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ABSTRACT 

Rapid Detection of Listeria monocytogenes 

by 

Wim Lippens, Master of Science 

Utah State University, 2003 

Major Professor: Dr. Bart C. Weimer 
Department: Nutrition and Food Sciences 

lll 

Listeria monocytogenes is a foodbome pathogen that can cause severe illness and 

even death. It is found in dairy and meat products. The focus is on rapid detection since 

conventional methods are time consuming ( 4-5 days). Pre-enrichment steps, as part of 

those methods, are time consuming. Our objective was to develop a detection system 

without a pre-enrichment step, giving a final result within 2 to 4 h. 

In the concept of "the need for speed," a detection system with an antibody-based 

capture technique, followed by polymerase chain reaction (PCR), was developed. Glass 

beads coated with a Listeria polyclonal antibody were added to the food sample. After a 

static incubation/capturing step, beads-cell complexes were separated from the food, and 

boiled to lyse the cells and release the DNA. In a final PCR/electrophoresis step the 

DNA samples were analyzed. 

The use of a flow-based capturing system (ImmunoFlow) was also investigated. 

Using a bead-antibody complex in this IrnmunoFlow setup has several advantages, 

including the possibility of concentrating the microorganisms out of large food samples 
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(with flow through setup), the exclusion of a pre-enrichment step, and the potential for 

automation. 

Besides buffer solution (Tris ), different kinds of milk, e.g., pasteurized, Ultra 

High Temperature (UHT), and raw milk, were also investigated. The detection limit in 

buffer solution was 1 x 106 CFU/ml no matter if the ImmunoFlow system or the static 

incubation was used. For the different pasteurized milk samples, the detection limit 

varied between 1 x 1 0 7 and I x 108 cells/ml in the static procedure. For UHT and raw 

milk, however, capturing of Listeria monocytogenes cells was not possible in the static or 

the ImmunoFlow setup. 

In conclusion, we developed a rapid and specific detection system for Listeria 

monocytogenes at high concentration in pasteurized milk using a static capturing 

procedure. The total test time for this detection system is less than 4 h, which is much 

faster than the present detection systems (which are using an enrichment step prior to 

testing). Implementing a real-time PCR system after capture would further reduce this 

detection time. 

(124 pages) 
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CHAPTER 1 

INTRODUCTION 

The bacterium Listeria monocytogenes is a foodbome pathogen discovered in the 

early 1900's. Research throughout the years lead to a more detailed understanding of this 

organism. In the second half of the 20th century the pathogenic properties of this 

organism were clearly understood. Since then, increasing attention was given to L. 

monocytogenes as it impacts human health. The microorganism is not on top of the list 

of food borne incidences ( Campylobacter, Salmonella, and Shigella are above it), 

however, it is the leading cause of fatalities from food sources. 

It causes invasive illnesses such as gastroenteritis and meningitis. The elderly, 

children, immuno-compromised and pregnant women are among the high-risk population 

commonly infected by this organism. Because of the high fatality rate, a lot of attention 

is given to L. monocytogenes by the food industry. Since 1989, a zero tolerance policy 

was introduced by Food Safety and Inspection Service (FSIS) for ready-to-eat products 

such as hot dogs. FSIS as well as Food and Drug Administration (FDA) together with 

the Center of Disease Control (CDC) are trying to increase the public awareness towards 

L. monocytogenes and to educate in order to prevent outbreaks (1, 2). 

Testing food samples for L. monocytogenes is, however, time consuming. Very 

recently, new and faster procedures were introduced to aid this process. It takes 5-6 days 

to obtain a definite result. Even the new, faster methods, which have their focus on 

shortening the detection time, take on average up to 2 days, since an enrichment step is 

always included. 
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The focus of this research was to eliminate the enrichment step, build on the 

information found in literature about L. monocytogenes detection and use a system 

previously developed for the detection of Escherichia coli in our lab as the basis for this 

research project. The approach taken is an antibody based capture combined with a 

polymerase chain reaction (PCR) based detection in order to detect this microorganism in 

a fast, easy and accurate way. To reach this goal, glass beads were covalently coated 

with antibodies, specific for Listeria. The specificity of the test was obtained by 

combining the capture of the cells with a PCR step that allowed the multiplication of a 

specific DNA region of the L. monocytogenes genome. 

References 

1. Food Safety and Inspection Service. 2000. FSIS strategies for addressing Listeria 
monocytogenes. Available at: http: //www.fsis.usda.gov/OA/back­
ground/bklisteria.htm. Accessed 6 March 2001 

2. Swaminathan, B. T. , J. Barrett, S. B. Hunter, R. V. Tauxe, and the CDC PulseNet 
Task Force. 2001. PulseNet: The molecular subtyping network for food-borne 
bacterial disease surveillance, United States. Emerging Infectious Diseases 
7(3):382-389. 



CHAPTER2 

LITERATURE REVIEW 

Growth Properties and Danger 

3 

Listeria is a small (0.5 11m in diameter, 1-2 11m in length), non-spore-forming, 

Gram-positive rod. Cells are found singly or in short chains that can be isolated from a 

wide range of foods and environments (71, 88, 94). Listeria monocytogenes is non­

motile and produces little or no detectable flagella (89). It is commonly found in soil, 

water, and plant material (24) . However, the number of the organisms present in those 

habitats is very low (26, 93). In the food processing industry, L. monocytogenes is 

particularly difficult to control because it can adhere to food-contact surfaces and form a 

biofilm or coating that impedes the effectiveness of sanitation procedures (36). All 

Listeria species are phenotypically very similar, but can be distinguished on the basis of 

hemolysis and acid production from D-xylose, L-rharnnose, a-methyi-D-mannoside, and 

mannitol (Figure 2-1 ). L. monocytogenes is however the only pathogen for humans, 

where as L. ivanovii can cause severe illness among animals too (115). 

Recent analysis of the 16s and 23s rRNA of L. monocytogenes has further 

clarified the phylogenetic position of Listeria in relation to other genera of gram-positive 

bacteria. However, the exact phylogenetic position of this genus remains controversial 

(89). Using those highly conserved genes, it is possible to detect and differentiate 

Listeria from other organisms in a genetic testing scheme. Differences between 
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hemolysis 

+ 
mannitol CAMP-test R. equi 

D-xylose 

I 

+ + + + + 
L. welshimeri L innocua L grayi L. ivanovii L. seeligeri L. monocywgenes 

+ 
T • . . 
L.. T\aJWVll 

subsp. ivanovii 

ribose 

L. ivanovii 
suhsp. fondoniensis 

Figure 2-1 . Identification of Listeria species (adapted from 89). 

L. monocytogenes strains are identified by serological typing (serotyping), which is based 

on somatic (0) and flagellar (H) antigens. Other, less frequently used, conventional 

subtyping methods are bacteriophage typing, bacteriocin typing and antimicrobial 

susceptibi lity testing (37). The vast majority of human listeriosis (~90%) is associated 

with three serotypes (4b, 1/2a, and 1/2b) (28, 53, 100, 1 04). Currently, molecular-based 

methods are gaining more interest since they are more specific and easier to perform than 

growth or Ab-based tests (3 7). 

With the combined inhibitory effect of a low pH and the activity oflactic starters, 

the growth of Listeria in cheese can be retarded, but it is difficult and had limited success 

(77). The survival and growth depends on the conditions during manufacture, ripening, 

and storage of the cheese products. In an outbreak in France, the microorganism was 

found throughout the entire period of ripening and storage in soft lactic cheeses made 

from raw goat milk and led to several cases of listeriosis (22, 34, 77). L. monocytogenes 
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is also found in other dairy products, eggs, chicken, meat products, vegetables, and 

seafood (2, 17, 29, 35,41, 74, 94). A survey of204 small abattoirs in Switzerland 

revealed that almost 11% of all meat samples were positive for L. monocytogenes (25). 

The microorganism has a wide growth temperature range and can withstand low pH and 

high salt concentrations (reviewed in 65). Sado et al. (94) reported the survival of L. 

monocytogenes in unpasteurized fruit juice at pH 3.75. Furthermore, this bacterium has 

the capability to grow at refrigerated temperatures (7°C and lower) in aerobic or 

anaerobic conditions (reviewed in 89). The so-called ready-to-eat products, which do not 

receive any heat treatment by the consumer, but are packaged under vacuum or modified 

atmosphere (MAP), are potential threats to consumer safety towards this bacterium (88, 

96, 11 0). In an effort to understand and control L. monocytogenes growth and 

contamination, researchers have developed predictive growth models, quantitative 

modeling, and risk assessment fom1ats ( 45). 

Preservation Techniques 

Methods used in food preservation involve physical, chemical, and biological 

factors. Physical preservation includes heating, cooling, freezing, irradiation, pulsed 

light, and high pressure. Chemical treatments include addition of anti-microbial, 

acidifying, and curing agents. Preservation by biological means includes fermentation, 

which control spoilage and pathogenic microorganisms through gradually lowering the 

pH (65). Based on the properties of L. monocytogenes, proper preservation techniques 

can be applied to control this bacterium (65) . 
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L. monocytogenes is psychotropic and therefore can grow in the range 0°C to 

45°C (8). Temperatures below ooc will slow down growth or moderately inactivate this 

pathogen. It is important to stress that the bacterium is not killed when frozen. It is true 

however, that although freezing will only cause a limited decrease in viability, such 

treatments can injure and thus sensitize the organism to other anti-microbial treatments. 

Conversely, temperatures higher than 50°C are lethal to L. monocytogenes (1 05). The 

CDC, FDA and the World Health Organization (WHO) concluded that High Temperature 

Short Time (HTST) treatment and milk pasteurization (71 °C, 15 s) are safe processes that 

effectively reduce the number of L. monocytogenes to levels that do not pose an 

appreciable risk to human health in healthy populations ( 65, 1 06). 

Water activity (aw) is an important parameter in an attempt to control microbial 

growth. Like most bacteria, L. monocytogenes grows optimally at aw ~0.97. However, it 

can multiply at aw values as low as 0.90 and can survive for extended periods at aw-values 

lower then 0.9 (65). 

High pressure treatment (375 Mpa for 15 min) was sufficient to inactivate more 

than 1 x 105 CFU/ml in a phosphate buffer (65). Applications of this process in food 

products are limited, but look very promising especially in beverages. 

Listeria spp. are more resistant to gamma irradiation compared to other non­

spore-forming food borne pathogens (1.7-4.0 kGy for reduction of7 orders of 

magnitude) . Ultraviolet radiation and high-intensity pulsed light are only useful to 

inactivate microorganisms on the surface of foods since they only have limited 

penetration power (65). 
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L. monocytogenes is acid tolerant. The minimum pH that this species, and most 

of the other Listeria spp. can grow, is between 4.5 -5.0. This, however, is only possible if 

the organism is incubated near optimum temperatures (37°C) and sufficient time is given 

to overcome an extended lag phase (at least 4 hours) (reviewed in 63, 65). 

Bacteriocins have had limited applications in food as bio-preservatives. Three 

examples ofbio-preservation are bacteriocins including pediocin, nisin, and lactisin. The 

first one is produced by certain strains of Pedicoccus acidilactici, the last two are 

produced by some strains of Lactococcus lactis ssp. lactis (14). All three proteins inhibit 

L. monocytogenes in food, but their activity is strongly influenced by various 

environmental conditions such as pH and temperature (65) . 

Infection and Risk Populations 

Infection with L. monocytogenes causes influenza-like symptoms that progress to 

gastroenteritis, convulsions, and even spontaneous abortions if untreated ( 46). From the 

mouth, the pathogen travels to the stomach, across the intestine, and spreads through the 

bloodstream (reviewed in 89, 98). Bacterial binding to the intestinal cells prior to 

invasion is established by the interaction of the bacterial protein internal in with an 

intestinal receptor called E-cadherin (27, 89). Listeriosis is commonly associated with 

infections in the uterus, sepsis and the central nervous system. However, it can also 

cause disease without invading the host cell; therefore, it is classified as facultative 

intracellular pathogen (57). 
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The entry of L. monocytogenes into non-phagocytic cells occurs without any 

detectable perturbation of host cell morphology. The invasion is mediated by the 

membrane protein internal in, encoded by the genes in/A, inlB, and inlC (27, 91, 98). 

Protein p60, encoded by the gene iap (invasion associated protein), has also been 

associated with the entry into host cells (87). The cells will first appear in a vacuole that 

has a single membrane which is subsequently lysed, allowing L. monocytogenes cells to 

escape to the macrophage cytoplasm (28, 58). One of the proteins responsible for this 

lysis is listeriolysin 0 (LLO). It is a hemolysin, encoded by the hly gene (87, 98). After 

lysing the membrane by the protein, the bacterial cell is released in the cytoplasm. At 

this stage, the microorganism can multiply rapidly, but can also move into adjacent cells, 

eventually becoming wide spread in the host organs (28, 38) (Figure 2-2). To move 

within and between host cells, the L. monocytogenes cells use host actin filaments by 

disrupting the host cytoskeleton. This is called actin-based motility (87). The actin 

filaments are organized into long polar tails. The process of asymmetric actin nucleation 

by L. monocytogenes requires only one surface protein called ActA (98). This tail 

produces the propulsive force that moves the Listeria through the cytoplasm of the host 

cell at ~ 1.5 Jlm/s. Continuous de novo actin polymerization is required for this 

movement (28, 58). The bacterium enters neighboring cells by producing special cell 

structures (protrusions) ending up in a double membrane vacuole. Escaping into the 

cytoplasm of the new host involves prfA, pleA , and plcB genes (98). 

In order to eliminate the pathogen, macrophages will ingest the cells very rapidly, 

and intracellular killing starts shortly after phagocytosis and leads to destruction of most 

of the ingested bacteria through acid production (58). 
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Figure 2-2. The intracellular life cycle of L. monocytogenes during host infection 
(adapted from 28). 
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The minimum infectious dose for humans ranges between 103-104 CFU/g of food 

(1 07). Ingestion of such a dose creates a significant health threat for people, usually in 

certain well-defined high-risk groups such as newborns, children, immuno-compromised 

and elderly people grouped under the acronym YO Pis (Young, Old, Pregnant, and 

ImmunoCompromised) (58, 1 01). In these people, the mortality rate from listeriosis can 

be as high as 30%, which is very high compared to for example E. coli 0157:H7 with a 

fatality rate around 4% (11 0). L. monocytogenes is one of the few infectious microbes 

that can cross the placenta and infect the fetus. Although the pregnant women might not 

experience any symptoms, the fetus can be infected (98). People not related to one of the 

groups above however, can also suffer severely after ingestion of high numbers of cells 

(49). 
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Table 2-1. Clinical syndromes associated with infection with L. monocytogenes (63). 

