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ABSTRACT

Applications of Relative Motion Models Using Curvilinear Coordinate Frames

by

Alex C. Perez, Doctor of Philosophy

Utah State University, 2017

Major Professor: David K. Geller, Ph.D.
Department: Mechanical and Aerospace Engineering

An angles-only initial relative orbit determination aglorithm is derived using three

line-of-sight observations or six angle measurements. This is accomplished by taking a

Singular Value Decomposition of a 6x6 matrix to get a right singular vector approximately

in the direction of the initial line-of-sight vector. Then an approximate initial relative orbit

determination algorithm is derived that computes the range from the chief to the deputy

vehicle. This involves the approximate solution of 6 poylnomial equations in 6 unknowns.

An iterative improvement is also derived that provides the exact solution, to numerical

precision, of the 6 polynomial equations in 6 unknowns. The initial relative orbit algorithm

is also expanded for more than three line-of-sight observations with an iterative improvement

algorithm for more than three line-of-sight observations. The algorithm is tested for a range

of relative motion cases in low earth orbit and geosynchronous orbit, with and without the

inclusion of J2 perturbations and with camera measurement errors.

(172 pages)
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PUBLIC ABSTRACT

Applications of Relative Motion Models Using Curvilinear Coordinate Frames

Alex C. Perez

A new angles-only initial relative orbit determination (IROD) aglorithm is derived using

three line-of-sight observations. This algorithm accomplishes this by taking a Singular

Value Decomposition of a 6x6 matrix to arrive at an approximate initial relative orbit

determination solution. This involves the approximate solution of 6 poylnomial equations

in 6 unknowns. An iterative improvement algorithm is also derived that provides the exact

solution, to numerical precision, of the 6 polynomial equations in 6 unknowns. The initial

relative orbit algorithm is also expanded for more than three line-of-sight observations with

an iterative improvement algorithm for more than three line-of-sight observations. The

algorithm is tested for a range of relative motion cases in low earth orbit and geosynchronous

orbit, with and without the inclusion of J2 perturbations and with camera measurement

errors. The performance of the IROD algorithm is evaluated for these cases and show that

the tool is most accurate at low inclinations and eccentricities. Results are also presented

that show the importance of including J2 perturbations when modelling the relative orbital

motion for accurate IROD estimates. This research was funded in part by the Air Force

Research Lab, Albuquerque, NM.
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CHAPTER 1

INTRODUCTION

The number of operational satellites and space debris is increasing at an exponential

rate. Determining the orbits of threatening space debris is an essential task for ensuring

the safety of satellite assets. Many space debris objects are too small for classical orbit

determination techniques to track and catalog. One way of determining these unknown or

currently un-tracked objects is through relative orbit determination techniques.

With the increases in relative orbital motion operations necessary for relative orbit

determination, there is a need to find simple but accurate relative satellite motion models.

The Hill-Clohessy-Wiltshire (HCW) equations [1] provide a linearized description for the

relative motion between two space objects in orbit. These equations, which have a time-

explicit solution, are most commonly expressed in a Cartesian (relative) coordinate frame.

While the Cartesian solution yields a useful approximation of the relative trajectory given

initial conditions, it has limitations in accuracy. The HCW equations require linearizing

assumptions that do not accurately capture the curvature of orbits (e.g. they produce incor-

rect drift rates [2]) because the formulation of the relative motion problem is in Cartesian

coordinates. Ideally, these linearized equations should be derived using a coordinate frame

that more naturally captures the curvature and conic behavior of orbits. The main idea is

that a curvilinear coordinate frame can innately capture more information about the true

motion of an orbit than a Cartesian coordinate frame.

As a brief example, the comparison between a Cartesian frame and a curvilinear co-

ordinate frame, when applied to the relative navigation observability problem, is instruc-

tive. For example, it has been mathematically proven that, if two satellites are moving in

free motion, when the dynamics are modeled with the Cartesian HCW equations, using

angles-only measurements to determine the relative position and velocity of a spacecraft is

impossible [3]. In this case the relative navigation problem is unobservable. More recent
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work has shown that if the angles-only relative navigation problem is instead formulated

using relative motion equations derived from a cylindrical coordinate frame, the relative

states can be determined and the navigation problem is observable [4].

The idea that formulating relative orbital motion in a curvilinear coordinate frame

can provide more accuracy over the Cartesian coordinate frame has been expressed by a

few researchers [5], [6]. The relative satellite motion equations derived in a curvilinear

coordinate frame have different linearizing assumptions that provide more accuracy in the

downrange direction than in the Cartesian coordinate frame. Ideally, if the satellite relative

equations of motion can be formulated in curvilinear coordinates, a new initial relative orbit

determination solution can be developed.

Previous research has shown that the effects of the J2 perturbation can be significant for

relative satellite motion. Ref. [7] has also shown that the J2 perturbation is the second most

significant perturbation after the two-body gravity force for satellites that are in Low Earth

Orbits (LEO). The next logical step is formulating an initial relative orbit determination

technique that factors in the perturbations due to J2 effects.

Orbit determination techniques have been used by astronomers for centuries to de-

termine the orbits of other planets, moons, comets and other orbiting satellites. Initial

relative orbit determination is very similar to typical orbit determination algorithms. Rel-

ative orbit determination involves one satellite observing the neighboring, unknown object

of interest and using either angle measurements or range measurements, determining the

relative position and velocity states. These relative position and velocity states can be

combined with a priori knowledge of the satellites inertial states to determine the inertial

position and velocity of the unknown object of interest. Angle measurements from a camera

have several advantages over range measurements. Cameras are lightweight, low-power, and

more covert than range measurement techniques. There are several IROD algorithms that

currently exist [8–13], though, none have implemented J2 perturbations.

1.1 Dissertation Thesis Statement

Casting relative satellite motion equations in curvilinear coordinate frames, including
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J2 perturbations, allows the derivation of an approximate initial relative orbit determination

algorithm that is of a higher fidelity than any other currently available.

