-casein to become sedimentable with casein or coprecipitate (with 

casein) at the isoelectric point of casein (Hostettler, 1972). The extent of complex 

formation between denatured ~-lactoglobulin and K-casein significantly modifies the 

properties of casein micelles. These complex formations are predominantly through 

disulfide bridges, but hydrophobic and ionic interactions are also involved (Haque eta/., 

1987; Haque and Kinsella, 1987 and 1988; Hill, 1989). Microstructures seen through 

electron microscopy show that during storage casein micelles associate increasingly during 

the period in which viscosity rapidly increases, leading to gelation (Harwalker and 



Vreenan, 1978). A great increase in nonrnicellar particles occurs with storage, but the 

effect of this on gelation is not clear (Aoki and Imamura, 1974; Harwalker, 1982). 
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In this study the localization of the ~-lactoglobulin, a-lactalbumin, as1-casein, 

as2-casein, ~-casein, and K-casein in stored samples of direct and indirect UHT-sterilized 

milk concentrates was achieved using techniques of Alleyne and McMahon (1994a) and 

Alleyne et a/. (1994a and b). The objective was to determine the relative positions of these 

milk proteins in the samples as the milk aged, and thus propose a mechanism for age 

gelation. 

MATERIALS AND METHODS 

Reagents 

Agar was obtained from Difco Laboratories (Detroit, Michigan); paraformaldehyde, 

secondary antibody (goat anti-mouse) IgG conjugated to 10 nrn gold probes (batch# 

9458), and LR White medium grade were obtained from Electron Microscopy Sciences 

(Fort Washington, Pennsylvania). Teleosteam fish gelatin was obtained from Sigma 

Chern. Co. (St. Louis, Missouri). Primary antibodies (mouse anti-protein) for proteins, 

~-lactoglobulin, a-lactalbumin, as1-casein, as2-casein, ~-casein, and K-casein, were 

obtained from J. J. Statsny, University of Illinois, Chicago. These monoclonal antibodies 

were raised against purified proteins (Kuzmanoff et al., 1990a and b; Kuzmanoff et al., 

1991; Kuzmanoff and Beattie, 1991; Leung et al., 1991). All other chemicals were 

analytical reagent grade. 

Samples 

Skim milk were obtained from the Gary H. Richardson Dairy Products Laboratory, 

Utah State University. The skim milk was pasteurized (63°C for 30 minutes), cooled to 

50°C, and concentrated by ultrafiltration to 3x (volume reduction) to contain approximately 

10% protein. A three-module in-series l.TF system with spiial wound polysulfone 
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membranes (Osmonics Inc., Minnetonka, Minnesota; 20 kDa nominal molecular weight 

cutoff, 15m2 membrane area) was used to concentrate the skim milk. The concentrated 

milk was then homogenized (Model3DDL Homogenizer, Crepaco Inc., Chicago, illinois) 

at 13.8 MPa with 3.4 MPa second stage pressure. For indirect and direct heating ofUF 

milk an Alfa-Laval SteriLab® UHT Pilot System was used (McMahon et al., 1993). The 

concentrated milk was heated to 140°C (held for 4 s) by indirect and direct heat exchange to 

aseptic conditions. The milk samples were packaged into sterile plastic containers in an 

Alfa-Laval SteriCab® filling station. Samples were taken immediately and 

immunolocalization studies conducted on them. The remainder of the samples were stored 

at room temperature and analyzed bimonthly through irnmunolocalization studies. The last 

analysis was conducted after 12 months of storage, at which time gelation had occurred. 

Electron Microscopy 
and Immunogold Labeling 

The microcube technique (Alleyne eta/., 1993) was used to contain the milk 

samples in agar gel capsules for electron microscopy. The agar gel capsules were fixed at 

20°C for 4 h in 4% formaldehyde in .1 M phosphate buffer (pH 6.6) (Alleyne eta/., 1994a 

and b). After the fixation had been completed, these samples were washed with .1M 

phosphate buffer, pH 6.6, and dehydrated in a graded ethanol series of 50, 70, 95, and 

100% ethanol, infiltrated with LR White resin, and polymerized at 50°C for 21 h. Thin 

sections (90 nm thick, Sorvall MT-2 Porter-Blum ultramicrotome), from the LR White 

blocks, were collected on nickel grids. These were floated for 15 min on the blocking 

agent (.1% fish gelatin with .1% normal goat serum in 20 mM Tris buffer without bovine 

serum albumin) at pH 6.6 and rinsed for 5 min in 50 mM Tris saline buffer (pH 7.4) 