Population Clinical presentation Diagnosis Predisposing conditions 
or circumstances 

Pregnant women 

Newborns 
<7 days old 
=7 days old 

Non pregnant 
adults 

Healthy adults 

Fever, myalgias, 
diarrhea 
Preterm delivery 
Abortion 
Stillbirth 

Sepsis, pneumonia, 
meningitis, sepsis 
Sepsis, meningitis, 
focal infections 

Diarrhea and fever 

Blood culture 
Amniotic fluid culture 

Blood culture 
Cerebrospinal fluid culture 
Culture of blood, 
cerebrospinal fluid, or other 
normally sterile site 
Stool culture in selective 
enrichment broth 

Premature 

Immuno suppression 
advanced age 

Possibly large inoculum 

Less frequently reported susceptible populations are diabetics, cirrhotics, and 

asthmatics (Table 2-1 ). In a recent study, the frequency of meningitis caused by L. 

monocytogenes was 7.5%, with a death rate of 40%, which was the highest among all the 

organisms that were investigated (50). 

Conventional Detection Systems 

In 1926, Murray and coworkers stated (78), "The isolation of the infecting 

organism L. monocytogenes is not easy and we found this to remain true even after we 

had established the cause of the disease." It is interesting to notice that this statement is 

still true today. Extensive work has been done to develop pre-enrichment media for the 

isolation of L. monocytogenes from foods (23) . However, this leaves a more rapid 

detection unaddressed and places a burden on processors in the current zero tolerance 

practice, requiring many to hold their products for 7-10 days while waiting for the 

microbiology results. 
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Plating methods 

In 1948, M. L. Gray introduced a cold enrichment procedure to isolate L. 

monocytogenes. The incubation time, however, which is 5 to 13 weeks at 4°C, was a big 

disadvantage. Because of the need of shorter incubation times, selective enrichment and 

plating media were developed that further narrowed the selective nature of the medium 

and decreased the growth time (reviewed in 23). In 1960, the first widely used plating 

medium was introduced, being the McBride Listeria Agar (MLA). A short chronological 

overview is given below (Table 2-2). Results with traditional plating methods are 

typically obtained after 4 or 5 working days, making conventional plating methods time 

consuming and too slow for practical use in today's processing environment. Although 

these media are selective for L. monocytogenes, pre-enrichment with a specific broth is 

preferable in almost every case. Enrichment broths commonly used include tryptose 

broth, University ofVermont Medium (UVM), and Fraser Broth (23). 

Table 2-2. The major selective media for isolation and enrichment of Listeria (Adapted 
from 23). 

Year 

1959 

1960 

1986 

1987 

1988 

1989 

1989 

1990 

Name 

Modified McBride Listeria Agar (MLA2) 

McBride Listeria Agar (MLA) 

Lithium chloride Phenylethanol Moxalactam Agar (LPM Agar) 

FDA-Modified McBride Listeria Agar (FDA-MMLA) 

RAP AMY and ALP AMY 

Polymixin B, Lithium chloride, acriflavine and ceftazidime (P ALCAM Agar) 

Oxford Agar (OXA) 

Modified Oxford Agar (MOX) 
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Biochemical methods 

Plating is in most cases followed by biochemical tests ( 49). These tests, used to 

identify the different Listeria species, include ~-hemolysis, Gram reaction, motility, 

carbohydrate utilization profile and cAMP reaction (Figure 2-1 ). Total test time is 

typically 8-10 days ( 67). Various commercial miniaturized multi test assays are used 

(89), including 20S API-ZYM (Anal. Prod., Plainview, NY), API Listeria Vitek 

Automicrobic Sys. (BioMetieux, Hazelwood; MO), and MICRO-ID kit (Organon 

Teknika, Durham, NC). 

Rapid Detection Systems 

The need for speed 

The total testing time for a food sample with conventional detection methods 

takes easily 48 to 96 h. These techniques, in use since the 1980's, are not sufficiently 

rapid to assure the safety of perishable food products before consumption (7). If the 

manufacturer wants to be sure about the microbial safety of the finished product however, 

two major disadvantages arise. First, expensive and big storage facilities are needed to 

store the product while it is held waiting f_or the bacterial results. Second, the storage 

time shortens the shelf life of the product. These factors often force companies to ship 

their products before testing is completed, with the risk of recalls. 

In most cases, this risk is acceptable especially when Good Manufacturing 

Practice (GMP) is followed. However, positive results of the samples after shipment will 

force the manufacture to launch a recall for the product (69). Besides the risk of 
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fatalities, economic damage, reputation and salability are affected, and have lead to 

bankruptcy in some cases. Contaminated finished meat products at Bil Mar Foods 

(Illinois, December 1998/J anuary 1999) resulted in a major recall. Contaminated 

sausages produced by this large company were distributed nationwide and caused 

hundreds of illnesses and several consumers died. The company decided to recall all of 

its sausages which amounted to 13,000 metric tons from its distribution chain. In the end, 

21 consumers died and a class action lawsuit was filed against the company (61). And 

very recently, in October 2002, 27.4 million pounds of fresh and frozen ready-to-eat 

turkey and chicken products were voluntarily recalled by Pilgrim's Pride Corporation 

(Wampler Foods, Inc.) because of L. monocy togenes contamination (30). Other recent 

recalls include 150 pounds of pork dumplings from Goldon Coin Food Industries, Hawaii 

(Oct. 2002) and 200,000 pounds of fresh and frozen poultry products from J. L. Foods 

Company Inc., NJ (Nov. 2002) (31, 32). 

Because of the reasons mentioned earlier (shortening shelf life, risk of outbreaks 

and/or recalls, etc.), a fast, sensitive and accurate detection system is needed in order to 

trace L. monocytogenes before shipment and yet provides a confident level of consumer 

safety. Angeles d 'Auriac et al. (3) stated this as follows: "To be useful, such methods 

[detection systems] ought to produce results within one working day; be quantitative, 

sensitive, and specific; require less work than the current standard methods; have a high 

throughput; and be nondestructive to the target organisms so as to allow confirmation 

work." 

In the context of "the need for speed," several investigators mention the direct 

need of a rapid, sensitive, and specific method for the early detection of L. 
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monocytogenes (56, 60, 85). Rapid detection systems can roughly be divided into three 

groups (with some overlap): ImmunoAssay based methods, ImmunoLatex agglutination 

based methods, and DNA/RNA based methods. 

Immunoassay-based methods 

Antibody-based detection systems are very popular and are widely used 

commercially. This is not surprising considering the fact that antibody detection systems 

have been applied in clinical testing for over 20 years and are versatile in their 

applications. The use of antibody systems, mainly as ELISAs, for analyzing food 

samples, is fast after a pre-enrichment step (10). 

Three criteria are very important to judge the usefulness of an antibody in a rapid 

detection system: specificity, nonspecific binding, and affinity (12). Specificity indicates 

how well an antibody distinguishes between different antigen structures (epitopes) on a 

variety of different bacteria. This is detennined by the interactions between the vmiable 

chains and the antigen. When a non-target organism has a similar surface epitope as the 

target organism, a cross reaction occurs, thereby producing a result that may be 

considered as a false positive. For example, an antibody against Lactobacillus that also 

reacts with E. coli, will lead to a false positive. Cross-reaction is mediated through the 

antigen-binding site (idiotype), not through non-specific molecular interactions. Non­

specific interactions are often a limiting factor in ELISA testing because it leads to high 

background values. This causes problems with the detection limit and may also be 

related to false positive results or ambiguous readings. A great deal of effort is made in 

the selection of the antibody used in the test to maximize specificity and minimize 
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nonspecific binding. Affinity, the ratio of K011 to Korr, measures the binding strength 

between the antibody and the epitope and is expressed by the affinity constant (KA). It is 

another important factor to evaluate an antibody (12). 

In a standard ELISA format, cells are directly absorbed or immuno-captured onto 

wells of a microtiter plate (e.g. 96 well plate) using mono- or polyclonal Abs. The 

captured cells are then detected (indirect or direct) using an antibody that carries either a 

hapten or an enzyme reporter (20). Positive samples however, must be confirmed using 

standard microbiological culture methods (7). Some commercially available ELISAs are 

Listeria-Tek (Organon Teknika, Durham, NC), Reveal for Listeria (Neogen, Lansing, 

MI), TECRAListeria Visual ImmunoAssay (Int. BioProducts, Redmond, WA), and 

Transia Plate Listeria monocytogenes (Diffchamb AB, Vastra Fro lunda, Sweden). All 

these techniques require at least 48 h to complete (enrichment step not included) and 

identify at the genus level. A method, similar to ELISA is the enzyme linked fluorescent 

immunoassay (ELFA). In 2000, BioMerieux (Durham, NC) developed the Vidas Lis and 

Vidas Lmo tests, which are based on ELF A for detection of Listeria and L. 

monocytogenes. The Official Methods Board of AOAC International adopted the Vidas 

Lis method. Results are obtained after 48 h (enrichment not included) (33). Clearview 

(Oxoid, Ogdensburg, NY) is another rapid, antibody based detection system for L. 

monocytogenes. Antibodies for capturing the microorganisms are immobilized on a 

porous membrane strip and the detection is based on a colorimetric blue signal. Total test 

time is 44 h but detection is limited to genus level (90) . 
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A technique that is very interesting uses magnetic beads. Particles coated with 

antibodies capture and concentrate microorganisms and are separated from the food or air 

particles with a magnet (54, 68). The technique is called ImmunoMagnetic separation 

(IMS). This system has been made commercially available by Dynal (Oslo, Norway) but 

other products such as Captiva 0157 (International Diagnostic Group, Bury, UK) and 

ListerTest (Vicam, Watertown, MA) are now also on the market (86). Dynabeads are 

monosized polystyrene spheres with super paramagnetic properties. The Dynabead anti­

Listeria beads are pre-coated with high-affinity antibodies against surface markers of live 

Listeria (80). 

The paramagnetic beads are removed from the food sample with a magnet. 

Although this system can be a useful tool to separate the food compounds from a sample 

and to selectively concentrate targeted cells, some disadvantages were found. Some food 

components can interfere with this process. Considerable non-specific binding was 

observed and no increased ratio of L. monocytogenes to non-Listeria flora was found 

(109). 

Since polyclonal antibodies (Abs) are used, a combination of the immuno capture 

device with PCR is required to give a definite result about the presence of L. 

monocytogenes. Furthermore, intact dead cells can also bind to the immuno magnetic 

beads (84). However, incorporation of two washing steps seems to remove dead cells 

( 49, 1 09). This means that the affinity for the Ab-dead cells complex is lower than for 

the complex with living cells. Collecting Dynabeads out of a food sample suspension can 

be impa.ired, and as a result, only a partial recovery of the beads was possible (15). This 

problem cold be circumvented by diluting the suspension before or after adding the 
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Dynabeads. The drawback was that only at the highest inoculum level (40 CFU/g 

cheese) L. monocytogenes cells could be detected (1 09). O'Conner et al. (84) concluded 

that food components such as fats and food debris can interfere with the antibody­

organism interaction. Uyttendaele et al. (1 09) formulated two remarkable conclusions 

about IMS: 1) IMS is not appropriate for separation of L. monocytogenes from a 

concentrated cheese homogenate and 2) IMS with Dynabeads anti-Listeria did not allow 

a selective enrichment or concentration of L. monocytogenes. The overall conclusion was 

that there is no justification to include IMS using Dynabeads anti-Listeria in an isolation 

procedure for L. monocytogenes. Hudson et al. (49) found that after three washes, the 

recovery of L. monocytogenes cells was only 1% and a poor detection limit was observed 

for skim milk at 2 x 105 CFU/ml (80). Contrary to those findings, IMS was very 

successfully used in the detection and concentration of E. coli in samples of raw 

vegetables and raw meat products (16, 95), the capturing of Cryptosporidium oocysts in 

water (48), and the detection of Pneumocystis carinii DNA (68). The same positive 

results were obtained for Salmonella in food and stool samples ( 1 02). The fact that an 

article from the University of Oslo in cooperation with Dynal itself mentions detection of 

L. monocytogenes cells only at a cell concentration of 10 7 and 108 CFU/ml, is remarkable 

(92). It highlights the difficulty of creating a sensitive system. EiaFoss Listeria (Foss 

North America, Eden Prairie, MN) is a commercially available system that combines 

IMS with ELISA. In a similar system, Blake and Weimer (11) combined an IMS 

technique for capturing with a sandwich ELISA for the detection of Bacillus 

stearothermophilus with a lower detection limit of 8 x 103 CFU/ml. 
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Another way to concentrate foodbome bacteria is by adding metal hydroxides. 

Using this method, researchers found a 50-fold sample concentration and the recovery of 

bacteria was between 65 and 96% (64). Fiber optics is another way to rapid detect L. 

monocytogenes. The system is based on a sandwich immunoassay using cyanine 5 dye­

labeled polyclonal antibodies. Biotin-avidin interactions are used to attach the antibodies 

onto the fiber probe. A sensitivity of 3-30 CFU/ml (ground beef samples) was obtained. 

Two major drawbacks of the system are the inability to give information about bacterial 

viability and the small, 100 fJl, sample size (21 ). 

Immunolatex agglutination-based methods 

Latex agglutination tests are mainly used in the health care sector to detect the 

presence of antibodies or antigens in bodily fluids. If a sample contains the 

corresponding antigen or antibodies, the latex beads will agglutinate when mixed with the 

sample. This method can provide a result in 15 min. Examples of the immuno-latex 

agglutination based method are Micro-ID Listeria (Remel, Lexena, KS) and Listeria 

Rapid Test (Oxoid, Ogdensburg, NY). 

DNA/RNA-based methods 

DNA and RNA based methods have seen an immense increase in popularity over 

the last two decades. Their specificity and sensitivity are two main advantages that play 

an important role. 

Nucleic acid hybridization techniques. The main purpose of nucleic acid 

hybtidization, first introduced in the 70's, was to study specific genes (97). Several 

improvements over the last decade increased the sensitivity and reproducibility 
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drastically. One of the major changes was the replacement of nitrocellulose membranes 

by nylon membranes. Due to these improvements, nucleic acid! hybridization techniques 

are currently used for the detection of pathogens. GenProbe (S.an Diego, CA) introduced 

AccuProbe, which is specific for the detection of L. monocytog.enes. Detection is based 

on a single strand DNA probe with a chemiluminescent label tlnat hybridizes to the rRNA 

of the target organism. The stable DNA:RNA hybrids are measured in a luminometer. 

This system is, however, only tested on pure cultures after enrichment. Two assays have 

been developed by Gene-Trak (Hopkinton, MA); one to detect all species of Listeria and 

another specific for L. monocytogenes. For both assays, a dipstick is placed in the cell 

lysate solution with a probe present, which was added in a previous step. The 16S rRNA 

gene is targeted and the read out is colorimetric (7). The company claims a sensitivity of 

1-5 CFU/25 g of sample in 2 h after 48 h enrichment. 