1.2 Scope

This research lays down the derivation of new relative satellite motion equations with

J2 perturbations in spherical coordinates. Equation are derived for an initial relative orbit

determination scheme for three observations and greater than three observations using angle

measurements only. Results for a variety of orbits at LEO and GEO are presented with

varying the inclinations, eccentricities, relative motion trajectories, downrange separations,

number of measurements and crosstrack motion. One question to be answered in this

research is: what effect does the J2 perturbation have on the observability of an IROD

solution? Does including the J2 perturbation when generating measurements and in the

IROD algorithm provide better observability (are the errors smaller) than without the J2

perturbation in the measurements and IROD algorithm? Woffinden [3] showed that when

the relative satellite motion dynamics are linear, taking only line-of-sight angles (LOS)

measurements cannot uniquely determine the relative motion of a deputy satellite with

respect to a chief vehicle. The motivation here is to include the J2 perturbation in the

relative motion equations to see if it removes the range ambiguity problem. The effect of

J2 on observability/accuracy of the IROD solutions is an important part of this research.

The topic of disambiguity (distinguishing between multiple feasible IROD solutions) is

an important and non-trivial problem, but it does not fit into the scope of this research. As

will be seen, the crucible of solving the IROD problem is the solution of a set of polynomial

equations. With the approach outlined in this research, there are often several feasible

roots that satisfy the set of polynomial equations and subsequentially provide feasible IROD

solutions. Residuals are a useful tool in providing information for disambiguiating between

which IROD solution is the “best” or most accurate IROD solution (the IROD solution that

returns the initial relative states closest to the truth). All of this research is simulated cases

where the initial relative states are already known and thus a position error compared to the

truth is the most valuable residual for characterizing the accuracy of the IROD algorithm.
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In on-board applications, the true initial relative states are not known, so a set of helpful

residuals can be used in a process to disambiguate multiple IROD solutions to arrive at the

“best” solution. This disambiguation process is grounds for future research and essential

when sifting through actual, on-board mission LOS measurements for IROD applications.

Possible disambiguation techniques include measurement residuals, hypothesis testing, and

Gauss least squares.

Errors in the LOS measurements can come from a variety of sources. Error sources

include camera measurement errors, camera bias, camera misalignment and modelling er-

rors. Although measurement error is not a large focus of the enclosed research a handful

of relative motion cases have camera errors injected into the LOS measurements and the

IROD solutions are compared. A comprehensive study of different kinds of errors associated

with IROD problems is also not the focus of this research.

1.3 Objectives

The objectives of this research are:

1. Derive relative satellite motion equations in spherical coordinates with J2 pertubations

2. Derive LOS relationships based on the coordinate frame used in Objective 1.

3. Derive an angles-only Initial Relative Orbit Determination algorithm with J2 pertur-

bations

4. Test the IROD algorithm for a range of relative motion cases, characterizing the effect

of J2 perturbations on relative orbit determination problems.

1.4 Dissertation Overview

The organization of the dissertation is outlined as follows. Chapter 2 lays the ground-

work of orbital relative motion in Cartesian coordinates, explaining the previous research in

this area, providing a derivation of linearized satellite relative motion models, and showcas-

ing a few common relative motion trajectories such as Leader-Follower, Flyby and Football
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configurations. Chapter 3 shows a derivation of an IROD algorithm that accounts for the

camera offset from the center-of-mass of the observing vehicle. Chapter 4 provides the back-

ground orbital relative motion equations in spherical coordinates and includes a derivation

of new relative motion models with J2 perturbations in spherical coordinates. Chapter 5

provides a derivation of an IROD algorithm that includes J2 perturbations for three LOS

observations (six measurements). Chapter 6 augments the previous IROD algorithm by

including more than three LOS observations. Chapter 7 provides IROD results for various

relative motion trajectories in LEO. Chapter 8 provides LEO IROD results where J2 effects

are removed from the IROD algorithm. Chapter 9 investigates the effects of camera mea-

surement error. Chapter 10 provides IROD results for various relative motion trajectories

in GEO. Chapter 11 summarizes the conclusions for this research and outlines some areas

of future work.
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CHAPTER 2

ORBITAL RELATIVE MOTION

2.1 Satellite Relative Motion Trajectories

A few common satellite relative motion trajectories are used in the body of this research.

Since various categories of trajectories are often referenced with different names, this section

introduces a consistent nomenclature to benefit both the reader and the organization of the

research included.

2.1.1 Chief and Deputy

While the motion of satellites is often visualized in an inertial coordinate frame as

shown in Figure 2.1, a rotating coordinate frame is introduced to visualize the motion of

one satellite relative to another. The origin of the rotating coordinate frame is located

at the inertial position of a reference satellite. As the reference satellite progresses along

its orbit, the coordinate frame rotates. The rotating coordinate frame is called a Local-

Vertical Local-Horizontal (LVLH) frame since the direction of the ix axis is in the radial

(Local-Vertical) direction and the iy axis is in the downrange (Local-Horizontal) direction.

The iz axis completes the LVLH coordinate frame by pointing in the cross-track direction

or the direction of angular momentum of the reference orbit. For the relative motion cases

shown below, the reference satellite is hereafter referred to as the “chief” satellite (red

satellite in Figure 2.1) and the second satellite is referred to as the “deputy” vehicle (blue

satellite in Figure 2.1).
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Fig. 2.1: Definition of LVLH coordinate frame

Radial : ix

Downrange : iy

Crosstrack : iz

2.1.2 V-bar Station-keeping

Perhaps the simplest relative motion trajectory is the v-bar station-keeping case [3],

where a deputy vehicle appears to remain stationary in the LVLH frame at some fixed

position along the downrange axis. This is accomplished when both vehicles are in the

same orbit with the only difference being the true anomaly of the each orbit as shown in

Figure 2.2. This is also called a Leader-Follower formation and is the simplest formation

when considering a satellite formation for communication or scientific missions [14].

2.1.3 Flyby Orbit

A flyby orbit is an orbit where the deputy vehicle appears to flyby the chief at some

constant radial displacement from the chief vehicle in the LVLH frame [3]. Inertially, the

deputy vehicle is in a higher circular orbit so the chief vehicle has a shorter orbital period.
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Fig. 2.2: V-bar Station-keeping Left: Inertial Frame. Right: LVLH frame.

Fig. 2.3: Flyby Orbit. Left: Inertial Frame. Right: LVLH frame.

A flyby orbit is shown in Figure 2.3. A flyby orbit below the chief is achieved when the

deputy vehicle is in a smaller circular orbit.

