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ABSTRACT 

Microstructural Changes in Casein Micelles 

during Acidification of Skim Milk 

by 

Hongwen Du, Master of Science 

Utah State University, 1994 

Major Professor: Dr. Donald J. McMahon 
Department: Nutrition and Food Sciences 

x 

Pasteurized skim milk was acidified using glucono-8-lactone (GDL) at 10, 20, 30, 

and 40°C or with 1.2% freeze-dried yogurt starter culture at 40°C. Milk coagulation was 

followed by measuring turbidity, curd firmness, particle size, and casein micelle 

microstructural changes using transmission electron microscopy . 

The pH of milk was gradually lowered during acidification with GDL or starter 

culture. Acidification rate showed greater influence on turbidity change at 10°C than at 

20, 30, or 40°C. 

Average casein micelle size increased with decreasing temperature. The patterns 

of average micelle size versus pH were not affected by temperature. No great variation of 

average micelle size was observed above pH 5.2. Below pH 5.0 the size increased 

exponentially as the milk gelled. Acidification rate did not influence average micelle size 

at 10°C. Acidification rate, types of acidifying agents, and temperature had no effect on 

the Formagraph gelation pH and the rate at which curd firmness developed. 

Casein micelles became less compact and less distinct with decreasing 

temperature before acidification. As pH was lowered, protein was dissociated from and 
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then reassociated with casein micelles. Acidification rate had no effect on microstructure 

change of casein micelles at 10°C. 

(80 pages) 



INTRODUCTION 

Coagulation of milk is an association reaction of casein micelles involving the 

separation of dispersed casein particles from the continuous phase (7). Acid coagulation 

can be induced by lactic culture, hydrolysis of glucono-delta-lactone (GDL), or direct 

addition of acids such as hydrochloric and sulfuric acid. Direct addition of acids can 

initiate fast coagulation, while GDL and lactic cultures acidify milk gradually by forming 

gluconic acid and lactic acid. 

Acid coagulation of milk is the foundation of many dairy products such as yogurt , 

cottage cheese, cream cheese, sour cream, and other cultured products. It is known that 

30% of USA cottage cheese is produced using GDL as the acidifying agent (3). Some 

research papers about milk acid coagulation have been published; however, our 

knowledge about the physical and chemical changes during this process is still limited. A 

better understanding concerning acid coagulation of milk would lead to the development 

of a wide range of new dairy products. 



LITERATURE REVIEW 

Composition of Milk 

Under physiological conditions milk contains about 87% water, 4.9% lactose, 

3.5% protein, 3.6% fatty acids, and .7% minerals, but the composition varies among 

species and under different physical and physiological conditions. Casein micelles are 

the functional units in a milk system. The micelles consist of about 63% water, 7% 

inorganic compounds (mainly calcium and phosphate), and 30% proteins (40). About 

93% of the dry matter of casein micelles is casein. The remainder is mainly inorganic 

calcium and phosphate, which is called colloidal calcium phosphate (54). 

2 

Caseins make up about 80% of bovine milk proteins. Most of them are found in 

micelles (6). The four main groups of caseins found in micelles are as1-, as2-, J3-, and K

casein. Their weight ratio is about 3:.8:3:1 (12, 54). A fifth group, commonly called y

caseins (but more correctly referred to as J3-casein fragments) comes from hydrolysis of 

J3-casein. Almost all K-casein is on the surface of the casein micelle, but as1 - and J3-

casein can be found throughout the whole micelle (54). There is more K-casein in smaller 

casein micelles (17, 22 , 23) , whereas, Davies and Law (22) observed that the amounts of 

as2- and J3-casein decreased with decreasing micelle size, but as 1- and y-casein had little 

systematic change. Dalgleish et al. (17) found that both as1- and as2-casein contents 

were independent of micelle size. 

Electron microscopy observation reveals that calcium is not homogeneously 

distributed through the casein micelle (37). Calcium and other ions can exist in many 

forms in milk (6). Soluble inorganic compounds of Ca can exist as free hydrated ions, or 

as complexes with citrate, phosphate, or various serum proteins. Colloidal Ca may be 

complexed with phosphate esters and carboxyl groups of micellar caseins, or the 

phosphate (and perhaps citrate) can be associated with casein micelles. Skim milk 
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contains about 32 mM Ca, of which 22 mM is colloidal, and 10 mM is soluble. The 

soluble calcium is approximately 3 mM free ionic Ca and 7 mM bound to citrate and 

phosphate. Of the 30 mM phosphate anions found in skim milk, 19 mM is colloidal, 6 

mM is bound to calcium, and 5 mM is free inorganic phosphate. The Ca to P ratio in 

colloidal calcium phosphate (CCP) of casein micelles is 3:2. There is also 8.4 mM citrate 

in skim milk, of which .4 mM is in colloidal particles and the rest is in solution (6). 

Changes Occurring during Acidification of Milk 

It is known that acidification of milk causes micellar calcium phosphate and 

caseins to dissociate from the micelle (18, 51, 59). Acidification also causes changes in 

surface charge (s-potential) and particle size of casein micelles (7, 51, 64). The 

mechanism of these occurrences is unclear, and other factors are involved in this process. 

Using electron microscopy, casein micelles have been observed to retain their 

integrity, shape, and dimensions when pH is decreased from 6.6 to 5.5 (28, 60). It is 

believed that the composition and structure of the micelles differ although their size and 

shape do not change (28). 

Calcium and Phosphate. Studies of micelle dissociation in acidified milk at low 

temperature (30), and complexing of calcium by a chelating agent (30, 53) have verified 

that micellar calcium is essential for the structure and stability of casein micelles. 

Removal of CCP reduces the molecular weight of casein micelles from > lQ8 to 2x lQ6 

Dalton, and further to 2xlQ5 Dalton if the soluble milk salts are also removed (24), 

indicating dissociation of caseins from the micelle. Removing a subcritical amount of 

Ca2+ from the micelle by EDTA causes dissociation of P-and K-casein, but a size

determining micellar framework of mainly as-casein remains intact (38). Munyua and 

Larsson-Raznikiewicz (42) found that removal of a considerable amount of Ca2+ by 

3 mM EDTA did not change micellar size significantly, but only caused dissociation of 

some casei11s. Complete dissociation of micelles occurs if the amount of Ca2+ removed is 



above the critical level (38). The linear relationship between colloidal calcium and 

inorganic phosphate concentration resulting from the addition of EDTA (29) is 

statistically similar to the results obtained through acidifying milk (13). This suggests 

that the dissolution of micellar calcium is directly related to that of micellar phosphate. 

The importance of colloidal inorganic phosphate in maintaining intact casein 

micelles is manifested when the phosphate depletion causes dissociation of caseins even 

when the free calcium ion concentration is equal to or greater than that in normal milk 

(30). In artificial casein micelles, Aoki et al. (1) observed that there was no 

intermolecular cross-linkage in a calcium caseinate micelle system, but CCP cross

linkage was present if phosphate were added . By dialysis, Holt et al. (30) found that 

removal of about 30% inorganic phosphate produced no significant casein dissociation. 

However, removal of a higher percentage of phosphate produced significant dissociation. 

The amount of micellar calcium and phosphate is decreased as the pH of skim 

milk is lowered. A linear relationship exists between the decrease of calcium and 

inorganic phosphate in the pH range of 6.7 to 5.3, i.e., the decline of calcium is directly 

proportional to that of inorganic phosphate (59). Dalgleish and Law (19) observed a 

similar relationship between these two components at pH above 5.5. It is further 

observed that micellar calcium and phosphate ratios do not change over the pH range of 

4.0 to 8.0, indicating that a linear relationship exists between the two components over 

this pH range (13). At 30°C all colloidal inorganic phosphate was solubilized after about 

2 h at about pH 5.0 using 2% GDL as acidifying agent (28). All CCP is dissociated from 

casein micelles below pH 5 (44). At pH 5.0, most of the calcium is released from 

micelles, and almost all of it is removed between pH 6.0 and 5.0 (49). Visser et al. (60) 

reported that all calcium and almost all phosphate were solubilized at pH 5.2. Dalgleish 

and Law (19) observed, however, that 1 mM Ca was still sedimentable and nondiffusible 

at pH 4.9. 

4 
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Caseins. Acidification of milk can result in the dissociation of caseins from 

casein micelles. As the pH of milk is lowered, the amounts of dissociated caseins 

increase initially, but decrease after reaching a maximum (18). Roefs et al. (51) reported 

a distinct maximum solubility of all casein fractions near pH 5.4 at 4°C. This 

dissociation (solubility) decreased to zero around pH 4.6. However , Dalgleish and Law 

( 18) found that at 20°C the maximum dissociation was reached at pH 5.4, but maximum 

dissociation at 4°C occurred at pH 5.1. At 30°C, the maximum dissociation was at pH 

5.6 (59). 

Of the caseins , ~-casein shows the greatest degree of dissociation (18, 51, 59). 