(Zymed, 1991). They were floated on the primary antibody, mouse anti-protein (for 

proteins: a-lactalbumin, ~-lactoglobulin, as1-casein, as2-casein, K-casein, and ~-casein), 

and refrigerated for 24 h in a humidity chamber. (ELISA was used to determine the 
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appropriate dilutions of antibodies in 50 mM Tris saline buffer for each protein. An 

antibody: buffer ratio of 1:2000 was optimum for ~-lactoglobulin, as1-casein, and 

~-casein, and 1:1000 was optimum for a-lactalbumin, as2-casein, and K-casein.) The 

control was floated on phosphate buffered saline in place of the primary antibody in the 

humidity chamber. All grids were rinsed for 5 min in 50 mM Tris saline buffer (pH 7.4) 

(Zymed, 1991) and floated on the secondary antibody (goat anti-mouse) IgG conjugated to 

10 nm gold probes in buffer, ratio 1:38 (antibody:50 mM Tris saline buffer) in a humidity 

chamber at room temperature for 3 h. Grids were rinsed (6 x 5 min) with double-distilled 

water and stained with uranyl acetate (20 min) followed by lead acetate (5 min) (Youssef, 

1985). Transmission electron microscopy (TEM) was carried out using a Zeiss CEM 902 

electron microscope operated at 80 kV. Micrographs were taken on Kodak SO 163 sheet 

film and printed on Kodak polycontrast III RC paper. 

RESULTS AND DISCUSSION 

Direct UHT samples began to gel an average 2 months earlier than indirect UHT 

samples, but indirect UHT samples showed a higher degree of labeling than the 

corresponding direct UHT samples. This reflected the greater degree of heat received by 

the indirect UHT samples through a longer exposure to heating which leads to more 

denaturation of whey proteins. Consequently, there was a higher degree of complexing 

(hence labeling) through denatured whey proteins. Both UHT treatments produced the 

same trends for all proteins. 

Labeling for a-lactalbumin (Figure 8.1) showed the highest intensity of labeling 

immediately after UHT-sterilization (0 month of storage). Labeling at month 4, 8, and 12 

was very sparse. This suggested that the complexed a-lactalbumin formed at UHT 

(140°C) sterilization breaks down with time, leading to leaching of the uncomplexed 
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Figure 8.1. Transmission electron micrographs of immunogold-labeled, stored, UHT­

sterilized (140°C) milk concentrate, showing labeling for a-lactalbumin (a) month 0, (b) 

month 4, (c) month 8, (d) month 12. The highest intensity of labeling was at 0 month of 

storage. Labeling at month 4, 8, and 12 is very sparse. 

arrows: tendrillar appendages connecting casein micelles. 
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a-lactalbumin during prelabeling TEM preparation. The known reversibility of 

conformational changes in a-lactalbumin brought about by heat processing supports this 

hypothesis. These aggregates would not be disulfide linked and, therefore, could revert to 

a nonaggregated state upon cooling. Alternatively, the complex formed may undergo 

further time-dependent aggregation, leading to the unavailability of the epitote for labeling. 

Labeling for P-lactoglobulin was relatively heavy in all samples (Figure 8.2). At 

the beginning of storage (Figures 8.2a) the labeling was mainly associated with the surface 

of the micelles . At 4 months of storage the labeling was still associated with the micellar 

surfaces, but the intermicellar matrix was also well labeled. At 8, 10, and 12 months 

of storage the bulk of the labeling was on the intermicellar matrix with very little on the 

micellar surfaces. This gradual transfer of labeling from the micelles to the intennicellar 

matrix suggested a movement of the initial P-lactoglobulin-K-casein complex into the 

intermicellar matrix on aging. The labeling, however, did not appear specifically on the 

tendrillar appendages between micelles in the gelled samples. This suggested that there 

was more intermicellar material than had been previously observed in electron micrographs. 

All samples labeled heavily for as1-casein (Figure 8.3). At months 0 through 8 

labeling was almost exclusively on the micelles, but at months 10 and 12 (at which time the 

milk concentrate had gelled) the micelles appeared less heavily labeled, and there was 

increased labeling in the intermicellar matrix. This suggested that on gelation some of the 

as 1-casein migrated from the casein micelles to the intermicellar spaces. 

Although immunolocalization for as2-casein was conducted, none of the samples 

showed labeling for as2-casein (Figure 8.4). The level of labeling observed in the control 

(Figure 8.4b) was typical for all the controls in this experiment. 