2.1.4 Hopping Orbit

A hopping orbit occurs when both the chief and deputy vehicles share the same periapse

or apoapse but not both. The periods of the orbits are different, so the deputy vehicle is

drifting either along the positive downrange direction when the deputy period is shorter

than the chief period or in the negative downrange direction when the deputy period is

longer than the chief period. A hopping orbit [3] where the deputy period is longer is shown

in Figure 2.4.



9

Fig. 2.4: Hopping Orbit Left: Inertial Frame. Right: LVLH frame.

Fig. 2.5: Football Orbit Left: Inertial Frame. Right: LVLH frame.

2.1.5 Football Orbit

A football orbit [3] is formed when both the deputy and chief vehicle have the same

orbit period but the deputy vehicle is in a slightly eccentric orbit. If given the proper initial

true anomaly, the deputy vehicle circumnavigates the chief vehicle in the LVLH frame,

forming a 2 x 1 ellipse in the radial/downrange plane as shown in Figure 2.5. A football

orbit is of particular interest for safety-of-flight concerns. Introducing a small amount of

sinusoidal cross-track motion properly phased with a football ellipse will insure that if the

deputy vehicle loses power, no amount of drift will cause a collision with the chief vehicle.

The football orbit with some cross-track motion is often called a Safety Ellipse for this

reason.
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Fig. 2.6: Cross-track Sinusoidal Orbit Left: Inertial Frame. Right: LVLH frame.

2.1.6 Cross-track Sinusoidal Orbit

A sinusoidal cross-track orbit [3] in the LVLH frame occurs when both the deputy and

chief vehicle have the same orbital radius but different inclinations. This particular setup

results in pure sinusoidal motion in the cross-track direction as shown in Figure 2.6.

2.1.7 Combinations of Relative Motion Trajectories

The above trajectories are only a small number of the relative motion trajectories used

in spacecraft navigation applications. These simple examples can be used as building blocks

to combine relative motion trajectories.

2.2 Relative Satellite Motion Models

Although the first models for relative satellite motion were derived in the 1960’s, rel-

ative satellite motion remains an evolving field in astrodynamics [15]. The equations of

motion for two spacecraft are nonlinear with no closed-form solution. However, certain as-

sumptions can be made to greatly simplify these equations in order to derive useful relative

motion solutions. Mainly, the two satellites are assumed to be in nearly the same orbit.

Clohessy and Wiltshire, starting with the nonlinear equations of motion in Cartesian coor-

dinates, linearized the equations of motion about a nominal circular trajectory [1,16]. The

linearization restricts the solution space to small displacements from the circular orbit in
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the relative LVLH frame. The linearized differential equations are called the Hill-Clohessy-

Wiltshire (HCW) equations and can be written as:

δẍ− 3n2δx− 2nδẏ = 0 (2.1)

δÿ + 2nδẋ = 0 (2.2)

δz̈ + n2δz = 0 (2.3)

When the restriction of a circular chief is relaxed to include elliptical reference orbits,

other relative motion solutions can be derived [17–20] the most famous of which are called

the Tschauner-Hempel equations. These equations are not limited to circular reference

orbits but the linearization still requires that the two spacecraft remain relatively close to

one another for the equations to be accurate. The Tschauner-Hempel equations can be

written as:

ẍ− 2ḟ ẏ −
(
ḟ2 + 2 µ

R(t)2

)
x− f̈y = 0 (2.4)

ÿ + 2ḟ ẋ+ f̈x−
(
ḟ2 + µ

R(t)3

)
y = 0 (2.5)

z̈ + µ

R(t)3 z = 0 (2.6)

where f is the true anomaly of the reference orbit, and R(t) is the instantaneous radius

of the reference orbit. This solution requires that the problem be regularized, resulting

in a solution that does not explicitly include time. Tschauner and Hempel found another

formulation of satellite relative motion equations that includes derivatives with respect to

eccentric anomaly of the chief satellite [21]. Other paths of research have been pursued to

find relative motion solutions for chief satellites in arbitrary eccentric orbits. A complex,
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state transition matrix has been developed for the relative motion between two spacecraft

on elliptical orbits [15]. A simpler form of the state transition matrix for elliptical orbits has

also been developed by using a simpler integral function related to the orbital dynamics [22].

Others have derived satellite relative motion solutions for an elliptical reference orbit

using orbital elements. This is accomplished by approximating small differences in position

and velocity between the two spacecraft as a linear transformation of small differences in

their Keplerian elements [23]. The orbital elements are chosen such that, in the absence

of disturbances or control, five will remain constant and the true anomaly will be time

varying. The expressions for the positions and velocities are then linearized with respect to

the reference orbit and transformed to a local coordinate frame. This process defines a state

transition matrix instead of linearizing differential equations and then finding solutions for

the linear differential equations. Kelly [24] showed that by making use of a non-orthogonal

decomposition of the variational motion with respect to an elliptic reference orbit and the

perturbation theory from Brumberg [25], an approach to the rendezvous problem can be

derived. The effect of an eccentric reference orbit has been shown to be significant when

compared to the linearization of the HCW equations [26].

Other work has been done to derive time-explicit representations of relative motion

between elliptical orbits [27]. Still other satellite relative motion equations have been derived

by defining a set of orbit element differences relative to a common chief orbit [28].

DeVries [29] showed that if non-dimensional variables are introduced for the relative

distance and the true anomaly is used as the independent variable instead of time, a solution

for the relative motion of two satellites in eccentric orbits may be developed in terms of the

powers of the nominal orbit’s eccentricity.

Using an integral introduced by Lawden [30], several relative motion solutions of two

nearby points in elliptical orbits have been employed [31].