Between pH 5.5 and 5.2, most of the ~-casein is in the serum rather than in the casein 

micelle s. As pH is decreased further (from 5.2 to 4.8), the ~-casein reabsorbs onto the 

relaxed framework of as-caseins (28). 

van Hooydonk et al. (59) suggested that the dissociation of caseins probably 

occurs in the form of submicelles with outer-layer submicelles being more easily 

dissociated. Dalgleish and Law (18) had hypothesized that the dissociation of different 

caseins might be correlated, i.e., the dissociation of one kind of casein accompanies the 

dissociation of another , if the dissociation is via submicelle s. It was found , howeve r, that 

little correlation existed between the dissociation of as 1 - , ~- and K-caseins at 4 °C. These 

three types of caseins dissociate independently. This might be due to their dissociation 

occurring independently of the formation of small complexes of constant composition . 

The same phenomenon was also observed by Downey (24 ). 

Particle Size of Casein Micelles. Unlike other proteins, casein micelles have a 

large range in size distribution (5). The reason postulated is that casein micelles are 

primarily concentrated stores of minerals and proteins, and presumably no evolutionary 

pressure has been put on them to remain a constant size during solubilization and in the 

absence of flocculation . 
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The size of casein micelles ranges from 20 to 600 nm (54). Donnelly et al. (23) 

cbtained a similar range (from about 30 to greater than 600 nm). It is reported that, under 

rormal conditions, 80% of casein micelles have radii between 50 to 100 nm, 95% 

tetween 40 to 220 nm, with the most probable average being 80 nm (6). These results 

vere obtained using inelastic light scattering, and the results are greater than those 

cported by other workers using electron microscopy. Griffin and Anderson (27) 

cbserved that the hydrodynamic diameters obtained by dynamic light scattering were 

1 0 nm larger than those from electron microscopy. They attributed the difference to 1) 

ruicelle shrinkage during the dehydration process of sample preparation for electron 

microscopy producing lower than the true value; and 2) probable shifting to higher values 

through light scattering. 

Roefs et al. (51) used light scattering and found that particle size did not change 

much with pH. As pH is lowered from 6.7 to 5.2, the average hydrodynamic diameter 

(315 nm) decreases gradually to the minimum (280 nm), then increases slightly to 285 

n:n if the pH is lowered to 4.8. Using a Malvern Autosizer III, Banon and Hardy (4) 

o)served that average micelle size decreased slightly as pH was dropped to 5.7 at 42°C 

and to pH 5.5 at 30°C. The micelle size increased as pH was further lowered . However , 

they also found that average particle size remained constant above pH 5.75 at 15°C and 

pH 5.55 at 20°C, then decreased significantly. As pH was lowered to pH 5.4 at all 

temperatures, average micelle size increased as gelation approached. Roefs (50) and 

Vliet et al. (61) reported the particle size of casein micelles did not change much during 

acidification. 

Casein micelles above pH 6 and below pH 5 are different particles and are held 

together by different bonds (51 ). Visser et al. (60) suggested that a size-determining 

micellar framework of <Xsi -casein remained during acidification, even when all micellar 

calcium phosphate was depleted from the micelle at pH 5.1. Thus the size distribution of 



casein micelles is relativly constant. Lin et al. (38) proposed that a size-determining 

micellar framework of mainly a 8-casein existed when a subcritical amount of Ca2+ was 
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removed by EDTA. On the other hand, Vreeman et al. (62) considered that the reduction 

of pH from 6. 7 to 5.6 decreased the number of smallest micelles with an increase in 

micelle porosity due to the increasing dissociation of caseins. This would result in light 

scattering measurements of the average size of particles remaining practically constant. 

Zeta-Potential. The s-potential of native casein micelles is about -15 mV (28). It 

increases with increasing temperature (4). It is known that the minimums-potential of 

casein micelles occurs as the pH of milk is lowered to pH 5.2 (8, 28). If pH is further 

reduced, s-potential increases until about pH 5.0, then decreases again. A similar change 

ins-potential was observed by Schmidt and Poll (55). They consider that the minimum 

s-potential occurring at pH 5.4 might be due to the specific adsorption of calcium ions to 

caseins. But Heertje et al. (28) suggested thats-potential change is related to the 

behavior of f3-casein. Most f3-casein is dissociated from micelles into serum between pH 

5.5 and 5.2 and precipitates at its isoelectric point, pH 5.2. This causes the decrease of s

potential to the lowest point. Between pH 5.2 and 4.8, the f3-casein with positive charge 

reabsorbs to the negatively charged as-casein framework; the new particles then start to 

aggregate and contract. This process leads to the increase and final decrease of s

potential. However, Darling and Dickson (21) observed thats-potential of casein 

micelles curvilinearly decreased directly with pH over the range of 6.9 to 5.4. Similar 

results were also obtained by Banon and Hardy (4). 

Turbidity Change. Turbidity change as a function of time or pH during milk 

acidification by GDL at lower temperature (15 and 20°C) occurs in three phases: a lag 

phase followed by a decrease, and a final increase (3, 4). The lag phase is due to the fact 

that no changes occur to the size, concentration, or optical properties of micelles. The 

dissociation of f3-casein and Ca causes the decrease of turbidity. The reincorporation of 
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dissociated caseins and gel network formation contribute to the final increase phase. 

However, at higher temperatures (30 and 42°C), only a lag period and a final rise are 

observed ( 4 ). The absence of the decreasing phase at 30 and 42°C is that there is no 

solubilization of micellar protein at temperatures greater than 25°C. When Bringe (7, 9) 

acidified diluted raw skim milk with GDL, he observed that turbidity at 400 nm (25°C) 

increases slowly at the beginning, and sharply in the final phase, without any decrease 

phase. From studies on sedimentation behavior of micelles after pH adjustment with HCl 

(49), no association or dissociation occurred between pH 6.6 and 5.5 because the 

turbidity of the supernatant did not change. A sharp decrease was observed between pH 

5.5 and 5.0 due to precipitation of casein, and the decrease was less pronounced between 

pH 5.0 to 4.5. At pH 4.5, turbidity was negligible, indicating the completion of casein 

precipitation. 

Factors Affecting Acid Coagulation of Milk 

Acid coagulation of milk is affected by temperature, pH, preheat treatment , 

different types of anions and cations, rennet, and acidification rate. The combination of 

rennet and acidification, instead of acidification alone, results in a much wider pH and 

temperature range over which gels can be made (52). 

Temperature is an important factor affecting milk acid coagulation. At higher 

temperatures during acidification, milk starts to coagulate at higher pH (7, 11, 28, 34). At 

lower temperatures more caseins are dissociated during acidification, and the maximum 

value of dissociation occurs at a lower pH value (18). The aggregation rate of casein 

micelles and the pH of maximum coagulation increase with increasing temperature (35). 

Not only caseins, but also calcium and phosphorus dissociate from casein micelles 

upon cooling of milk ( 45, 47). Micellar calcium and phosphate decrease proportionally 

with decreasing temperature in the range of 4 to 90°C (46). Among the caseins, ~-casein 

is especially temperature dependent with only monomer:; exiting at 4°C, but at higher 
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temperature it associates because of increased hydrophobic interactions. Its dissociation 

from casein micelles is considerably temperature dependent (22, 24, 43). At O or 4°C, P-

casein in the serum is exchangeable with that in the micelle, and as temperature is raised 

to 37°C, the serum P-casein can stick on the micelle surface and move into the micelle 

interior (14). About 80% of the total casein released from casein micelles is P-casein. 

About 50% of P-casein, 5% of Us-casein, and 20% of K-casein are removed from micelles 

at 4°C (24). This results in the decrease of the negative charge on the micelle at natural 

pH of milk. On the other hand, Qvist (47) considered that casein micelles had increased 

charge at low temperature because the ratio of Ca to P dissociated during cooling was 

larger than that in micelles of uncooled milk. Us-Casein is least sensitive to temperature 

(26, 43, 54), where only about 4% is solubilized from the micelle at 5°C (26). Green and 

Crutchfield (26) summarized three effects of cooling on casein micelles: 1) solubilizing 

caseins from micelles results in reduced micelle negative charge, 2) increasing pK values 

of ionizing groups (irnidazole and phosphate) slightly decreases micelle negative charge, 

3) inducing conformational change of P-casein increases micelle negative charge due to 

the exposure of previously masked aromatic residues. Some researchers ( 4, 16, 26) 

observed that ~-potential of casein micelles decreases as temperature is lowered, while 

others (21, 25) showed the opposite . 

Colloidal calcium phosphate is very important in maintaining the integrity of 

casein micelles. It is known that CCP is dissolved by cooling milk, but if temperature 

change is not severe, the original CCP level can be recovered on warming (2). Between 

4°C and 64°C, the amount of colloidal calcium increases with increasing temperature 

(63). Dalgleish and Law (19), however, found that temperature has little effect on the 

composition of micellar calcium phosphate and its dissociation . 

Temperature functions via hydrophobic interactions (9), and average particle size 

of casein micelles increases as temperature is lowered (4). As temperature decreases, 
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hydrophobic interactions are weakened, and coagulation tendency of casein micelles is 

diminished. Steric repulsion between proteins may also be affected by temperature (34) 

because at low temperatures, steric repulsion between proteins may increase as a result of 

protrusion of f3-casein from micelles. On the other hand, higher temperature also 

increases collisions between particles with an increasing thermal (Brownian) motion. 

