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ABSTRACT 

A Product Development Study: 

Rainbow Trout Bologna 

by 

Marshall Dean Smith, Master of Science 

Utah State University, 1999 

Co-Major Professors: Dr. Conly Hansen and Dr. Charles Carpenter 
Department: Nutrition and Food Sciences 

Mechanically deboned rainbow trout (Oncorhynchus mykiss) was analyzed and 

then used in texture studies. The meat contained a moderately low amount of fat ( I 0% ± 

2%, x ± SD). Pre-deboned meat had more calcium than deboned meat (P<0.001) . 

Sausages were made of fish and various non-meat ingredients including egg white, 

collagen, soy protein isolate, starch, cellulose, and wheat gluten. Adhesiveness, 

cohesiveness, hardness, shear, and springiness of the cooked sausages were measured to 

describe texture. The data were fit to linear and quadratic models. Adhesiveness data did 

not fit the model (F(6,50)=1. l, P>IF/=0.37). A combined response model predicted 

formulations for fish sausage that would closely duplicate the texture of commercially 

available processed meats. A thermal model was developed that helped verify the thermal 

lll 



properties of rainbow trout. Thennal conductivity was measured (k == 0.48 W/m· K) and 

specific heat was calculated ( CP == 3200 J/kg· K). 

I\' 
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INTRODUCTION 

Fish is a protein-rich food of great nutritional and economic importance . Value 

varies from specie to specie and depends on factors like availability, flavor. texture. meat 

content , bone content , and oil content. Rainbow trout , Oncorhynchus mykiss, are fish 

native to North American mountain streams and lakes. They are considered a valuable 

game fish. High protein content makes trout desirable from a nutritional standpoint. 

Table 1 compares red meat and fish. 

Table I --Composition of raw meat . Fish 
is similar to red meat 

Meat Water Protein Fat 

Red meat 70% 20% 8% 

Flounder 83% 15% 1% 

Trout 71% 18% 10% 

Statement of Problem 

Fish may be processed into many different forms. Common forms are fillet, chunk , 

pate , and surimi. In all cases the head, tail, and viscera are removed. In many cases, fillets 

are cut, and the bones are discarded. The meat that remains on the bones represents a 

valuable resource. 

One way to salvage meat is with a mechanical deboner. Such a machine uses 

pressure to separate muscle from bone. By running trout frames through a deboner , finely 

minced meat is obtained that may be further processed intc a meat prcduct. A possible 



use for this meat is to make a bologna-like product. Development of such a product is the 

focus of this research. 

Sausage coo kery affects product texture . Changes in heating rate. final cook 

temperature, cooking time. and size affect products differently. Cooking models simulate 

actual cooking cycles. By preparing a computer solution to the heat transfer problem of 

cooking a bologna-like sausage , multiple variables may be studied rapidly , and cook cycles 

may be predicted quickly . 

Objectives 

The overall objective of this research was to develop a fish product from 

mechanically deboned meat. Specific objectives included : 

( 1) Characterize mechanically de boned rainbow trout in terms of yield, proximate 

analysis, and mineral content. 

(2) Develop a deboned trout product with a texture like bologna. 

(3) Prepare a closed-form model of heat transfer for the bologna-like product. 

Validate the model by comparing analytical results to experimental results . 



LITERATURE REVIEW 

This section summarizes research pertinent to restructured trout bologna. Six 

areas are discussed: characteristics of deboned meat, products made with mechanically 

deboned meat. product development experimental design , texture , non-meat ingredients 

used in processed meat, and cooking models. 

Two comprehensive project sununaries review similar product development work. 

The Alaska Fisheries Development Foundation (1987) conducted a 6-year study on the 

manufacture of surirni. They focused on product quality measurement and production 

methods. The other summary was prepared by Berry ( 1987), who reviewed research 

relevant to USDA work on restructured meat. Some of the themes he studied were bind 

problems , inconsistent texture , crust formation, and air pockets. Process variables 

included particle size, addition of non-meat ingredients, and mixing. Berry also studied a 

wide range of instrumental measurements that provided insight into texture problems. 

Those two works provide an excellent foundation for product development research. 

Characteristics ofDeboned Meat 

Mechanical de boning is the process of separating meat from bones . The principle 

behind deboning involves forcing meat, which is softer than bone, through a perforated 

chamber. The quality of the mince depends on both the species of fish and the portion of 

the fish being deboned. Possible raw materials include whole fish, fillets, trimmings, and 

back bones . The amount and quality of minced fish in a meat product greatly affects 

3 



sensory results (Babbitt, 1986). Regenstein ( 1986) suggested the following factors for 

improved quality of mechanically recovered meat : premium starting materials. reduced 

yields. meat with minimal color, and proper frozen storage. 

4 

Mechanically deboned meat may be added to food products. Fish may not be 

added to processed meat products; however , the following restrictions apply to other 

forms of deboned meat: ( 1) calcium levels must be below 0. 75% for red meat and below 

0.175% for poultry; (2) it may not be added to baby, junior, or toddler foods, ground beef, 

fabricated steaks, or similar foods; (3) it must be labeled as "mechanically separated ," and 

(4) 20% is the maximum level at which it may be added (CFR, 1996). The regulations 

imply that calcium levels increase as bone enters the product; however , Field et al. ( 1974) 

found that deboning decreased the calcium levels in pre- and post-rigor lamb. 

Products Made with Mechanically Deboned Meat 

A variety of products can be made from minced meat. Salt soluble proteins bind 

water and fat together and form excellent gels. Bind and gel formation enable minced 

meat to be used in products like hot dogs (Lanier, 1985). Other possible products include 

surimi, pate , ethnic foods , breaded or battered products that are deep fried, and puffed 

snack products . 

Processed Meat 

Salt soluble meat proteins have a great effect on the texture of processed meat. 

Grinding is a common manufacturing process that exposes extractable proteins. Those 
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proteins congeal after cooking and bind meat particles together. For this reason. the final 

texture of processed meat depends on the particle size of the raw material. Emulsions 

utilize the exposed proteins to hold products together. Coarse-ground products often use 

finely ground meat (with ample protein) for bind. In a loaf product, ground meat binds 

large chunks together. 

Perhaps the single most important attribute in determining the quality of a 

restructured product is particle size. Berry et al. ( 1987) studied beef and pork steaks and 

found that visually detected fibrousness, first bite hardness, cohesiveness, and shear force 

increased with increasing flake size. Penfield et al. ( 1992) compared steaks with flake 

widths of 1.295 and 1.905-cm and found that larger flakes produced more acceptable 

steaks. 

Another processing method used in restructured products is tumbling. The 

mechanical action of tumbling exposes proteins that improve bind. Depending on the meat 

block and the desired effect of the tumbling action, the process may proceed for minutes 

or hours . Formed hams are tumbled for at least an hour. A catfish hot dog became 

rubbery when tumbled for more than 5 min (Abide et al., 1990). 

Surimi 

"Surimi is prepared by fresh water leaching of mechanically deboned fish muscle" 

(Lanier, 1986, p. 107). The leaching process removes all water soluble components and 

leaves behind a high concentration of functional proteins. Such a high concentration of 

proteins makes surimi an excellent candidate for use as a meat binder. 



Many of the ingredients used in surimi are for preservation. A typical recipe 

consists of 4% of both sorbitol and sucrose. Dextrose has also been used. Those sugars 

act as cryoprotectants and help preserve proteins in their native state during frozen 

storage . Lanier ( 1985) suggested that meat scientists should learn the cryoprotective 

practices of surimi manufacturers. By so doing, they could better utilize meat protein . 

6 

As noted previously, proteins form gel structures . Peculiarly, cold water fish 

proteins gel at low temperatures as well as heat setting. Given enough time, gels will form 

at temperatures as low as 0 °C. Low temperature setting might be due to hydrophobic 

interactions between amino acids. High temperature setting results from disulfide bonding 

(Lanier, 1986). Given the functional properties of fish protein at low temperatures , Lanier 

(1985) proposed replacing the process of tumbling with the addition of surimi to the meat 

batter . Various other thermal transition stages have been documented for fish (Wu et al., 

1985) and other meat proteins (Lan et al., 1995). These properties open many avenues to 

the processed meat industry. 

Surimi has many functional properties . They include binding water , foaming, 

emulsifying, and forming a stable dispersion (Lanier, 1986). The functionality of the 

proteins depends on non-meat ingredients and processing . Lanier ( 1985) showed that 

slow heating allows proteins to form a more ordered gel matrix. He also documented 

(Lanier , 1986) factors affecting gel quality . Gel rigidity is a function of protein 

concentration, and cohesiveness is a function of the quality of proteins. 

Various applications exist for surimi in the food industry. Artificial crab legs and 



fish cakes are commercially manufactured . Suri.mi could be added to hot dogs and other 

processed meat product s with the advantages of low cost and high functionality. 

Extruded Foods 

With the recent onset of extrusion technology , mechanically de boned meat was 

introduced to the world of snack foods. Puffed products can be easily made. A filler for 

meat loaf was made through extrusion processing (Murray et al., 1980). 

Product Development Experimental Design 

Response surfaces are valuable tools for product development research . Response 

surfaces present regression results on contour maps. Those maps illustrate the effect of 

response variables on the model. Murray et al. ( 1980) used response surfaces to 

understand the interaction of protein level and temperature on an extruded fish product. 

Texture 

Texture evaluation in meat products is done by sensory and mechanical tests. 

Sensory tests measure consumers ' opinions and preferences. Mechanical tests should 

correlate to sensory test results quickly and without the added variables of human bias and 

error. 

Contributions to the field of texture studies are numerous . Chrystall (l 994) 

discussed how texture relates to meat products. His discussion focused on factors that 

7 



affected texture like breed, fatness. sex, growth promoter, and connective tissue . 

Dransfield ( 1994) reviewed more than 30 different tests . 

Mechanical tests fall under three main categories . Imitative tests like Texture 

Profile Analysis (TPA) mimic the processes they evaluate. Empirical tests , such as shear . 

have little scientific basis but have proven to be closely correlated to a selected property. 

Fundamental tests measure well defined rheological properties (Claus, 1995). 

Shear 

The force required to cut is defined as shear. Consumers find connective tissue 

objectionable because it increases toughness in meat. The difference in texture between 

meat and connective tissue would show up in shear tests. Claus ( 1995) compared shear 

test guidelines of national (AMSA, 1995) and international committees (Chrystall et al., 

1994). Table 2 describes the guidelines suggested by each committee. 

Texture Profile Analysis 

Texture Profile Analysis (TPA) is a test that replicates the chewing motion. 

Samples are compressed twice while force and deformation data are collected. Bourne 

Table 2--Recommendations for shear testing 

Guideline National committee 

sample configuration 

shear speed 

blade 

muscle fiber orientation 

number of samples 

shear rate important 

1.27-cm core 

200 to 250 mm/min 

G-R Electric, Manhattan, 
KS "V" shaped blade 

perpendicular 

SIX 

likely 

International committee 

square sample 

50 to 100 mm/min 

1.2 mm thick blade with 
rectangular ho le 

perpendicular 

SIX 

not likely 

8 
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( 1978) described the procedure and made recommendations for such a test. Plotting force 

against time produces a useful curve for evaluating texture . Associated variables are listed 

below . 

Fracturability . . the force at the first break in the curve 

Hardness . . . . . . maximum force during compression 

Cohesiveness . . . ratio of the second positive force area to the first 

Adhesiveness. . . maximum negative force 

Springiness . . . . height recovered between the end of the first and 
the start of the second compressions 

Gumminess . ... product of hardness and cohesiveness 

Chewiness .. .. . product of hardness, cohesiveness, and 
spnngmess 

Olkku and Sherman (1979) described the mechanics and energy considerations ofTPA 

testing in a very complete review. They related TP A data to stress-deformation and 

stress-strain curves. 

Texture profile parameters vary between tests . Compressions between 25% and 

75% are accepted. There is an equally broad range of test speeds . Each test depends on 

the material being tested. The critical factor is how far samples are compressed. The 

structure must be disrupted, but it must not be destroyed. 

Other Tests 

Three other types of tests have proven meaningful in evaluating meat texture: 

torsion, stress-relaxation, and tensile tests. Torsion tests twist products and collect force 

and torque angle data. With definable equations, torsion tests are an excellent way to 

measure actual cohesiveness and bind values in products like hot dogs (Hamann, 1987). 