All samples labeled heavily for P-casein (Figure 8.5). The absence of label from 

certain areas of the micelles indicated that P-casein was not uniformly distributed within the 
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Figure 8.2. Transmission electron micrographs of immunogold-labeled, stored, UHT­

sterilized (140°C) milk concentrate, showing labeling forB-lactoglobulin (a) month 0, (b) 

month 2, (c) month 4, (d) month 8, (e) month 10, (f) month 12. At 0 and 2 months of 

storage the labeling was mainly associated with the surface of the micelles. At 4 months 

storage the labeling was still associated with the micellar surfaces, but the intermicellar 

matrix was also well labeled. At 8, 10, and 12 months storage the bulk of the labeling was 

on the intermicellar matrix with very little on the micellar surfaces. 

arrows: tendrillar appendages connecting casein micelles. 
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Figure 8.3. Transmission electron micrographs of immunogold-labeled, stored, UHT­

sterilized (140°C) milk concentrate, showing labeling for as1-casein (a) month 0, (b) 

month 8, (c) month 10, (d) month 12. At months 0 through 8 labeling was almost 

exclusively on the micelles, but at months 10 and 12 the micelles appeared less heavily 

labeled and there was increased labeling in the intermicellar matrix. 

arrows: tendrillar appendages connecting casein micelles. 
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Figure 8.4. (a) Transmission electron micrograph of 8 month milk sample immunogold 

labeled for as2-casein. None of the samples labeled for asz-casein. (b) Transmission 

electron micrograph of 8 month milk sample control immunogold labeled. This level of 

labeling was typical of all the controls in this experiment. 

arrows: tendrillar appendages connecting casein micelles. 
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Figure 8.5. Transmission electron micrographs of immunogold-labeled, stored, UHT­

sterilized (140°C) milk concentrate, showing labeling for P-casein (a) month 0, (b) month 

4, (c) month 6, (d) month 8, (e) month 10, (f) month 12. At months 0 through 8 

labeling was almost exclusively on the micelles, but at months 10 and 12 the micelles 

appeared less heavily labeled and there was increased labeling in the intermicellar matrix. 

arrows: tendrillar appendages connecting casein micelles. 
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micelles. This may also be evidence of proteolysis of ~-casein by residual proteinases to 

yield ~-casein fragments (Pearce, 1980; Swaisgood, 1982). At months 0 through 8 

labeling was almost exclusively on the micelles, but at months 10 and 12 the micelles 

appeared less heavily labeled, and there was increased labeling in the intermicellar matrix. 

This suggested that on gelation some of the ~-casein migrated from the casein micelles to 

the intermicellar spaces. 

Labeling for K-casein increased as the samples aged (Figure 8.6) indicating that the 

site recognized by the antibodies became more available. This suggested that the antibody 

forK-casein may have been raised against para-K-casein which, in native casein micelles, 

would be embedded within the micelles. The labeling often traced out linear patterns as 

well as clumps within the intermicellar matrix. A few tendrillar appendages, between 

micelles, were seen at months 0-8 with a proliferation of these structures at months 10 and 

12 (Figure 8.6). Months 0-4 showed sparse labeling within the intermicellar matrix 

(Figures 8.6a, 8.6b, and 8.6c). Months 6 and 8 showed heavier labeling within the matrix 

mainly between adjacent micelles (Figures 8.6d and 8.6e). The labeling at month 10 was 

very dispersed, but showed a pattern of linkage between micelles (Figure 8.6t). This trend 

was accentuated at month 12, showing linear clusters of labeling between adjacent micelles 

(Figure 8.6g). There was no definite labeling on the tendrillar appendages between linked 

micelles. These would be expected to consist of K-casein and ~-lactoglobulin, but are 

embedded within the section, and labeling only occurs against proteins that extend from the 

surface of the sections. 

The defined movement of K-casein and ~-lactoglobulin on storage seemed to be 

connected to the process of age gelation. The results suggested that there was interaction 

between these proteins producing a complex. The pattern of ~-lactoglobulin moving onto 

the micelles through heating and then gradually moving away into the serum during storage 

may indicate a destabilizing influence of the ~-lactoglobulin on the K-casein in agreement 
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Figure 8.6. Transmission electron micrographs of immunogold-labeled, stored, UHT­

sterilized (140°C) milk concentrate, showing labeling forK-casein (a) month 0, (b) month 

2, (c) month 4, (d) month 8, (e) month 10, (f) month 12. The degree of labeling 

increased as the samples age, tracing out linear patterns within the intermicellar matrix. 

Tendrillar appendages between micelles were seen as early as month 0 through 8 with a 

proliferation of these structures at months 10 and 12. 

arrows: tendrillar appendages connecting casein micelles. 
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with Smits and Van Brouwershaven (1980), and Farrell and Douglas (1983). UHT 

sterilization not only denatures P-lactoglobulin, but would catalyze the reaction of 

P-lactoglobulin and K-casein, leading to the successful formation of the complex. Since 

complexing between K-casein and P-lactoglobulin is impeded by complexing between 

K-casein and both as1-casein and P-casein (Doi eta/., 1979), the converse is also true, and 

there is competition occurring amongst these three proteins for binding sites on K-casein. 