This weakens steric repulsion enough to result in micelle aggregation (4). Decreasing 

temperature also enhances electrostatic interactions (8). 

Interactions Involved in Milk Acid Coagulation 

Interactions occurring between casein molecules include hydrophobic and 

electrostatic interaction, hydrogen bonding, disulfide bonding, and calcium bonding (54). 

Schmidt (54) also proposed that the interaction between CCP and casein was 

electrostatic, CCP being positively charged and casein negatively charged. Casein 

micelles are stable under physiological conditions. This is due to the surface hydration, 

steric repulsion, a negative surface charge (28), as well as attractive Van der Waals forces 

(54). It is not clear whether steric repulsion of K-casein or surface charge is more 

important in stabilizing the micelle (15). Changes of physical and chemical environment 

can alter the tendency of casein micelles to aggregate, precipitate, coagulate, or remain 

dispersed. Acidification of milk weakens repulsive forces and, consequently, facilitates 

hydrophobic interactions between casein micelles, resulting in their coagulation (9). 

The different association behavior of the four caseins is due to their primary 

structure variation. Schmidt (54) suggested that the association of a 81-casein is governed 

by electrostatic repulsion and attraction due to hydrophobic and hydrogen bonding. 

Electrostatic interaction between the positive tail of one molecule and the negative part of 

another plays the key role in the association of a 82-casein . The character of f3-casein 

association is similar to that of anionic detergents such as sodium dodecyl sulphate (SDS) 

due to its one negatively (:harged end and the other very hydrophobic end. Thus, the 
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critical micelle concentration of P-casein decreases with increasing temperature. This is 

the reason that P-casein is strongly temperature dependent. Electrostatic interaction is 

minor in the association of le-casein because low charge is involved, whereas, steric 

repulsion or entropic repulsion of the macropeptide part is most important (54). 

Interactions of le-caseins and probably P-caseins on surfaces of adjacent casein 

micelles produce steric repulsion (31 ). The interpenetration of these protein molecules 

causes (a) osmotic effect due to the high concentration of molecular chains, and (b) 

volume restriction due to the loss of possible conformations. It is believed that this hairy 

layer (protruding le-caseins) results in casein micelles having a high voluminosity. The 

voluminosity of casein micelles decreases as pH is lowered from 6.5 to 4.5. This 

indicates that the reduced steric repulsion may contribute to the coagulation of casein 

micelles at low pH. Roefs et al. (52) suggested that le-casein exhibited a stabilizing effect 

at low pH by observing that gels could be made over a much wider pH (4.4 to 5.8) and 

temperature (as low as 2°C) range than by acidification alone. Banon and Hardy (4) 

proposed that the elimination of steric repulsion due to the collapse of the outer hairy 

layer was greatly responsible for the micelle aggregation during acidification. This 

phenomenon is also observed when milk is heat treated, or when rennet or ethanol is 

added. 

Acid can reduce net negative charge of proteins to initiate protein-protein 

interactions (8). At high pH values most proteins have net negative charge. This causes 

long-range electrostatic repulsion and short-range hydration repulsion between protein 

molecules. As pH is lowered, amine groups of protein are protonated to their cationic 

form, and carboxyl groups to their nonionic form; thus, the strength and range of 

electrostatic repulsion are minimized. 

Coagulation occurs when the pH of milk is lowered to the isoelectric point of 

casein micelles (about pH 4.6) at an appropriate temperature. This indicates that 
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electrostatic repulsion takes part in the stabilization of casein micelles in milk. At 5°C, 

milk does not coagulate at pH 4.6 (8, 10). This implies that other types of interactions are 

involved in the stability of casein micelles. Darling and Dickson (20) suggested that the 

stability of casein micelles was only partly due to electrostatic interactions and that other 

interactions, such as hydration, are involved. 

Molecular interactions resulting from the entropy-driven removal of nonpolar 

side-chains from an aqueous environment are referred to as hydrophobic interactions. 

These are important in maintaining protein stability (12). Furthermore, Bloomfield (5) 

considered that these interactions were the primary cause of protein-protein interactions 

in aqueous solutions. Increase in temperature facilitates hydrophobic interactions. As 

temperature decreases, hydrophobic interactions are inhibited, and the tendency of protein 

association is diminished. Temperature affects hydrophobic interactions by altering the 

structure of water. At lower temperature, because water molecules are more ordered 

around protein molecules, this would decrease the entropy of water and lead to the 

increase of free energy; thus, protein molecules are more stable, and no coagulation 

occurs. 

Although hydrophobic interactions play an important role in protein interactions , 

hydrogen bonding and ionic bonding are also involved. This is confirmed by the fact that 

the strength of the gel network, once formed, is greater at lower temperature because 

hydrogen and ionic bonds are facilitated (8). 

Roefs (50) concluded that the relative importance of these interactions had not 

been understood, but the internal structure of casein micelles played an important role in 

determining the number of bonds between casein micelles. In contrast, Bloomfield (5) 

suggested that the role of electrostatic and hydrogen bonds in the stability of protein 

structure is minor, and that hydrophobic interactions contribute significantly. As for milk 

acidification by GDL, the elimination of steric repulsion is the most important 



destabilizing factor, but the relative importance of charge neutralization, mineral and 

protein solubilization, and thermal motion cannot be determined (4). 
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OBJECTIVES 

The objectives of the proposed study were 

1) to determine the effect of temperature and acidification rate on the 

coagulation process of milk during acidification; 

2) to determine microstructural change of casein micelles during milk 

acidification; 

3) to develop a descriptive mechanism of acid coagulation of milk. 

14 
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MATERIALS AND METHODS 

A schematic diagram of this research is shown in Figure 1. Three replicates were 

performed under all experimental conditions. 

Preparation of Milk 

Raw whole milk was obtained from the Dairy Products Laboratory of Utah State 

University, centrifuged in a Sorvan® RC-5C centrifuge at 3000xg for 60 min at 4°C, and 

filtered with SIP glass fiber filter paper under suction. The milk was pasteurized in a 

water bath at 63°C for 30 min . If the milk was to be acidified with GDL, .02% (w/w) 

sodium azide (Mallinckrodt, Paris, KY), .01 % chloramphenicol (Sigma Chemical Co., 

Louis, MO), and .01 % benzylpenicillin potassium salt (Fluk:a Biochemika, Buchs, 

Switzerland) were added to inhibit bacteria growth . The milk was refrigerated before 

further measurement. 

Acidification of Milk 

GDL (Sigma Chemical Co., Louis, MO) was used as the acidifying agent to 

perform acid coagulation of milk at concentrations (w/w) of 2.0, 3.0, and 4.0% at 10°C; 

2.0, 2.5, and 3.0% at 20 and 30°C; 1.5, 2.0, and 2.5% at 40°C. A 1.2% (w/w) mixed 

freeze-dried yogurt starter culture (Lactobacillus bulgaricus and Streptococcus 

thermophilus, Marschall Products, Madison, WI) was added to some milk samples at 

40°C to compare its acidifying behavior with that of GDL. 

Turbidity 

A Beckman DU-8B UV Nis single beam spectrophotometer (Beckman 

Instruments, Inc., Fullerton, CA) was used to measure turbidity change of milk during 

acidification at 600 nm (41). 



Raw whole milk 

Centrifugationat3000xg 
(4°C for 60 min) 

Filtration 

Pasteurization at 63°C for 30 min 

Addition of .02% sodium azide, 
.01 % benzylpenicillin potassium salt, and 

.01 % chloramphenicol to samples acidified with GDL 

Acidification of milk with GDL or starter culture 

Detection of coagulation by 
Formagraph and 

Spectrophotometer 

Measurement of average 
particle size and casein micelle 

microstructural change 

Figure 1. Schematic diagram of experiment design. 
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The refrigerated milk was put into a beaker and warmed to the corresponding 

temperature (10, 20, 30, or 40°C) for 30 min in a constant temperature water bath (Blue 

M Electric Company, Blue Island, IL) before GDL or starter culture was added. The 

spectrophotometer with cuvettes was also set to the same temperature as the milk sample 

for 30 min before measurement. The appropriate amount of GDL or starter culture was 

added to the milk in the beaker and mixed rapidly. 

A 1-cm pathlength cuvette with untreated milk was placed in the 

spectrophotometer, and the absorbance reading was set to zero. A slit width of 5 nm was 

used. About 3 ml of the mixture of rnilk and GDL or starter culture was placed in two 

cuvettes in the spectrophotometer. One cuvette was used to measure changes of 

absorbance at 600 nm. Changes were recorded and transmitted via an RS 232 connection 

to a Tektronix 4052 microcomputer for derivatization and analysis. A microelectrode 

(Microelectrodes, Inc., Londonderry, NH) connected to a Beckman <l> 34 pH meter 

(Beckman Instruments, INC., Fullerton, CA) was placed in the other cuvette to monitor 

pH changes of the acidified milk. 