A few second-order relative motion sets of equations have been developed. London

[32] added a second-order correction to the first order relative motion equations using the

method of successive approximations (the second-order gravitational terms are retained in
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the differential equations of motion). Anthony and Sasaki [33] continued London’s work,

finding corrections and showing that by retaining quadratic terms in the relative distance,

the resulting solution was valid not only for close-in rendezvous applications but also for

relatively larger distances. Newman [34] applied the Volterra multi-dimensional convolution

theory to the nonlinear relative motion equations which yielded a 2nd-order polynomial

relative motion solution. The Volterra kernel series expansion technique uses the Kronecker

product to represent a nonlinear system in a bi-linear form. Kernels are then computed

from matrix products involving the state transition matrix and other system matrices to

finally get the Quadratic Volterra (QV) solution. The QV solution is a second-order solution

expressing the instantaneous relative states as linear, quadratic and bi-linear combinations

of the initial relative conditions. The solution also introduces secular terms not found in

the Cartesian solution of the HCW equations. These equations are derived from the 2nd

order expansion of the nonlinear differential equations of relative motion.

Sengupta and Vadali [35] show the effects of eccentricity on the shape and size of

relative orbits and corrective schemes to account for the effects of eccentricity are derived.

Gim [36] derived a new geometric method using the relationships between the relative

states and the differential orbital elements to obtain the state transition matrix instead of

directly solving the complex relative motion differential equations. This geometric method

includes the effects caused by the reference orbit eccentricity and J2 gravitational perturba-

tions. The state transition matrices for both mean elements and osculating elements were

derived. This geometric method can also be extended to include effects of other perturbing

forces such as higher-order gravitational terms of differential atmospheric drag.

2.3 Derivation of Tschauner-Hempel Equations

This section shows a derivation of the Tschauner-Hempel equations included in [6]. The

position vector of a deputy vehicle can be written as

r̄d = r̄c + r̄ = (rc + x) îr + yîθ + zîh (2.7)
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where

îr = r̄

‖r̄‖
îθ = îh × îr (2.8)

îh = h̄

h

The angular velocity vector of the rotating Hill frame relative to the inertial frame is given

by

ω̄LV LH/inertial = ḟ îh (2.9)

where f is the true anomaly of the chief orbit. Taking a derivative with respect to time in

the inertial frame of Eq. 2.7 yields

˙̄rd = v̄d = (ṙc + ẋ) îr + (rc + x) ˙̂ir + ẏîθ + y ˙̂iθ + żîh + z ˙̂ih (2.10)

where

˙̂ir = ω̄ × îr = ḟ îθ

˙̂iθ = ω̄ × îθ = −ḟ îr (2.11)

˙̂ih = ω̄ × îh = 0

So, Eq. 2.10 becomes

˙̄rd =
(
ṙc + ẋ− yḟ

)
îr +

(
ẏ + ḟ (rc + x)

)
îθ + żîh (2.12)
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Taking a second derivative with respect to time yields the following expression for the

acceleration of the deputy vehicle

¨̄rd =
(
r̈c + ẍ− 2ẏḟ − ḟ2 (rc + x)− yf̈

)
îr +

(
ÿ + 2ḟ (ṙc + ẋ) + f̈ (rc + x)− yḟ2

)
îθ + z̈îh

(2.13)

The chief orbital angular momentum magnitude can be expressed as follows

h = r2
c ḟ (2.14)

taking the derivative with respect to time,

ḣ = 0 = 2rcṙcḟ + r2
c f̈ (2.15)

which can be rewritten as

f̈ = −2ṙcḟ
rc

(2.16)

The position vector of the chief vehicle can be written as

r̄c = rcîr (2.17)

Taking the derivative with respect to time yields

˙̄rc = ṙcîr + rcḟ îθ (2.18)

The second time derivative is

¨̄rc =
(
r̈ − rcḟ2

)
îr +

(
2ṙcḟ + rcf̈

)
îθ (2.19)

Inserting Eq. 2.16 into the above equation cancels out the term in the îθdirection, leaving

the result as

¨̄rc =
(
r̈ − rcḟ2

)
îr = − µ

r2
c

îr (2.20)
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So, r̈ − rcḟ2 = − µ
r2

c
and thus r̈c = rcḟ

2 − µ
r2

c
= rcḟ

2
(
1− rc

p

)
, where p = h2

µ (the semi-latus

rectum). Substituting this result into Eq. 2.13 gives

¨̄rd =
(
ẍ− 2ḟ

(
ẏ − y ṙc

rc

)
− xḟ2 − µ

r2
c

)
îr +

(
ÿ + 2ḟ

(
ẋ− xṙc

rc

)
− yḟ2

)
îθ + z̈îh (2.21)

Substitute the kinematic acceleration expression in Eq. 2.21 into the orbit equations of

motion

¨̄rd = − µ
r3
d

r̄d = − µ
r3
d



rc + x

y

z


(2.22)

where rd =
√

(rc + x)2 + y2 + z2. Eq. 2.22 is substituted into the left hand side of Eq. 2.21

to get

ẍ− 2ḟ
(
ẏ − y ṙc

rc

)
− xḟ2 − µ

r2
c

= − µ
r3
d

(rc + x)

ÿ + 2ḟ
(
ẋ− xṙc

rc

)
− yḟ2 = − µ

r3
d

y (2.23)

z̈ = − µ
r3
d

z

These are the exact nonlinear relative equations of motion. The only assumption made

was that no disturbances are acting on the chief or deputy satellites (the satellites are

moving in Keplerian orbits). These equations are valid for arbitrarily large relative orbits,

and the chief orbit may be eccentric. If the relative orbit coordinates x, y, and z are small

compared to the chief orbit radius rc, then Eq. 2.23 can be further simplified. The deputy

orbit radius can be rewritten as

rd = rc

√
1 + 2 x

rc
+ x2 + y2 + z2

r2
c

≈ rc
√

1 + 2 x
rc

(2.24)
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So now µ
r3

d
can be rewritten as

µ

r3
d

≈ µ

r3
c

(
1− 3 x

rc

)
(2.25)

And µ
r3

c
can be rewritten as

µ

r3
c

= h2

r4
c

1
1 + e cos f = r4

c ḟ
2

r4
c

1
1 + e cos f = ḟ2

1 + e cos f = rcḟ
2

p
(2.26)

where the orbit elements are the chief orbital elements. Neglecting higher order terms, the

right-hand side of Eq. 2.22 can be simplified as

− µ

r3
d



rc + x

y

z


≈ − µ

r3
c

(
1− 3 x

rc

)


rc + x

y

z


≈ − µ

r3
c



rc − 2x

y

z


(2.27)