Stress-relaxation tests induce stress in a sample. Force measurements are taken as 



the sample ·'relaxes" under pressure. A stress-relaxation test was documented by 

Weinberg and Angel ( 1995) who varied probe speed , level of deformation , and sample 
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· hickness. The purpose of the test was to study the effects on bind of NaCl replacement 

by CaC12. When they compared the two salts, they found that fewer proteins were 

extracted with CaC12• That caused the CaC12 samples to yield to compressive forces more 

than the NaCl samples, particularly when long samples( > 1.5-cm) were compressed by less 

than 50%. 

Another test is the tensile test. Samples are gripped on both ends, and the force 

required to break the sample is recorded . Measurements from those tests relate to 

cohesivene ss of a sample. MacNeil and Mast (1989) developed a "Resistance to Tear " 

device for tensile testing . 

Non-Meat Ingredients Used in Processed Meats 

Non-meat ingredients play a significant role in processed meat texture. The effect 

of those ingredients varies according to their function . Proteins strengthen the gel 

structure and carbohydrates bind water. Both ingredients increase hardness but in 

different ways . 

Many summary papers have focused on the effects of non-meat ingredients and 

their effects. The most comprehensive review of non-meat ingredients was provided by 

Keeton ( 1996). He presented many types of carbohydrates and proteins and focused on 

how they can be used as fat replacers in processed meat . Purge controllers like modified 

food starch , sodium caseinate , isolated soy protein , and carrageenan , function by fmding 
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water to make meat more appealing. Lanier ( 1986) summarized the effects of ingredients 

and noted that they work separate ly rather than in conjunction with meat proteins . 

Egg White 

Egg white is an animal protein that forms a strong gel. Research has focused on 

the gel strength of egg whites, although they are seldom used in meat. It is known that 

large amounts of egg whites do not have the expected additive strength (Burgarella et al.. 

1985) . Since egg whites are more than 85% protein, the resulting gels are very strong. 

Milk Proteins 

Milk proteins come in the form of whey proteins and casein proteins . Whey is a 

by-product of cheese manufacture and may be prepared as isolate or concentrate. 

Concentrated forms contain up to 40% protein . With both hydrophobic and hydrophilic 

regions , whey is a good fat emulsifier. Lactalbumin is a heat denatured whey protein 

concentrate. The use of lactalbumin in meat is limited because the heat treated proteins 

self-aggregate and are less soluble than other proteins. 

Caseinates are separated directly from milk. Giese ( 1994) noted that casein 

emulsified fat and improved moistness and smoothness in processed meat. When used in 

emulsion products , they are absorbed onto fat globules better than onto myofibrillar 

proteins and help to stabilize the emulsion. 

Collagen 

Collagen is an animal protein that contributes to toughness in meat. It is a major 
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component of connective tissue and makes beef chucks tough and is an undesirable 

constituent in steaks. Ranges of collagen in muscle vary from 1 % in skeletal muscle to 

27% in gristle. Meat from older animals is tougher due to permanent cross-links that form 

in collagen . Collagen-rich meat may be tenderized by processing methods like blade 

tenderizers (Flores et al., 1986), enzymes (Rolan et al., 1988), and acids (Wenham and 

Locker , 1976). 

The functional properties of collagen make it a candidate for addition to processed 

meat. Whiting (1989) reviewed those properties and noted some of the associated 

problems . Collagen is toughest at 40 °C, but melts and loses all strength at temperatures 

above 80 °C. At low levels it stabilizes batters , minimizes shrinkage , and improves 

texture. Large amounts congeal after cooking to form undesirable gel pockets . Whiting 

recommended that a meat block should not contain more than 3% collagen by weight. 

Two forms of collagen may be added to meat. Raw materials high in collagen may 

be added to a meat block or collagen may be processed into fibers. Typical uses include 

low-fat applications (Eilert et al., 1993) and hot dog products (Meullenet et al., 1994). 

Soy 

Soy proteins are available in flour, grits , concentrates, isolates, and textured forms 

( Giese, 1994 ). Due to the distinctive odor of soy beans, the most commonly used forms 

are flavorless isolates and concentrates. Isolates differ from concentrates in that isolates 

have no fibrous residues or non-protein components. Textured products are made by 

combining isolates and fibers in an extruder. 
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Uses for soy proteins depend on the form involved. Textured proteins .. are most 

o ften used in coarse chopped or ground meats such as pizza toppings , taco meats , meat 

baUs. meat pattie s. and Salisbury steaks. In those products , soy protein provided 

structure. reduced cooking loss. and extended freshness" (Keeton , 1996, p. 27) . Jin and 

Lee ( 1988) used l 0% textured protein in pork steaks. Pure soy protein forms an excellent 

gel and has been combined with chicken meat (Megard et al., 1985). 

Hydrocolloids 

HydrocoUoids are long-chain polymers that thicken in aqueous systems . Many 

edible gums are classified as hydrocolloids . They are used primarily as fat substitutes. 

Like fats, they melt when heated and reform into gels when cooled . Glicksman ( 1985) 

used hydrocolloids in restructured seafood to provide shape , form, and texture . Their use 

should be monitored since carbohydrate gums give mushy textures (Lanier, 1986). 

Cellulose 

Cellulose is a plant-derived carbohydrate polymer made of glucose . Types of food 

grade cellulose include microcrystalline cellulose, carboxy methyl cellulose (CBMC) , 

methyl cellulose , and hydroxypropyl methyl cellulose. Cellulose has been used in two 

types of meat products . CBMCs softened the texture of notoriously tough reduced fat 

franks (Lin et al., 1988). Microcrystalline cellulose , when used in a ground pork product , 

increased hardness (Todd et al., 1989) but produced an unacceptable grainy texture (Todd 

et al., 1990). Cellulose was also added to surirni to improve freeze-thaw stability and 

improve firmness (Yoon and Lee, 1990). 
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Wheat Gluten 

\\/heat gluten is a plant protein used in many bakery goods and breakfast foods. It 

retains its viscoelastic characteristics at high temperatures. Wheat gluten was used with 

pork (Jin and Lee, 1988) and deboned chicken (Alvarez et al., 1990). 

Starch 

Starches are carbohydrate granules of glucose that usually contain amylose and 

amylopectin. The ratio of the two components varies from one source of starch to 

another. When heated, starches form a gel with great water holding capacity. The 

hydrogen bonding of amylose determines the gel properties. Starches bind water, but they 

do not emulsify. 

Starch has been used as a fat replacer in processed meats and in extrusion 

experiments. Alvarez extruded a gel composed of 15% com starch and mechanically 

deboned chicken (Alvarez et al., 1991 ). Starches are often modified to alter viscosity, 

hydration capacity, solubility, and gelatinization properties. Modified starches find use in 

processed meat as fat substitutes. Lanier ( 1986) recommended non-pre-gelatinized starch 

for surimi. 

Salt 

Salt, like phosphate, has many functions in meat. As people become concerned 

about what they eat, salt is imminently targeted as an undesirable ingredient. Herring 

( 1995) addressed the salt reduction issue and explained the necessary functions of salt so 

that producers might not lose quality by reducing salt. Salt helps extract proteins . Those 



proteins act as binders in processed meat. Salt enhances flavor and suppresses microbial 

gro'wth. 

Phosphates 

Phosphates have four functions in meat. The first function, as discussed by 

Mandigo ( 1992), is to change the charge potential on the proteins. The result is that 

charged parts of the protein repel each other and open the protein spatially. The second 

effect is due to the buffering effect of phosphates. Since the pH changes, so does the 

charge on the protein, which allows for increased water binding. Third, phosphates 

sequester metal ions, preventing oxidation. The fourth function is to dissociate 

actomyosin and tenderize meat. Phosphates are widely used in meat because they 

minimize lipid oxidation and increase yield by improving the water holding capacity. 

Cooking Time Predictions 

Cooking time predictions are helpful for at least two reasons . The first is safety. 
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It is necessary to know when harmful microflora have been killed. Second, since texture is 

a function of the cooking temperature, it may be altered by time-temperature relationships. 

Both Heisler (1947) and Ball (1923) published charts that predicted time-temperature 

relationships for general cases. Through the use of computers, cooking models can 

predict time and temperature for any case. 

Computer simulations of the cooking process are helpful to meat processors. With 

a few simple key strokes, cook schedules can be predicted for various sausage sizes and 
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oven temperatures . Geometry often presents a problem to cooking models. Complex 

problems. like irregular product shape or strange boundary conditions. are best solved by 

numerical methods . Closed form solutions exist for simple problems that are very well 

defined. 

Numerical Solutions 

Numerical methods are used to solve problems involving phase changes, irregular 

boundaries , and nonstandard boundary conditions. The two most common numerical 

methods are finite element and finite difference. Both methods work by breaking a 

problem down into small sections. Finite element methods are particularly suited for 

nonuniform shapes . Finite difference methods require fewer computations, but 

applications are limited to uniformly sectioned products . Finite difference methods were 

used to predict mass transfer and temperatures during forced convection , natural 

convection , and boiling (Huang and Mittal , 1995). 

Analytical Solutions 

Solutions exist for many standard shapes and conditions . Heisler 's solutions to 

heat transfer problems (in the form of charts and equations) may be programmed into a 

computer. Those closed-form solutions to heat transfer problems are well suited for 

cooking a long, round fish bologna in a smokehouse . 
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MA TERJALS AND METHODS 

Trout bologna product development studies focused on the following three areas : 

characterization of mechanically de boned meat, product development, and cook process 

modeling. 

Materials 

The following sections describe processing equipment, analysis equipment, 

ingredients. and software used to develop rainbow trout bologna. 

Processing Equipment 

Paradise Farms in Paradise , Utah, supplied rainbow trout. In the course of one 

day, fish were filleted, brought to USU , deboned, and frozen. The procedure was 

repeated on three separate days. The average trout was one year old and weighed one 

pound. Trout frames were deboned using the twin screw mechanical deboner shown in 

Fig. I (model RSTC-02BX-V05 , Beehive , Inc., Sandy, UT). Holes in the chamber were 

0.031 inches in diameter. Immediately after deboning, 5-pound bags of meat were 

collected and frozen. Meat was held in storage at -20 °F until needed . 

Time and temperature data were collected during cooking. Temperature data 

were recorded on a six-channel datalogger (CR! OWP, Campbell Scientific, Logan, UT) 

with the use of type T thermocouples. Thermal conductivity was measured with a 

conductivity probe (TC-22, Campbell Scientific , Logan, UT) and recorded on the six­

channel datalogger. The datalogger programs are included in Appendices A and B. 



Fig. !--Mechanical deboner . 

Sausages were cooked in a 500-pound capacity thermal processing oven (TR2-l 700, 

Vortron Inc., Beloit , WI). 

Analysis Equipment 

Fat, moisture , and ash were determined by procedures that were published by the 

American Organiz.ation of Analytical Chemists (AOAC) in 1990. Fat was determined by 

ether extraction (Procedure 960.398) . A vacuum oven was used for moisture 

determinations (Procedure 950.46A). The percentage of dry ash was calculated after 

complete oxidation in a muffle furnace (Procedure 920.153) . 

Albion Laboratories (Clearfield, UT) determined mineral content through 

Inductively Coupled Plasma (ICP) spectrophotometry . The ICP equipment (model 
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Accuris ARL Fisons, Inc .. Georgia., AT) created a plasma field in which electrons from a 

sample were excited from their ground states. A computer analyzed the characteristic 

energy fingerprint of each mineral to determine identity and quantity . 

Texture was analyzed with the Stevens Farnell Quality Testing System (QTS25, 

Leonard Farnell & Company Limited, Herts , England). Note from Fig. 2 that the mobile 

portion of the analyzer , called the beak, contained both the probe and the load cell. 

Sensitivity of the load cell was one gram . 

Ingredients 

All ingredients used in this project were shelf stable . Two animal-based products 

were used : powdered egg whites (Standard egg whites, Siouxpreme Egg Products , Sioux 

Center, IA) and collagen (Collagen, Devroe Inc., Somerville , NJ). Plant products 

Fig. 2--Texture analyzer . 
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included isolated soy protein (Supro 500E, Protein Technologies, St. Louis, MO), Solka-

Floc cellulose (Solka-Floc 40-FCC Fiber Sales and Development. St. Louis. MO). vital 

wheat gluten (Provim ESP, ADM/Ogilvie, Decatur, IL), and modified com starch 

(Purity®W, National Starch and Chemical Company, Bridgewater , NJ). Table salt was 

added to all formulations (Morton International Inc., Chicago, IL). 