Formagraph 

A Formagraph (Dicky-John Corp., Fishkill, NY) was used to detect gelation of 

milk during acidification (39). The refrigerated milk was put into a beaker and warmed 

to the corresponding temperature (10, 20, 30, or 40°C) for 30 min in the water bath before 

adding GDL or starter culture. The Formagraph with a cuvette was also set to the same 

temperature as the milk sample for 30 min before measurement. An appropriate amount 

of GDL or starter culture was added to the beaker of milk sample and mixed rapidly. The 

recorder module of the Formagraph was started when GDL or starter culture was added to 

the milk. About 10 ml of the milk was deposited in each sample well, and the cuvette 

was transferred to the recorder module. The milk coagulation process was monitored by 

the pendulum loops suspended in the milk, and light flashes reflected from the pendulum 
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mirrors were recorded on photographic paper. The coagulation point of the Formagraph 

was defined as the point where the baseline of firmness versus time diagram began to 

increase in width. pH changes of the milk samples were recorded using the 

microelectrode connected to the Beckman <I> 34 pH meter in the water bath. 

Measurement of Average Particle Size 
of Casein Micelles 

Particle size of casein micelles was determined on selected samples (Table 1) 

(based on observations from the turbidity studies) using photon correlation spectroscopy 

(Malvern 1'1struments Inc., Southborough, MA). Modified Jenness-Koops buffer 

solutions (32, 59) with fortified calcium and phosphate concentrations (Table 2) and the 

same pH values as the acidified milk samples were used to dilute the milk sample 15 to 

20 times when conducting particle size measurement. 

TABLE 1. pH values at which samples were drawn for measurement of average particle 
size of casein micelles in milk acidified with glucono-8-lactone (GDL) and freeze-dried 
yogurt starter culture (SC) at various temperatures. 

10°C 10°C 10°C 20°C 30°C 40°C 40°C 

2.0% GDL 3.0% GDL 4.0% GDL 2.5%GDL 2.0%GDL 1.5% GDL 1.2% SC. 

Native pH Native pH Native pH Native pH Native pH Native pH Native pH 
6.6 6.6 6.4 6.4 6.2 6.2 6.2 
6.4 6.4 6.2 6.2 6.0 6.0 6.0 
6.2 6.2 6.0 6.0 5.8 5.8 5.8 
6.0 6.0 5.8 5.8 5.6 5.6 5.6 
5.9 5.9 5.6 5.6 5.4 5.4 5.4 
5.8 5.8 5.4 5.4 5.2 5.2 5.2 
5.6 5.6 5.2 5.2 5.0 5.0 5.0 
5.4 5.4 5.0 5.0 
5.3 5.3 
5.2 5.2 
5.0 5.0 



19 

TABLE 2. Calcium and phosphate concentrations in the modified Jenness-Koops buffer 
solutions (32, 59) at individual pH values. 

pH 
6.7 
6.4 
6.2 
6.0 
5.8 
5.6 
5.4 
5.2 
5.0 

Calcium (rnM) 
10.1 
13.9 
17.9 
22.9 
29.5 
34.9 
39.7 
42.9 
44.7 

Preparation of Milk Samples for 
Transmission Electron Microscopy 

Phosphate (rnM) 
12.8 
15.8 
18.0 
20.6 
24.8 
28.2 
30.2 
31.2 

Milk samples were acidified with 2.0, 3.0, and 4.0% GDL at 10°C; 2.5% at 20°C; 

2.0% at 30°C; 1.5% at 40°C; and 1.2% freeze-dried yogurt starter culture (SC) at 40°C. 

Samples with different pH values (Table 3) were taken , fixed with 50% glutaraldehyde 

(Electron Microscopy Sciences , Fort Washington, PA) in the ratio of .2 ml glutaraldehyde 

to 5 ml milk for five min, then mixed with 3% Bacto-Agar (DIFCO Laboratories, Detroit, 

MI) in the ratio of 1: 1. After the mixture solidified, the samples were cut into small strips 

and preserved in 2% glutaraldehyde solution, using .01 M phosphate buffer solution of 

pH 6.8. The fixed samples were refrigerated until further use. 

The strips were cut into 1 mm3 cubes, rinsed with .1 M phosphate buffer, and 

post-fixed in 2% osmium tetroxide. The cubes were dehydrated using an increasing 

concentration of graded ethanol (30%, 50%, 70%, 95%, and 100%). After dehydration, 

the samples were transitioned into propylene oxide and mixed in varying proportions 

ranging from 25% ethanol in propylene oxide to 100% propylene oxide alone in four 

steps . The cubes were infiltrated with a solution containing propylene oxide and epoxy 

resin (Electron Microscopy Sciences, Fort Washington , PA) stepwise in various 
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proportions ranging from 25% propylene oxide in epoxy resin to 100% epoxy resin. The 

infiltrated samples were embedded in Beem capsule (Electron Microscopy Sciences, Fort 

Washington, PA) and incubated at 45°C followed by 60°C for 24 h each. The hardened 

epoxy resin was removed from the Beem capsule, and excess epoxy was trimmed to 

expose the sample. Ultrathin sections were cut using an Ultracat E ultramicrotome 

(Leica, Inc., Gilroy, CA) and collected on 300 hex grids. Sections were post-stained with 

uranyl acetate and lead citrate and examined using a Zeiss CEM 902 transmission 

electron microscope (Zeiss Inc., Thornwood, NY) at 80 KV. Images were recorded on 

Kodak electron image film S0-163 (Eastman Kodak Co., Rochester, NY). 

TABLE 3. pH values at which samples were taken for transmission electron microscopy 
in milk acidified with glucono-8-lactone (GDL) and freeze-dried yogurt starter culture 
(SC) at various temperatures. 

10°C 

2.0% GDL 
6.94 
5.90 
5.30 
5.00 
4.80 

10°C 

3.0% GDL 
6.94 
5.90 
5.30 
5.00 
4.80 

Experimental Design 

10°C 

4.0% GDL 
6.94 
5.90 
5.30 
5.00 
4.80 

20°C 

2.5%GDL 
6.68 
5.70 
5.20 
5.00 
4.80 

30°C 

2.0%GDL 
6.64 
5.60 
5.30 
5.00 
4.80 

40°C 

1.5% GDL 
6.58 
5.50 
5.20 
4.95 
4.80 

40°C 

1.2% SC 
6.58 
5.40 
5.00 
4.75 
4.65 

A split-plot experimental design was used in this study. Three replicates were 

performed under all experimental conditions. Analysis of variance (ANOV A) on average 

casein micelle size data was performed using Minitab. 
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RESULTS 

Turbidity and pH 

The pH of milk was gradually lowered upon addition of GDL due to its slow 

hydrolysis into gluconic acid. The acidifying behavior of GDL is shown in Figures 2, 4, 

6, 8, and 10, along with the respective changes in turbidity in Figures 3, 5, 7, 9, and 11. 

The rate of pH drop slows down over time. As hydrolysis continues, the concentration of 

residual GDL decreases, and less gluconic acid is formed per unit time. At constant 

temperature , by increasing GDL concentration, pH is lowered more quickly . However, to 

compare the effect of temperature while maintaining comparable acidification rates, more 

GDL must be added at lower temperature because the hydrolysis rate of GDL is slower 

(Figure 2). 

The relative turbidity changes of milk as a function of pH at similar acidification 

rates at 10, 20, 30, and 40°C are shown in Figure 3. At 10 and 20°C, as pH was lowered, 

turbidity increased slightly, then decreased, and finally increased sharply. The decrease 

was more pronounced at 10 than at 20°C. However, at 30 and 40°C, there was no 

decrease between the slight increase and the sharp increase, but I observed a slight 

increase below pH 4.9 at 30°C, and a decrease and a final stationary period following the 

sharp increase at 40°C. Table 4 shows that when the inflection point of the turbidity 

curve is taken as a measure of the point of gelation, gelation pH (pHg) increased with 

increasing temperature, but acidification rates had no effect on pHg. 

The three curves of relative turbidity change in Figure 5 correspond to the 

acidification with 2.0, 3.0, and 4.0% GDL at 10°C shown in Figure 4. At all three 

acidification rates, the turbidity decreased as pH dropped below 6.0. This decline 

continued until about pH 5.35, at which point the turbidity was less than its initial value. 

The turbidity then increased abruptly below pH 5.35. There was a greater decrease at a 



TABLE 4. Gelation pH (pHg) as inflection point calculated from turbidity change at 
different acidification rates and temperatures. 

Temperature (0 C) 10 20 30 40 
1.2% SC 5.01 
1.5% GDL 5.20 
2.0% GDL 4.99 4.99 5.09 5.18 
2.5% GDL 4.98 5.02 5.21 
3.0% GDL 4.94 4.96 5.03 
4.0% GDL 4.95 

lower acidification rate. At 20°C (Figure 7), the decrease was only slightly perceptible 
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compared to that at 10°C (Figure 5). The turbidity declined slightly between pH 5.52 and 

5.24, then increased greatly as pH was further lowered. Acidification rate had no 

significant effect on turbidity change at 20 and 30°C, as shown in Figures 7 and 9, 

respectively. The sharp increase in turbidity started at pH 5.27 followed by a stationary 

period at pH 4.79 at 30°C (Figure 9). At 30 and 40°C, there was no turbidity decrease 

between the slight and the sharp increase. At 40°C, the difference among the three 

turbidity curves of different acidification rates occurred below pH 5.0 (Figure 11). 