This explains how the successful binding of P-lactoglobulin to K-casein (promoted by the 

UHT-sterilization treatment) destabilizes the casein micelle relative to K-casein binding to 

as1-casein and P-casein. The complexing of P-lactoglobulin with micellar K-casein 

through UHT heating explains why there is an increase in rennet-coagulation time and 

reduced gel firmness of gels made from UHT-sterilized concentrated milk (McMahon eta/., 

1993). The attachment of P-lactoglobulin impedes the rennet proteolysis of K-casein 

through steric interference or conformational alteration of the casein protein. 

The movement of all micellar casein into the intermicellar spaces on gelation is an 

observation of the gelling process where the contents of the micelle coagulate as K-casein 

leaves. The loss of K-casein from the micelle to the serum resulted in calcium-insoluble 

as 1-casein and P-casein being exposed to the serum calcium ions. There was, however, 

retention of the integrity of as 1-casein and P-casein in the micellar residue as evidenced 

from Figures 8.3 and 8.5. Micellar K-casein did not label in these experiments, suggesting 

the unavailability of its epitote to the antibody as discussed previously (Alleyne and 

McMahon, 1994b ). This indicated that the antibodies may have been raised against para­

K-casein. When the K-casein leaves the micelle the epitote is exposed, and labeling is then 

possible. The lowering of pH of the UHT-sterilized milk on storage (Andrews eta/., 

1 977; Kocak and Zadow, 1985) may also play a role in age gelation (Bringe, 1988). 

The linear labeling observed for K-casein suggested that the tendrillar appendages 

are the P-lactoglobulin-K-casein complex that dissociated from the micelles. There was no 
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definite labeling of these appendages forK-casein or ~-lactoglobulin because of their size 

and distribution within the milk sample. The tendrillar appendages are cylindrical 

structures -10 nm in diameter and between 20-100 nm in length. The thickness of section 

used in these TEM preparation is -90 nm and the visible intact tendrils appear to be beneath 

the resin and thus inaccessible to the primary antibodies. In cases where the tendrils are 

sectioned and available at the surface for labeling, labeling does appear, but the very thin 

remnant of the tendril is almost invisible in the matrix. 

CONCLUSION 

UHT sterilization ofUF-concentrated milk denatured ~-lactoglobulin, which 

formed complexes with micellar K-casein. This interaction destabilized the K-casein, 

predisposing it to dissociation from the micellar moiety. Consequently, the calcium­

insoluble <XsJ-casein and P-casein were exposed to the calcium ions in the serum leading to 

the coalescence of these molecules and some dissociation from the micelles. There was 

retention of the physical integrity of <XsJ-casein and P-casein within the micellar residue. 

The tendrillar appendages are the P-lactoglobulin-K-casein complex remnants that 

are still physically associated with the surface of the coagulated micellar residues. Specific 

labeling of the appendages was difficult to observe because of the minute size and 

distribution of these structures within the sectioned milk sample. K-Casein left the micelles 

through aging as a result of weakening of bonds with the rest of the casein micelle, brought 

about by the competitive binding of denatured P-lactoglobulin to K-casein. 
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1. Transmission electron microscopy, utilizing the microcube encapsulation 

technique and protocols for imrnunolocalization of milk proteins, provided insight into the 

phenomenon of age gelation of UHf-sterilized UF concentrated milk. 

2. Antibodies specific for the native as well as the complexed forms of milk 

proteins elucidated the positions of the milk proteins in various samples. These samples 

included fresh milk, skim milk, UF concentrated milk, heated, concentrated milk, UHT­

sterilized, concentrated milk, and stored, UHT-sterilized, concentrated milk. 

3. Heating of milk through pasteurization and UHT -sterilization affected the 

di stribution and altered the native state of some milk proteins. Denatured P-lactoglobulin 

and a-lactalbumin formed complexes within the serum as well as with the casein 

components of the micelles. 

4. Complexing of P-lactoglobulin and K-casein destabilized the K-casein molecule. 

This compromised the role of K-casein in stabilizing the other casein proteins within the 

micellar moiety, leading to a time-dependent dissociation of K-casein from the micelle. The 

remnants of the P-lactoglobulin-K-casein complex constitute the tendrillar appendages 

observed in gelled milk. 

5. The loss of K-casein from the micelles to the serum exposed the calcium­

insoluble micellar as1-casein and P-casein to the serum calcium. This resulted in their 

partial dissociation from the micelles and participation in gelation. The binding of 

denatured P-lactoglobulin to the K-casein molecule apparently weakened the attachment of 

K-casein to other casein fractions of the micelle. 
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