Polymerase Chain Reaction (PCR). Genetic tests are focused on PCR methods 

for the detection of pathogens. Initially, these methods extracted DNA directly from food 

with limited success for all food types. As such, commercial methods were developed 

based on a pre-enrichment step prior to the PCR detection as a strategy to simplify the 

extraction process, and as a way to increase low-density pathogen populations. More 

recently, PCR-based methods have been developed to extract DNA from some foods and 

environmental samples. Other DNA detection systems have been used to track strain 

relatedness, but they only provide historical information useful in epidemiological 

studies. 

Detection techniques based on PCR are very promising because simplicity is 

combined with specificity and sensitivity for detection of the path Jgen, if sufficient 
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quality DNA can be extracted from the sample (13, 39). In vitro amplification of specific 

DNA sequences by PCR allows direct detection and identification of the pathogen. Chen 

et al. (18) claimed a sensitivity of 10 fg DNA, which theoretically corresponds to 

approximately two L. monocytogenes organisms per ml (18). Sensitivity is sometimes 

approached by researchers based on the volume present in the PCR tube (which generally 

contains only 25 to 50 Ill). However, others refer to the initial present cell number before 

an enrichment step for cell number calculations. A detection limit lower than 103 

CFU/ml without previous enrichment is seldom reported in literature. Shifting toward 

food samples reduces this sensitivity drastically. 

A prerequisite for PCR is obtaining DNA (or RNA) for amplification, thereby 

relying on a robust lysis procedure. Different methods for lysis are present such as 

physical, chemical and enzymatic. The different methods can be compared to each other 

using absorbance and fluorescence techniques ( 4, 5, 6). Among physical methods, a 

boiling step for 5-10 min is most commonly used (75). This crude DNA can be "cleaned 

up" by implementing an extra purification/centrifugation step to remove cell debris (39, 

40). The use of a bead beater is also used to lyse cells (111). This mechanical lysis 

method is based on shear forces between the cells and beads added to the cell suspension. 

Alkaline lysis is a chemical method and uses a solution ofNaOH and sodium dodecyl 

sulfate (SDS) often in combination with a heating step (44, 60, 75). It became clear, 

however, that the detergent SDS inhibits the polymerase activity in PCR. The easiness 

of foaming (even at concentrations of 0.1 %) and the toxicity of SDS make its use 

unfavorable in food product analysis (97). Triton X-1 00 is another chemical used for cell 

lysis (1, 19, 52, 97, 112). The two most c01mnonly used enzymes are lysozyme and 
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proteinase K. Lysozyme degrades the bacterial cell wall and is therefore often used in 

extraction protocols. It is applied alone or in combination with other enzymes (e.g. 

proteinase K, pronase E) and/or chemicals such as SDS (49, 62, 103). Incubation time 

with lysozyme varies from 5 min to 30 min at 37°C. Proteinase K, as the name reveals, 

degrades proteins in the cell wall. O'Connor et al. (84) used this enzyme alone to 

degrade the cell wall; Subsequently, heating at 95°C for 10 min inactivates the enzyme 

prior to subjecting to PCR. A combination of lysozyme (15 min) with proteinase K (60 

min) at respectively 37°C and 60°C, produced the highest amount of DNA release in L. 

monocytogenes cells (84) . 

PCR involves the enzymatic amplification of a targeted nucleic acid sequence 

using a thermo stable DNA polymerase and a primer that uniquely defines the target. 

Theoretically a single copy of target DNA can be amplified to 106 copies in only 30-40 

cycles, generally completed within 1-3 h (81). The choice of the sequence targeted is 

often based on the genes encoding for the virulence factor. For L. monocy togenes, this is 

most commonly the gene encoding for listeriolysin 0 , hlyA, used for host cell entry. 

Other target genes include iap (invasion associated protein p60), in!A (intemaline), prfA, 

or imaA (44, 51 , 56, 79, 81, 83). 

Although PCR is a very promising technique, the poor sensitivity in food analysis 

due partly to reaction inhibitors and the potential for false-positives reactions, have 

limited the routine application of PCR -based screening assays (81 ). The industry tries to 

accommodate this by offering DNA/RNA clean up kits including InstaGene Matrix (Bio­

Rad Laboratories, Hercules, CA), Lyse-N-Go PCR Reagent (Pierce, Rockford, lL), Dynal 

beads DNA Direct (Dynal, Oslo, Norway), and the High Pure PCR Template preparation 
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kit (Roche, Indianapolis, IN). The primary functions of these kits are to concentrate the 

template and to separate the inhibitors before the PCR analysis. The latter acts generally 

at one or more of three essential points in the PCR reaction: interfering with cell lysis, 

interfering with nucleic acid degradation, and inhibiting the polymerase activity for 

amplification of the target DNA (116). PCR applications commercially available for 

detection of L. monocytogenes include BAX system (Qualicon, Wilmington, DE), 

Probelia (Bio-Rad laboratories, Hercules, CA), and DNA-Detect (Vita-Tech, Markham, 

Ontario, Canada). 

A PCR reaction cannot distinguish DNA from live or dead cells (81) and therefore 

might result in false positives. Klein and Juneja (56) amplified L. monocytogenes DNA 6 

h after autoclaving, which shows the stability of DNA. Herman ( 43) concluded that L. 

monocy togenes DNA could be detected by PCR more than 30 days after cell viability was 

lost due to various inactivation treatments. This is particularly important in foods and the 

environment, where nonviable, inactivated pathogens may be present after treatments 

such as thermal or irradiated processed food (73). The chances of false positives with a 

PCR detection system are therefore high. Hence, the use of enrichment to overcome this 

problem by providing large amounts of DNA from an actively growing culture, is 

common. The insertion of an enrichment step however, has its own disadvantages. The 

most obvious disadvantage is the time needed to enrich (56, 81 ). The 2 h used by Klein 

and Juneja (56) is unlikely to be sufficient to allow growth since a growth curve after 

incubation in a specific, pure grow medium like BHI, shows a log phase of at least 2 h 

(this work). To isolate L. monocytogenes, Zhao and Doyle (117) concluded that a 

minimum of 24 h incubation at 3 7°C is required to obtain a 104 CFU/ml population. 
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High numbers of competing microorganisms (especially L. innocua) in food samples can 

overgrow and mask the presence of L. monocytogenes (the cells might not multiply to 

detectable numbers), leading to false negative results (99). Their presence will reduce the 

sensitivity of the PCR assay (16). Stressed cells may not multiply at all, but they may 

maintain metabolic activity. 

The enrichment procedures are labor-intensive and don't allow high throughput or 

automation. All commercially available DNA testing kits use an enrichment step to 

increase the microbe concentration and to ensure that enough DNA (or RNA) is present 

(60). Zhao and Doyle (117) concluded that a short enrichment step of 6 h for heat­

injured L. monocytogenes is not enough, and most kits use at least 8 to 24 h enrichments. 

Microorganisms can be sub-lethally stressed by the food environment and so require a 

period of recovery preceding enrichment (79, 117). 

The use of rRNA, a much less stable molecule, in reverse transcriptase PCR (RT­

PCR) to fonn eDNA prior to PCR is another solution to the problem of detecting false 

positives due to the presents of dead cells (44, 56, 73, 76). Taq polymerase does not 

amplify RNA, therefore it may be possible to selectively assess the active cells in the 

sample, even after autoclaving (56). Messenger RNA (mRNA) is also a promising target 

for detection assays because it is produced only by viable cells and is rapidly degraded 

after cell death. It can also be used as an internal signal amplification system because 

cells produce multiple copies of a single mRNA transcript during gene expression 

making it theoretically possible to increase the assay sensitivity (81, 82). 

In addition to the several RT-PCR methods, an alternative approach was taken 

with the Nucleic Acid Sequence-Based Amplification system (NASBA) (1 08). This 



24 

method does not need the use of a thermocycler (isothermal reaction) and eliminates the 

separate RT-step for RNA amplification. Although RNA detection might have multiple 

advantages over DNA detection, the instability might lead to a false negative if the 

detection system is not fast or is contaminated with degradation enzymes, which are very 

common. Novak and Juneja (83) demonstrated that heat-injured L. monocytogenes cells 

were occasionally undetectable by RT-PCR. They concluded that RT-PCR was 

ineffective in detecting low levels of heat-injured cells until mRNA synthesis was 

reestablished. 

A broader viewpoint in favor of DNA detection is GMP and HACCP conditions. 

If, in a sample of the end product DNA of L. monocytogenes is detected (from dead or 

alive cells), then improper handling techniques were used somewhere in the production 

chain. This brings us back to the introduction of this proposal were Graham et al. (35) 

stated that L. monocytogenes should be considered as an indicator organism. Presence of 

high numbers (103 CFU/ml or higher) of this microorganism in any of the ground 

material supplies, or in any food-processing step, must be traced and eliminated. Relying 

just on a heating step at the end of the processing chain may not be sufficient. The main 

problem with L. monocytogenes is usually growth in food during storage, which means 

that the problem of detecting dead cells is of minor concern anyway (80). In short, 

detecting a nucleic acid band on a gel after PCR amplification should raise concern 

irrespectively if this band is a result of DNA from dead or alive cells (assuming that 

bands are a result of I 03 CFU/ml or higher). 

An aspect independent of whether RNA or DNA is used, is the issue of false 

positive results due to cross contamination in PCR. Proper handling techniques are 
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required during PCR to avoid cross-contamination since it is considered as the main 

reason for false positive results (116). The development of single tube PCR products, like 

the Ready-To-Go PCR beads (Amersham Biosciences, Piscataway, NJ) or the BAX PCR 

amplification kit (DuPont Qualicon, Wilmington, DE), reduces the risk of cross 

contamination. An advantage of the BAX system is that all the reagents necessary for 

DNA amplification are present in a pellet form. The total analysis time is 52 hand 

detection is specific for L. monocytogenes. After PCR, gel electrophoresis is performed. 

Sensitivity was however poor and high numbers of false negatives were obtained (90). 

Other researchers however concluded that after including an enrichment step, the BAX TM 

system was very convenient with a detection limit of 1 CFU/25 g of meat sample (9, 81). 

By reducing the handling (adding and transferring components) cross-contamination of 

the PCR reaction can be reduced. The use of the enzyme uracil-n-glycosylase (UNG) or 

uracil DNA glycosylase (UDG) can also reduce this risk. After incorporating uracil into 

amplicons during PCR, specific degradation of fragments containing uracil will occur 

when treated with UNG or UDG. Thus products carried over from previous assays can 

no longer serve as templates (81 ). 

Real-time PCR. Once the thermocylcer has amplified the DNA fragment, an 

agarose gel is loaded with the sample in the research laboratory. This gel electrophoresis 

step takes about 1 hour and in the concept of ' the need for speed' , researchers are trying 

to avoid this step. To speed up PCR and obtain quick results, real-time PCR is used. 

This system is based on the detection and quantification of a fluorescent reporter as the 

amplicon is produced, so a real-time result is visibie via photomultiplier tubes and no gel 

electrophoresis is needed. Molecular beacons, SYBR Green, and Taqman probes are 
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commonly used to create a fluorescence signal. Real-time thermocyclers such as the ABI 

PRISM 7700 (Perkin-Elmer, Foster City, CA), the Smart Cycler (Cepheid, Sunnyvale, 

CA), GeneAmp 5700 (PE Biosystems, Foster City, CA), Lightcycler (Roche, 

Indianapolis, IN) and Opticon (MJ Research Waltham, MA) are now commercially 

available. The chief disadvantage of real time PCR is cost. The machines are expensive 

to purchase and the maintenance and running costs are considerable (97). By avoiding 

post-PCR processing, the risk of cross-contamination is again reduced ( 42), but sample 

handling is still a primary concern. Quantification is also possible and a higher 

sensitivity compared to standard PCR is claimed (55, 80). The implementation of a real­

time PCR step for L. monocytogenes detection has become more common ( 42, 55, 66, 80, 

81). 

ImmunoFlow system 

The ImmunoFlow system developed and investigated in this research project uses 

the same basic idea as the IMS system in which cell capturing relies on antibodies 

covalently bound to beads. However the ImmunoFlow system uses an upstream flow­

through, creating a fluidized bead bed. Furthermore, 3 mm in diameter glass beads are 

used which are very different from the 2.8 llm used for IMS beads. The ImmunoFlow 

system consists of a cartridge filled with glass beads that are coated with antibodies (Ab) 

and which will capture L. monocytogenes cells flushed through the system. By using the 

fluidized bed principle (flow of food samples is in upward direction through the bead 

bed), the food sample resides in the chamber and stays in contact with the beads longer 

than predicted by the linear flow rate, thus capturing and detecting L. monocytogenes is 
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theoretically, more efficient. Furthermore, the continuous movement of the beads will 

delay clogging of the capture device during food testing. This system was already 

successfully applied by Weimer et al. (113, 114) for the detection of Bacillus globigii 

spores and Escherichia coli 0157:H7. A detection limit of 1 spore/cell, independent of 

the sample, size was reported (113). The detection procedure is based on an indirect 

sandwich ELISA. After running the sample over the beads, a specific, secondary Ab 

solution is run through the cartridge to bind the microorganisms captured by the Abs on 

the beads in the previous step. The following Ab solution, a tertiary Ab labeled with an 

enzyme, will attach to the secondary Ab. By adding a substrate in a next step, a color 

change will occur which can be quantitatively analyzed. If a presumptive positive result 

is obtained, a PCR/gel electrophoresis step can be performed on the DNA extracted from 

the captured cells. The linking of a real-time PCR system to the ImmunoFlow system 

should significantly reduce the analysis time (49, 72). 

Although the ImmunoFlow system might have similar capturing efficiency 

problems as found in the IMS system (both systems use Ab), several disadvantages are 

overcome. First, the glass beads in ImmunoFlow are not separated from the fluid -

eliminating the loss ofbeads as was previously experienced in IMS (11 , 15, 109). By 

automating the system, the labor intensity and the analysis time will also be reduced 

significantly. Furthermore, the system uses large sample volumes (up to 5 L) that can be 

pumped through the bead bed at a flow rate to fluidize the beads, leading to a turbulent 

flow. The issue of small sample volumes for IMS was also recognized by Chandler et al. 

(15) and solved it by developing an injection flow capture system with a detection limit 

of 103 cells/mi. Conceming the flow dynamics, the same researchers came to the 
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important conclusion that only by inducing enough turbulence within the flow cell (fast 

trap-release) could efficient cell capture be obtained [i.e. the fluidized concept reported 

by Weimer et al. (113)]. 