Unlike the turbidity curves at lower temperatures, there was a decrease in turbidity below 

pH 4.94 following the sharp increase. At higher GDL level, turbidity decreased more, 

and the stationary phase (below pH 4.8) was at a lower level. 

The pH decreased to a similar value within the same time after addition of 1.5% 

GDL or 1.2% freeze-dried yogurt starter culture at 40°C (Figure 12). However, GDL 

caused a much faster pH drop above pH 5.0, and a slightly slower drop below pH 5.0 

than SC. Similar relative turbidity change with pH was observed on GDL and starter 

culture (Figure 13). The sharp increase, the decrease, and the final stationary period all 

occurred at lower pH values with SC (pH 5.35, 4.75, and 4.65, respectively) than with 

GDL (pH 5.43, 4.94, and 4.78, respectively). Similar observation on pHg was also 

obtained: 5.01 with SC and 5.20 with 1.5% GDL. 
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Figure 2. Acidification of milk after addition of 4.0%, 2.5%, 2.0%, and 1.5% glucono-8-
lactone at 10, 20, 30, and 40°C, respectively . 
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Figure 3. Relative turbidity change at 600 nm as a function of pH with the initial turbidity 
of milk as a reference after addition of 4.0%, 2.5%, 2.0%, and 1.5% glucono -8-lactone at 
10, 20, 30, and 40°C, respectively. Each line represents the average of three replicates. 
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Figure 4. Acidification of milk after addition of 2.0%, 3.0%, and 4.0% glucono-8-lactone 
at 10°C . 
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Figure 5. Relative turbidity change at 600 nm as a function of pH with the initial turbidity 
of milk as a reference after addition of 2.0%, 3.0%, and 4.0% glucono-8-lactone at 10°C. 
Each line represents the average of three replicates. 
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Figure 6. Acidification of milk after addition of 2.0%, 2.5%, and 3.0% glucono-8-lactone 
at 20°C. 
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Figure 7. Relative turbidity change at 600 nm as a function of pH with the initial turbidity 
of milk as a reference after addition of 2.0%, 2.5%, and 3.0% glucono-8-lactone at 20°C. 
Each line represents the average of three replicates. 
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Figure 8. Acidificat ion of milk after addition of 2.0%, 2.5%, and 3.0% glucono-8-lactone 
at 30°C . 
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Figure 9. Relative turbidity change at 600 nm as a function of pH with the initial turbidity 
of milk as a reference after addition of 2.0%, 2.5%, and 3.0% glucono-8-lactone at 30°C. 
Each line represents the average of three replicates. 
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Figure 10. Acidification of milk after addition of 1.5%, 2.0%, and 2.5% glucono-8-
lactone at 40 °C. 
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Figure 11. Relative turbidity change at 600 nm as a function of pH with the initial 

turbidity of milk as a reference after addition of 1.5%, 2.0%, and 2.5% glucono-8-lactone 
at 40°C. Each line represents the average of three replicates. 
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Figure 12. Acidification of milk after addition of 1.5% glucono-8-lactone (GDL) and 
1.2% freeze-dried yogurt starter culture at 40°C . 
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Figure 13. Relative turbidity change at 600 nm as a function of pH with the initial 

turbidity of milk as a reference after addition of 1.5% glucono-8-lactone (GDL) and 1.2% 
freeze-dried yogurt starter culture at 40°C. Each line represents the average of three 
replicates. 
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Average Particle Size of Casein Micelles 

Temperature. The average particle sizes of casein micelles before acidification 

were 285, 202, 152, and 117 nm at 10, 20, 30, and 40°C, respectively. They increased 

significantly with decreasing temperature. The dependence of average casein micelle size 
\ 

on temperature before acidification is shown in Figure 14. Their relationship for 

temperatures of 10 to 40°C fits the equation: 

S = 327 - 5.53T (r2 = .963) 

where S is the average particle diameter (nm) of casein micelles and Tis temperature in 

the range of 10 to 40°C. 

pH. Average diameters of casein micelles as a function of pH are shown in 

Figures 15, 16, and 17. These data were analyzed using ANOVA. At similar 

acidificat ion rates, the temperature, pH, and interaction between temperature and pH all 

had significant effect on the average diameter of casein micelles (Table 5). 

TABLE 5. Split-plot design ANOV A for average particle size of casein micelles after 
addition of 4.0, 2.5, 2.0, and 1.5% glucono-o-lactone at 10, 20, 30, and 40°C, 
respectively. 

sv elf MS F p 
Rep 2 461.6 
Temperature 3 118417.3 1273.30 <.001 
Error (a)l 6 93.0 
pH 7 1333.9 31.51 <.001 
Temperature x pH 21 105.5 2.49 .003 
Error (b)2 56 42.3 
Total 95 

1 Error term of the whole plot (a). 
2Error term of the subplot (b). 

Temperature had little influence on the changing pattern of average particle size 

as a function of µH under similar acidification condition (Figure 15). No variation in 
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Figure 14. Average particle size of casein micelles in diameter as a function of 
temperature before acidification of milk. Error bars are standard error of means. 
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Figure 15. Average particle size change in diameter of casein micelles with pH after 

addi tion of 4.0% (10°C), 2.5% (20°C), 2.0% (30°C), and 1.5% (40°C) glucono-8-
Jacrone. Error bars are standard error of means. 
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Figure 16. Average particle size change in diameter of casein micelles with pH after 
addition of 2.0, 3.0, and 4.0% glucono-6-lactone (GDL) at 10°C. Error bars are standard 
error of means . 
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Figure 17. Average particle size change in diameter of casein micelles with pH after 

addition of 1.5% glucono-8-lactone (GDL) and 1.2% freeze-dried yogurt starter culture at 
40°C. Enor bars are standard error of means. 
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average micelle size was observed above pH 5.2. Average particle size increased rapidly 

below pH 5.0 as the milk gelled. Statistical analysis indicated that the average particle 

size at 20 and 30°C showed more variability than at 10 and 40°C. All values at 10°C 

with 4% GDL showed no significant difference at a= .05 confidence level. At 40°C, the 

average particle size at pH 5.2 and 5.0 was significantly higher than those above pH 5.4. 

As pH dropped to 5.2 at 20°C, the average particle size of casein micelles decreased 

significantly, but at pH 5.0 it recovered to the similar size of the original micelles before 

acidification. At 30°C, significant decrease occurred in the average particle size of casein 

micelles as pH was lowered to 5.4. At pH 5.2, average micelle size came back to the 

similar value of the original particles. As pH was further lowered, the average particle 

size increased significantly. 

There was no significant effect of acidification rate on average particle size of 

casei n micelles at 10°C (Table 6). Even though there was an overall pH effect, there was 

no significant difference (a= .05) at the fastest rate (4.0% GDL) while at the slower rates 

(2.0 and 3.0% GDL) only the size at pH 5.0 was significantly greater than at other pH 

values. 

TABLE 6. Split-plot design ANOVA for average particle size of casein micelles after 

addition of 4.0, 3.0, and 2.0% glucono-6-lactone at 10°C, respectively. 

sv df MS F p 
Rep 2 457.60 
Acidification Rate 2 174.78 .54 .128 
Error (a)l 4 326.88 
pH 8 1371.04 16.81 <.001 
Rate x pH 16 101.19 1.24 .247 
Error (b)2 48 81.55 
Total 80 

1 Error term of the whole plot (a). 
2Error term of the subplot (b ). 
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GDL vs Culture. At 40°C, the average particle size values at pH 5.2 and 5.0 with 

1.2% freeze-dried yogurt starter culture and 1.5% GDL were identical in all samples 

(Figure 17). Prior to coagulation (pH > 5.2), the average particle size values with 1.2% 

freeze-dried yogurt starter culture were a little higher than those with 1.5% GDL, 

probably due to the presence of bacteria. Acidifying methods only slightly affected 

average particle size (Table 7), but the interaction between method and pH did not 

significantly affect average particle size of casein micelles. 

TABLE 7. Split-plot design ANOVA of average particle size of casein micelles after 
addition of 1.5% glucono-8-lactone or 1.2% freeze dried yogurt starter culture at 40°C, 
respectively. 

sv df MS F p 
Rep 2 549.9 
Acidification Method 1 364.7 4.78 .069 
Error (a) 1 2 76.3 
pH 7 965.9 9.50 <.001 
Method x pH 7 25.0 .25 .969 
Error (b)2 28 101.7 
Total 47 

lError term of the whole plot (a). 
2Error term of the subplot (b). 



Formagraph 

Curd firmness of milk as a function of pH at different temperatures but similar 

acidification rates (Figure 2) is shown in Figure 18. I found that by using the 

Formagraph, temperature had no consistent effect on the rate at which curd firmness 

developed, and the milk coagulated at pH 4.80 ± .03. 

Acidification rates also had no apparent influence on the rate at which curd 

firmness developed as a function of pH at all experimental temperatures, as shown in 

34 

Figures 19, 20, 21, 22, and 23. Table 8 shows the pH and times at which coagulation was 

measured with the Formagraph. 

TABLE 8. Coagulation time and pH of milk acidified with glucono-8-lactone (GDL) or 
starter culture (SC). 