Now this equation is substituted into the right-hand side of Eq. 2.23 to get

ẍ− 2ḟ
(
ẏ − y ṙc

rc

)
− xḟ2 − µ

r2
c

= − µ
r3
c

(rc − 2x)

ÿ + 2ḟ
(
ẋ− xṙc

rc

)
− yḟ2 = − µ

r3
c

y (2.28)

z̈ = − µ
r3
c

z

Using Eq. 2.26, these equations can be rewritten as

ẍ− 2ḟ
(
ẏ − y ṙc

rc

)
− xḟ2

(
1 + 2rc

p

)
= 0

ÿ + 2ḟ
(
ẋ− xṙc

rc

)
− yḟ2

(
1− rc

p

)
= 0 (2.29)

z̈ + rc
p
ḟ2z = 0
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Using Eqs. 2.16 and 2.26, along with the true latitude θ = ω + f , the general relative

equations of motion are rewritten in the common form

ẍ− x
(
θ̇2 + 2 µ

r3
c

)
− 2θ̇ẏ − yθ̈ = 0

ÿ + 2θ̇x− xθ̈ − y
(
θ̇2 − µ

r3
c

)
= 0 (2.30)

z̈ + µ

r3
c

z = 0

These are the Tschauner-Hempel equations. These equations are valid for arbitrary

chief eccentricity but the relative separations between satellites must remain small. If the

chief satellite is assumed to be in a circular orbit, the chief orbital radius rc is constant, and

the orbital mean motion n is equal to ḟ , the true anomaly rate. The above equations can

then be simplified into the Clohessy-Wiltshire Equations.

ẍ− 2nẏ − 3n2x = 0

ÿ + 2nẋ = 0 (2.31)

z̈ + n2z = 0

At this point it is useful to review the assumptions that went into the derivation

of these HCW equations. These equations are only valid for a circular chief orbit and for

small separations of x, y, and z when compared to the chief orbital radius rc. The Clohessy-

Wiltshire differential equations are simple enough that they can be analytically integrated

to arrive at a closed-form solution. Also, notice that the cross-track differential equation,

z, is just simple harmonic motion in the cross-track direction, uncoupled from the in-plane

x− y motion.
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CHAPTER 3

INITIAL RELATIVE ORBIT DETERMINATION INCLUDING CAMERA OFFSET

In this chapter, the initial relative orbit determination problem is investigated, in par-

ticular, for close-in proximity operations using three or more line-of-sight observations to

either the center-of-mass of an object or known object features. The solution to this problem

is presented and discussed in the context of the Clohessy-Wiltshire orbital relative motion

equations. In previous work, this problem has been shown to be unobservable, but, when

the camera offset from the vehicle center-of-mass is considered, the relative position and

velocity become observable and an initial relative orbit determination solution can be found

in terms of three or more observations. The solution is shown to reduce to a simple linear,

algebraic problem. The sensitivity of the solution accuracy to spacecraft separation, cam-

era offset, camera accuracy, and the time-interval between measurements is presented and

discussed.

3.1 Problem Formulation

This section outlines the reference frames, vector quantities and the HCW equations

used in the formulation of the IROD problem. Figure 3.1 shows a rotating local-vertical

local horizontal (LVLH) reference frame co-located with the chief center-of-mass.

The relative position of the deputy center-of-mass with respect to the chief center-

of-mass in LVLH coordinates is denoted by r(t), and the relative velocity of the deputy

center-of-mass with respect to the chief center-of-mass with respect to the rotating LVLH

frame is denoted by v(t). Vectors without a subscript are assumed to be coordinatized in

LVLH coordinates.

The HCW equations can be written in the form

r(i) = φrr(i)r(0) + φrv(i)v(0) (3.1)
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Fig. 3.1: IROD Camera Offset Problem Formulation

v(i) = φvr(i)r(0) + φvv(i)v(0) (3.2)

where r(0), v(0) are the position and velocity at t = 0, r(i), v(i) are the position and

velocity at time ti, and φ(i) is a shorthand notation for φ(ti − t0). The state transition

matrix partitions in Eqs. 3.1-3.2 are given by

φrr(i) =



1 0 6 {sin [ω (∆t)]− ω (∆t)}

0 cos [ω (∆t)] 0

0 0 4− 3 cos [ω (∆t)]


(3.3)
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φrv(i) =



{4 sin [ω (∆t)]− 3ω (∆t)} /ω 0 2 {cos [w (∆t)]− 1} /ω

0 sin [ω (∆t)] /ω 0

2 {1− cos [ω (∆t)]} /ω 0 sin [ω (∆t)] /ω


(3.4)

φvr(i) =



0 0 6ω {cos [ω (∆t)]− 1}

0 −ω sin [ω (∆t)] 0

0 0 3ω sin [ω (∆t)]


(3.5)

φvv(i) =



4 cos [ω (∆t)]− 3 0 −2 sin [ω (∆t)]

0 cos [ω (∆t)] 0

2 sin [ω (∆t)] 0 cos [ω (∆t)]


(3.6)

where ∆t = ti − t0 and the axes of the LVLH frame are aligned with the target inertial

position vector (z − axis), the normal to the target orbit plane (y − axis), and the target

along-track direction (x − axis in the direction of the “v-bar”, completed the orthogonal

set). The angular velocity of the LVLH frame is given by ω rad/s about the y-axis.

It is assumed that the origin of the deputy-fixed reference frame is co-located with

the deputy center-of-mass. Without loss of generality it is also assumed that a camera is

mounted on the body x-axis at a distance d from the deputy center-of-mass. The camera

measurement frame is assumed to be aligned with the focal-plane of the camera, and its

orientation with respect to the deputy-fixed frame is assumed to be known and constant.

The pixel location of the chief center-of-mass is used to form a LOS vector from the

chief center-of-mass to the camera and is normally expressed in the camera frame at time ti.

However, since the transformation from LVLH to the camera measurement frame at time
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ti is assumed to be known (using knowledge of inertial attitude, position, and velocity), an

alternative description of the LOS measurement expressed in the LVLH frame, ilos(i), can

be utilized.

ilos(i) = r(i) + d(i)
‖ r(i) + d(i) ‖ (3.7)

where d(i) = T lvlhdeputy(i)d
deputy is the camera center-of-mass offset in the LVLH frame at

time ti, and ddeputy =
[
d 0 0

]T
is the constant position of the camera in the chaser

frame. If the initial relative position and velocity of the deputy are r(0) and v(0), the LOS

time-history in the LVLH frame can be determined by substituting Eqs. 3.1-3.2 into Eq.