Software 

Computer software aided in the design and the analysis of experiments. ECI-IlP 

designed and prepared graphical output (version 6.0 for Windows™, Echip, Incorporated, 

Hockessin, DE). The statistical results were generated with SAS (release 6.09 of SAS for 

AXP, SAS Institute Inc., Cary, NC). QTS software controlled the texture analyzer and 

stored the requisite data (version I. I WT, Leonard Farnell & Company Limited, Herts , 

England). 

Methods 

The following section details the methods and preparation for each experiment. In 

all cases, statistical significance was based on a= 0.05. 

Product Development 

The aim of the texture studies was to achieve a desired texture by adding specified 

amounts of various ingredients. The method, which led to texture manipulation, involved 

texture analysis and response surfaces. A texture analyzer measured how non-meat 

ingredients affected texture parameters. Regressions run on the data led to response 
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surfaces that mapped the effects of ingredients on texture. 

Design of Experiments 

Two sets of experiments were designed using ECHIP: preliminary experiments 

and final experiments . The design of the experiments was central composite in cube. 

Preliminary experiments. Screening experiments were designed to evaluate the 

effect of ingredients on texture. The six ingredients tested were wheat gluten, egg white, 

collagen, soy protein isolate, cellulose, and starch. Individual ingredients were added in 

the range of Oto 3% of the total formulation, as listed in Table 3. The collected data were 

fitted to the following first order equation . 

Y =Po+ P1 *%wheat gluten+ P2 * % egg white+ p
3 

*%collagen+ 
p4 * % soy protein isolate + Ps * % cellulose + P

6 
* % starch 

where: 

Y = the predicted value of the particular response variable 
Po = the intercept of the equation, the response due to fish and salt alone 
Pi-6 = the corresponding coefficients resulting from a linear regression 

Eq. (I) 

Egg white, collagen, wheat gluten, and soy protein isolate had the greatest effect on 

texture . Wheat gluten had an unfavorable odor. 

Final experiments. Complex relationships between ingredients were 

investigated. Egg white, collagen, and soy protein isolate were added in combination 

according to Table 4. 



Table 3--Formulationsfor preliminary experiments. For each treatment, the composition is shown as the percentage of 
the total weiJ!,htfor each ingredient. In addition to the mid-point , two levels were tested, all or nothing , lo a/loll' ef/°c.·cts 
to be accentuated 

Treatment %Wheat %Egg %Soy 
# %Salt gluten white %Collagen 12rotein %Cellulose %Starch % Fish 

15 1.0 1.5 1.5 1.5 1.5 1.5 1.0 90.5 
6 1.0 0.0 3.0 3.0 0.0 0.0 0.0 93.0 
5 1.0 3.0 0.0 0.0 3.0 3.0 2.0 88.0 

1.0 0.0 3.0 3.0 3.0 0.0 2.0 88.0 
1.0 0.0 3.0 3.0 3.0 0.0 2.0 88.0 

11 1.0 3.0 3.0 0.0 3.0 0.0 0.0 90.0 
8 1.0 3.0 0.0 3.0 3.0 0.0 0.0 90.0 

13 1.0 3.0 3.0 3.0 0.0 3.0 0.0 87.0 
3 1.0 0.0 0.0 3.0 3.0 3.0 0.0 90.0 

14 1.0 0.0 0.0 0.0 0.0 0.0 0.0 99.0 
7 1.0 0.0 3.0 0.0 0.0 3.0 2.0 91.0 

10 1.0 0.0 3.0 0.0 3.0 3.0 0.0 90.0 
2 1.0 3.0 0.0 0.0 0.0 3.0 0.0 93.0 
4 1.0 3.0 3.0 0.0 0.0 0.0 2.0 91.0 

12 1.0 0.0 0.0 3.0 0.0 3.0 2.0 91.0 
9 1.0 3.0 0.0 3.0 0.0 0.0 2.0 91.0 
3 1.0 0.0 0.0 3.0 3.0 3.0 0.0 90.0 
2 1.0 3.0 0.0 0.0 0.0 3.0 0.0 93.0 

IJ 
IJ 
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Table ./--Formulation s for final experiments. The makeup of each treatment is 
shown as the percentage of each ingredient by weight . Ingredients were tested 
at three levels in combination with each other to allow complicated 
ref a1ionship_s between ingredient s to be detected 

Treatment %Soy %Egg 
# %Salt %Collagen Qrotein white %Fish 

14 1.0 0.0 0.0 0.0 99 .0 

4 1.0 2.0 3.0 1.5 92.5 

8 1.0 0.0 3.0 3.0 93.0 

15 1.0 2.0 1.5 1.5 94.0 

1 1 1.0 4.0 3.0 0.0 92.0 

15 1.0 2.0 1.5 1.5 94 .0 

3 1.0 2.0 0.0 1.5 95.5 

6 1.0 2.0 1.5 3.0 92.5 

15 1.0 2.0 1.5 1.5 94.0 

12 1.0 0.0 3.0 0.0 96.0 

15 1.0 2.0 1.5 1.5 94.0 

9 1.0 4.0 0.0 3.0 92.0 

13 1.0 4.0 0.0 0.0 95 .0 

7 1.0 4.0 3.0 3.0 89.0 

1 1.0 0.0 1.5 1.5 96.0 

2 1.0 4.0 1.5 1.5 92.0 

5 1.0 2.0 1.5 0.0 95.5 

10 1.0 0.0 0.0 3.0 96 .0 

15 1.0 2.0 1.5 1.5 94.0 

The purpose of the final experiments , as stated previously, was to examine 

complex relationships between ingredients . To that end, the test data were fitted to the 

equation that follows. 

Y = Po + Ps *%soy + Pe *%egg + Pc *%collagen+ 
P/P/%soy*%egg + Ps*P/%soy*%collagen + P/P/%egg*%collagen + 
Ps*P/%soy*%soy + P/P/%collagen*%collagen + Pe*P/%egg*%egg 

Eq . (2) 

where: 



Y = the predicted value of the particular response variable 
Po= the intercept of the equation, the response due to fish and salt alone 
Ps = the coefficient for soy protein isolate 
P, = the coefficient for egg white 
Pc = the coefficient for collagen 

Linear terms appear in the first row . Interactions between ingredients are listed in the 
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second row . The last row contains quadratic responses involving a single ingredient. For 

the second and third rows, nonzero coefficients represent nonlinear responses. 

Preparation of Fish Bologna 

Prior to use in experiments, frozen deboned fish meat was thawed at 47 °F for 24 

hr. Sample preparation proceeded according to the formulations listed in Tables 3 and 4. 

All ingredients were combined and mixed by hand with a spoon until a cohesive mass 

formed . The average mixing time was 1 min. The batter was then stuffed by hand into 2 

1/2 inch fibrous casings (2 1/2 x 20 inch fibrous mahogany casing, Vista International Inc, 

Kenosh, WI) and tied with string. Care was taken to eliminate air and stuff casings as 

tightly as possible . That procedure produced one bologna . Three separate and unique 

bolognas were made for each treatment. All bolognas were hung vertically by strings and 

cooked in the smokehouse to an internal temperature of 180°F. 

Texture Analysis 

After cooking, fish bolognas were immediately refrigerated until texture could be 

tested. All tests were completed within 24 hr of cooking. Texture was analyzed using a 

Stevens Farnell Texture Analyzer. Analysis samples were 15 mm long and 14 mm in 

diameter. Ends were cut perpendicular to the axis using a miter box. From each bologna. 



two analysis samples were tested by compressing each twice at a speed of 50 nun/min to 

60% (40% compression) of the original height. The reported replicate value was the 

average of the responses from the analysis samples. Two additional samples from each 

bologna were sheared using a "V .. shaped blade moving at 600 nun/min. Again, the 

average value was recorded. The definitions of each of the response variables are listed in 

Table 5. 

In summary , there were 15 unique treatments for both the preliminary and the final 

experiments. Each prescribed treatment was prepared three times (n=3) . From each of 

those preparations, two analysis samples were tested . The average of the two data points 

was recorded as the replicate value. 

A method was needed for evaluating the feasibility of manufacturing a desired 

product. All of the responses were combined into a comprehensive variable, the 

Combined Response Variable , that measured how well a specific target could be 

reproduced . The Combined Response Variable was defined by the following equation. 

Table 5--Definitions of the variables used in texture studies 

Variable 

Shear 

Hardness 

Cohesiveness 

Springiness index 

Adhesiveness 

Definition 

Force required to cut through a sample 

Maximum force measured during the first compression 

Positive force*time area of cycle two divided by cycle one 

Ratio of the recovered height after cycle one to the original height 

Maximum negative force 
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W--! k 
(x,-g,) 

I I 
r 

I 
Eq. (3 ) 

i= I 

k, = -2, as defined by ECHIP 
w, = user specified weight for response i 
r, = range of response 
g, = target goal 
x , = simulated value for response i 
p = number of response variables 

All variables except w, were predetermined by experiments or definitions. 

The premise of texture studies was that variation in texture properties could be 

measured by response variables . By inference , a variable ' s importance depended on its 

capacity to distinguish different textures. Hence , response variable weights should reflect 

how well a response variable measured different textures . Weights were determined by 

testing several commercial meats . Texture of those meats varied , most notably , due to the 

size of the meat particles (from formed products to comminuted) . Variability was 

calculated by taking the range and dividing by the average value , as defined by the 

following equation . 

% variation maximum - minimum * 1 OO% 
mean 

Eq. (4) 

Weights were assigned by taking the percent variation and scaling them to sum to ten, 

e.g. , a 118% variation was given a weight of3 .0. 
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Cook Process Modeling 

Time-temperature profiles were recorded while cooking fish bologna. 

Thermocouples were inserted into the bologna at specific distances . Those distances were 

measured before and after cooking to verify location. A Fortran program modeled the 

bologna cooking process as an infinitely long cylinder. Equations used in the program and 

the associated derivations are included in Appendix C. The program itself is in Appendix 

D. Heisler ( I 94 7) charts were used to verify the computer data. 

Program operation required four variables to be known. Density was measured as 

weight divided by the volume of water displaced. Thermal conductivity was measured 

with a probe. Specific heat was calculated according to the following equation (Toledo, 

1994). 

C = ( 1674. 72 x %Fat)+ (837.36 x %Non-fat solids)+ 
(4186.8 x %Moisture) in J I (kg· K) 

Eq. (5) 

The heat transfer coefficient was determined by fitting simulation curves to actual data. 

Since variables could introduce error to the model, robustness was studied. This was 

done by considering a range of values and figuring the correlation coefficient (R2 ), the 

root mean squared error (RMS), the maximum deviation, and the minimum deviation. R2 

and RMS were defined as follows. 

n 

L (Y,-Y; ')2 
R 2 = 1- _i=_I __ _ Eq. (6) 

n 

L (Y(Y)2 
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Eq. (7) 

y true temperature at time i 
I 

Y, = predicted temperature at time i 

y average temperature 

n number of data points 

Those combined statistics measured how weU the model fit the data and, by comparing the 

results of different test values , the robustness of the model. 



RES UL TS AND DISCUSSION 

Characterization of Mechanically De boned Fish 

Three types of analysis helped define the properties of rainbow trout meat and the 

deboning process . First, yield measured how much meat could be salvaged. Second , 

proximate analysis results showed the general composition of the meat. Third , bone 

content was examined through mineral analysis. 

Yield 

Three batches of fish frames were processed on a mechanical deboner. Seventy 

percent of the infeed weight was recovered as meat. Standard deviation was 10%. 

Proximate Analysis 

Standard AOAC procedures were used to test moisture, fat, and ash. Five analysis 

samples (n=5) were drawn from one batch of fish. Table 6 lists the results. Deboned 

rainbow trout meat was 71 % water , as determined with a vacuum oven . Ether extracted 

fat amounting to I 0% of the total composition . The level of ash was 1.1 %. Only trace 

amounts of carbohydrates are present in meat. Given that carbohydrates in fish are 

negligible, protein was determined by subtracting the sum of the different components 

from I 00. Deboned skinless rainbow trout was high in protein content relative to fat. 



Table 6--Proximate analysis showed high protein content relative 
to/at 

Percentage of 
Component composition Standard deviation 

Moisture 71% 1% 

Fat 10% 2% 

Ash 1.1 % 0.1% 

Carbohydrates* trace 

Protein** 18% 

n=S 
* Carbohydrates in fish, like other types of meat, are negligible. 
** Protein was calculated by subtracting the different components 
from 100%. 