Temperature 10°C 20°C 30°C 40°C 

EH Time (min) EH Time (min) EH Time (min) EH Time (min) 
1.2% SC 4.77 84 
1.5% GDL 4.78 82 
2.0% GDL 4.78 331 4.77 160 4.78 89 4.82 47 
2.5% GDL 4.83 100 4.79 57 4.77 32 
3.0% GDL 4.81 162 4.80 72 4.79 41 
4.0% GDL 4.79 107 
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Figure 18. Formagraph curd firmness of milk as a function of pH during acidification 
with 4.0, 2.5, 2.0, or 1.5% glucono-8-lactone at 10, 20, 30, and 40°C, respectively . 
Average of three replicates . 
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Figure 19. Formagraph curd firmness of milk as a function of pH during acidification 

with 2.0, 3.0, or 4.0% glucono-8-lactone at 10°C. Average of three replicates. 
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Figure 20. Formagraph curd firmness of milk as a function of pH during acidification 
with 2.0, 2.5, or 3.0% glucono-8-lactone at 20°C. Average of three replicates. 
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Figure 21. Formagraph curd firmness of milk as a function of pH during acidification 

with 2.0, 2.5, or 3.0% glucono-8-lactone at 30°C. Average of three replicates. 
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Figure 22. Fonnagraph curd firmness of milk as a function of pH during acidification 
with 1.5, 2.0, or 2.5% glucono-8-lactone at 40°C. Average of three replicates. 
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Figure 23. Fonnagraph curd firmness of milk as a function of pH during acidification 

with 1.5% glucono-8-lactone (GDL) or 1.2% freeze-dried yogurt starter culture at 40°C. 
Average of three replicates. 
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Microstructure of Casein Micelles 

At the native pH of milk, the microstructure of casein micelles was relatively 

compact. At 30 and 40°C, the casein micelles had generally smooth spherical surfaces 

(Figure 24). At 10°C, they became less electron-dense, and their surfaces became less 

distinct with a relatively open microstructure and protein material dispersed among casein 

micelles (Figure 24a). Figure 24d shows very compact micelles at 40°C. Casein micelles 

at 20 and 30°C (Figure 24b and c) had an intermediate microstructure between 10 and 

40°C. 

As pH was decreased, protein was dissociated from casein micelles initially, and 

then reassociated with the micelles during further acidification. At 10°C, acidification 

rates showed no effect on microstructure change of casein micelles during acidification 

(Figure 25, 26, and 27) . As pH was lowered to 5.9, considerable protein was dissociated 

from micelles (Figures 25a, 26a, and 27a). At pH 5.3, reassociation among the protein s, 

as well as between the protein and casein micelles, occurred (Figures 25b, 26b, and 27b ). 

This type of association was in a relatively uncompact state. At pH 5.0, further 

association among these components was observed (Figures 25c, 26c, and 27c). At this 

stage, there were some less compact and much more compact structures. As pH was 

decreased to 4.8, a gel network formed (Figures 25d, 26d, and 27d). 

Microstructure change of casein micelles during acidification at 20°C (Figure 28) 

was similar to that at 10°C. At pH 5.0, the gel network started to form. The gel network 

that formed at pH 4.8 was less pronounced at 20°C than at 10°C. In fact, the gel network 

became less and less pronounced as the temperature increased in the range of 10 to 40°C 

(Figure 32a-d). This indicates that there was a finer aggregation of casein micelles (i.e., 

smaller cells between protein strands) and protein with decreasing temperature. As the 

temperature increased, the cells became sufficiently large such that the gel structure was 

not readily apparent in the approximately 70 nm sections cut from the embedded samples. 



The microstructure of casein micelles after addition of 2.0% GDL at 30°C is 

shown in Figure 29. Some dissociated protein was observed at pH 5.6 and 5.3. There 

was some reassociation between protein and casein micelles as pH dropped to 5.0. 

Further association was perceptible at pH 4.8. 
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At 40°C, slight dissociation of protein was observed as pH dropped to 5.5 after 

addition of 1.5% GDL, but casein micelles were still quite compact in structure (Figure 

30). More protein was released from, and dispersed among, casein micelles at pH 5.2. 

The casein micelles were slightly less compact than at higher pH values. As pH was 

lowered to 4.95, reassociation among the micelles, the protein, as well as between the 

micelles and protein, occurred. The average size of these reassociated micelles was 

larger than at lower temperatures, and some protein protruded from the surf ace of casein 

micelles. Some dissociated protein united into a type of larger incompact structure. At 

pH 4.8, extensive association was observed. Most of the micelles came together, 

although some incompact protein was perceptible. 

Compared to the microstructure change of casein micelles during acidification 

with 1.5% GDL at 40°C, milk acidified by SC had more protein dissociation at pH 5.4 

and 5.0 (Figure 31a and b). At pH 4.75 (Figure 31c), less association was observed, 

compared to that at pH 4.8 with 1.5% GDL (Figure 32d and e). The extent of association 

at pH 4.65 with 1.2% SC was similar to that at pH 4.8 with 1.5% GDL, except that there 

was more loose protein at pH 4.65 with SC (Figure 32d and f). 

As shown in Table 9, pH of both protein dissociation from and reassociation with 

casein micelles decreased with increasing temperature, and was lower with 1.2% SC than 

1.5% GDL. 



TABLE 9. pH values at which protein dissociation from and reassociation with casein 
micelles were observed . 

Protein dissociation 
Protein reassociation 

10°C 

4.0% GDL 
5.90 
5.30 

20°C 

2.5% GDL 
5.70 
5.20 

30°C 

2.0% GDL 
5.60 
5.00 

40°C 

1.5% GDL 
5.50 
4.95 

40°C 

1.2% SC 
5.40 
4.75 

40 



Figure 24. Transmission electron micrographs of casein micelles 
before acidification of skim milk. a) l0°C, pH 6.94, b) 20°C, pH 
6.68, c) 30°C, pH 6.64, d) 40°C, pH 6.58. me = micelles, mx = 
matrix, p = protein. 
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Figure 25. Transmission electron micrographs of casein micelles 
during acidification of skim milk after addition of 2.0% glucono-6-
lactone (GDL) at I0°C. a) pH 5.9, b) pH 5.3, c) pH 5.0 , d) pH 
4.8. gn = gel network, me= micelles, mx = matrix, p = protein. 



Figure 26. Transmission electron micrographs of casein micelles 
during acidification of skim milk after addition of 3.0% glucono-6-
lactone (GDL) at I0°C. a) pH 5.9, b) pH 5.3, c) pH 5.0, d) pH 
4.8. gn = gel network, me = micelles, mx = matrix, p = protein. 



Figure 27. Transmission electron micrographs of casein micelles 
during acidification of skim milk after addition of 4.0% glucono-b
lactone (GDL) at l0°C. a) pH 5.9, b) pH 5.3, c) pH 5.0, d) pH 
4.8. gn = gel network, me= micelles, mx = matrix, p = protein . 
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Figure 28. Transmission electron micrographs of casein micelles 
during acidification of skim milk after addition of 2.5% glucono-6-
lactone (GDL) at 20°C. a) pH 5.7, b) pH 5.2, c) pH 5.0, d) pH 
4.8. gn = gel network, me = micelles, mx = matrix, p = protein . 
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Figure 29. Transmission electron micrographs of casein micelles 
during acidification of skim milk aft e r addition of 2.0% gl ucono-6-
lactone (GDL) at 30°C. a) pH 5.6 , b) pH 5.3 , c) pH 5.0 , d) pH 
4.8. me= micelles , mx = matri x, p = protein . 
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Figure 30. Transmission electron micrographs of casein micelles 
during acidification of skim milk after addition of 1.5% glucono-o
lactone (GDL) at 40°C. a) pH 5.5, b) pH 5.2, c) pH 4. 95, d) pH 
4.8. me= micelles , mx = matrix , p = protein. 
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Figure 31. Transmission electron micrographs of casein micelle s 
during acidification of skim milk after addition of 1.2% freeze 
dried yogurt starter culture at 40°C. a) pH 5.4, b) pH 5.0, c) pH 
4.75. d) pH 4.65. me= micelles , mx = matrix , p = protein. 
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Figure 32. Transmission electron micrographs of casein micelles 
during acidification of skim milk comparing gel network formation 
after addition of a) 4.0% glucono-6-Jactone (GDL), pH 4.8 at 
J0°C, b) 2.5% GDL, pH 4.8 at 20°C , c) 2.0% GDL, pH 4.8 at 
30°C, d) 1.5% GDL, pH 4.8 at 40°C, e) 1.2% freeze dried yogurt 
starter culture, pH 4.75 at 40°C , f) 1.2% freeze dried yogurt starter 
culture, pH 4.65 at 40°C. gn = gel network. 
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DISCUSSION 

Turbidity 

The observation on turbidity change during acidification of milk at different 

temperatures is in agreement with that of Banon and Hardy (3, 4). Temperature 

significantly affected the shape of turbidity change curves during acidification (Figure 3). 