3.7

ilos(i) = φrr(i)r(0) + φrv(i)v(0) + d(i)
‖ φrr(i)r(0) + φrv(i)v(0) + d(i) ‖ (3.8)

When d(i) = 0, Woffinden and Geller [37] recognized that the above LOS measurement

time-history is unchanged when the initial conditions are multiplied by an arbitrary scalar

k

ilos(i) = φrr(i) [kr(0)] + φrv(i) [kv(0)]
‖ φrr(i) [kr(0)] + φrv(i) [kv(0)] ‖ (3.9)

and no matter how many measurements of ilos(i) are available, the initial conditions cannot

be uniquely determined [38].

However, since it is known that the initial conditions are generally observable when

d(i) 6= 0 [39], how do we determine the initial position r(0) and velocity v(0) in Eq. 3.8

based on three or more LOS observations ilos(i), i = 0, 1, 2...?

3.2 General Solution to the Initial Relative Orbit Determination Problem

Consider the first LOS observation, ilos(0). The solution for the initial position r̂(0)

must satisfy

k0ilos(0) = r̂(0) + d(0) (3.10)



23

where k0 is some unknown scale factor of ilos(0). Similarly, for the second and third LOS

observations the solution for the initial position and velocity r̂(0), v̂(0) must satisfy

k1ilos(1) = φrr(1)r̂(0) + φrv(1)v̂(0) + d(1) (3.11)

k2ilos(2) = φrr(2)r̂(0) + φrv(2)v̂(0) + d(2) (3.12)

where k1 and k2 are also unknown scale factors of ilos(1) and ilos(2), respectively. Solving

Eq.3.10 for r̂(0) produces

r̂(0) = k0ilos(0)− d(0) (3.13)

and substituting this into Eq. 3.11 and solving for v̂(0) produces

v̂(0) = φ−1
rv (1) [k1ilos(1)− φrr(1) {k0ilos(0)− d(0)} − d(1)] (3.14)

Note that the matrix φrv(1) is clearly singular when t1is an exact integer multiple of

one-half the orbital period, but this situation is easily avoided. Now, substituting Eqs. 3.13

and 3.14 back into Eq. 3.12 produces the result

k2ilos(2) = φrr(2) {k0ilos(0)− d(0)} (3.15)

+ φrv(2)
{
φ−1
rv (1) [k1ilos(1)− φrr(1) {k0ilos(0)− d(0)} − d(1)]

}
+ d(2)

This vector equation represents 3 equations in 3 unknowns, K =
[
k0 k1 k2

]T
.

Rearranging and writing the result in matrix form produces

AK = B (3.16)
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where

A =
[ {

φrr(2)− φrv(2)φ−1
rv (1)φrr(1)

}
ilos(0) φrv(2)φ−1

rv (1)ilos(1) −ilos(2)

]
(3.17)

B =
{
φrr(2)− φrv(2)φ−1

rv (1)φrr(1)
}

d(0) + φrv(2)φ−1
rv (1)d(1)− d(2) (3.18)

If A is non-singular, the solutions for the scale factors K̂ =
[
k̂0 k̂1 k̂2

]T
can be

determined from

K̂ = A−1B (3.19)

and unique values for the initial position r̂(0) and velocity v̂(0) can be determined from

Eqs. 3.13 and 3.14, respectively

x̂0 =


r̂(0)

v̂(0)

 = CK̂ +D = CA−1B +D (3.20)

where

C =


ilos(0) 0 0

−φ−1
rv (1)φrr(1)ilos(0) φ−1

rv (1)ilos(1) 0

 (3.21)

D = −


d(0)

φ−1
rv (1) {d(1)− φrr(1)d(2)}

 (3.22)

Thus, Eqs. 3.17-3.22 represents a simple algorithm that can be used to determine the

solution to the IROD problem based on 3 observations for any relative motion coasting

trajectory, and for any known constant or time-varying deputy orientation. Although it has

not yet been proven that A is non-singular in all cases, the A matrix has been invertible



25

for all of the numerous numerical tests conducted in this chapter without exception. For

the special case of station-keeping on the v-bar with constant attitude and a camera offset

in the cross-track direction, the A matrix is shown to always be non-singular [39]. There

are special cases when the camera offset does not produce observability and the A matrix

is singular, e.g. when the offset is only in the v-bar direction, or when the offset always

lies directly between the chief and deputy center-of-masses [39]. In this paper, these special

cases have been avoided.

The consequences of A being non-singular deserves further discussion. It has been

experimentally verified by numerous examples that when the observations have no error,

the A matrix is always invertible (except for the special cases mentioned above) and Eq.

3.19 produces the exact solution to the problem, i.e., a unique trajectory solution can be

found (within the context of the HCW equations) given three perfect observations.

When the observations are chosen randomly or when perfect measurements are cor-

rupted by errors, the A matrix is again always found to be invertible. However, these cases

occasionally produce negative values for the elements of K̂ =
[
k̂0 k̂1 k̂2

]T
which have

been implicitly assumed to be positive. In these cases, when any k̂i < 0, the solution for the

initial position and velocity is incorrect (though A is invertible) and produce a trajectory

that passes exactly through the anti-LOS measurement direction. This will be investigated

further in future work.

3.2.1 N > 3 Observations

When N > 3 observations are available during a coasting period, a least squares ap-

proach can be taken to determine a solution to the IROD problem. For example, when

N > 3 the ith observation must satisfy

kiilos(i) = φrr(i)r̂(0) + φrv(i)v̂(0) + d(i) (3.23)
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Substituting Eqs. 3.13 and 3.14 into Eq. 3.23 produces

kiilos(i) = φrr(i) {k0ilos(0)− d(0)} (3.24)

+ φrv(i)
{
φ−1
rv (1) [k1ilos(1)− φrr(1) {k0ilos(0)− d(0)} − d(1)]

}
+ d(i)

This vector equation represents 3 equations in 3 unknowns, k0, k1, and ki. Thus the

first three observations produce Eq. 3.15, and each additional observation produces a copy

of Eq. 3.24. For N > 3 observations this results in 3 (N − 2) equations in N unknowns. In

matrix form this is written as

ANKN = BN (3.25)

where

AN =



Φ(2)ilos(0) φrv(2)φ−1
rv (1)ilos(1) −ilos(2) 0 · · · 0

Φ(3)ilos(0) φrv(3)φ−1
rv (1)ilos(1) 0 −ilos(3) · · · 0

...
...