Improving Detection Sensitivity 

The focus on PCR methods is based on the preparation of DNA from the sample 

(either separation of the bacteria from the food or DNA extraction), template 

concentration techniques, and primer selection to amplify the target organism in a sea of 

other potential template DNA (60). All these eiements present a challenge to research. 

The reason that those factors are important, lies in the sensitivity of PCR. First, as 

mentioned above, a minimum amount of DNA has to be pre~ent before amplification can 

occur. Second, polymerases, the core elements of the PCR reaction, are very sensitive to 

inhibition by many elements present in food products. Third, simultaneous detection by 

PCR of different microorganisms is difficult when one of the target organisms is present 

in lower numbers compared to the other ones (47). With complex matrices such as food, 

steps must be taken to limit the effect of any potentially inhibitory compounds present 

that may limit PCR amplification and therefore reduce the sensitivity (59, 70). At the 

same time, effort in concentrating the microorganisms (i.e. the DNA/RNA) to increase 

the sensitivity of the detection method must be done. In order to fully exploit the 

sensitivity and specificity ofPCR, certain devices must be incorporated before the actual 

DNA amplification step in the thermocycler. 

This study merged a capture/concentration method with PCR to eliminate 

enrichment in an effort to produce an assay that was fast(< 4 h), specific, and sensitive. 
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The cell separation/concentration step based on immuno-technology was combined with 

a DNA amplification step to obtain a final result. This approach eliminated several 

problems that came across in the past as mentioned throughout this literature review. By 

using an ImmunoFlow system with sampling station (i.e. circulation of the food sample 

over the beads), the ultimate goal was to eliminate any kind of enrichment step, which 

would increase the analysis time. A sample run in the ImmunoFlow system was 

completed within 30 min. A presumptive positive result will be confirmed with PCR 

after lysing the cells and extracting the DNA. This confirmation step might take another 

hour. This means that a positive sample confirmation will be obtained within 2 h. 

Hypothesis 

Listeria monocytogenes can be captured from milk using a fluidized-bed solid-phase 

capture system with covalently attached antibody-beads, allowing elimination of the 

enrichment step, and followed by PCR for specific detection. 

Objectives 

1. Optimize Rapid Immuno Capture (RIC) in buffer solution to capture L. 

monocytogenes after finding the optimum antibody combination and 

concentration. 

2. Determine a method to lyse the cells after capture on to beads. 

3. Combine Immuno-capture and PCR to detect Listeria and identify L. 

monocytogenes in pure culture and food samples. 
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CHAPTER3 

RAPID DETECTION OF LISTERIA MONOCYTOGENES IN MILK VIA SOLID 

PHASE CAPTURE AND PCR 1 

Abstract 

42 

Listeria monocytogenes is a food borne pathogen that causes severe illness and 

death. Illness is frequently associated with dairy products and processed, ready-to-eat 

meat products. Detection of Listeria with antibody-based methods is limited to a genus 

only assay for AOAC approved methods. Other assays using PCR without additional 

treatments, such as pre-enrichment, have not been reported in food products. In this 

study, L. monocytogenes ATCC 43215 was captured with glass beads covalently coated 

with anti-Listeria polyclonal antibodies followed by detection with an ELISA or PCR. 

Capture was achieved with a 20-min shaking incubation or a 5 min fluidized bed step. 

Subsequently, the beads were washed, boiled, and used for detection with PCR. No 

detection was observed with PCR without solid phase capture from any kind of milk 

inoculated with as much as 108 CFU/ml added. Detection with solid phase capture 

decreased significantly (p<0.05) in milk samples compared to buffer. Further 

investigation of this observation demonstrated that heat treatment and increasing fat 

content of milk samples significantly decreased (p<0.05) capture in flow, but not in 

shaking capture setup. Both solid-phase capture conditions consistently bound cells in 

Tris buffer with a detection limit of 106 CFU/ml. The detection limit with PCR for the 

invasion associate protein gene (iap) in pure culture suspended in Tris buffer (without 

1 Coauthored by Wim Lippens, Marie Walsh, and Bart Weimer. 
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using glass beads) was 1. Ox 101 CFU/ml. These data lead us to conclude that solid phase 

capture before PCR was required to detect Listeria monocytogenes in pasteurized milk. 

This approach provided a result in 4 h or less by eliminating the enrichment step. 

Introduction 

Despite the progress seen in recent times in medical care and food technology, 

food- and waterborne diseases are of increasing concern for human health worldwide 

(11 ). Listeria infections are of particular concern because the mortality is high and it 

persists to cause chronic diseases like gastroenteritis. L. monocytogenes is a gram­

positive, psychotropic, foodborne pathogen found in milk and ready to eat food products 

(38). Due to its wide spread distribution in soil and raw foods, people frequently 

encounter this bacterium through various sources, like fi·esh cheeses, meat, poultry and 

eggs, fish and other seafood products (14, 41). This emerging pathogen causes listeriosis 

with influenza-like symptoms that progress to gastroenteritis, convulsions, and even 

spontaneous abortions among pregnant women if untreated (39). According to CDC, an 

estimated 2,500 people become seriously ill with listeriosis each year. Of those, about 

500 people die each year (4, 36, 47). L. monocytogenes is the only species of concern for 

disease within the genus Listeria. The other five species, Listeria ivanovii, Listeria 

innocua, Listeria welshimeri, Listeria seeligeri, and Listeria grayi are rarely pathogenic 

for humans. Identification of the microorganism to the species level is therefore 

important to avoid false positive results in food safety analysis. This discrimination is 

more commonly done using DNA-based methods such as polymerase chain reaction 



44 

(PCR) or microarray-based assays ( 48). 

Currently, detection requires 4-8 days before a definitive identification is obtained 

with plating and immunoassays. This a substantial limitation in detecting this organism 

(8). As a result, the rapid pathogen detection industry is a growing market with an 

expected grow of the testing market to $192 million and 34 million tests by 2005 (2) . 

The latest developments in this field use bio- and microchip technology with promising 

results towards sensitivity and selectivity (17, 34). 

An enrichment step is generally used to facilitate recovery of injured or stressed 

organisms, but also increases the time. Culture methods used by the FDA and the 

USDA-FSIS, have emerged as the most commonly used protocols in the United States. 

Both methods use selective (Fraser broth, FB; Oxford medium, OXA) and non-selective 

enrichment broths (Buffered Listeria enrichment broth, BLEB; Brain Heart Infusion, 

BHI; University of Vermont broth, UVM) as enrichment media (3 , 22). There is a risk, 

however, that during enrichment other non-pathogenic Listeria spp., especially L. 

innocua, will overgrow L. monocytogenes (36). Direct PCR from the broth or the sample 

may overcome this problem. 

Aznar and Alarcon (5) found that PCR methods were more sensitive since they 

were able to detect more positive samples. As a result, immuno- and DNA-based 

detection methods are of interest for rapid detection of L. monocytogenes. A major 

problem however, with DNA-based techniques such as PCR, is the inhibitory 

components in the food sample. Therefore, a separation from the food and the 

microorganism of interest is necessary in many food types. Several techniques to 

separate the bacterial cells or the genetic material from the sample before analysis have 
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been reported. These include surface adhesion immunofluorescent techniques (SAIF), 

probe membrane-based systems, and DNA absorbing magnetic beads (32, 33, 35 ,40, 43). 

Herman et al. (20) used a chemical extraction method combined with several 

centrifugation steps prior to analysis with nested PCR. Physical collection or separation 

of the cells by centrifugation, filtration and immunomagnetic separation (IMS) before 

analysis are also used (36). The latter method combined with bacteriophage assays, a 

chemiluminescence fiber-optic biosensor, slide agglutination or DNA probes besides 

PCR-based techniques, have also been reported (13, 25, 30, 45). However, after 

evaluating the efficiency and specificity of the IMS technique in different food samples, 

it was concluded that IMS was not appropriate for separation of L. monocytogenes from a 

concentrated cheese homogenate. Presumably, the Au specificity and avidity were 

insufficient (23, 27, 35, 46). This work highlights the need for Ab that bind tightly to 

obtain a test that is sufficiently sensitive. 

Weimer et al. (50, 51) developed an alternative Ab capture method for physical 

removal ofbacteria before analysis. This approach uses a fluidized bed devise that 

allows turbid samples to flow into a cartridge containing 3 mm (in diameter) glass beads 

at 100 to 2,500 mllmin flow rates. Using the fluidized bed allows the cells to be captured 

within 5 to 20 min, thereby eliminating the pre-enrichment step. The sensitivity of this 

sample scheme varied with Ab, sample size, and bead volume. In each of these cases, Ab 

capture was coupled to ELISA detection. Additionally, Fluit et al. (15), used monoclonal 

Ab-based capture combined with PCR to provide a species specific result for Listeria. 

However, the latter detection method included an enrichment step, which brought the 

total detection time to 55 h. 
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Several L. monocytogenes PCR detection systems are commercially available. 

Pre-enrichment and sample preparation steps are part of all commercial methods, 

resulting in a minimum detection time of -48 h (36). The hypothesis of this study was 

that Listeria can be captured from milk using a fluidized-bed solid-phase capture system 

with covalently attached antibody-beads, eliminating the enrichment step, and that this 

can be couple to a PCR reaction for specific L. monocytogenes detection. This 

hypothesis was confirmed in pure culture and in milk (however, only at cell 

concentrations simular to those after enrichment), whereby the enrichment step was 

eliminated using a 5 to 15 min capture step before detection. Milk fat reduced solid 

phase binding in flow, but had no effect on shaking capture in milk. 

Materials and Methods 

Bacterial strains and storage 

The strains used in this project were L. monocytogenes ATCC 43251 and Listeria 

innocua ATCC 33090 (Rockville, MD). Stock cultures of each bacterium were prepared 

from single colony isolates after growth as described by the A TCC instruction sheet. 

Each culture was inoculated (1 %) into 10% non-fat dry milk powder containing 33% 

sterile glycerol and stored in liquid nitrogen for subsequent use. 

Inoculated sample preparation 

Before each use, a new vial of the stock culture was thawed, inoculated (1 %) into 

BHI broth, and grown for 12-14 h at 3 7°C on a shaking incubator (Lab-Line, Melrose 

Park, Il) at 150 rpm to a density of~ 1 x 109 CFU/ml. The cells were washed twice with 
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an equal volume of 50 mM Tris (pH 7.2), collected by centrifugation (3,000 x g for 5 min 

at 4°C), and resuspended in the same volume of sterile 50 mM Tris (pH 7.2). This 

suspension was used to inoculate milk samples at 1: 10 dilution of the cell preparation 

with various milk types and Tris buffer 10 min prior to using them for Immunocapture. 

Ultra high temperature (UHT) milk products were purchased from Gossner Foods 

(Logan, UT). Pasteurized milk was obtained from a local grocery store. Raw milk was 

obtained from the Gary H. Richardson dairy processing plant in the Nutrition and Food 

Sciences Department at Utah State University (Logan, UT). Samples with different fat 

content (0%, 2%, and 3.5%) were tested for each type of milk, except raw milk, which 

only had one fat level (3.5%). For pasteurized milk, a sample with 1% fat was also 

included. Milk without Listeria spp. added was used as a negative control for each 

sample. 

Antibody selection 

Each Ab was titered using a procedure described by Harlow and Lane (19). To 

obtain the working concentrations and acceptable combinations, every Ab was tested 

against each other in an indirect ELISA fonnat at various concentrations. This was done 

by diluting each Ab over a range of 1:100 to 1:50,000 in PBS (pH 7 .2) in a matrix format 

(i.e. dilution series of two different Abs were tested at the same time on the 96-well 

plate). The amount of Ab in each dilution was calculated to the molecule number per ml 

using equation 1, with the assumption of 150,000 kD as the molecular weight of the Ab: 

Ab l l I l 
protein concentration Avogadro's number 

mo ecu es m = x Eq. 1 
molecular weight 1000 
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Four polyclonal Abs were used to determine acceptable combinations of primary 

and secondary Ab: R4-V99 and G5-V99 (OEM Concepts, Toms River, NJ), YVS4201 

(Accurate Chemicals, Westbury, NY), and B65420R (Biodesign International, Saco, 

ME). The 05-V99 Ab was produced in goat, the other three Ab were made in rabbits 

(Appendix A). The tertiary Ab was an alkaline phosphatase conjugate of goat anti-rabbit 

IgG (Sigma, St. Louis, MO). 

An ELISA was done in order to find the optimum antibody combination/ 

concentration. For each dilution of the primary Ab (1 :100 to 1 :50000), a volume of75 J.ll 

was dispensed into the wells of a 96-well plate (clear polysterene, Fisher Scientific, 

Pittsburgh, P A) followed by overnight incubation at 4 oc to passively coat the well with 

the Ab. Residual Ab was removed with four washings of 250 J.ll phosphate buffered 

saline (PBS) (pH 7.2). The well surface was blocked with 150 J.ll of a 2% bovine semm 

albumin (BSA, fraction V, Sigma, St. Louis, MO), with an incubation of 1 h on a 

platform shaker (C1 New Bmnswick Scientific, Edison, NJ) at 100 rpm and 37°C. 

Subsequently, 75 ~d of a~ 109 CFU/ml suspension (see above) of Listeria was added to 

each well. The 96-well plates were incubated at 37°C for 2 h for binding. 

Each secondary Ab was added (75 J.ll) in a dilution format perpendicular to those 

of the primary Ab coating so that each Ab was used in all possible 

combinations/concentration. Plates were incubated at 37°C for 1 h, and washed four 

times with 250 J.ll of PBS. The tertiary Ab was added (75 J.ll of 1:5,000 dilution, ~9.6 x 

1010 molecules) to all the wells, incubated at room temperature ~25 °C (RT) for 30 min 

and washed 4 times with 250 J.ll of PBS. p-Nitrophenyl phosphate (pNPP, Sigma,) at 1 
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mg/ml in 0.1 M glycine buffer (pH 1 0.4) containing 1 mM MgCb and 1 mM ZnCb was 

added to the wells (75 !J.l) before incubating the assays for 20 min on a shaker in the dark 

at RT. 

Color development in each well was measured using a BioAssay 7000 plate 

reader (Perkin Elmer, Norwalk, CT) at a wavelength of 405 nm. Each experiment 

contained controls of 1) ELISA without cells (blank), 2) the primary Ab combined with 

the tertiary Ab, 3) the secondary Ab combined with the tertiary Ab, and 4) the tertiary Ab 

alone (Appendix A) . Each assay was done in duplicate for each replicate. A matrix of the 

signal to noise (SIN) ratios was prepared to define the appropriate combination for each 

Ab that was used as primary and secondary Ab. The SIN ratio was calculated by dividing 

the absorbance value of the treatment by the appropriate absorbance for the blank of each 

Ab combination. An acceptable result was considered to be a SIN > 1.2. 