I found that the slight increase and decrease were more pronounced at 10°C than at 20°C, 

while the final increase was greater at 20 than at 10°C. Banon and Hardy (3, 4) obtained 

similar results. At 30 and 40°C, there was no decrease following the slight increase. This 

is consistent with the observation of Bringe and Kinsella at 25°C (9), and Banon and 

Hardy at 30 and 42°C (4). They did not observe any other change in turbidity after the 

sharp increase because the lowest experimental pH of Bringe and Kinsella was 5.05 (9), 

and different equipment was used by Banon and Hardy (4). 

At all experimental temperatures, as pH was lowered from the initial value of 

milk, protein was gradually dissociated from casein micelles. Before the protein was 

completely released into the serum, the dissociating protein molecules were protruding 

from the surface of casein micelles, giving them a greater hydrodynamic size. This 

would account for the slight increase in turbidity observed as the pH of milk was lowered 

from its original value to about 6.0. 

At lower temperatures, and especially when milk coagulation proceeded slowly, 

protein dissociation from the micelles occurred well before reassociation began. Thus a 

decrease in turbidity occurred. At 10°C, protein dissociation was predominant between 

pH 5.8 and 5.27, leading to the decrease in turbidity. At slower acidification rates, this 

became even more evident. At 20°C, the decrease in turbidity between pH 5.52 and 5.24 

was less pronounced than at 10°C. The reason may be that 1) there was less protein 

(presumably ~-casein) dissociation at 20°C; and 2) some protein molecules also 
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reassociated with casein micelles at the same time as protein dissociation was occurring. 

Overall there was slightly more dissociation than reassociation, so a decrease was 

observed. At 30 and 40°C, reassociation of protein with casein micelles was predominant 

over dissociation, as observed in electron micrographs. No decrease was observed before 

the sharp increase. The sharp increase in turbidity at all experimental temperatures was 

evidence of aggregation of casein micelles occurring well before coagulation was 

detected using the Formagraph. 

At 40°C, the decrease following the sharp increase could be explained by a 

decrease in particle number due to the aggregation of casein IT.icelles. Similar results 

have been observed in rennet coagulation of milk (41). When equilibrium was reached, 

turbidity appeared to be constant. 

There was no difference in turbidity change at different levels of GDL at 30°C 

(Figure 9). This implies that acidification proceeded quickly enough so that the 

separa tion between protein dissociation and reassociation was diminished, and, as 

observe d in the micrographs, there was much less dissociated protein at 30°C than at 

10°C. 

At 40°C, there was no decrease in turbidity observed at any of the acidification 

rates. There was more dissociated protein observed at pH 4.8, i.e., after gelation, than at 

the higher pH's. At the fastest acidification rate the aggregation of the micelles occurs at 

the same time that some protein is also being released from the micelles. This effect is 

observed by the decrease in turbidity after gelation. At the slower acidification rates the 

dissociation would have greater time to occur during aggregation; hence, the "hump" in 

the turbidity curve was not observed. It is suggested that because the turbidity curves all 

were at approximately the same level at the end of coagulation, the final gel structures 

were all similar in spite of differences in acidification rates . 
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Compared to freeze-dried yogurt starter culture, GDL caused a much faster pH 

drop above pH 5.0 because of the rapid hydrolysis of GDL compared to the culture, 

which must first multiply before significant acid production occurs. Below pH 5.0, 

acidification by GDL was slightly slower than SC because of its diminishing 

concentration. Similar turbidity change was observed with GDL or SC although the SC 

curve was slightly offset to lower pH. Aggregation of casein micelles and protein 

occurred at lower pH with SC, as observed by electron microscopy. The reason might be 

that the proteolytic activity of the bacteria in addition to the pH drop causes more protein 

liberation from casein micelles than pH decrease alone as happens when GDL is used. It 

would take the milk with SC longer to reach a similar extent of micelle and protein 

association when pH is dropping. The last decrease and stationary period in turbidity 

change were at greater values with SC because there was less decrease in particle 

number . Thus, turbidity decreased less. 

Average Particle Size of Casein Micelles 

Figure 15 indicates that temperature had little influence on the shape of average 

particle size curves as a function of pH. No great variation was observed above pH 5.2. 

This result is basically consistent with the observations made by other workers (3, 4, 50, 

51, 61). Below pH 5.0, average particle size increased rapidly due to the extensive 

aggregation of casein micelles and protein as the milk gelled. 

According to the result of Dalgleish and Law (18), as more caseins are dissociated 

from casein micelles during acidification at lower temperature, casein micelle size should 

decrease more at lower temperature. However, my results showed little change at 10°C, 

indicating that a size-determining micellar framework of caseins remained during 

acidification, as proposed by Visser et al. (60). Another reason might be the increase in 

number of small particles resulting from the dissociated protein. Average casein micelle 



size remained relatively constant, before milk gelation, independent of protein 

dissociation or reassociation with casein micelles. 

Average casein micelle size before acidification increased significantly with 

decreasing temperature . Banon and Hardy ( 4) also found a similar change of average 

casein micelle size with temperature, although their measured micelle size is generally 

smaller than ours due to the different equipment used. The fact that average casein 

micelle size before acidification was inversely related to temperature is consistent with 

the hypothesis that hydrophobic interactions play an important role in determining 

micelle size since hydrophobic interactions are also diminished by decreasing 

temperature. 
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As reported, more caseins (18, 45, 47) and calcium and phosphate (45, 47) are 

dissociated from the micelle at low temperature . Therefore, casein micelles should be 

smaller at lower temperature if their size at least partly depends on the dissociable caseins 

or calcium and phosphate. My results, however, imply that average casein micelle size 

before acidification is not determined by the dissociable caseins, calcium, or phosphate. 

As temperature is reduced, the attractive forces between various casein 

components of the micelles are weakened. The protein molecules are less strongly bound 

to each other (bond lengths increase), and the micelle expands. In addition, the number 

of molecular sites at which proteins on the micelle surface are tethered to the micelle 

could be reduced, allowing some molecules to "float" away from the other proteins and 

thus extend the "hairy" nature of the micelle surface. 

This shows that there is a framework structure with the micelles (and probably the 

micelle subunits) that is formed through electrostatic interactions. Through hydrophobic 

interactions, the proteins, mainly P-casein and some K-casein, are "pulled" closer together 

into the relatively compact structure of native casein micelles. As these hydrophobic 

interactions are diminished by lowering temperature, the proteins are separated more 
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(inversely related to the extent of hydrophobic interactions). Thus, the micelles are larger 

at lower temperature. 

Although average micelle size measured using photon correlation spectroscopy 

(PCS) increased significantly with decreasing temperature, a similar phenomenon was not 

observed on electron micrographs. At 10°C, casein micelles were less compact than at 

higher temperatures. There were lots of diffused materials around the surfaces of casein 

micelles at lower temperature. PCS may identify the diffused materials as part of the 

micelle. Thus, larger micelle size was obtained using PCS at lower temperature. On the 

other hand, larger micelles may appear smaller if they were not cut exactly through the 

largest section. 

Formagraph 

Under the experimental conditions, temperature had no effect on the pH (-4.8) at 

which milk coagulation was detected using the Formagraph . However, calculated pHg 

(bas.ed on turbidity change) increased with increasing temperature, and all pHg values 

were greater than 4.8. The difference was that the Formagraph is not as accurate as the 

turbidity method in monitoring the coagulation point. In the Formagraph, insufficient 

force would be transmitted to the pendulum from the linearly oscillating milk to cause the 

pendulum to move until formation of a curd. Kim and Kinsella (34) confirmed that 

pasteurized skim milk samples started to coagulate at very similar pH (5.1 to 5.2) in the 

range of 35 to 50°C. However, at 55°C, the coagulation pH increased to 5.6. Other 

workers also found that increasing temperature elevated the pH at which milk gelled (7, 

11, 28). 

Although coagulation of all milk samples was observed at about pH 4.8 using the 

Fo:rmagraph, a longer time was required for the initiation of milk coagulation with 

decre asing temperature if the GDL level was the same (Table 8). This means that the 

tende ncy of casein micelles to coagulate was greater at higher temperature. When rhe 
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temperature was reduced, the milk took longer to coagulate. This was a function of 

slower acidification rates. When this was corrected by using pH rather than time after 

GDL addition, no difference in coagulation point was observed as all samples coagulated 

at pH 4.80 ± .03. 

Microstructure of Casein Micelles 

The observation on microstructure of casein micelles before acidification at 

different temperatures can be correlated to the results on average micelle size 

measurement. Casein micelles became more compact with increasing temperature. At 

higher temperature, hydrophobic interactions of protein are facilitated; protein molecules 

are more strongly bound to each other, and casein micelles are more compact and smaller. 

The pH (at which protein dissociation from and reassociation with casein micelles 

was observed) decreased with increasing temperature. At a lower temperature, 

hydrophobic interactions are weakened. Those protein molecules bound to the micelle 

mainly through hydrophobic interactions are more readily dissociated from the micelle. 

Consequently, the pH is not necessarily so low as to cause protein dissociation from 

casein micelles, and the following reassociation naturally occurs at higher pH at lower 

temperature. On the other hand, the gel network became less and less pronounced as 

temperature increased from 10 to 40°C (Figure 32a-d). This indicates that there was 

more extensive aggregation of casein micelles and protein with decreasing temperature 

since there was more time for casein micelles and protein molecules to aggregate at lower 

temperature. However , this observation cannot be correlated to that of the rate at which 

curd firmness developed. 