...
... . . . 0

Φ(N − 1)ilos(0) φrv(N − 1)φ−1
rv (1)ilos(1) 0 0 · · · −ilos(N − 1)


(3.26)

and

BN =



Φ(2)d(0) + φrv(2)φ−1
rv (1)d(1)− d(2)

Φ(3)d(0) + φrv(3)φ−1
rv (1)d(1)− d(3)

...

Φ(N − 1)d(0) + φrv(N − 1)φ−1
rv (1)d(1)− d(N − 1)


(3.27)

where Φ(i) = φrr(i) − φ−1
rv (i)φ−1

rv (1)φrr(1) has been introduced to reduce the size of the



27

above expressions. When N > 3, the least-squares solution to this set of over-determined

equation is

K̂N =
(
ATNAN

)−1
ATNBN (3.28)

and the solution to the IROD problem, r̂(0), v̂(0) is given by

x̂0 =


r̂(0)

v̂(0)

 = CK̂ +D (3.29)

where K̂ =
[
k̂0 k̂1 k̂2

]T
contains the first 3 elements of the least-squares solution K̂N .

3.2.2 Observations of Known Target Features

In many cases, the LOS to the chief center-of-mass ilosmay be inaccurate or difficult

to determine. However, if a LOS to a known target feature can be obtained, the above

equations can be reformulated to provide an identical solution to the IROD problem. To

simplify the problem, it is assumed that the position of a chief feature relative to the chief

center-of-mass rchieff is in a chief-fixed frame and the orientation of the chief vehicle is

known.

The time-history of the LOS to this feature is obtained simple by adding rchieff to the

chief center-of-mass in Eq. 3.8. This gives

ilosf
(i) =

φrr(i)r(0) + φrv(i)v(0) + d(i) + T lvlhchief (i)rchieff

‖ φrr(i)r(0) + φrv(i)v(0) + d(i) + T lvlhchief (i)rchieff ‖
(3.30)

A good example of this is the International Space Station (ISS) whose orientation

T lvlhchief (i) is known to be aligned near LVLH.

Since it is assumed that rchieff , ddeputy, T lvlhdeputy(i) and T lvlhchief (i) are known quantities,

the solution to the IROD problem using a known chief feature is given by the same equations

as Eqs. 3.19-3.20 and Eqs. 3.28-3.29 with T lvlhdeputy(i)d
deputy replaced by T lvlhdeputy(i)d

deputy +

T lvlhchief (i)rchieff . Interestingly, in this case the camera offset ddeputy may be zero while the
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feature offset rchieff provides the observability that the camera offset would otherwise pro-

vide. For the ISS, a large feature offset rchieff could provide powerful measurements to an

incoming spacecraft, not unlike a navigation beacon.

Finally, if the LOS to a chief feature can be obtained, the possibility of identifying

multiple known features is possible. If the orientation of the chief is known, the above

equations require only minor modifications. If the orientation of the chief is unknown, the

above equations can be augmented with models of the target attitude. This then becomes

a pose estimation problem and is beyond the scope of this work.

3.3 Performance Analysis for Leader-Follower Cases with Constant Attitude

In this section it is assumed that the deputy vehicle is in a leader-follower configuration

at a fixed distance from the chief vehicle on the v-bar and maintaining a fixed orientation.

This is considered a worst case situation since there is no translational or rotational motion

to help facilitate a solution to the problem. The key parameters of this problem are camera

accuracy, σcam, camera center-of-mass offset in the deputy frame, ddeputy, the separation

between the two vehicles (i.e., the v-bar location of the chaser), R0, and a fixed time-interval

between the observations, ∆t. It is assumed that the translational motion is governed

accurately by CW dynamics since the separation distances are small, e.g. R0 << 10 km.

The standard deviation of the camera accuracy σcam is used to represent the effect of

all angular errors including deputy attitude uncertainty, chief center-of-mass identification

errors, and camera resolution. In the Monte Carlo analysis presented below, random mea-

surement errors εi with a standard deviation of σcam are added to the true observations in

the form of small random rotations

īlos(i) = (I − [εi×]) ilos(i) (3.31)

where [εi×] is a skew-symmetric cross-product matrix. The range of values considered for

σcam are varied from realistic values of σcam = 1 × 10−3 rad (200 arc sec) to perhaps an

unrealistic value of σcam = 1 × 10−5 rad (2 arc sec). However, this range of measurement
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errors is intended to provide the system designer with a larger picture of the overall trends

and accuracy needed to meet system requirements. Results for measurement errors on the

order of σcam = 1 × 10−2 rad (2000 arc sec) were generally unpredictable for only three

observations.

The camera offset is nominally in the cross-track direction normal to the orbit plane, 0

deg from the orbit normal, For comparison, two other camera positions are considered, one

in which the camera offset is 45 deg from the orbit normal (i.e., halfway between the orbit

normal and the local vertical), and one in which the camera offset is 80 deg from the orbit

normal (i.e., 10 deg from the local vertical). When the camera offset is in the direction

of the local-vertical, three observations are no longer sufficient to solve the IROD problem

since the camera, chaser, and target all lie in one plane. In this situation, a minimum of

four observations are required [39].

The magnitude of the camera offset d =‖ ddeputy ‖ and the separation distance R0 =‖

R0 ‖ can conveniently be combined into a single parameter d/R0. The accuracy of the

IROD solution is dependent only on this ratio rather than the individual values of d and R0

due to the scalability of the problem, i.e., angles-only measurements and linear dynamics.

The range of values considered is d/R0 = 0.001 to d/R0 = 0.1. This encompasses a wide

range of practical separation distances and camera offsets.