Mineral Content 

Albion Laboratories in Clearfield , UT performed the mineral analysis on pre- and 
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post-deboned meat. Table 7 shows the results of one trial replicated three times. Mineral 

content differed , as reflected by P-values , in every case . Unexpectedly, calcium levels 

were down, but phosphorus increased in deboned meat. Those two minerals are common 

in bone, and levels should have changed in tandem . The calcium decrease was unexpected 

since some bone was inherently mixed with the meat. The only way to decrease calcium 

was to either dilute the meat, which would drop the level of all the elements , or remove a 

high calciwn component along with the waste. Since there was not a general decrease in 

mineral content , something must have been removed from the meat. 
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Table 7--Mineral composition for deboned and fresh rainbow trout. 
Deboned trout had less calcium but more phosphorus and iron than 
f resh fish 

Non-Deboned De boned p 
Mineral {1:n~m} {QQm} (x 1=x 2} 

Phosphorus 1800 ± 100 2030 ± 20 0.001 
Potassium 3410 ± 10 3450 ± 10 0.049 
Magnesium 189 ± 1 207 ± 2 0.001 
Calcium 430 ± 10 330 ± 10 0.001 
Sodium 470 ± 10 450 ± 10 0.009 
Iron 6.7 ± 0.1 8.8 ± 0.2 0.001 
Aluminum 0.0±0 . 1 0.40 ± 0.02 0.001 
Manganese 0. 11 ± 0.01 0.09 ± 0.01 0.001 
Boron 0.35 ± 0.01 0.5 ± 0.1 0.009 
Copper 0.41 ± 0.01 0.35 ± 0.01 0.001 
Zinc 4.4 ± 0.1 4.5 ± 0.1 0.035 
n=3, x ± S.D. 

The calcium decrease in deboned fish was unexpected but there are a couple of 

factors to consider. All three analysis samples came from a single batch of fish. Analysis 

of another batch of fish might produce different results. USDA regulations for red meat 

stipulate that calcium levels must be lower than 0. 75%. The amount of calcium detected 

was minuscule at less than 0.04%. Also, the decrease in calcium was consistent with Field 

and associates' deboned mutton studies (Field et al., 1974). 

Texture Studies 

TPA Validation 

The theory behind TP A studies, as explained in Materials and Methods , was to 

compress a sample and disrupt the physical structure, decompress the sample, and repeat 
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the cycle. In order for test data to be meaningful, structural failure had to begin before the 

end of the first compression; however, extreme failure would void results that depend on 

the second compression. The test variables were compression range and test speed. 

Force-time graphs illustrated how samples responded to force and were useful in 

determining test parameters. Figure 3 showed a sample that settled during testing. The 

plateau at the top of the first cycle showed the structure failing. The lower peak on the 

second compression indicated that the sample was still intact. That sample, the control 

treatment (Preliminary Test # 14 ), failed due to insufficient bind, but it successfully 

completed the two-cycle test. Figure 4 was an ideal test. The nonlinear curve on the first 

compression showed the sample yielding to force; however, the peak of the second test 

was only slightly lower than the first. Figure 5 was a sample for which failure was 

insufficient. The three sources of added protein bound the sample tightly and prevented 

failure. Profiles of the first and second compressions were almost identical. Figure 6 is an 

overlay of the different tests. The magnitude of the failure varied according to the amount 

and type of added protein. Comparisons between trials showed the TP A parameters of 

compression and test speed to be adequate. 

Preliminary Experiments 

The purposes of the preliminary experiments were to evaluate dependent variables 

and to identify the effects of the independent variables. To accomplish the task, a linear 

model was employed to efficiently evaluate the main effect of each ingredient. Other 

models would have required more extensive testing and may not have improved the 
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results. TPA tests were conducted. data were collected. and a model was prepared. 

Adhesiveness. cohesiveness. hardness. shear. and springiness were chosen as 

dependent variables. Examination showed that linear regression models fit the 

experimental data in every case except adhesiveness. Data for that variable appeared to be 

very random, and. as listed in Table 8, no ingredient was shown to have a significant 

effect. Adhesiveness, which would relate to how well bologna sticks to teeth , was not 

considered to be a key variable. Given the lack of significant results, adhesiveness was not 

studied in further experiments. 

Shear responses were the most predictable . In addition to having the highest 

correlation of R
2 = 0.845, the probability values in Table 9 also show that every ingredient 

affected shear. 

All of the ingredients affected at least one response. Collagen increased shear 

(Table 9), springiness index (Table 10), and cohesiveness (Table 11) more than any other 

ingredient. According to Table 12, the ingredient that most affected hardness was egg 

white. In general, responses were affected most by collagen and egg white, followed by 

wheat gluten and soy protein isolate. Curiously, starch either decreased response values 

or had no effect. 

Rank Order 

Ingredient effects were evaluated in the preliminary experiments. To make further 

tests manageable, the number of ingredients in the final experiments was reduced from six 

to three. Collagen , egg white, soy protein isolate, and wheat gluten seemed to have the 



Table 8--Regression results for adhesiveness data using a linear model . 
No ingredient s significantly affected 1exture 

Coefficient 
(g I %) SEw,ao OF p Term 

30 Constant 

0 100 0.258 Wheat gluten 

0 100 0.354 Egg white 

0 100 0.441 Collagen 

0 100 0.322 Soy 

0 100 0.219 Cellulose 

0 100 0.417 Starch 

c.v. = 590.1 ssmodel = 168400 sserror = 1274000 
F(6,50) = 1.1 MSmodel = 28100 MSerror = 25500 

Prob > F = 0.375 

R2 = 0.117 

Table 9--linear regression results from shear data . 
greatest impact on shear 

Collagen had the 

Coefficient 
(g I %) SErorao OF P 

220 

30 10 0.001 

100 10 0.001 

I 10 IO 0.001 

50 10 0.001 

50 10 0.001 

-30 10 0.017 

c.v. = 13.2 ssmodel = 2331360 

F(6,50) = 45.6 MSmodel = 388560 

Prob> F = 0.001 

R2 = 0.845 

Term 

Constant 

Wheat gluten 

Egg white 

Collagen 

Soy 

Cellulose 

Starch 

sserror = 426400 

MSerror = 8530 
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Table 10--Regression data.for the linear model of hardness. Egg white 
increased hardness more than other variables 

Coefficient 
(g I %) SE OF p Term 

500 Constant 
100 100 0.016 Wheat gluten 
300 100 0.001 Egg white 
200 100 0.001 Collagen 

0 100 0.050 Soy 

0 100 0.060 Cellulose 
-100 100 0.059 Starch 

C.V. = 16.8 SS model = 11729 l 00 SS error = 2955100 
F(6,50) = 33. l MSmodel = 1954800 MSerror = 59100 
Prob > F = 0.001 

R2 = 0.799 

Table ! !--Linear regression results from cohesiveness . Collagen and 
soy protein isolate had the greatest effects on cohesiveness 

Coefficient 
( cohesiveness I % ) SEweaa OF p Term 

0.50 Constant 

0.01 0.01 0.003 Wheat gluten 

0.01 0.01 0.001 Egg white 

0.04 0.01 0.001 Collagen 

0.02 0.01 0.001 Soy 

0.01 0.01 0.031 Cellulose 

-0.01 0.01 0.056 Starch 

c.v. = 5.8 ssmodel = 0.19 sserror = 0.06 
F(6,50) = 25.1 MSmodel = 0.03 MSerror = 0.00 
Prob> F = 0.001 

R2 = 0.750 
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Table 12--Collagen affected the linear model for springiness index more 
than any other ingredient 

Coefficient 
(Sp ringiness 
index I %) SE OF p Tenn 

0.770 Constant 

0.006 0.002 0.009 Wheat gluten 

0.001 0.002 0.537 Egg white 

0.024 0.002 0.001 Collagen 

0.005 0.002 0.014 Soy 

-0.007 0.002 0.002 Cellulose 

0.000 0.003 0.854 Starch 
C.V. = 2.7 ssmodel = 0.084 sserror = 0.025 
F(6,50) = 28.4 MSmodel = 0.014 MSerror = 0.000 
Prob > F = 0.001 

R2 = 0.773 

greatest effect on texture . Wheat gluten had an undesirable odor. Rank order validated 

the use of collagen, egg white , and soy protein isolate in the final experiments . 

Rank order compared responses. Table 13 lists the independent variables and the 
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dependent variables . For a particular model, the largest coefficient ranked first and so on . 

Where two ingredients had the same coefficient, each was ranked the same, and the 

subsequent number was skipped . An overall rank was determined by summing the ranks 

from each model. The ingredient with the lowest overall number had the greatest impact 

on texture. Accordingly, the effect of the independent variables from greatest to least 

was: collagen, egg white , soy protein isolate, wheat gluten, cellulose , and starch . 

Rank order discounted the accuracy of the models. Rank order did not distinguish 

between models that fit the data and those that did not. All models were assumed to be of 

equal importance. Future evaluations might compensate for those factors . 



Table 13--Rank order of ingredients. Collagen had the greatest overall effect on texture 

Dependent variable rank 

Independent variable Shear Hardness Cohesiveness Springiness Adhesiveness Score 

Wheat gluten 5 3 3 2 I 14 

Egg white 2 1 3 4 1 I I 

Collagen I 2 1 1 1 6 

Soy protein isolate 3 4 2 3 I 13 

Cellulose 3 4 3 6 1 17 

Starch 6 6 6 5 1 24 

Note : Rank corresponded to the size of the linear regression coefficient. The independent variable with the 
largest regression coefficient ranked first. All ranks for a particular ingredient were summed. The lowest 
scoring ingredient affected overall texture the most. 

l, J 

'° 
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Final Experiments 

The final experiments were designed to evaluate complex relationships between 

ingredients . By using the quadratic model, hardness responses could be more closely 

predicted than with a simple linear model. Correlation between experimental data and the 

models increased from 0. 799 for the linear model to 0.952 for the quadratic model. The 

linear model discounted soy protein isolate . The quadratic model, as listed in Table 14. 

identified soy protein isolate as having the greatest effect on hardness. In addition to the 

linear contribution of soy protein isolate, hardness responses were also shaped by two 

significant negative interactions, both of which involved soy protein isolate . 

Interactions were detected in every response. Table 15 lists the regression results 

for shear. There was a positive interaction between soy protein isolate and egg white. 

The linear effect of egg white was the only other significant contribution to shear 

responses . The cohesiveness model, as reported in Table 16, included the interaction 

between soy protein isolate and egg white. Springiness was affected by collagen , the 

coefficient for which was three times larger than any other regression coefficient. In 

addition, the only significant interaction for springiness was between collagen and egg 

white. That interaction was negative as listed in Table 17. 

Some of the regression results were unexpected. Coefficients for cohesiveness and 

springiness index changed drastically. Statistics from both the linear and quadratic models 

were similar , indicating that neither model was better than the other. Another disturbing 

trend was that very few ingredients significantly affected texture. With five percent 

probability (a= 0.05) as the cutoff, the effects on shear of collagen and soy protein 



Table ! ./--Quadratic regression results/or hardness . Five terms were 
significant . three of which included soy protein isolate 

Coefficient 
(g I %) SEmeao OF p Term 

420 Intercept 
140 30 0.001 Collagen 
180 40 0.001 Soy 
120 40 0.007 Egg white 
10 10 0.364 Collagen2 

-20 10 0.005 Collagen*soy 
10 10 0.236 Collagen*egg white 

-30 10 0.034 Soy2 

10 10 0.097 Soy*egg white 
10 10 0.277 Egg white2 

C.V. = 7.0 ssmodel = 6099700 sserror = 307600 
F(9,47) = 103.6 MSmodel = 677700 MSerror = 6500 
Prob > F = 0.001 

R2 = 0.952 

Table 15--Quadratic regression statistics for shear. One of the two 
significant responses was the interaction between soy protein isolate and 
egg white 

Coefficient 
(g I %) SErocao OF p Term 

220 Intercept 
0 100 0.088 Collagen 

100 100 0.059 Soy 
100 100 0.042 Egg white 

10 10 0.079 Collagen2 

0 10 0.850 Collagen*soy 
0 10 0.601 Collagen*egg white 

-10 10 0.334 Soy 
10 10 0.031 Soy*egg white 
0 10 0.880 Egg white2 

C.V. = 1 l.7 ssmodel = 1454000 sserror = 200400 
F(9,47) = 37.9 MSmodel = 161600 MSerror = 4300 

Prob> F = 0.001 
R2 = 0.879 

-+ I 



Table 16--Cohesiveness regression results for a quadratic model . All 
interactions were negative 

Coefficient 
(cohesiveness I %) SE OF p Term 

0.5 14 Intercept 
0.03 0.01 0.012 Collagen 
0.05 0.01 0.002 Soy 
0.03 0.01 0.079 Egg white 