DNA amplification protocols 

Primers specific for the iap gene of L. monocy togenes were used as described by 

Bubert et al. (7), except the PCR conditions were modified as follows : the forward 

primer (MonoA) of 5' -CAAACTGCTAACACAGCTACT-3' with a reverse primer 

(Lis1B) of5'-TTATACGCGACCGAAGCCAAC-3' was used to amplify a 660 base pair 

product. Another primer set specific for the iap gene of L. innocua, was used to amplify 

a 870 base pair product with the forward primer (lno2) 5'-ACTAGCACTCCAGTTGTT 

AAAC-3' and a reverse primer (Lis I B) of5'-TTATACGCGACCGAAGCCAAC-3') (7) . 

Primers sets were made by and purchased from Qiagon Operon (Alameda, CA) 

(Appendix B). 
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To amplify the selected DNA sequences puReTaq Ready-To-Go PCR Beads 

(Amersham Biosciences, Piscataway, NJ) were used as described by the manufacturers 

instructions. The PCR reaction mixture was made to a final volume of25 J..Ll and 

contained I Ready-To-Go bead, 1.5 J..Ll of a 20 nM solution of each primer, 5 ~J.l of the 

lysis buffer, and 17 ~J.l of sterile ddH20. PCR was performed using a PTC-200 Peltier 

Thermo cycler (MJ Research, Reno, NV). The PCR procedure of Bubert et al. (7) was 

used for L. monocytogenes, except the program was modified as follows: denaturation for 

1 min at 95°C, 40 cycles (15 s) at 95°C, annealing for 30 sat 58°C, and 45 s of extension 

at 72°C. An extra extension step of 72°C for 4 min was added at the end of the 

thennocycling program. The PCR conditions for L. innocua were 1 min denaturation at 

95°C, 30 thermocycles at 95°C for 15 s, annealing at 58°C for 30 s, and extension at 

72°C for 50s. After completion ofPCR, the samples were held at 4°C until proceeded to 

the electrophoresis step. 

The entire volume (25 J..Ll) of the PCR mixture was combined with 1 J..Ll gel­

loading dye (BlueJuice, Gibco BRL, CA), mixed, and loaded into 1.3% agarose gels 

(FMC Bioproducts, Rockland, ME). Electrophoresis was performed for 90 min at 4°C 

using a voltage of 80 V /em in 1 x T AE buffer ( 40 mM Tris base, 40 mM acetic acid, and 

1 mM EDTA). The gel was stained with ethidium bromide (1 J..Lg/1) for 20 min and the 

bands were detected on a transeluminator (UVP, Upland, CA). Photographs of the gel 

were obtained using a Polaroid Land Camera MP4. A Hi-Lo DNA ladder (MBI 

Fennentas, Hanover, MD) was included in each gel. PCR fragments of approximately 
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respectively. 

Cell lysis 

51 

L. monocytogenes was grown overnight in BHI for 12-14h at 3 7°C in an Environ­

Shaker (Lab-Line, Melrose Park, Ill) at 150 rpm to a population density of~ 109 CFU/ml. 

Before adding cells to a sample, the pure culture was washed twice (1 ml cell pellet 

resuspended twice in 1ml of 50 mM Tris buffer pH 7.2). Cells were harvested by 

centrifugation (model CR3i-V1, Jouan S.A., Saint-Herblain, France) at 3,000 x g for 5 

min and the cell pellet suspended into each lysis solution to a concentration of 1 x 1 08 

CFU/ml. These preparations were used to compare lysis procedures for DNA release 

from the captured cells (Appendix C). The treatments included lysis by physical 

disruption (boiling 5 to 10 min, shear by vortexing for 5 min), chemical extraction (1% 

Triton X-100, alkaline lysis with 0.05 M NaOH and 0.02% SDS), and enzymatic 

digestion (1.5 mg/mllysozyme, 30 min, 37°C, 500 ~Lg/ml proteinase K, 30 min, 60°C) 

procedures. A combination of 6 min boiling of a 1% Triton X-1 00 solution followed by a 

30-min incubation with lysozyme (1 .5 mg/ml) at 37°C) was also investigated. 

Initially, PicoGreen (Molecular Probes, Eugene, OR) was used to determine in a 

quantitative way the amount of dsDNA released by each lysis method (Appendix C). 

After each treatment, 500 ~1 extracted DNA solution was put into a new 2 ml Eppendorf 

tube (Brinkman, Westbury, NY) together with 500 ~1 of a 1:200 diluted PicoGreen 

solution, vortexed and incubated in the dark for 5 min. Each sample (200 ~1) was 

dispensed into a well of a 96-well plate (Fisher Transparent Sterile Plate) and a 
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fluorescence reading was taken on a plate reader (HTSoft 7000 BioAssay (Perkin Elmer, 

Norwalk, CT) in duplicate, using an excitation wavelength of 485 nm and an emission 

wavelength of 530 nm. A five-point standard curve was created with DNA amounts 

ranging from 111g/ml to 1 !Jg/ml (Appendix C) to determine the concentration of the 

release DNA using equation 2. 

Y = 4.3643X + 2349 (R 2=0.99) Eq. 2 

The blank readings for each treatment were subtracted from the sample readings; 

therefore, the simplified zero-adjusted equation Y = 4.3643X was used to calculate the 

net DNA release. Each lysis procedure was done in duplicate and replicate. The 

efficiency of the different lysis procedures in pure cultures were rank based on the total 

amount of DNA released (Appendix C). Based on this ranking, a lysis method was 

selected for further use. 

Bead preparation and activity testing 

The polyclonal Ab anti-Listeria G5-V99 (lot# 500-3973 7) was covalently linked 

to glass beads (3 mm) using a dextran (Sigma) spacer as described by Weimer et al. (52) 

(Appendix D). Briefly, 100 g of 3 mm glass beads were derivatized with APTES (Sigma 

A3648), modified with dextran, air dried, and stored at room temperature until the 

primary Ab was covalently bound. The antigen-affinity purified polyclonal lgG was 

purchased in a buffered salt solution (1 0 mM phosphate, pH 7.4 containing 150 mM 

NaCl and 0.1% NaN3) from OEM Concepts (Toms River, NJ). Five hundred micrograms 

of the affinity purified (>95% by SDS-PAGE) primary Ab was desalted over a D-Salt™ 

Dextran plastic desalting size exclusion column (Pierce, Rockford, IL) before it was 
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covalently attached onto 100 g of the spacer-coated beads. The beads were blocked using 

50 ml of a 2% BSA in 50 mM Tris (pH 7.2) containing 0.02% sodium azide, for 2 hat 

R T. The beads were stored at 4 oc in this solution until further use. 

After the primary Ab coating, an activity test was done with 10 beads from each 

batch using the rapid immunocapture procedure (RIC) (Figure 3-1 ). Briefly, 10 glass 

beads were put into a 2 ml Eppendorf tube (Brinkman, Westbury, NY) using sterile 

tweezers. An overnight cell culture was washed twice with 50 mM Tris (pH 7.2), and 108 

CFU (1ml) were added to the beads. The tubes were incubated on a platfonn shaker 

(New Brunswick Scientific, Edison, NJ) at 150 rpm for 20 min at RT (~25 °C). On a 

ceramic filter, each tube with beads was washed four times with 25 ml aliquots 50 mM 

Tris buffer (pH 7.2), and transferred to a new 2 ml tube. The anti-Listeria species IgG 

B65420R (lot# 11K33401), was added (1 ml or 3.61 x 1013 molecules) and the tubes 

were incubated on the shaker for 20 min at 150 rpm. After repeating the wash step and 

transferring the beads to a new tube, 1 ml of the alkaline phosphatase-labeled tertiary 

antibody anti-rabbit lgG (Sigma, St. Louis, NJ) was added at a molecule concentration of 

1.3 x 1012 molecules/mi. After incubation (150 rpm for 20 min at room temperature), the 

beads were washed ( 4 x 25 ml 50 mM Tris buffer pH 7 .2) and then transferred into a 48-

well plate (each set of 10 beads in a separate well). The pNPP substrate (Sigma) was 

dissolved in a 0.1 M glycine buffer (pH 1 0.4) containing 1 mM MgCb and 1 mM ZnCb 

to a working solution of 1 mg/ml , and added (600 !J-l) into each well. The plate was 

wrapped in aluminum foil , incubated for 20 min at 150 rpm before 200 1-11 of the solution 

was transferred into a new well , and the absorbance at 405 nm was measured on a 

BioAssay 7000 plate reader (Perkin Elmer). Negative controls for each test were 
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included and underwent the same treatment as the samples, except that the cell 

suspension was replaced by 50 rnM Tris buffer (pH 7.2). The RIC procedure was used to 

determine the detection limit in 50 rnM Tris (pH 7.2) buffer before using the method in 

flow capture. 

Figure 3-1 . Diagram of a bead surface used for the activity test for each batch of glass 
beads and for the indirect ELISA nsed in this study: 1) primary Ab; 2) secondary At; 3) 
phosphatase-labeled tertiary Ab; 4) L. monocytogenes cell; 5) dextran spacer molecule; 6) 
3 rnrn glass bead. 

Fluidized bed capture 

A 10-fold dilution series, ranging from 1 x 108 CFU/rnl to 1 x 105 CFU/rnl, was 

prepared in a 50 rnl volume of 50 rnM Tris buffer or milk samples. The inoculated 

samples were incubated on a rocking table Roto-Shake Genie TM (Scientific Industries 

Inc., Bohemia, NY) for 10 min prior to running them through the capturing device. L. 

monocytogenes cells were captured in a single use fluidized bed module that contained 60 

glass beads (- 2 gram) with 12 rnl of dead volume connected to 180 PVC plastic tubing 

(1/8 ID x 3/16 OD, 1132 wall) (Nalgene, Rochester, NY) on the inlet and outlet. The inlet 

tubing ( 18 ern) was put into the sample and the outlet (98 ern) was attached to a 

peristaltic pump (Masterflex, Cole-Parrner, Chicago, ll.,) before leading back to the 50 rnl 
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sample (Figure 3-2), such that sample recycling through the capture module was allowed. 

The sample was pumped at a flow rate of 100 rnVmin through this closed system in an 

upward flow direction. After capture for 5 min (i.e. -42 column volumes), the glass 

beads were washed inside the chamber four times with 25 ml aliquots of 50 rnM Tris 

buffer (pH 7.2). 

The final wash solution was completely decanted before transferring the beads to 

a sterile 15 ml centrifuge tube (Becton Dickinson, Franklin Lakes, NJ). Double distilled 

H20 was added ( 1 ml) to cover the washed beads before the beads were boiled for 6 min. 

The ddH20 containing the extracted DNA from the captured cells was collected and used 

for PCR detection. 

r ... 
l 
~3 I I 
~ 'I ... , 

Figure 3-2. Diagram of the fluidized bed capture module and closed loop pump system 
used in this study: 1) food sample; 2) cartridge with glass beads; 3) peristaltic pump. 



56 

Shaking capture 

The same 1 0-fold dilution series used in the fluidized bed experiments was used 

with the shaking capture as a control condition. After inoculation and thoroughly mixing 

the 50 ml samples as described above, 60 Ab-coated beads were added and the samples 

incubated for 20 min on a rocking table at RT. After incubation, each sample was 

washed 4 times with 25-ml aliquots of 50 mM Tris buffer (pH 7.2) on a ceramic filter­

funnel before transferring the bead-cell complex to a sterile 15 ml centrifuge tube. 

Double distilled H20 was added (1 ml) to cover the beads and boiled for 6 min. The 

resulting DNA-containing solution from the captured cells was collected and used for 

PCR detection. 

Each experiment was done in replicai:e. Stai:istical analysis was done using JMP 

3.1.5 (SAS Institute Inc., Cary, NC) as a completely randomized ANOVA with as the 

sources of variation were capture method, fat percentage and heat treatment (Appendix 

E). Means were compared using the Fisher's pair wise comparison. The threshold for 

statistical significance was set to a = 0.05. 

Results 

Antibody selection 

Screening was done to match the primary and secondary Ab (Appendix A) since 

it was suspected that the Ab avidity (i.e. the overall stability between Ab and antigen 

(Ag) complex) for this large Ag would be weak. The goat anti-Listeria G5-V99 was 

selected as the primary Ab and it was paired with the rabbit anti-Listeria B65420R as the 
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secondary Ab (Figure 3 -3). This combination provided a SIN> 1.5 and the signal was 

insensitive to minor concentration changes in the primary Ab concentration. Despite 

selecting the Ab combination for minimal influence due to concentration, the signal was 

dependent on the concentration of the secondary Ab. Therefore, a concentration of 3.6 x 

10 12 molecules/rnl (1:500 dilution of the stock solution) (Figure 3-3) for the secondary 

Ab was confirmed within a narrower dilution range. Subsequently, the optimal (i.e. cost 

vs. signal) tertiary Ab concentration was determined as well with the optimal secondary 

Ab concentration of 3.6 x 1012 molecules/rnl (Figure 3-4). 

Combinations of the secondary and tertiary Ab were examined to determine the 

optimum concentration (i.e. concentration vs. cost vs. signal) to maximize the detection 

signal with minimal background (Figure 3-4). SIN ratios> 2 were obtained fo!" 

2.50 

2.00 

1.50 z ..... 
rJ:J 

1.00 
SOK 

0.50 5K 

1000 
1 Ab dilutions 

10K 

2Ab dilutions 

Figure 3 -3. Determination of the primary and secondary Ab concentration. Tertiary Ab 
was an anti-rabbit alkaline phosphatase fixed at 12.8 x 109 molecules/1.!1; lAb= primary 
Ab G5-V99; 2Ab = secondary Ab B65420R, ----- indicates selected concentrations for 
lAb and 2Ab. 
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combinations of the secondary Ab diluted 1:100 and 1:500 with the tertiary Ab diluted 

111000 or 1110,000. A dilution of the tertiary Ab of 1:1,000 gave the highest SIN ratios, 

however, a higher dilution was selected (1 :5,000) for further experiments to reduce the 

amount of background with this Ab (Figure 3-4 ). 

In all further experiments, the primary Ab (G5-V99) was used to the coupling 

reaction at a concentration of 6.3 x 109 molecules/mm2 (dilution 1 :25,000). The 

secondary Ab (B65420R) concentration of 3.6 x 1012 molecules/rnl (dilution 1:500) with 

a tertiary Ab (Sigma, A3687) dilution of 1:5,000 (molecule number not known) of the 

stock was used in the ELISA assays. The average SIN ratio for all bead batches with 

these conditions was 2.1 ± 0.4. Batches with a SIN below 1.2 were not used. 

s.oct--~1------_J 

4 

S/N 3. 