Compared to GDL, SC caused more protein dissociation, and the aggregation of 

casein micelles and protein occurred at lower pH at 40°C. With SC, the proteolytic 

activity of proteinases and peptidases released by the bacteria (48, 57, 58) contributed to 

more protein iiberation from casein micelles. The proteins hydrolyzed by the bacteria 
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might not be able to reassociate with casein micelles as efficiently as those released by a 

lower pH. Therefore, more incompact protein was observed, and it would take the milk 

with SC longer (i.e., lower pH) to obtain similar aggregation. 

Interpreted Mechanism of Milk Acid Coagulation 

As pH decreased during acidification, proteins were dissociated from and then 

reassociated with casein micelles. Average micelle size did not change much to pH 5.2, 

but increased rapidly below pH 5.0 as the milk gelled. These results indicate that a size

determining framework remained during acidification which was independent of the 

dissociable protein , calcium, or phosphate. Such a size-determining framework would 

also apply using the submicelle theory of casein micelle structure . 

As the pH of milk decreases from its native value, the ionization states of amino 

acid side groups are changed. The only affected side groups are irnidazole of histidine 

(pKa = 6.04), y-COOH of glutamic acid (pKa = 4.07), and ~COOH of aspartic acid (pKa 

= 3.90); other ionizable groups have pKa's >> 6.5. Table 10 shows the percentage of 

each form of these groups at different pH values during milk acidification. Decreasing 

pH produces more positive charge through the imidazole group of histidine . Part of the 

negative charge of the micelle is neutralized by the increased [H+] in milk , which results 

in the reduction of net charge of casein micelles. Consequently, electrostatic repulsion 

between casein micelles is diminished. This makes the association among micelles 

possible and enhances micelle interaction. Another effect of pH decrease is that it causes 

the release of calcium and phosphate from casein micelles (Table 12). This would result 

in the dissociation of those protein molecules which are linked to the size-determining 

micelle framework through colloidal calcium and phosphate. The resulting micelles 

become less stable due to the minimized steric repulsion and the less hydrophilic surface. 

By calculation, the results (Tables 11 and 12) show that only a portion of the 



TABLE 10. Theoretical percentages of the neutralized and ionized form of three amino 
acid side groups (imidazole of histidine, pKa = 6.04; y-COOH of glutamic acid, pKa = 
4.07; ~-COOH of aspartic acid, pKa = 3.90) at different pH values. 

pH His Glu 

N NH+ COOH coo-
6.7 82.0 18.0 .2 99.8 
6.6 78.4 21.6 .3 99.7 
6.5 74.3 25.7 .4 99.6 
6.4 69.6 30.4 .5 99.5 
6.3 64.5 35.5 .6 99.4 
6.2 59.1 40.9 .7 99.3 
6.1 53.4 46.6 .9 99 .1 
6.0 47.7 52.3 1.2 98.8 
5.9 42.0 58.0 1.5 98.5 
5.8 36.5 63.5 1.8 98.2 
5.7 31.4 68.6 2.3 97.7 
5.6 26.6 73.4 2.9 97.1 
5.5 22.4 77.6 3.6 96.4 
5.4 18.6 81.4 4.5 95.5 
5.3 15.4 84.6 5.6 94.4 
5.2 12.6 87.4 6.9 93 .1 
5.1 10.3 89.7 8.5 91.5 
5.0 8.4 91.6 10.5 89.5 
4.9 6.8 93.2 12.9 87.1 
4.8 5.4 94.6 15.7 84.3 

TABLE 11. Some characteristic parameters of casein micelles. 

Weight proportion(%) 
MWl 
Chain No/micelle 
Pho sphoserine No/chain 
Pho sphoserine No/micelle 
MW of casein rnicelle (36) 
Micelle No/ml milk (56) 

a 81-casein 
38.46 

23614 
8144 

8 
65152 

a 82-casein ~-casein 
10.26 

25230 
2033 

11 
22363 

5.0x108 Dalton 
6xlQ14 

38.46 
23983 

8019 
5 

40095 

1 MW of a 81-B, a 82-A, ~-A2, and K-B casein, respectively (65). 

Asp 

COOH 
.2 
.2 
.3 
.3 
.4 
.5 
.6 
.8 

1.0 
1.2 
1.6 
2.0 
2.5 
3.1 
3.8 
4.8 
5.9 
7.4 
9.1 

11.2 

K-casein 
12.82 

19023 
3370 

1 
3370 

coo-
99.8 
99.8 
99.7 
99.7 
99.6 
99.5 
99.4 
99.2 
99.0 
98.8 
98.4 
98.0 
97.5 
96.9 
96.2 
95.2 
94.1 
92.6 
90.9 
88.8 

Total 

21566 

171075 

57 
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TABLE 12. Calculated concentration of colloidal calcium and phosphate, calcium and 
phosphate atom number per casein micelle or per phosphoserine pair at individual pH 
values. Based on van Hooydonk et al. (59) and Table 11. 

pH Colloidal Colloidal Ca atoms/ P atoms/ Ca atoms/ P atoms/ 

Ca (mM) P(mM) micelle micelle ehosehoserine eair ehosehoserine eair 
6.7 19.9 9.2 19973 9234 .234 .108 
6.4 18.0 7.7 18066 7728 .211 .090 
6.2 16.0 6.6 16059 6624 .188 .077 
6.0 13.5 5.3 13550 5320 .158 .062 
5.8 10.2 3.2 10238 3212 .120 .038 
5.6 7.5 1.5 7528 1506 .088 .018 
5.4 5.1 .5 5119 502 .060 .006 
5.2 3.5 0 3513 0 .041 0 
5.0 2.6 0 2610 0 .031 0 
4.8 1.7 0 1706 0 .020 0 

phosphoserine groups of caseins is linked through colloidal calcium phosphate even at 

the native pH of milk. As the pH is lowered, each phosphoserine pair possesses less 

colloidal calcium and phosphate. Those casein chain s bound to the micelle through this 

linkage would readily or completely leave the micelle. 

At a certain pH, the dissociated protein might be stable in the serum through H

bonding with water molecules . As the pH is further lowered, the increased [H+] compete 

with the protein for water molecules and make it unstable. This facilitates protein-protein 

interaction and induces reassociation among the protein molecules and between the 

protein and micelles. On the other hand, as pH approaches the isoelectric point of a 

protein , the protein would denature and its solubility would decrease markedly in an 

aqueous solution (33). Furthermore, some or all of the unsatisfied bonding sites of the 

denatured protein molecules could reform intermolecular bonds if they come into contact. 

Therefore, the dissociated protein molecules and casein micelles became reassociated. 

At higher temperature, the tendency of casein micelles to coagulate was greater as 

shown by higher pHg values. One of the reasons is the increased steric repulsion due to 

the protrusion of surface protein at lower temperature. Another cause may be the 
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decreased hydrophobic interactions with decreasing temperature. Hydrophobic 

interaction is entropy-driven. Entropy is a measure of the order of a system and decreases 

with increasing order . At lower temperature, water molecules are more ordered around 

protein molecules, minimizing entropy and free energy. Consequently, casein micelles 

would be more stable against aggregation with decreasing temperature and would require 

more acidification before gelation occurs. 



CONCLUSIONS 

The conclusions from this research can be summarized as follows: 

1) Temperature had an influence on turbidity change as a function of pH. 

2) Acidification rate had a more pronounced effect on turbidity change at 10°C 

than at 20, 30 or 40°C. 

3) Average casein micelle size increased significantly with decreasing 

temperature. 
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4) During acidification, the shape of average micelle size change with pH was not 

affected by temperature. 

5) Average micelle size did not vary much above pH 5.2 and increased greatly 

below pH 5.0 as the milk gelled. 

6) Acidification rate did not influence average micelle size at 10°C. 

7) Gelation pH of milk increased with increasing temperature while acidification 

rate had no effect on it. 

8) Acidification rate, types of acidifying agents, and temperature had no effect on 

the rate at which curd firmness developed. 

9) Casein micelles became less compact and their surfaces less distinct with 

decreasing temperature before acidification. 

10) As pH decreased, protein was dissociated from and then reassociated with 

casein micelles. 

11) Acidification rate had no effect on the rnicrostructure change of casein 

micelles at 10°C. 

12) Acidification by starter culture induced more protein dissociation than by 

GDL at 40°C, but reassociation occurred at lower pH with starter culture. 



RECOMMENDATIONS FOR FURTHER STUDY 

Recommendations for further research on changes during acidification of milk 

would include: 
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1) A study to determine which caseins are dissociated by lowering temperature or 

by decreasing pH or both so as to understand the role of hydrophobic interactions and 

electrostatic interactions in forming casein micelles. 

2) A study to examine how and by how much phosphoserine groups are actually 

linked through colloidal calcium phosphate, and how the dissociable protein molecules 

are linked to casein micelles before dissociation and upon reassociation. 

3) A study to determine if a size-determining framework of casein micelles exists, 

and which interaction(s) is (are) predominant during acidification. 

4) A study to determine how temperature induces rnicrostructural change of 

casei n micelles and the average casein micelle size . 
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