-0 .001 0.002 0.824 Collagen2 

-0.003 0.002 0.086 Collagen*soy 
-0.000 0.002 0.884 Collagen*egg white 
-0.005 0.004 0.287 Soy2 
-0.006 0.003 0.033 Soy*egg white 
-0.000 0.004 0.958 Egg white2 

C.V. = 4.4 ssmodel = 0.102 sserror = 0.037 
F(9,47) = 14.6 MS model = 0.011 MSerror = 0.001 
Prob > F = 0.001 
R2 = 0.736 

Table 17--The quadratic springine ss index model was most affected by 
col/a en 

Coefficient 
(Springiness 

index I %) SEroeaa OF p Term 

0.759 Intercept 

0.03 0.01 0.001 Collagen 

-0.01 0.01 0.367 Soy 

0.01 0.01 0.285 Egg white 

-0.003 0.002 0.163 Collagen2 

0.000 0.001 1 0.775 Collagen*soy 

-0.003 0.001 l 0.050 Collagen*egg white 

0.003 0.003 0.414 Soy2 

0.004 0.002 0.075 Soy*egg white 

-0.002 0.003 0.461 Egg white2 

c.v . = 2.6 ssmodel = 0.058 sserror = 0.021 
F(9,47) = 14.2 MSmodel = 0.006 MS error= 0.000 
Prob > F = 0.001 
R2 = 0.731 
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isolate . two of the three key ingredients , were not significant in the quadratic model. It 

seemed that in some cases the quadratic model was less beneficial than the linear model. 
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Multiple regressions , and particularly multiple nonlinear regressions , have the 

potential of including so many terms that any variation in the data could be explained. No 

attempt was made at parsimony , which would have required insignificant terms to be 

eliminated to balance simplicity and fit. For that reason , F-statistics often indicated that a 

model was good even if most terms were not significant. 

Combined Responses 

A special variable helped evaluate the feasibility of attaining a certain texture , such 

as, the texture of commercial bologna. After all the regression models were examined and 

a recipe was propo sed, the Combined Response Variable gauged the plausibility of 

reproducing the desired texture. 

Determination of Wei!lht Values 

As discussed in Material and Methods , the numeric value of the Combined 

Response Variable was defined by Eq. (3) . If the value of w; changed from one dependent 

variable to the next , then the value of the Combined Response Variable would be 

influenced by one variable more than another. Since no two dependent variables evaluated 

the same properties , weights should be different. 

Experiments were conducted to determine weights. Several meats were purchased 

and tested. Those meats ranged in texture from ham, a formed product, to bologna , a 

comminuted product. Weights were determined according to percent variation as defined 



by Eq. (4). To establish a range for comparison , weights were multiplied by a scaling 

factor. The results of those experiments are shown in Table 18. 

Shear responses varied more than those of any other dependent variable. By the 

method of Eq. ( 4), shear was assigned the greatest weight. It was followed by hardness. 

springiness, and cohesiveness. 

44 

Comparison of products and responses led to three observations. First, formed 

products made of large chunks responded similarly to texture tests. Response values from 

turkey breast and ham were closer than values from any other two products . Second, 

fermented and dried products , like salami, had texture properties very dissimilar to other 

sausages. Third, the smallest coefficients of variation for three out of the four response 

variables came from hot dog data. Hardness, springiness index, and cohesiveness data 

were more consistent for hot dogs than for any other product. 

Comparison of Commercial Products 

The last step of the texture studies was to determine what types of products could 

be made from deboned rainbow trout. The tools used to accomplish the task were the 

quadratic models and the Combined Response Variable with the assigned weights. 

Targets were established by testing commercial products including emulsions, coarse­

ground, restructured , and semi-dry sausages . 

The Combined Response Variable was used to gauge how effectively texture could 

be reproduced . By establishing a target and setting the sum of the weights to ten, the 

range of the Combined Response Variable became negative twenty to zero [-20,0] as 



Table 18--Determination of weight values.for use in !he Combined Response Variable. Shear values varied more than those o/ 
the olher response variables for the variety of meal tested. The assigned weight [or shear was the larges/ 

Cohesiveness Springiness index 
Commercial Hardness (N ·s)i (mm)i 

product (g) (N·s), (mm), 

Smoked turkey breast 969.3 ± 172.3 0.737 ± 0.025 0.883 ± 0.031 

Ham 

Smoked sausage 

Salami 

Bologna 

Hot dogs 

Weight* 

n=5, x ± S.D. 

949.0 ± 250.6 

495. 7 ± 122.2 

1534.3 ± 147.4 

770.0 ± 138. 7 

599.1 ± 45.0 

3.0 

0.727 ± 0.013 

0.668 ± 0.054 

0.632 ± 0.016 

0.647 ± 0.099 

0.753 ± 0.009 

0.4 

0.880 ± 0.029 

0. 748 ± 0.049 

0.654 ± 0.014 

0.835 ± 0.035 

0.885 ± 0.014 

0.7 

Shear 
(g) 

526.2 ± 86.0 

504 .2 ± 35.3 

281 .2 ± 45.0 

1787.7 ± 485 .5 

341 .5 ± 29 .6 

447 .9 ± 40 .5 

5.9 

* Weights were calculated by taking ( x max - x mm )/average * scaling factor. A scale factor of 2.53 made the weights sum to ten . 
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defined by Eq. (3) . Reproducible textures scored close to zero. The combined response 

results are presented in Table 19. 

Two factors influenced the likelihood of texture reproduction : capability of the 

ingredients to achieve a response value and contradictory criteria. Salami texture could 

not be reproduced . Adding all ingredients at the maximum level would still cause shear 

and hardness values to fall far short of experimental data. For hot dogs, shear values were 

disproportionately lower than hardness values when compared to other products. Since 

no ingredient affected shear without affecting hardness and since shear had the greater 

weight , the Combined Response Variable would tend to satisfy the shear requirement. 

The texture of semi-dry sausage would be the most difficult texture to imitate. 

The low score of -13 .33 was nearly a full order of magnitude lower than any other score . 

Based on particle size, finely ground rainbow trout should be best suited for 

emulsion products . Excepting salami, the lowest score unexpectedly corresponded to hot 

dogs, an emulsion product. That was explained by the two variables with the greatest 

Table 19--Combined response results showing the percent composition of each 
ingredient to imitate the texture of a commercial product 

Composition based on percentage 

Product Collagen Soy Egg white Fish Salt Score a 

Turkey breast 3.69 0.00 0.00 95.31 1.00 -0.94 

Ham 2.00 1.14 1.18 94.68 1.00 -1.23 

Salami 4.00 3.00 3.00 89.00 1.00 -13.33 

Smoked sausage 0.00 0.50 0.33 98.17 1.00 -0.73 

Bologna 0.50 2.62 0.00 95.88 1.00 -0.72 

Hot dog 2.00 1.50 0.00 95.50 1.00 -2.40 

a Scores were calculated according to Eq. (3 ). Values close to zero indicate that a texture 
similar to the commercial product could be produced. 
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weights: shear and hardness. Shear values were approximately half as large as hardness 

values in every case except salami and hot dogs . Shear values for hot dogs were 75% as 

large as the hardness scores . High shear values may have resulted from the small diameter 

which allowed heat and smoke to penetrate rapidly. Smoke would cause a skin to form on 

the outside of the hot dog and change the texture. Smoke and heat would affect shear 

more than hardness since the protein skin would resist cutting but bend when compressed. 

To enhance comparisons, consideration would have to be given to the importance 

of texture variations within types of processed meat. Variation , as measured by the 

standard deviation, should be greatest in formed products followed by ground products. 

Uniform measurements should come from emulsions, the most homogeneous of all the 

products. There was certainly a trend with hot dog measurements varying little and 

formed product measurements varying greatly . 

Response Surfaces 

Response surfaces aided in understanding combined responses by presenting 

results on a simulated 3-D surface. Smoked sausage combined response values decreased 

with the addition of ingredients . That is shown in Figs. 7 and 8, the 3-D and 2-D response 

surfaces. Some products would be very dependent on a specific ingredient. The 3-D and 

2-D response surfaces in Figs. 9 and 10 show a collagen dependent ridge where hot dog 

properties were most reproducible . The texture of salami could not be minlicked. Figure 

11 shows that salami combined response values increased very slowly with the addition of 

ingredients. 
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Fig 7--3-D response surface illustrating the effect of ingredients on 
the Combined Response Variable. low amounts of egg white and soy 
protein isolate would be needed to make a sausage-like texture. 
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Fig 8--2-D response surface showing the relationship between soy 
protein isolate and egg white for smoked sausages. The Combined 
Response Variable decreased almost equally when soy protein isolate 
or egg white were added. 
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Fig. 9--3-D response surface showing the Combined Response 
Variable for hot dogs. Collagen is the most important ingredient for 
imitating emulsion texture. 

Hot Do 

I 

\ 
lJl 

2 ,.... 
I ,.... ,... I 

~ I 
~ I N 

::n N . ~ \ 
0 L)\ • I 
a, \ 0 Ll' ...., 0 

\ ..J ...., ...; \ 
\ I 

1 
\ \ 

"' \ 
0 

0 1 2 3 4 
col lager, 

Fig. I 0--2-D response surface showing the relationship between the 
amounts of soy protein isolate and collagen and the Combined 
Response Variable. The lines are relatively straight meaning that soy 
protein isolate had little effect . 

49 



' 
I 

-5 ~ 
I 

I 
E -10 J 
<O 

(\j 

l.f) 
-15 

-2 0 

,#"' 

Fig. 11--3-D response surface illustrating how difficult it would be to 
imitate the texture of salami. Hardness and shear values were 
unattainabl e with the proce ssing method s and ingredients considered. 

Recipe for Trout Bologna 
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Rainbow Trout Bolo gna was prepared and sampled . Salt and cure were important 

to the recipe as was egg white . Personal preference was for a product that did not 

crumble , and egg white was the ingredient of choice. The recipe for the bologna is listed 

in Table 20 . 

Cook Process Modeling 

The final focus of this research was heat transfer during cooking. A model was 

prepared to predict time and temperature data. The model responded to changes in cook 

temperature and sausage size . 

Heat Transfer Model 

Heating of fish bologna proceeded by two heat transfer modes . The first was 

convection , wherein heat was transferred from the thennal processing unit to the product. 
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Table 20--Recie.e [pr rainbow trout bologna 
Percentage of 

Ingredient com12osition 
Fish 86.91 
Salt 1.15 
Prague powder 0.21 
Phosphate 0.25 
Erythorbate 0.02 
Egg white 3.56 
Coriander 0.02 
Fennel <0.01 
Garlic powder 0.40 
Cheyenne pepper 0.08 
White pepper 0.06 
Black pepper 0.04 
Maple flavor <0.01 
Liquid smoke <0.01 
Brown sugar 7.08 
Red food color <0.01 

The second mode was conduction of heat from the outside of the sausage to the center. 

The general heat transfer equation follows . 

Eq. (8) 

Three assumptions were made to simplify the problem. First , no heat was generated 

from within the sausage . Second , the sausage was infinitely long. Third, the energy 

source delivered heat uniformly to the entire exterior surface of the sausage . The model 



had no capacity for phase changes so it would not be valid for freezing or boiling. 

Initially. the sausage was the same refrigerated temperature throughout. 

Validation 
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f n order to solve the heat transfer problem. several variables had to be known. Two 

properties, specific heat ("C/) and thermal conductivity ("k"), depended on the meat. 

Radial position of the temperature probe ("r") , oven temperature ("T"), and heat transfer 

coefficient ("h") were specific to the cooking process; "h" and "C/ were not measured 

directly. 

None of the variables were known with absolute certainty. "C/ was calculated 

using equations from Toledo's food engineering text (1994). "h" values were determined 

by adjusting an educated guess to fit experimental data. "T" varied slightly from one 

thermocouple to the next. Unfortunately, the signal from the thermocouple could not be 

conditioned to eliminate error. The radius of the sausage changed during cooking, and the 

probe could have moved slightly. Errors may have been introduced with every variable. 

Two statistics aided in gaging the robustness of the model. RMS, as defined by Eq. 

(7), measured the average error between sets of data. The correlation of experimental 

data to model data was quantified by R2 according to Eq. (6). Limitations to those 

statistics involved the number of data points. R2 and RMS depended heavily on the 

number of data points and how long the test was allowed to progress. Additional statistics 

of "Min" and "Max" measured extreme differences between the sets of data. "Min" 

subtracted simulated from actual data while "Max" subtracted actual from simulated. 
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Three types of data sets were of interest in evaluating errors . The "best-fit" set was 

used as a standard . Data from that model were mapped against the actual data in Fig. 12. 