3Ab dilution 100K 

1000 

2Ab dilution 

Figure 3-4. Influence of the secondary Ab B65420R and tertiary Ab A3687 
concentration on the SIN. The primary Ab was fixed at 6.3 x 1012 molecules/mm2

• SIN= 
signal to noise. 
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Lysis treatments and primer specificity testing 

The DNA extraction comparisons are summarized in Table 3-1. Six minutes of 

boiling significantly (p-value < 0.05) increased DNA release (1615 ± 80 ng) compared to 

a non-boiling step (355 ± 17 ng) of DNA. An alkaline lysis method, with or without a 3 

M KAc solution, together with the control ( ddH20), resulted in a significantly lower (p < 

0.05) amount of DNA release compared to the other treatments (475 ng vs. 96 ng, 

respectively). Addition of a 6. 7 x 104 units/ml of lysozyme with a 30-min incubation at 

37°C significant increased the release of DNA (1393 ng DNA). The same was true with 

a 6-min boiling step of a 1% Triton X-1 00 solution (1466 ng DNA). The combination of 

1% Triton X-1 00 with lysozyme however did not lead to an increased DNA release 

compared to the two individual treatments. Boiling was selected for further use. 

The PCR protocol was modified to increase the sensitivity by adding a 1-min 

denaturation step at the beginning of the thermocycler program, increasing the cycles to 

40, and inserting a 4-min extension step. In pure culture this resulted in a detection limit 

of 101 CFU/ml. To achieve this detection limit, a cell pellet from 1-ml cell culture 

Table 3-1. DNA release for various lysis treatments. The different letters indicate 
significantly different (p<0.05) grol!Ps using Fisher' s pairwise comparisons. 

Treatment 

Boiling for 6 min 
Lysozyme 
Boiling for 6 min with 1% Triton 
X-100 
lysozyme with 1% Triton X-100 
Alkaline with 3 M KAc 
DdH20 , no boiling 
Alkaline treatment 

DNA released (ng) 

1615a 
1477a 

1466a 

1393a 
475b 
355b 
96b 



60 

(1 09 CFU/ml) was resuspended in 100 111 of a lysis buffer containing 500 Jlg/ml 

proteinase K solution (13.8 units/mg) (Appendix C). Although proteinase K gave a very 

low detection limit in pure culture, it was abandoned considering the poor detection 

results in a solid phase capture environment, as described below. 

Since L. monocytogenes is the only pathogen within the genus Listeria, it is 

appropriate to make the PCR detection very specific to this species. The primer set for L. 

monocytogenes was specific for this organism only, as indicated by an amplicon of 660 

bp for the iap gene in L. monocytogenes, but absent in L. innocua. This observation was 

verified with an additional primer set specific for L. innocua (Figure 3-5). 

1 2 3 4 5 6 7 8 

Figure 3-5. Primer specificity for L. monocytogenes and L. innocua. The lanes are: 1 &8) 
DNA size markers (from top to bottom: 10,000, 8,000, 6,000, 4,000, 3,000, 2,000, 1 ,550, 
1 ,400, 1 ,000, 750, 500 bp; lane 2-4) PCR results from primer set of L. monocytogenes iap 
primers MonoA-LislB with no DNA (2); L. innocua DNA (3); L. monocytogenes DNA 
(4); lane 5-7) primer set of L. innocua Ino2-Lis1B with no DNA (5); L. innocua DNA (6); 
L. monocytogenes DNA (7). 
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Solid-phase Capture of L. monocytogenes 

Freshly prepared beads were made with a dextran spacer (Appendix D) and tested 

for activity before each use, using 10 beads using RIC in Tris buffer. If the SIN was 

:S1.2, the beads were not used. The detection limit of this ELISA procedure was between 

1 x 104 CFU/ml and 1 x 106 CFU/ml in buffer (Figure 3-6). 

With the lysis treatment and the PCR protocol determined, the capture flow rate 

for the fluidized-bed technique (ImmunoFlow) (50) was determined. This experiment 

was done and compared to a control of shaking capture for 20-min at low speed (100 

rpm) followed by an ELISA detection. The tlow through of the samples during 

ImrnunoFlow continued for 5 minutes in all settings and varied from 75 to 150 ml/min 

The ma'(imum captur~ was observed at 100 ml/mir.. (Figure 3-7). At this flow rate and 

time, 41.6 column volumes flowed past the beads. 

2.5 
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Figure 3-6. Determination of the detection limit in 50 rnM Tris buffer for L .. 
monocytogenes cells using RIC. The blank contained only ddH20. 
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Figure 3-7. Determination of the flow rate for capture in lrnrnunoFlow with RIC. The 
sample was recirculated for 5 min with 108 CFU added to a total volume of 50 rnl of 0.05 
M Tris buffer (pH 7.2) . 

After establishing the flow rate, the detection limit was determined in Tris buffer 

using 50 rnl samples with PCR detection and electrophoresis analysis. Once captured, 

the cells were lysed by boiling for 6 min and gave a detection limit of 1 x 106 CFU/rnJ in 

50 mM Tris (pH 7 .2) using a 50 rnl sample. 

After addition of the cells to milk, capture was done directly without any pre-

enrichment. Capture was sporadic in flow with milk samples. With the shaking capture 

technique, consistent results were observed for pasteurized milk samples, but varied with 

milk treatment. Therefore, further work with milk samples was done using the shaking 

capture format. ln addition, no signal was detected in milk samples inoculated with the 

highest level of L. monocytogenes (108 CFU/rnl) directly subjected to PCR (i.e. no 

capture step) (Figure 3-8, lanes 10-12). 
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In pasteurized milk, detection was consistently observed at the highest inoculation 

level (1 x 108 CFU/ml) at all fat levels tested. The amplicon for the 2% fat pasteurized 

milk sample was Jess pronounced than the ones observed with skim and 1% fat 

pasteurized milk samples, Tris buffer, or the positive control bands (Figure 3-8), 

indicating that fat content in this solid-phase capture technique remains a factor that leads 

to reduced detection. However, capture was possible at all fat percentages, but capture 

decreased as the fat content increased (p > 0.05). 

In UHT and raw milk samples, only sporadic capture was observed even at the 

highest inoculation level (1 x 108 CFU/ml). Significantly lower (p < 0.05) capture was 

observed with UHT and raw milk samples than with pasteurized milk samples. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Figure 3-8. Detection of L. monocytogenes (10 CFU/ml) in 50 ml milk samples using 
the static capture technique. Lanes: 1) molecular size DNA ladder same as figure 3; 
2,4,6,8) negative controls for skim milk, 1%, 2%, pasteurized milk and TRIS buffer 
respectively i.e. milk samples without cells added; 3,5, 7,9) same samples inoculated with 
L. monocytogenes cells; 10,11, 12) direct PCR on pasteurized milk samples (skim, 1%, 
and 2%) without capture step; 13) positive control being I 08 CFU/ml L. monocytogenes 
cells boiled in water 6 min; 14) negative control, dH20. 
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Discussion 

The trend in pathogen testing emphasizes the need for biosensors for the food 

industry that are fast and specific, especially since conventional methods are laborious 

and time consuming thereby adding cost to the food production (2). Combining DNA 

amplification with techniques that concentrate microorganism from food particles is 

likely to provide specific results faster. Separation of the microbial cells from the food is 

required to avoid interference by natural PCR inhibitors (15, 26, 28, 37). Immuno-based 

capture teclmiques that use paramagnetic beads is common, but are limited to small 

sample sizes and still rely in most cases on pre-enrichment before capture (6, 10, 15, 29, 

46, 49). The hypothesis of this study was that the enrichment step can be completely 

eliminated to provide a rapid detection system. This hypothesis was demonstrated in 

pure culture, but the detection limit was not sufficiently low in milk to make the assay a 

practical replacement. 

Selection and optimization of the Abs used in this solid-phase capture technique is 

a crucial step (27). Since the assay was assembled as an indirect ELISA, 3 Abs were 

selected and an optimal working concentration determined. By testing different dilutions 

and combinations of Abs, a selection was made based on the obtained 3D graphic surface 

areas for each Ab combination (Figure 3-3). A high SIN was set as a key factor in 

determining a meaningful end point above the background. The primary Ab selected G5-

V99 (OEM Concepts) was covalently bound onto the glass beads at a concentration of 

6.3 x 109 molecules/mm2
, the secondary Ab, B65420R (Biodesign), was added at a 

concentration of3.6 x 10 13 molecules/ml and the alkaline phosphatase IgG (Sigma) was 
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selected as the tertiary Ab at a fixed concentration of 1.3 x 1012 molecules/mi. A SIN of 

2.3 ± 0.1 was obtained for this Ab combination. 

After capturing the cells onto the glass beads, a lysis procedure was selected in 

order to release the DNA for PCR analysis directly from the glass beads. The PicoGreen 

assay (Molecular Probes) was used to analyze different lysis method divided into three 

groups: physical, chemical or enzymatic. Combinations between different groups were 

also tested. Using only a heating step, the 6 min boiling was significantly more effective 

(p < 0.05) in releasing DNA from the cells for PCR. Among the chemical treatments, the 

use of a 1% Triton X -100 solution on a pure culture, combined with a 6-min boiling step, 

which resulted in the highest amount of DNA release out of a 1 x 108 CFU/ml L. 

monocytogenes cell suspension (1466 ng DNA). Those findings were consistent with the 

observation of Abolmaaty eta!. (1) who used Triton X-100 in combination with NaN3 at 

pH 8.0. The alkaline lysis procedure resulted in significant lower amount of DNA 

released (p < 0.05) compared to boiling. This can be explained by the fact that this lysis 

procedure is developed in the first place for Gram-negative bacteria, not for Gram­

positive bacteria, such as L. monocytogenes. Lysozyme in a concentrated solution (1.5 

mg/ml) as the lysis treatment was also evaluated with PicoGreen (Molecular Probes) and 

resulted in the release of high amounts of dsDNA (1393 ng) out of a 1-ml cell suspension 

(1 x 108 CFU/ml). Several researchers combined lysozyme and proteinase Kin an effort 

to lyse the L. monocytogenes cells efficiently. The detection limits varied from I x 102 to 

I x 105 CFU/ml in food depending on the specific procedure used (9, 18, 24, 42, 44). 

Considering time and effort besides the amount of DNA extracted, the proteinase K 

treatment was selected first to apply on the bead-cell complexes. It was believed that the 
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use of a proteinase would help the release of DNA in a protein-rich environment (Ab, 

BSA, and cellular proteins) into the extracting medium and therefore increases 

sensitivity. However, using a proteinase K solution to lyse the cells in the bead-cell 

complexes, brought the detection limit to 1 x 106 CFU/ml in 50 mM Tris buffer, which is 

less sensitive compared to the 1 x 101 CFU/ml in pure culture solution. Furthermore, 

non-specific bands showed up on the gel after electrophoresis. It is not known why 

exactly such a difference in detection rates was observed but DNA binding to the beads 

might be a possible contributing factor. Since the same detection limit in 50 mM Tris 

buffer (pH 7.2) could be obtained by simply boiling the bead-cell complexes in ddH20 for 

6 min instead of a time-consuming enzyme procedure, the latter was used. 

DNA amplification was done using a primer set specific tor the iap gene of L. 

monocytogenes. Modifying the them1ocycling protocol ofBubert et al. (7) by increasing 

the cycling time from 30 to 40 and adding an extra elongation step of 4 min at 72°C, the 

sensitivity in DNA detection could be increased by 1 order of magnitude. Although the 

selected primer combinations was not the same as the one preferred by Aznar and 

Alarcon (5), similar specificity was obtained. No false positives were observed, even 

when the primers were exposed to DNA from the most closely related species, L. 

innocua. Aznar and Alarcon (5) also tested these primers, against several other species in 

the genus and found the same results. 

Shaking and fluidized-bed capture were investigated to collect cells from the 

sample. The turbulent flow of sample solution through the fluidized-bed cartridge should 

increase the contact time between the Ag and the Ab coated onto the glass beads by 

creating a fluidized bed. Therefore, a better detection was hypothesized with an 
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increased sample size of (50 ml) and no pre-enrichment. No significant differences were 

observed (p > 0.05) between the different capturing methods in 50 mM Tris buffer with 

L. monocytogenes cells added. A detection limit of 1 x 106 CFU/ml was observed in both 

methods. Capturing cells from inoculated milk was not consistent basis using the 

fluidized-bed technique even after adjusting the flow rate to maximize capture (Figure 3-

7). In the shaking procedure, a consistent positive result was detected for pasteurized 

milk samples, inoculated at the highest level (1 x 108 CFU/ml) in all fat conditions. 

Except in UHT and in raw milk, where no detection was achieved at any of the cell 

concentrations tested. Although the detection limit in pasteurized milk samples was 

limited to 1 x 108 CFU/ml, direct PCR from milk samples for the detection of the 

microorgru.1ism \Vas not observed. This is in accordance with the findings ofWernars et 

al. (53), who described a strong inhibition of the PCR reaction when Listeria DNA was 

directly extracted from soft cheese. 

It is not known why the low sensitivity during capturing was observed, but the 

binding strength of the Ab (avidity) could be an underlying mechanism to explain these 

observations. Previous studies found that the protocols to coat the Abs on the beads are 

well established and work efficient for other microorganism such as E. coli 0157 (27, 

51). Therefore, any lack of sensitivity should be linked to the specific antibodies used. 

The inability to develop a sensitive and specific Immunocapture technique for L. 

monocytogenes, is reported by several other researchers (12, 27, 43). 

The shaking capturing technique generates less shear force on the Ab/ Ag 

complex, compared to the more intense flow-through dynamics in the fluidized-bed 

method, which might explain the poor capture results for the latter. Low Ab avidity was 
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also noticed by Jung et al. (27). Four different polyclonal anti-Listeria Ab were 

evaluated in a direct and indirect assays to capture L. monocytogenes using IMS 

separation techniques. The researchers concluded that none of the tested Ab exhibited 

sufficient specificity or avidity to allow sufficient separation and detection of L. 

monocytogenes for a useful test. However, the use of the ImmunoFlow method has 

reportedly been successful with E. coli and Salmonella (10, 50), suggesting again that the 

anti-Listeria Ab used in this study have low avidity as shown by Jung et al. (27). The 

possibility of interfering proteins in the Ab stock solution as a reason for the low 

sensitivity is not very plausible since according to OEM Concepts, no proteins other than 

the Ab should be present in the Ab stock solution. Very small amounts of albumin could 

however be present, but not enough to show up on SDS-PAGE. 