The next set used in .. error tests" included all credible values. The final data set was 

calculated such that RMS would be less than five times greater than the standard. 

Table 21 lists the range of values tested by the computer program. Percent variation, 

which measured range on a relative scale, showed that "T" values varied the least and .. k" 

values varied the most. 

The computer model allowed different test conditions to be studied. Simulated tests 

covered a range of values for each variable. As the data were plotted on a graph, trends 

emerged in three regions: the initial one third of the test , a center band covering 

approximately two thirds of the test, and the latter two thirds of the test. By varying "r", 

large temperature differences occurred during the initial stages. Data from different values 

for "h", "k", and "C/ had similar beginning and ending temperatures; however , 

temperatures during the rest of the cycle were different. The effects of "T" were apparent 

at the latter stages of cooking. 

Simulation tests revealed information relevant to the standard value for each 

variable. The standard for "r" was established by measurement. Figure 13 showed how 

rnislocating the probe would cause errors near the beginning of the cycle. All simulations 

reached the same temperature within 120 minutes. "h" was obtained by examining 

different transfer rates from the smokehouse to the sausage. Error patterns like those in 

Fig. 14 emerged, wherein the largest errors occurred in the middle of the cycle. A heat 

transfer rate of 40 W/m2
· K fit the actual cook data most closely. Figure 15 showed the 
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Fig. 12--Best-fit values for the heat transfer model. This model 
had the best correlation (R2 = . 99 7) to the actual data and the 
lowest error (RMS= 1.28 °F). 
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Table 21--Computer program variables . The range of aedihle thermal conduelivity values used in error lest 11'm · .rnwlla 
than the robust range . Thermal conductivity values could vary greatly without severely a.ffecting the model. The Ol'e/1 
temperature must be very accurately known 

Error testsa Robustness 
Values for Maximum Maximum 
standard deviation ( +) deviation (-) Percent 

(measured or Minimum Maximum (model- (standard- Range variation 
Variable best fit) value value standard) model) (5xRMS) for range 

Heat transfer 40 20 100 20 °F -23 °F 30-72 82% 
coefficient (h=W/m 2·K) 

Thermal conductivity 0.48 0.3 0.7 7°F -13 °F 0 .35-1.04 99% 
(k= W/m·K) 

Location probe 2.3 1.3 3.3 35 °F -23 °F 1.7-3.0 55% 
(r=cm) 

Specific heat 3200 2700 3800 8°F -11 ° F 2500-3700 39% 
(Cr=J/kg·K) 

Oven temperature 171 164 179 8 °F -I 0 °F 165-177 7% 
(T=° F) 

"The range of values used in the robustness tests was determined either by experimentation or published data. 

v , 
v. 
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effects of "k" to be similar to those of "h'' . Fortunately. "k .. was measured with a probe at 

0.48 W/m-K so errors should have been minimal. Heat capacity. as measured by ··cP .. ' 

also affected the model similarly to ·'h". The calculated value of 3200 J/kg· K fit the 

experimental data the best ; however , Fig. 16 showed that the model was not greatly 

affected by the range of values tested. "T" was measured by a thermocouple , but the 

signal could not be conditioned to eliminate error. Incorrect measurements, as shown in 

Fig. 17, resulted in blaring errors . Those errors were most pronounced at the end of the 

cooking cycle. 

Size Variations 

The computer program predicted time and temperature data for both small and 

large sausages. Figure 18 shows the results of tests performed with 4.0 , 6.2, and I 0.2-cm 

diameter sausages. The distance from the center , or "r", measured the distance from the 

probe to the center of the sausage . 

Experimental data from all three sausages agreed very well with simulated data. 

The best correlation of R2 =.996 and the smallest average error (RMS=l.56 °F) 

corresponded to the 4.0-cm sausage. The cook temperature of the 6.2-cm sausage never 

reached the oven temperature, which resulted in the largest RMS of 5.28 °F. Simulated 

data were higher than actual data (Max) on the I 0.2-cm sausage. If the experimental data 

could be shifted to the left, they would match the actual data more closely. A delayed 

start or an inaccurate starting time could cause the observed temperature differences. 
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Max= 0.09 °F Max= 35.27 °F 
Min=-22.90 °F Min=-5 . 17°F 
r = 1.3-cm r = 3.3-cm 

Fig. 13--Early errors caused by mislocating thermocouple (probe). 
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Fig. 14--Variances in the middle of the cook cycle resulting from different heat 
transfer rates "h ". 
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R2 = 0.937 
RMS = 7.36 °F 
Max= -l.24 °F 
Min = - 13 .4 1 ° F 
k = 0.30 W/m-K 

R2 = 0.989 
RMS= 2.84 °F 
Max= 7.04 °F 
Min= -5.96 °F 
k = 0.70 W/m-K 

Fig. 15--Effect of thermal conductivity most evident after the initial cooking stages. 
Errors were larger for underestimating than for overestimating the standard. 
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Max= -0.59 °F 
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CP = 3800 J/kg·K 

Fig. 16-- " CP" representing the amount of heat needed to heat the sausage. High or 
low values changed the temperatures during the middle of the cycle. 
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T = 164°F 
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Time (min) 

R2 = 0.964 
RMS= 6.07°F 
Max= 8.26 °F 
Min= -9.56 °F 
T=l 79 °F 

180.0 

Fig 17--Final cook temperature depending on the oven temperature . Increasing the 
oven temperature by 8 °F, produced an average error of 6 °F. 

Oven temperature and radial location of the probe were not concretely known. 

The probes differed by as much as three degrees at room temperature . Unfortunately, the 

thermocouple signals could not be manipulated to register the same temperature. That 

difference could explain why the temperature at the 6.2-cm diameter sausage never 

approached the oven temperature of 175 °F. Additionally , the location of the probe may 

have varied in the cooking process. If the probe moved radially inward during cooking , 

the measured temperature would be unexpectedly low. 

Temperature Variations 

Experiments were conducted at two oven temperatures: 175 °F and 205 °F. 

Figure 19 presents the results of cooking 4.0-cm diameter sausages. Correlations between 
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Fig. 19--Comparison of different cooking temperature s. The model was more effec tive at 
lower cooking temperatur es. 

simulated data and experimental data were very good (R2 >.97). The average error of the 

175°F sausage was lower than the 205 °F sausage by 3.36 °F. 

Corrections 

Observations made during processing led to concerns about oven temperature and 

thermocouple location . Two analyses were rerun with minor corrections . Figure 20 

reflects a 4 °F temperature change and a 0.3-cm distance differential. RMS dropped from 

6.35 °F to 2.10°F and, even more dramatic, R2 jumped from 0.961 to 0.993. In the case 

shown in Fig. 21, moving the probe by 0.4-cm increased R2 from .975 to .996 and 

decreased the average error by 4.18 °F. If errors were eliminated, the model could 

possibly predict the exact experimental time-temperature data. 
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Fig. 20--Effect of temperature and location on heating model. By adjusting those 
two variables , all of the gauging statistics improved greatly. 
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CONCLUSIONS 

The purpose of this research was to find a use for mechanically de boned trout. To 

help identify possibilities, the composition of trout was determined through proximate 

analysis procedures . Trout was high in protein ( 18%) relative to fat ( I 0% ± 2%. x ± 

S.D .). A mineral analysis of pre- and post-de boner meat showed post-deboner meat to 

have less calcium (P<0.00 I) but more phosphorus (P<0.00 I), magnesium (P<0.00 I). iron 

(P<0.00 I), and aluminum (P<0.001 ). The composition of all minerals was different in pre­

and post-deboner meat at the a=0.05 level. 

One possible use for deboned meat was the manufacture of a finely chopped 

emulsion-like product. Ingredients, when added to fish and cooked , affected texture in 

different ways. Those texture changes were measured by five variables : hardness, shear, 

cohesiveness, springiness index, and adhesiveness . Adhesiveness was eliminated after the 

first test when no ingredients were confirmed to have an effect. The model was very 

inefficient (F-statistic (6,50) = I. I , Probability>F = 0.37). 

Collagen, egg white, soy protein isolate, wheat gluten , cellulose , and starch were 

added with one percent salt to deboned fish. All ingredients affected hardness 

(P>ITl=0.06), cohesiveness (P>ITl=0.06), and shear (P>ITl=0.02). Egg white and starch 

were not statistically significant for springiness index. Collagen had the largest coefficient 

in every case except for hardness. Starch either had no effect or a negative effect on 

texture . 

The comprehensive effect of ingredients was established by rank order. For a 



particular respons e. the regression coefficients were ranked first second. and so forth 

acco rding to the size of the coefficient. When all the ranks were summed. collagen had 

the lowest score ( 6), followed by egg white ( 11 ), soy protein isolate ( 13 ). wheat gluten 

( 14 ). cellulose ( I 7), and starch (24 ). 

6-+ 

Interactions , for the most part, had a minimal effect on models. Most interactions 

were not statistically significant. The only positive interaction was between soy protein 

isolate and egg white for response shear (P> ITl=0.03 ). All other significant interactions 

( a=0.05) were negative . 

Combining responses allowed for the texture of fish products to be compared to 

commercial products . A technique was devised to weight the four response variables. 

After testing a variety of products on the texture analyzer , weights were assigned 

according to the ability of the response variable to detect different textures. Those 

weights were assigned by taking a scaled value of the percent variation. Shear was 

assigned the greatest weight (5.9), followed by hardness (3.0), springiness index (0.7), and 

cohesiveness (0.4). The range of possible scores for the Combined Response Variable 

was determined by equations (range = [-20 ,0]). Bologna was the product that could be 

most closely reproduced (-0. 72). 

A computer program modeled the process of cooking sausages of different size at 

different temperatures. Since the exact values of some of the computer-required variables 

were unknown , two statistics measured robustness of the model: average error (RMS) 

and correlation coefficient R2
• The range was established for the computer variables 

wherein the average error was less than five times the error of the best fitting model 
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(5xRMS). The range of acceptable values for different foods was very similar to the 

5x.RMS range. 

Graphical comparisons of simulated data revealed trends in how a variable affected 

the model. Each variable created a characteristic error. Oven temperature was the most 

critical variable to the model. Between possible operator errors and deductions drawn 

from graphical results, oven temperature and thermocouple location were the variables 

most prone to error . 

Testing showed the model to be accurate over a range of sausage sizes and 

cooking temperatures. For all sizes of sausage, the best fitting models had low average 

errors (RMS <5.3 °F) and high correlations to the actual data (R2>0.97) . The model also 

worked for different cook temperatures. The model was more accurate at low 

temperatures (RMS 1w F= l.6 °F) than at high temperatures (RMS
2
w F= 4.9°F). 

Correlations were high at both temperatures (R2>0.97) . 

The results of this study showed that mechanically deboned fish can be used to 

make processed meat products . To better understand the value of deboned fish, it was 

described in terms of proximate composition and mineral content. Experiments helped 

determine the ingredients that affected texture. Models were proposed to reproduce the 

texture of commercial products. A heat transfer model was evaluated in terms of being 

robust for design variables. The model was effective regardless of sausage size or oven 

temperature. 
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Appendix A 

Datalogger Program for Recording Six 

Temperatures 

Program: 
Flag Usage: 
Input Chann el Usag e: 
Excitation Channel Usage: 
Contr o l Port Usage : 
Pulse Input Cha nnel Us age: 
Output Array Definitions : 

* 1 
0 1 : 60 

01 : Pl7 
01: 2 

02: P92 
0 1: 1 
02 : 3 
03: 10 

03 : Pl4 
0 1: 6 
0 2 : 2 
0 3: 1 
04 : 1 
05 : 2 
06 : 2 
07 : 1. 8 
0 8 : 32 

0 4: P77 
01: 0220 

0 5: P70 
01: 6 
02 : 2 

06: P 

* 2 
01 : 0 . 0000 

01: P 

Table 1 Programs 
Sec . Execution Int er val 

Module Temperature 
Loe : 

If tim e is 
minute s ( seconds- - ) into a 
minute or second inte r val 
Set high Flag O (output ) 

Thermocouple Temp ( DIFF ) 
Rep s 
7 . 5 mV slow Rang e 
IN Chan 
Type T (Copper-Constantan ) 
Ref Temp Loe 
Loe : 
Mult 
Off set 

Real Time 
Day,Hour-Minute 

Sample 
Reps 
Loe 

End Table 1 

Table 2 Programs 
Sec. Execution Interval 

End Table 2 
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* 3 

0 1 • 
J.. p 

A 
0 1 : 50 
02 : 64 

Table 3 Subroutines 

03 : 0.0000 

Mode 10 Memory Allocatior. 
Input Locations 
Intermediate Locations 
Final Storage Area 2 

Page 2 

* c 
01: 0 
02: 0 

Mode C 

Mode 12 Security 
LOCK 1 
LOCK 2 

03 : 0000 LOCK 3 

Page 3 Input Location Assignments (with comments): 

Key: 
T=Table Number 
E>Entry Number 
L=Location Number 

T : E: 
1: 1 : 
1: 3 : 

L : 
2: Loe 
2 : Loe 

74 



Appendix B 

Datalogger Program for Thermal 

Conductivity Measurement 

Program: 
Flag Usage: 
Input Channel Usage: 
Excitat i on Channel Usage: 
Co ntr o l Port Usage: 
Pu l se Input Cha nnel Usage: 
Output Array Definitions: 

* 1 
01 : 0 .5 

01: Pl7 
01: 11 

02 : Pl4 
0 1: 1 
02 : 1 
03: 1 
04: 2 
05: 11 
0 6: 3 
07 : 1 
08: 0 . 0000 

03: Pl4 
01: 3 
02: 1 
0 3: 3 
0 4: 2 
0 5: 11 
06: 35 
07: 1 
08: 0.0000 

04: P91 
01: 22 
02: 0 

05: P92 
01: 0 
02: 15 
03: 11 

0 6: P91 
0 1: 21 
0 2: 0 

Table 1 Programs 
Sec. Executicn I:1terval 

Module Temperature 
Loe [ :T panel l 

Thermocouple Temp ( DIFF ) 
Rep 
2 . 5 mV s lo w Range 
IN Chan 
Type E (Chromel-Constantan ) 
Ref Temp Loe T panel 
Loe [ : T l 
Mult 
Offset 

Thermocouple Temp (DIFF ) 
Reps 
2.5 mV slow Range 
IN Chan 
Type E (Chromel - Constantan ) 
Ref Temp Loe T panel 
Loe [:T2 J 
Mult 
Offset 

If Flag/Port 
Do if flag 2 is low 
Go to end of Program Table 

If time is*************** 
minutes (s econds-- ) into a 
minute or second interval 
Set high Flag 1 ********** 

If Flag / Port 
Do if flag l is low 
Go to end of Program Table 

time interval 
time interval 
time interval 
time interval 



07 : P3 0 
O l : 0 
o..,. 

(... 00 
03 : ' .L 

08 : P3 C 
0' . 4 . 2 
02: 00 
0 3: 13 

0 9: P3 0 
0 1: 0 
02: 00 
03: 15 

10: P8 7 
01 : 0 
02 : 15 

11: P30 
01: 0 
02 : 00 
03: 17--

Z=: 

Exp or .er.t o f 10 
Z Loe [ : :1 

Z=F' 
r 
Exponent of 10 
Z Loe [ :generator ] 

Z=F' 
r 
Exponent of 10 
Z Loe [:sum 

Beginning of Loop 
Delay 
Loop Count 

Z=F' 
r 
Exponent of 10 
Z Loe [ :s um q 

12: P95 End 

13: P30 
0 1: 50 00 
02: 00 
03 : 10 

14: P26 
01: 0 

Z=F' 
r 
Exponent of 10 
Z Loe [ :m V heater] 

Timer 
Reset Timer 

15: P86 Do 
*************************************************** 

01 : 41 

16: PB 7 
01: 1 
02: 25 

1 7: P34 
01: 13 
02: 0 . 1 
03: 13 

18: P41 
0 1: 13 
02: 14 

19: P87 
01: 1 
02: 100 

20: P34 
0 1: 15 

Set high Port 1 

Beginning of Loop 
Delay 
Loop Count 

Z=X+r 
X Loe generator 
r 
Z Loe [: generator] 

Z=EXP(X) 
X Loe generator 
Z Loe [: exp gen 

Beginning of Loop 
Delay 
Loop Count 

Z=X+F' 
X Loe sum 
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0 2 : D. 5 
.J 3: l S 

21 : ?82 
O l : 15 
0 2: 3 
0 3 : ::_4 
0 4 : 31 

22: P95 

2 3 : P32 
01 : 1 

24 : Pl 7 
01 : 11 

25 : Pl4 
01: 1 
02 : 1 
03 : 1 
04 : 2 
05 : 11 
06 : 3 
07 : 1.0 
08 : 0 . 0000 

26 : Pl4 
01 : 3 
02 : 1 
03 : 3 
04 : 2 
05 : 11 
06 : 35 
07 : 1 
08 : 0 . 0000 

2 7 : P2 6 
01: 9 

28 : P37 
0 1: 9 
02 : 0 . 1 
03: 2 

29: P2 
0 1: 1 
02 : 4 
03 : 2 
0 4: 7 
05 : 0 .0 0 1 
06: 0 

30 : P36 
01 : 7 
02: 7 
03: 8 

.., ~oc ~ : s w.:n 

If X<=>Y 
X Loe s um 
>= 
Y Loe exp gen 
Ex:t Lo op if true 

End 

Z=Z+l 
Z Loe [ : n 

Module Temperature 
Loe [ :T panel ) 

Thermocouple Temp (D IFF ) 
Rep 
2 .5 mV slow Range 
IN Chan 
Typ e E (Ch romel-Constantan ) 
Ref Temp Loe T panel 
Loe [: T J 
Mult 
Off set 

Thermocouple Temp (DIFF ) 
Reps 
2.5 mV sl ow Rang e 
IN Ch a n 
Type£ (Ch romel-Constantan ) 
Ref Temp Loe T panel 
Loe [ : T2 ) 
Mult 
Offset 

Timer 
Loe [: timer 

Z=X*F 
X Loe timer 
F 
Z Loe [: t 

Volt ( DIFF ) 
Rep 
250 mV sl ow Range 
IN Chan 
Loe [ :V ref 
Mult 
Offset 

Z=X*Y 
x Loe v ref 
y Loe v ref 
z Loe [ : V ref sq. J 
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31. P3 7 z=x-r 

J' . 8 x . 
~~ \/ ref sq. .... ~~ 

'.)2: 31. 8 f 
03 : 4 z Loe [ :q 

32 : P 3 3 Z=X+Y 
o::.: 17 x Loe sum q 
02 : 4 y Loe q 
03: 17 z Loe [ : sum q 

33: P4 0 Z=LN (X) 
01: 2 x Loe t 
02 : 18 z Loe [:ln t 

34 : P33 Z=X+Y 
01: 19 x Loe sum ln t 
02 : 18 y Loe ln t 
03 : 19 z Loe [: sum ln t l 

35: P33 Z=X+Y 
01: 20 x Loe sum T 
02 : 3 y Loe T 
03 : 20 z Loe [ :sum T 

36: P36 Z=X*Y 
01 : 18 x Loe ln t 
02 : 3 y Loe T 
03 : 21 z Loe [: T* ln t 

37: P33 Z=X+Y 
01: 22 x Loe s (T*lnt ) 
02: 21 y Loe T*ln t 
03: 22 z Loe [: s (T *lnt )) 

38: P36 Z=X*Y 
0 1: 18 x Loe ln t 
02: 18 y Loe ln t 
03: 23 z Loe [: ln t sq. l 

39: P33 Z=X+Y 
01 : 24 x Loe S ( lnt sq ) 
02: 23 y Loe ln t sq. 
03: 24 z Loe [ : S ( lnt sq) J 

40: P36 Z=X*Y 
01: 19 x Loe sum ln t 
02: 20 y Loe sum T 
03: 25 z Loe (: s lnt+S T) 

41: P42 Z=l /X 
01: 1 x Loe n 
02 : 26 z Loe [ : 1/n 

42: P36 Z=X*Y 
01: 25 x Loe s lnt+S T 
02 : 26 y Loe 1/n 
03: 27 z Loe [: product 



43 : ?35 
Jl : .22 
J2 : 27 
J3 : 28 

44 : ?36 
c 1: 19 
02 : 19 
0 3: 29 

45 : P36 
01 : 26 
02 : 29 
03 : 30 

46: P35 
01 : 24 
02 : 30 
03 : 31 

4 7: P38 
01 : 28 
02 : 31 
03 : 5 

4 8 : PB 6 
01 : 10 

2=X- ·.:" 
:< ~oc S ( T*.l.nt ) 

Y Loe i:r odt..:c t 
Z Loe [ :nt..:~erator ] 

Z=X*Y 
X Loe sum ln t 
Y Loe sum ln t:: 

Z Loe [ : ( S lnt ) sq ] 

Z=X*Y 
x Loe 1 / n 
y Loe (S lnt ) sq 
z Loe [ : product 2 J 

Z=X- Y 
x Loe S (lnt sq ) 
y Loe pr oduct 2 
z Loe [ :denominat] 

Z=X/ Y 
x Loe numerator 
y Loe denominat 
z Loe [ : s 

Do 
Set high Flag O (o utput ) 

49: P95 End 

50 : P30 
01 : 0 . 0000 
02: 00 
03 : 10 

Z=F 
F 
Exponent o f 10 
Z Loe [ :mV h eater ] 

51: PB 6 Do 
* ************************************************** 

01 : 51 Set low Port 1 

52: P37 Z=X*F 
0 1: 17 x Loe sum q 
02 : 0.04 F 
03: 4 z Loe [ :q 

53: P37 Z=X*F 
01: 5 x Loe s 
02: 12.566 F 
03: 32 z Loe [: 4 pi s l 

54: P38 Z=X/ Y 
01 : 4 x Loe q 
02 : 32 y Loe 4 pi s 
03: 6 z Loe [: k 

55: P31 Z=X 
01 : 6 x Loe k 
02 : 1 z Loe [ : n 

79 



S6 : ?86 Clo 
'Jl : ;,_'.) 

0 1 : 0 220 

53 : ? ., J 

J l : 3 
0 2 : 4 

59: P7 0 
0 1: 3 
0 2: 35 

60 : PS 6 
) 1: 21 

61: P 

.. 2 

0 1: 0 . 0000 

0 1: P 

* 3 

0 1: P 

* A 
0 1: 5 0 
0 2 : 64 
0 3: 0 . 0000 

* c 
0 1: 0 000 
0 2: 00 00 
0 3: 0000 

Set h i g~ Flag O (ou tp u t ) 

Re a .:_ Ti me 
Da y ,H ou r-Mi nu te 

Samp l e 
Reps 
Loe q 

Sample 
Reps 
Lo e T2 

Do 
Set low flag l 

End Table 1 

Table 2 Programs 
Sec . Execution Interval 

End Table 2 

Table 3 Subroutines 

En d Tab l e 3 

Mode 10 Memory Allocation 
Input Locations 
Intermediate Locations 
fi nal Storage Area 2 

Mode 12 Security 
LOCK 1 
LOCK 2 
LOCK 3 
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Inpuc Locacion Assignmencs (with comm e nt s ) : 

~ey : 
-:'=Tab2.e Numt e.:: 
::::=~:-:~.::/ ~'...::r.be.:: 
L=~ocacion Number 

T: E: L: 
,, 7: 1 : 
1: 2 3 : 1 : 
1 : 55 : 1: 
1 : 28 : 2: 
1: 2 : 3: 
1: 25: 3: 
1 : 31 : 4: 
1: 52 : 4: 
1: 4 7 : 5: 
1 : 54: 6: 
1: 2 9: 7 : 
1: 30 : 8 : 
1 : 27: 9 : 
1: 13 : 10: 
1 : 50 : 10: 
1 : 1: 11: 
1: 24: 11 : 
1: 8: 13: 
1 : 17 : 13: 
1: 18 : 14: 
1: 9: 15 : 
1 : 20: 15: 
1 : 11: 17: 
1: 32 : 17: 
1: 33 : 18 : 
1 : 34: 19: 
1 : 35 : 20: 
1: 36: 21: 
1: 37: 22 : 
1 : 38: 23: 
1 : 39 : 24: 
1 : 40 : 25: 
1: 41: 26: 
1: 42: 27: 
1: 43: 28: 
1: 44: 29: 
1: 45: 3 0 : 
1: 46: 31: 
1: 53: 32: 
1: 3: 35: 
1: 26: 35: 

Z Loe [ : n 
Z Loe [ : n 
Z Loe [ : n 
Z Loe [ : t 
Loe [ : T 
Loe [ : T 
z Loe [ : q 
Z Loe [ : q 
Z Loe [ :s 
Z Loe [ : k 
Loe [ : V ref ) 
z Loe [ :V ref sq. ) 
Loe [ :timer ) 
Z Loe [ : mV heater] 
Z Loe [ :mV he ater ) 
Loe [ :T panel J 
Loe [ : T panel J 
Z Loe [ :gene rator] 
Z Loe [:gen erat o r ] 
Z Loe [: exp gen J 
Z Loe [ :s um ) 
Z Loe [:sum J 
Z Loe [:sum q J 
Z Loe [ : sum q J 
z Loe [ :ln t J 
Z Loe [ :sum ln t J 
Z Loe [ :s um T ) 
z Loe [ :T*ln t J 
Z Loe [ :S (T*lnt )J 
Z Loe [ : ln t sq. J 
Z Loe [ :S (lnt sq )] 
Z Loe [ :S lnt+S T] 
Z Loe [ :1 /n ) 
z Loe [ :pr oduct J 

Z Loe [ :numerator ] 
z Loe [ : (S lnt ) sq] 
Z Loe [ :pr oduct 2] 
Z Loe [ :denominat] 
Z Loe [ :4 pis J 
Loe [ :T2 
Loe [ :T2 
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Appendix C 

Closed Form Solution to lnfinitely 

Long Cylinder 

Heating of fish bologna is done by two heat transfer modes . The first is 

convection; herein heat, is transferred from the thermal processing unit to the product. 