The different heat treatments or homogenizations among the milk samples explain 

the differences in the obtained results. Changes in protein structures in the milk seem to 

make the pasteurized milk the most suitable for this solid-phase capture technique. It is 

believed that the protein structures in UHT and raw milk are shaped in such a way that 

they prevent strong Ab-Ag binding. This change of protein structure seems to be more 

important than the fat amount for interference in binding capacity. 

Most rapid detection system compromise on both aspects of detection time and 

detection limit by adding a small enrichment step before solid-phase capture (6, I 0, 25, 

29). At this time, without any enrichn1ent, the solid-phase capture techniques for L. 

monocytogenes do not reach the desired sensitivity for the food industry (1-1 00 CFU/ml) 

(23 , 27, 35, 46). The same conclusions were made in this research project. 
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However, rapid detection of L. monocytogenes cells at high cell concentration in 

pasteurized milk can be done with the static immunocapture method used in this work to 

reduce the time. Using real-time PCR technology might reduce the detection time (less 

than 4 hours) even further and make quantification possible (16, 21, 31 ). Future work 

needs to be done to isolate Ab with higher affinity for L. monocytogenes cells for use 

with milk and fluidized bed capture. 
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Rapid capture and/or detection of food borne pathogenic microorganisms are 

pressing needs in the food industry. Although the knowledge and the awareness have 

increased with respect to the dangers of an increasing number of pathogens, there is still a 

lack of a reliable, accurate, and fast bacterial detection method for use with food. A 

better surveillance system, more control points, and concerned consumers are part of this 

trend, the lack of a robust detection system for routine use in processing facilities remains 

a significant problem. 

Several rapid detection methods are commercially available. However, all of these 

assays require a enrichment step to increase the cell population to 108 CFU/ml prior to 

detection that is at least 8 h and as long as 48 h for a final result is available. DNA 

amplification techniques are among the most promising tools for rapid and specific 

detection. However, the quality of the DNA sample to be amplified is crucial and many 

foods contain PCR inhibitors. The combination of cell separation/DNA clean-up 

techniques from the food samples with PCR techniques is therefore of great interest. The 

use of immuno-based techniques used for cell separation, has the extra advantage of 

being selective for the microorganisms of interest. 
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Hypothesis 

Listeria monocytogenes can be captured from milk using a fluidized-bed solid­

phase capture system with covalently attached antibody-beads, allowing elimination of 

the enrichment step, and followed by PCR for specific detection. 

Objectives 

1. Optimize Rapid Immuno Capture (RIC) in buffer solution to capture 

L. monocytogenes after finding the optimum antibody combination and concentration 

2. Determine a method to lyse the cells after capture on to beads 

3. Combine hnmuno-capture and PCR to detect Listeria and ideniify L. monocytogenes 

in pure culture and food samples. 

Ab selection for the development of an immunocapture device was crucial and 

seemed to be a key factor in the poor sensitivity of the capture step. The success of 

ELISA systems rely on the quality of the Ab for capture efficiency and the properties of 

the Ab. Therefore objective 1 was done to select commercially available Ab pairs that 

were appropriate for capture and detection. From the multiple combinations and dilution 

series of different antibodies tested, the indirect ELISA combination with the highest cell 

binding capacity was selected (Figure 3-3). 

In Chapter 2, a protocol for selecting the optimum Ab combination and titer was 

described. Using an indirect ELISA format, different Ab combination and concentrations 

were compared. Ultimately, a polyclonal Ab (G5-V99) was selected as the primary Ab 
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that was covalently linked to the glass beads through a dextran spacer molecule. The 

secondary Ab was produced in a rabbit (B65420R) and an IgG (A3687), with alkaline 

phosphatase bound, was used as tertiary Ab. After optimizing the concentrations using 

an ELISA format, a similar procedure was used to further optimize the Ab concentration 

using RIC (Appendix A). The optimal concentration of Abs were the following: the 

primary Ab was covalently bound onto the glass beads at a concentration of 6.3 x I 09 

molecules/mm2
, the secondary Ab was added at a concentration of3.6 x 1013 

molecules/ml and the alkaline phosphatase lgG was fixed at a concentration of I.3 x 1012 

molecules/ml as the tertiary Ab. 

The most appropriate lysis procedure for L. monocytogenes after solid phase 

capture was determined to be a 6-min boiling step. The supposition that protein and cell 

wall degradative enzymes, in particular proteinase K, could help to release DNA out of 

the protein complexes surrounding the bead surface into the ddH20 and therefore 

increasing the detection limit was not observed. 

Ptimers specific for L. monocytogenes cells were selected for PCR analysis 

(Figure 3-5). The detection limit, when using the solid-phase capture technique, was 1 x 

106 CFU/ml with the 6-min boiling step in 50 mM Ttis buffer. The same procedure was 

used as the lysis step for the detection experiments with the different milk samples. 

Objective 3 was completed using the solid-phase capture system in two formats 

(lmmunoFlow and static or shaking capture) on different milk samples and on TRIS 

buffer. Detection was done using PCR. The influence of the fat percentage of the milk 

(skim, I%, 2%, 3.5%) as well as on the heat treatment of the milk (raw, pasteurized, 

UHT) was detem1ined. The fluidized-bed system was consistently positive in Tris buffer 



to a cell concentration of 1 x 106 CFU/ml. No consistency in capture was observed in 

milk using flow, while the shaking capture assay was consistent. In this format, L. 

monocytogenes was detected consistently in pasteurized milk at a concentration of 1 x 
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108 cells/ml at all fat concentrations tested (Figure 3-8). In UHT and raw milk this was 

however not possible. Presumably, the heat treatment influenced the composition of the 

different milk components in such a way that they interfere with the Ab in the case of raw 

and UHT milk. 

It was shown that performing a PCR step on a milk sample without the 

implementation of a capture step was not possible (Figure 3-8), making a solid phase 

capture step required for elimination of pre-enrichment. Milk components must therefore 

inhibit the PCR reaction. Although the selection of Abs was done carefully, we are 

convinced that the properties of the available L. monocytogenes Abs towards binding 

capacity were not optimal. 

In conclusion, direct detection of L. monocytogenes out of milk with PCR was not 

possible, therefore a capture or removal step before PCR analysis, was required with 

milk. In pure culture, a lysis and PCR procedure was developed with a detection limit of 

101 CFU/ml. During solid-phase capture using ImmunoFlow or static capture, the 

detection limit was found to be 106 CFU/ml in Tris buffer. The detection limit in 

pasteurized milk was 1 x 108 CFU/ml and was similar to that reported for an IMS system 

developed by Dynal. Elimination of the enrichment step for L. monocytogenes detection 

was achieved using a solid phase capture strategy. The static capture procedure was 

completed in about 4 h without enrichment and at the same detection limit as commercial 

assays. 
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Appendix A. 
Antibody Selection and Titers 
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Searches for anti-Listeria Abs was done online with Abeam software 

(http://www.abcam.com) from Abeam Ltd. (Cambridge, UK). Four different anti-

Listeria Abs were selected and tested against each other to use as primary or secondary 

Ab, in an indirect ELISA format (Table A-1). For the tertiary Ab in the indirect ELISA 

setup two different Ab were tested. Both Abs had a phosphatase enzyme linked to it 

(Table A-2). 

Table A-1. Details of the different antibodies (primary and/or secondary) 
.------

Produced Cone (mg/ml) 
NameAb Company 

in Lot number 

G5-V99 Goat 
5.74 mg/ml OEM Concepts 

500-39737 Toms Rivet , NJ 

R4-V99 Rabbit 
4-5 mg/ml OEM Concepts 

I 01-26091 Toms River, NJ 

B65420R Rabbit 
4-5 mg/ml Biodesign Int. 

llK33401 Saco, ME 

4-5 mg/ml Accurate Chern. 
YVS4201 Rabbit 

H3898 Westbury, NY 

Table A-2. Details of the different tertiary antibodies 

Produced Cone (mg/ml) 
Name Ab Company 

in Lot number 

Alkaline Phosphatase 
Rabbit 

N/A Sigma 

Conj. Goat IgG A3687 Saint Louis, MO 

Phosphatase labeled O.lmg/ml K&P Lab Inc. 
Goat 

affinity Ab 05-90-90 Gaithersburg, MD 
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Sixteen different combinations were tested in a matrix, indirect ELISA format 

(Table A-3). One restriction in the possible combinations was the inability to combine an 

anti-rabbit tertiary Ab with an Ab produced in goat and vice versa. At this point the 

concentration of the tertiary Ab was kept constant at the titer given by the manufacture 

(1 :40,000 for A3687 and 1:100 for 05-90-90). 

All the different Ab concentrations were based on dilutions. For each Ab, 5 

different dilutions were made: 1:1 00; 1:1 ,000; 1:5,000; 1 :10,000 and 1 :50,000 and every 

dilution combination was done in duplicate (Figure A-1). 

Table A-3. Sixteen different ELISA: G = G5-V99, R = R4-V99, B = B65420R, 
Y = YSV4201 , anti-R = anti-Rabit, anti-G = anti-Goat 

Primary Ab Secondary Ab Tertiary Ab 

(lAb) (2Ab) (3Ab) 

G R Anti -R 

G B Anti-R 

G y Anti-R 

G G Anti-G 

R R Anti-R 

R B Anti-R 

R y Anti-R 

R G Anti-G 

B R Anti-R 

B B Anti-R 

B y Anti-R 

B G Anti-G 

y R Anti-R 

y B Anti-R 

y y Anti-R 

y G Anti-G 
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Figure A-1. Format for the 16 ELISA titer experiments. 

In addition to the complete indirect ELISA, 4 different controls were added (Figure A -1) 

• Same indirect ELISA without the microorganism i.e. blank readings 

• The primary Ab (dilutions) combined with the tertiary Ab 

• The secondary Ab (dilutions) combined with the tertiary Ab 

• The tertiary Ab on its own 

A 3D surface area chart was created by plotting in Microsoft Excel 2000 one Ab 

dilution on the X-axis, one on the Z-axis and the signal to noise on the vertical Y-axis 

(Figure A-2,Figure A-3,Figure A-4,Figure A-5). G5-V99 was selected as the primary 

Ab. The secondary Ab was B65420R and as the tertiary Ab alkaline phosphatase A3687 

was chosen (Figure A-2, graphic B). The experiments was done twice: once in March 

2001 and a second time in May 2002. Each time, every Ab concentration/ combination 

was done in duplicate. 
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1Ab=G ; 2Ab=R ; 3Ab=aR 1Ab=G ; 2Ab=B ; JAb=aR 

A B 

1Ab-6 

1Ab=G; 2Ab=G ; JAb=aG 1 Ab=G ; 2Ab=Y ; 3Ab=aR 

c D 

1Ab-6 1Ab-6 

Figure A-2. Four different 3D-graphic presentations of the signal from different Ab 
combinations and concentrations with G5-V99 as primary Ab (lAb); 2Ab= secondary 
Ab; X- and Z-axis are dilution series; Y-axis represents SIN= Signal/Noise. R = Ab R4-
V99, G = Ab G5-V99, B = Ab B65420R, Y = Ab YVS4201. 
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1Ab=R; 2Ab=R; 3Ab::antJ.R 1Ab=R ; 2Ab::B; 3Ab:::aR 

A B 

1AII-R 

2Abll8 

c 1Ab=R ; 2Ab=G; 3Ab=aG 
D 

1Ab=R ; 2Ab::!f ; 3Ab=aR 

1Ab"R 

Figure A-3. Four different 3D-graphic presentations of the signal from different Ab 
combinations and concentrations with R4-V99 as primary Ab (lAb); 2Ab= secondary 
Ab; X- and Z-axis are dilution series; Y-axis represents SIN= Signal/Noise. R = Ab R4-
V99, G = Ab G5-V99, B = Ab B65420R, Y = Ab YVS4201. 
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1Ab=B ; 2Ab=B ; 3Ab=aR 

A B 

SIN 

1Ab=B ; 2Ab=G ; 3Ab=aG 

c D 
1 Ab=B ; 2Ab=Y ; 3Ab=aR 

~ .. 
1Abo8 

Figure A-4. Four different 3D-graphic presentations of the signal from different Ab 
combinations and concentrations with B65420R as primary Ab (lAb); 2Ab= secondary 
Ab; X- and Z-axis are dilution series; Y-axis represents SIN= Signal/Noise. R = Ab R4-
V99, G = Ab G5-V99, B = Ab B65420R, Y = Ab YVS4201. 
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1Ab=Y; 2Ab=B ; 3Ab=aR 

B 

2AboB 

D 1Ab=Y; 2Ab=Y ; 3Ab=aR 

2AD-Y 

Figure A-5. Four different 3D-graphic presentations of the signal from different Ab 
combinations and concentrations with YVS4201 as primary Ab (lAb); 2Ab= secondary 
Ab; X- and Z-axis are dilution series; Y-axis represents SIN= Signal/Noise. R = Ab R4-
V99, G = Ab G5-V99, B = Ab B65420R, Y = Ab YVS4201. 



88 

Evaluation of the 3Ab concentration in the bead format 

Although the SIN ratio was investigated and optimized in the indirect ELISA 

format, the tertiary Ab was evaluated again using 3mm glass beads already coated with 

the primary Ab (G5-V99). The secondary Ab concentration was kept at 1:500. For the 

tertiary Ab, 3 dilutions were investigated (1: 1 ,000; 1 :2,500; 1:5,000) (Figure A-6). No 

significant increase in SIN at at a higher antibody concentration 1:5,000 was observed 

(Figure A-6). Therefore the dilution of the tertiary Ab was set to 1:5,000. 

1/1000 1/2500 

3Ab dilution 

1/5000 

Figure A-6. Determining tertiary Ab concentration in RIC format: SIN= Signal/Noise; 
3Ab =Sigma A3687. 
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Appendix B. 

Optimization of PCR and 

PCR as the Analyzing Tool after Capturing 
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Optimization of the PCR protocol and selection of primer sets 

Although Pi co Green can give quantitative results towards the amount of DNA 

released, it does not tell if the DNA is from L. monocytogenes. In a next step, a PCR 

approach was taken to identify the identity of the lysed cells. PCR has become very 

popular as a detection and confirmation system because of its speed, specificity and 

accuracy. 

After a literature search, different primer set were selected (based on selectivity 

and specificity) and order at Qiagen Operon (Alameda,CA). Table B-1 shows a list of all 

the ditierent primers selected. In order to be consistent, all stock primer solutions were 

aliquot to 20 runol in 100 ~-tl. The diluting agent was ddH20 and stored at - 20°C. 

Ali sample preparations were done following a standard procedure protocol. 

Seventeen microliter ddH20 was added to the puReTaq ™Ready-To-GoTMPCR Beads 

(Amersham Biosciences, Piscataway, NJ). Next 1.5 ~-tl of each primer (forward and 

reverse) was added to the side of the tube in order to make sure that the total volume was 

dispensed. Finally 5 ~-tl of the sample DNA solution was added (also to the side of the 

tube). After a short centrifuge step of5 sec at 6000 x g (EppendorfCentrifuge 5415 C), 

Table B-1. Selected primers used in this study. 

Seq name Reference Seq 5' to 3' Stock (nmol) 
WIMI I ACTAGCACTCCAGTTGTTAAAC 43.96 
WIM2 I TTATACGCGACCGAAGCCAAC 37.85 
WIM3 3 CCTAAGACGCCAATCGAAAAGAAA 42 .76 
WIM4 3 TAGTTCTACATCACCTGAGACAGA 39.66 
WIM5 2 CCTAAGACGCCAATCGAA 40.27 
WIM6 2 AAGCGCTTGCAACTGCTC 42 .99 
WIM7 I CAAACTGCTAACACAGCTACT 81.00 
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the different tubes were vortexed for 2-3 sec and another centrifuge step (5 sec at 6000 x 

g) was performed. Carefully the tubes were transferred to the PTC-200 Peltier Thermo 

Cycler (MJ Research, Reno, NV) after a final check that the total 25 ~-tl volume was 

located on the bottom of each tube. All the four different primer sets were tested with the 

appropriate cycling parameters. The primer set WIM 5-6 and WIM 7-2 gave very clear 

bands after the amplified samples were subjected to gel electrophoresis. 

In a first approach primer set WIM 5-6 was chosen for the multiplication of L. 

monocytogenes DNA in the PCR reaction. A ten-fold dilution series ranging from 1 x 

108 to 1 x 101 CFU/ml was made, boiled 6min and subjected to the thermocycler 

protocol. The cycling parameter were as follows: lmin denaturation at 95°C followed by 

30 cycles of 95°C for 15 s, annealing at 57°C for 30 s, and extension at 72°C for 30 s. 

An extra extension step of72°C for 6 min was added at the end. After the procedure was 

completed, the samples were held at 4°C until preceded to the electrophoresis step (90 

min, 80 V, 4°C. A band was only obtained on the 1 x 108 CFU/mllane. The sensitivity 

was improved by 11og unit by increasing the cycle number from 30 to 45. 

Unsatisfied with the obtained results, primer set WIM7-2 was used. The protocol 

of the latter primer set was immediately modified from the original 30 cycles to 40 cycles 

and an extension step of 72°C for 4 min was added. The full cycling parameters were as 

follows: 95°C for 1 min followed by 40 cycles of 95°C for 15 s, 58°C for 30 s, and 72°C 

for 45 s. After that the extension step of 72°C for 4 min was added. This time, bands 

showed up on the agarose gel on the lanes of 1 x 108
, 1 x 10 7, and 1 x 106 CFU/ml 

(Figure B-1) i.e. the sensitivity was improved by 1 log. 
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1 3 4 5 6 7 8 

Figure B-1 . Agarose gel image for primer set WIM 7-2. Lanes: 1 &8 DNA size markers 
(from top to bottom: 10000, 8000, 6000, 4000, 3000, 2000, 1550, 1400, 1000, 750, 500 
bp); 2 to 7 tenfold dilution serie 1xl08 to lxl03 CFU/ml. 
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Standard curve with PicoGreen 

In order to link the numbers produced by the spectrofluorometer to amounts of 

dsDNA, a DNA standard curve was created following the company's instruction sheet. 

Lamda DNA (1 ml of 100 f.!Vml in TE buffer), provided by the PicoGreen dsDNA kit, 

was used to create a 5-point standard curve at two levels: high range and low range 

(Figure C-1, C-2). 

Stand Curve PicoGreen HIGH 

4500.-----------------------~.----. 

4000 +---------------------~~*----1 

~ 3500 +-------------------~:__-'--'--'=-=-"-"--'~ 
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Ill 
~ 1000 +---~~-----------------------1 
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Figure C-1. High-range standard curve for PicoGreen. 
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Figure C-2. Low-range standard curve for PicoGreen. 
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The high-range standard curve gave a very good fit with r2 = 0.99. For the low-

range standard curve however, no linear correlation was obtained. Self quenching of the 

PicoGreen dye is probably responsible for this observation. The lysis procedures tested, 

extracted all dsDNA amounts in the high range. Therefore no further attention was given 

to the results of the low-range standard curve. 

Lysis with ddH20 

The harvested cells were resuspended in ddH20 in order to obtain a 109 CFU/ml. 

One sample was kept at room temperature (RT) for 5 min, the other one was put into a 

water bath at 96° C for 5 min. The latter was put on ice for 2 min immediately after the 

heating step. For both samples, a blank (ddH20) was included (Table C-1) . 

Lysis with Triton X-100 

Triton X-1 00 ( octylphenol ethylene oxide condensate, Sigma, St. Louis, MO) is a 

nonionic detergent, which is used in biochemical applications to solubilize proteins. It is 

therefore often used in lysis procedures, alone or in combination with other lysis 

products . For the lysis procedure, a 1% TritonX-1 00 solution was used. The same 

conditions as for ddH20, were used (Table C-1). 

Lysis with lysozyme 

One milliliter of 109 CFU/ml cell culture was pelleted, resuspended into 1 ml of a 

lysozyme solution (1.5 mg/ml), and incubated at RT for 30 min (Table C-1). 
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Lysis with Triton X-100 and lysozyme combined 

A combination ofTriton X-100 with lysozyme (1.5 mglml) was also investigated. After 

spinning down 1 ml of a washed cell suspension ( 109 cells/ml), the pellet was 

resuspended in 500 J.!l 1% Triton X-1 00 solution. After boiling the sample for 6 min, the 

tubes were put on ice for 2 min before adding 500 f.ll of a lysozyme solution (1.5 mglml). 

After a short vortex step, the samples were held at RT for 30 min (Table C-1 ). 

Lysis using the Alkaline Lysis method 

The alkaline lysis procedure used NaOH (alkaline solution) and sodium dodecyl 

sulfate (SDS). The first one "loosens" the cell wall and denatures plasmid and 

chromosomal DNA, the second compound denatures lipids and proteins and therefore 

pops holes in the cell membranes. The alkaline working solution contained 0.05 M 

NaOH and 0.2% SDS. One-milliliter cell suspensions (1 x 109 CFU/ml) were washed, 

pelleted and resuspended in 1 ml alkaline lysis solution. One sample was boiled, the 

other one was held on ice for 5 min. Again, for each treatment a blank was included. 

The previous experiment was repeated but after lysing the cells, potassium acetate 

(KAc, 500 J.!l) was added. The working solution contained 3 M potassium and 5 M 

acetate. This chemical helps to get ride of 'garbage' in the sample solution. It 

precipitates ssDNA (since large ssDNA molecules are insoluble in high salt) and 

furthermore the potassium reacts with SDS to form KDS, which is insoluble (Table C-1 ). 



Table C-1. Overview of different lysis treatments and the amounts of DNA released 
after a non-boiling or 6-min boiling step of 1 x 108 L. monocytogenes cells. 

Lysis component Non Boiled Boiled 

DNA release (ng) DNA release (ng) 

ddH20 355 1615 

1% Triton X-100 596 1466 

Lysozyme (1.5 mg/ml) 1393 N/A 

1% Triton X-100 
797 1393 

+Lysozyme 

Alkaline procedure 298 96 

Alkaline + KAc 805 475 

Lysis with lysozyme over time 
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To investigate the lysis efficiency of lysozyme and to investigate the time needed 

to obtain a certain amount of extracted DNA, a time-depending experiment with 

lysozyme was performed, ranging from 5 to 30 min (Figure C-7). The most commonly 

used incubation time with lysozyme is 30 min. The main purpose was to investigate if a 

shorter time period could lead to similar lysis efficiency. 

After washing the L. monocytogenes cells twice, 500 Ill of a 109 CFU/ml 

suspension was spinned down, the pellet resuspended in a 500 jlllysozyme solution ( 1.5 

mg/ml), and incubated at RT for different time intervals (5, 10, 15, and 30 min). Within 5 

min of incubation, lysozyme already performs with a high activity (Figure C-3). The 

longer the incubation time however, the more DNA is released. 
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Figure C-3. Lysis using lysozyme over time; Blank= ddH20. 

Lysis with lysozyme at RT and 37°C 
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To investigate the influence of temperature on the lysozyme activity during lysis, 

an assay with 2 different temperatures was setup. The main purpose was to find out if the 

incubation step could be performed at RT (25°C) or if a higher incubation temperature 

(37°C) was necessary. During this experiment the incubation time was set to 30 min. 

Same procedure was used as in the time-depending experiment. No significant 

differences were observed between RT and 37°C incubation temperatures. For 37°C, a 

net DNA release of 1477 ng was obtained. For RT this was slightly less, being 1353 ng 

(Figure C-4 ). 
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Figure C-4. Lysis using lysozyme at two different incubation temperature 
(RT and 37°C) for 30 min; Bl =lysozyme solution without cells; S =lysozyme 
solution with 108 CFU/ml. 

Analyzing lysis solutions with PCR 

After selecting the primer set and optimizing the cycling parameters for the 

thermocycler, the focus on increasing the detection limit and sensitivity on the agarose 

gel was now approached from a lysis standpoint. 

Small experiments to improve lysis and DNA release included boiling time and 

boiling volume. A total boiling time of 6 min was chosen since after a 10-min boiling 

step non-specific bands were observed (data not shown). Having a total volume of 1 ml 

or only 100 J.ll didn't make a difference, as long as no precipitation step was included 

(data not shown). Besides boiling, the enzymes lysozyme and proteinase K were looked 

into with PCR as the analyzing tool. The latter enzyme was not investigated with 

PicoGreen earlier. 
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For the investigation oflysozyme (L-7001, Grade III, 45,000 units/mg solid, 

Sigma), an overnight culture was washed twice, diluted and resuspended in a 1.5 mg/ml 

lysozyme solution. The samples were put into a water bath for 15 min at 37°C followed 

by a 6 min boiling step. Surprisingly, no results (i.e. no bands on the agarose gel) were 

obtained using lysozyme as the lysis tool. Using Tris-EDTA (TE) buffer solution (1 0 

mM Tris, 1 mM EDTA, pH 8.0) instead of ddH20 to resuspend the cells did not solve 

this problem (data not shown). A clear explanation for thi.s result could not be given. It 

is not know why inability to detect DNA with lysozyme was observed, but Dnase activity 

during the incubation step could be a possible reason. 

Proteinase K (P-0390, 13 ,8 units/mg solid, Sigma) was added to the list of 

components for lysis . An overnight culture was diluted oett (1 x 106 to 1 x 101 cells/ml) 

in 1 ml volumes, washed twice with 50mM Tris buffer (pH 7.2) and resuspended in 100 

f.ll of a 500 ~Lg/ml proteinase K solution. The different diltutions were incubated 30 min 

in a water bath at 60°C followed by a 6 min boiling step. IBands showed up on the 1.3% 

agarose gel for all the cell dilutions ( 1 x 106 to 1 x 101 cells>/ml) (Figure C-5). 

The experiment was repeated with the difference th1at the cells dilutions were first 

boiled for 4 min in 50 f..!l TE buffer. After cooling the samtples on ice (5 min) 50 f.ll of a 1 

mg/ml proteinase K solution was added, incubated for 30 nnin, and boiled for another 4 

min. Although even more clear bands were expected for alll the samples compared to the 

previous experiment, bands showed up only on the lines fo>r 1 x 1 06 to 1 x 102 cells/mi. 
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1 2 3 4 5 6 7 8 

Figure C-5. Lane 1) DNA size marker (from top to bottom: 10,000; 8,000; 6,000; 4,000; 
3,000; 2,000; 1 ,550; 1 ,400; 1 ,000; 750; 500 bp ), lane 2 to 7) dilution series of pure 
culture with 1x106 (2), 1x105 (3), 1x104 (4), 1x103 (5), 1x102 (6), 1x101 (7) CFU/ml; lane 
8) negative control with ddH20. 

The combination of lysozyme (1 mg/ml, Sigma) and proteinase K (500 ~Lg/ml , 

Sigma) was also investigated. One milliliter of each cell dilution was pelleted, 

resuspended in 100 ~!lysozyme solution (1.5 mg/ml) and incubated for 15 min at 37°C. 

In a next step, 100 ~1 of the proteinase K solution (500~g/ml) was added and the samples 

were incubated at 60°C for 30 min. To inactivate the enzyme activities and to increase 

the DNA extraction, the cell solutions were boiled for 6 min before advancing to PCR. 

Somehow the lysozyme treatment must have influenced the results in a negative way 

since the detection limit was only 1 x I 04 CFU/ml. It is not completely understand why 

this reduction in lysis efficiency was observed. Therefore it could be concluded that the 

use of one proteinase K treatment (500 ~g/ml) for 30 min at 60°C followed by a boiling 

step of 6 min gave the best results. 
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Appendix D. 

Spacer Comparison 
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Selecting the right spacer molecule 

Before coating an Ab onto the glass beads, a spacer molecule had to be selected. 

Two molecules, polyethylene glycol (PEG, P-4463, Sigma, St. Louis, MO) and 

polydextran (DEX, D-4133, Sigma, St. Louis, MO) were tested and compared. The main 

purpose of a spacer molecule is to reduce the steric interference between the individual 

primary antibodies when covalently linked to the beads. The spacer is attached to the 

plain glass beads and binds on his turn the primary A b. Two batches (1 00 grams) were 

prepared, each with a different spacer. To investigate the effect of the spacers, the rapid 

immuno capture (RIC) procedure was followed. 

Figure D-1 (A) shows the direct readings of the different samples. Not only were 

the sample readings (signal, S) for DEX beads higher than tnose for PEG beads, but also 

the blank reading (noise, N) was lower in 3 of the 4 dilutions compared to the blanks for 

PEG. Converting those results to SIN ratios, it became clear that beads with polydextran 

as the spacer molecule lead to higher SIN values (Figure D-1, B). Up to a dilution of 

1:10,000 of the secondary Ab, the SIN ratios increased for DEX coated beads (from 2.6 

for 1:1,000 to 3.4 for 1:1 0,000). Only at 1:50,000 a higher signal for the PEG beads was 

observed (Figure D-1, B). 
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absorbance readings; B: Signal/Noise. 
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Statistical analysis of lysis treatments 
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Figure E-1. Statistical analysis of lysis data: 0 = no boling, 1 =boiling. 
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Figure E-2. Statistical analysis oflysis 
data: treatment vs. boiling. 



Statistical analysis of capture results 
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Figure E-3. Statistical analysis of cell capture data: Flow vs. shaking capture, Fat 
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