The second mode is conduction of heat from the outside of the sausage to the center. If 

thermal conductivity is assumed to be constant throughout the sausage, then the solution 

to the problem is given by the following general conduction equation 

(D. l) 

where a=_!:_ and V2T is the Laplacian operator. Two definitions of that operator 
pep 

follow: 

v 2T = ci2T + a2T + cir (Cartesian Coordinates) 
ax2 3y2 az2 

8::2 
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Cartesian coordinates describe a typical 3-dirnensional space. Cylindrical coordinates are 

J c/ T ! 0 T ! a2 T a2 T 
V -T =- +-- +--- + - (Cylindrical Coordinates) 

ar : r ar r 2 acpl az 2 

specialized for cylinder-like shapes. The solution for bologna would be best obtained by 

using the latter set of coordinates. 

For the problem at hand, heat transfers in the radial direction only. By defining 8 

as the time and location dependent temperature difference, 8 = T(r ,t) - T 
00

, and eliminating 

the heat generation term of q, (D. l) reduces to (D.2). 

a2e 1 ae 1 ae 
- +- --- - --
ar 2 r ar a at 

(D.2) 

Two numbers need to be defined in order to obtain a solution. Those numbers are the 

Fourier modulus (Fo) and the Biot number (Bi). In the following equations, x is the 

characteristic length. For bologna, that length is the radius of the sausage, R. 

Bi = resistance to internal heat flow = hx 

restiance to extrnal heat flow k 

at 
Fo=-

x 2 

The resulting solution., as defined by Bessel functions of the first kind of the zero (1
0

) and 
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first orders (11) is (0.3). 

'.)() 

: • 2 \' f e 
I ~ n 

(0 .3) 

n = I 

<\ is defined by the consecutive roots of the equation: 



Appendix D 

Fortran Code for Predicting Heat Transter 

program main 
implicit none 
real rho. k, h, t, y. c_p, r, radius, t_i, t_inf, t_r 
real alpha,theta,sum 
real delta, temp,start 
real l,length, theta_r, theta_l, time, span,step 

open( I ,file='n.out',status='unknown') 
open(99, file='temp.out' ,status='unknown') 

print*,'ALL DISTANCES AND LENGTHS ARE IN METRIC (cm)' 
print*,'IF A VARIABLE IS UNKNOWN, ENTER "O" AND A DEFAULT VALUE' 
print*,'WILL BE ASSUMED' 
print*,'The output file is temp.out' 
print*,'Radius of sausage: (3.5cm)' 
read(*, *)radius 
if (radius.eq.O.) radius=J. 5 
radius=radius/ I 00. 
print*,'Radial distance from center: (Ocm)' 
read(*, *)r 
r=r/100 
print* ,'Length of sausage: (20cm)' 
read(*, *)I 
if (l.eq.O) 1=20 
1=1/100 
print*,'Longitudinal length from center: (Ocm)' 
read(*, *)length 
length=length/100 
print*,'Heat transfer coefficient: ( 40 W lm!K)' 
read(*, *)h 
if (h.eq.O.) h=40. 
print*,'Thermal conductivity: (0.48 W/ml\2/K)' 
read(*, *)k 
if (k.eq.O.) k=.48 
print*,'Density: (1000 kg/m"3)' 
read(*, *)rho 
if (rho.eq.O.) rho-=1000. 
print*,'Specific heat: (3200 J/kg/K)' 
read(*, *)c _p 
if ( c _p.eq.O) c _p=3200 
print*,'Initial temperature: (45 F)' 
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* 

* 

read(*. *)t_i 
if (t_i.eq.O) t_i=45. 
t_ i=(t_ i-3 2 )*5/9 
print *.'Oven temperature: ( 180 F)' 
read (*,*) temp 
if (temp.eq.0) temp= 180 
t_ inf=(temp-3 2 )*5/9 

print *,t_inf 
print* .'Cook time: ( 180 min)' 
read(* , *)time 
if (time.eq.O) time= 180 
print*,'starting time: (0 min)' 
read(*,*) start 

print*,time 
print*,'Time interval to be printed: (5 min)' 
read(*,*) span 
if (span.eq.O) span=5. 
print*,'step size: (0.05)' 
read(*,*) step 
if (step.eq.O) step=.05 

alpha=k/rho/c _p 

do I 00 y=start,time,span 
sum= 0. 
delta=O. 
t=y*60. 
call cy l(alpha,h,r,radius,k,t,theta _r,step) 
call slab(alpha,h,l,length,k,t,theta_l,step) 
theta = theta r*theta I - -
t_r=theta*(t_i-t_inf) + t_inf 
write(99, *) t/60,(t_r*9/5+ 32) 
write(*,*) t/60,(t r*9/5+ 32) 

I 00 continue 
end 

subroutine cyl(alpha,h,r,radius,k,t,theta_r,step) 
real alpha,h,r,radius,k,t,theta _r,biot, fourr,j_ O,j_ I 
real j_ Or j_ 1 r,del,top,step 
real bottom,e _ x,sum,1 

sum=O 
delta=O 
biot=h*radius/k 
fourr=alpha *t/radius/radius 
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l=O. 
do lx = l.5 
call delta_n(biot.del.j_O.j_l .delta.I.step) 
call xxx(del,j_ 0.j_ I ,delta,1) 
call xxx(del,j_Or,j_ I r.(delta*r/radius).I) 
top = j_ Or*j_ I 
bottom= j_O*j_O + j_ l *j_l 
e_x = exp((-l)*delta*delta*fourr) 
sum= sum + e_x*top/bottom/delta 

continue 
theta r = sum*2 
return 
end 

subroutine slab(alpha,h,l,length,k,t,theta _l,step) 
real alpha,h,l,k,t,theta _l,biot,fourr,j_ O,j_ I ,del,top 
real length,bottom,e _ x,sum,j_ Or,j_ I r,step 

sum=O 
delta=O 

biot=h*l/k 
fourr=alpha *t/1/1 

do I x= I,5 
call delta_ n(biot,del,j_ O,j_ I ,delta, !,step) 
call xxx(del,j_O,j_l ,delta,I) 
call xxx(del,j_ Or,j_ I r,(delta *length/1),l) 
top= sin(delta)*cos(delta*length/1) 
bottom= delta+ sin(delta)*cos(delta) 
e _ x = exp( ( -1 )*delta *delta *fourr) 
sum = sum + e_x*top/bottom 

print * ,delta, sum, fourr,((-1 )*delta *delta *fourr) 
continue 

theta I= sum*2 
return 
end 

subroutine delta_n(biot,del,j_ O,j_ l ,delta_ I ,l,step) 
implicit none 
real h, j_ 0, j_ I, del, delta_ m, delta_ I, delta_ 2, biot 
real !,step 

h=step 
5 call xxx(del,j_O,j_l ,delta_l ,I) 

if (del.gt.biot)then 
delta I =delta I + h - -
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goto 5 
end if 

6 call xxx(del.j_O.j_ l.delta_ l.l) 

10 

if (del.lt.biot) then 
delta 2=delta I - -
delta I =delta I + h 

- -
goto 6 
end if 

delta m = (delta I +delta 2)/2. - - -
call xxx(del,j_O,j_l ,delta_m,I) 

print*,delta _ I ,del,biot 
if (abs( del-biot)/biot.gt .. 000 I) then 
if ((del-biot).lt.0.) then 
delta 2 = delta m - -
else 
delta I = delta m - -
end if 
goto 10 
end if 
return 
end 

********* 
subroutine xxx( del,j_ O,j_ l ,delta_ l ,I) 
real j_O, j_l , delta_! ,I 

if (delta_I.lt.3 .5) then 
cal IL small( delta_ l ,j_ O,j_ I) 
else 
call L big( delta_ 1,j_ O,j_ I) 
end if 
del_r = delta_! *j_l/j_O 
del_ I = delta_ I *sin( delta_ I )/cos( delta_ I) 
if (l.ne.O) then 
del=del I 
else 
del=del r 
end if 
return 
end 

********* 

subroutine j_ small( delta_ I j_ O,j_ I) 
real delta_! , x, j_O,j_l 

x=delta I 
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j_O=l 
j_O=j_O - x**2/2**2 
j_O=j_O + x**4/(2*2*4**2) 
j_O=j_O - x**6/(2**2*4**2*6**2) 
j_O=j_O + x**8/(2**2*4**2*6**2*8**2) 
j_ O=j_ O - x ** I 0/(2 **2 *4 **2 *6**2 *8 **2 * I 0**2) 

j_l =x/2 
j_ l=j_l - x**3/(2**2*4) 
j_l=j _l + x**5/(2**2*4**2*6) 
j_l=j_l - x**7/(2**2*4**2*6**2*8) 
j_l=j_l + x**9/(2**2*4**2*6**2*8**2*10) 
j_l=j_l - x**l l/(2**2*4**2*6**2*8**2*10**2*12) 
return 
end 

********** 

subroutine j_ big( delta_ l ,j_ O,j_ I) 
real x,pO,qO,pl ,ql 
real j_ 0,j_ I 

pi=J .14159265 
x=delta I 
call q_p(x,pO,qO,p I ,q 1) 
j_ O=(p0-q0)/(pi*x)**.5*sin(x) + (p0+q0)/(pi*x)**.5*cos(x) 
j_ I =(p I +q I )/(pi*x)**.5*sin(x) - (p 1-q I )/(pi*x)**.5*cos(x) 
end 

********** 

subroutine q_p(x,pO,qO,p l ,q I) 
implicit none 
real pO,qO,p I ,q 1,p _ O,p _ l ,q_ O,q_ I 
real p_old,pOn,pln ,qOn,qln,x 
integer n 

p_old=5 
pO=I. 
q0=-1. * 1./8./x 
pl=!. 
ql=J./8./x 
p_O=l 
p_l=l 
q_O=l 
q_l=3 
pOn=O 
pln=O 
qOn=O 
qln=O 
p_old=O 
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* 
5 

n=O 

do 5 n=I ,5 
n=n+ l 

pO=pO+pOn 
qO=qO+qOn 
pl=pl+pln 
ql=ql+qln 

if ((abs((p_ old-pO)/pO)). lt..0005) return 
p _ O=p _ 0*( 4*n-3)**2*( 4*n- I )**2/2/n/(2*n- I) 
q_ O=q_ 0*( 4*n- l )**2*( 4*n+ I )**2/(2*n+ I )/2/n 
p _ I =p _ l *( 4 *n+ I)*( 4 *n-1 )*( 4 *n-3 )*abs( 4 *n-5)/2/n/(2 *n-1) 
q_ I =q_ I*( 4*n+ 3)*( 4*n+ I)*( 4*n-l )*( 4*n-3 )/(2*n+ I )/2/n 

pOn=(-1 )**n*p _ 0/(8*x)**(2 *n) 
qOn=(-1 )**(n+ I )*q_ 0/(8*x)**(2*n+ I) 
p I n=(-1 )**(n+ I )*p _ 1 /(8*x)**(2 *n) 
q I n=(-1 )**(n)*q_ I /(8*x)**(2*n+ I) 
p_old=pO 

goto 5 
end 
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