Finally, the time-interval between observations ∆t is perhaps the most important pa-

rameter of this problem. Observations separated by large values of ∆t may be impractical

due to the cumulative effect of unmodeled disturbances or translational maneuvers. Obser-

vations separated by small values of ∆t may also not be useful due to insufficient evolution

of the dynamics. Thus, several values of ∆t ranging from 100 sec to 1000 sec are considered.

3.3.1 Three Observations

The accuracy of the IROD solutions based on Eqs. 3.17-3.22 is investigated. Eqs.

3.7 and 3.31 are used to generate measurements, and T lvlhdeputy is constant and aligned with

LVLH. Monte Carlo analysis is used to determine the standard deviation of the solution

errors based on 1000 samples.
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Fig. 3.2: Downrange position error (3σ) based on 1000 Monte Carlo samples as a function of
the time-interval between observations and camera offset orientation for σcam = 1×10−5 rad

Figures 3.2-3.4 show the 3σ downrange solution error as a fraction of the range where

σcam is varied from 1×10−5 rad to 1×10−3 rad, d/R0 is varied from 0.001 to 0.1, and ∆t is

varied from 100 sec to 1000 sec. These figures also show the effect of different orientations

of the camera offset.

Several conclusions can be drawn from these figures. First, measurements errors at

the milliradian level or better are required to obtain reasonably accurate solutions. A

camera offset normal to the orbit plane (i.e., 0 deg from the orbit normal) produces the

best performance. When the orientation of the offset is 45 deg from the orbit normal, a

minimal reduction in performance is evident, while an orientation 80 deg from the orbit

normal results in an order of magnitude reduction in performance.

It is also clear that the solution error is proportional to the measurement error σcam and

inversely proportional to the ratio d/R0. For example, the accuracy of the position/velocity

solution as a percent of the range when σcam = 1 × 10−5 rad and d/R0 = 0.001 (Fig.

3.2) is nearly the same when σcam = 1 × 10−4 rad and d/R0 = 0.01 (Fig. 3.3) or when

σcam = 1× 10−3 rad and d/R0 = 0.1 (Fig. 3.4).
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Fig. 3.3: Downrange position error (3σ) based on 1000 Monte Carlo samples as a function of
the time-interval between observations and camera offset orientation for σcam = 1×10−4 rad
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Fig. 3.5: Downrange position error (3σ) based on 1000 Monte Carlo samples as a function
of the time-interval between observations and the number of observations (N = 3, 4, 5, and
6) for σcam = 1× 10−5 rad

Figures 3.2-3.4 also clearly show how the time interval between measurements signifi-

cantly affects performance. While larger time-intervals may have the potential to produce

more accurate solutions, the additional performance may be difficult to realize due to the

cumulative effect of unmodeled disturbances (maneuver execution errors, differential J2,

drag, solar radiation pressure) on the accuracy of the solution.

3.3.2 More than Three Observations

The accuracy of the IROD problem solutions based on Eq. 3.28 for N = 3,4, 5, and

6 observations is investigated. Eqs. 3.7 and 3.31 are used to generate measurements, and

T lvlhdeputy is constant and aligned with LVLH. Monte Carlo analysis is used to determine the

standard deviation of the solution errors based on 1000 samples.

Figures 3.5-3.7 show the 3σ downrange error as a fraction of the range for N = 3, 4, 5,

and 6, where σcam is varied from 1× 10−5 rad to 1× 10−3 rad, d/R0 is varied from 0.001 to

0.1, and ∆t is varied from 100 sec to 1000 sec.

As for three observations, the solution error for N = 4, 5, and 6 is proportional to the
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measurement error σcam and inversely proportional to the ratio d/R0. For example, the

accuracy of the position/velocity solution when σcam = 1 × 10−5 rad and d/R0 = 0.001

(Fig. 3.5) is nearly the same when σcam = 1 × 10−4 rad and d/R0 = 0.01 (Fig. 3.6), or

when σcam = 1× 10−3 rad and d/R0 = 0.1 (Fig. 3.7).

More importantly, the effect of adding 1, 2, or 3 observations to the original three

observations is significant. Figures 3.2-3.4 show a consistent increase in accuracy as the

number of observations is increased. For a given ∆T , an increase in the number of ob-

servations from 3 to 6 results in over an order of magnitude improvement in the solution

accuracy. Unfortunately, this is primarily due to the increase in the time-period over which

the 6 observations are taken rather than an increase in the number of observations. When

the time-period of interest is held fixed, an increase in the number of observations (and de-

crease in the measurement time-interval) results in only a small improvement in the solution

accuracy.

3.4 Conclusions

Since the angles-only relative navigation problem, within the context of Clohessy-

Wiltshire dynamics, is known from previous work to be observable when an offset between

the camera and the chaser center-of-mass exists, a solution to the angles-only initial relative

orbit determination problem is thus possible when three or more line-of-sight observations

are available. This chapter has developed a solution to this problem for close-in proximity

operations when three or more line-of-sight observations to either the center-of-mass of an

object or known object features are available. The solution takes the form of simple alge-

braic equations and requires the inversion of one matrix of dimension 3N − 6 when N is

the number of observations.

During v-bar station-keeping, the accuracy of the algorithm is dependent on the ra-

tio of the camera offset to the deputy-chief separation distance, the time-interval between

observations, and standard deviation of the measurement errors. Within the context of

the Clohessy-Wiltshire equations, the algorithm solutions are exact when the measurement

errors are zero. Otherwise, the solution errors are proportional to the measurement error
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and inversely proportional to the ratio of the camera-offset to the vehicle-separation dis-

tance. The measurement time-interval is also a key parameter in this problem. When the

measurement errors are not zero, the observations must be separated by > 100’s of seconds

(for LEO) to achieve useful solutions. When more than three observations are available,

the above conclusions are unchanged and, as expected, solution accuracy slightly improves.

For all cases examined, the solution accuracy depends on the magnitude of the camera

offset or the magnitude of a known target feature offset from the center-of-mass. It has

been shown that small offsets < 1 m may be helpful during proximity operations < 100 m

range, and large offsets≈ 50 m associated with large space structures (e.g. the ISS) can

extend the relative navigation range to 1000’s of meters, using moderately accurate sensors.
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CHAPTER 4

ORBITAL RELATIVE MOTION IN SPHERICAL COORDINATES

In 1963, Stern [40] formulated the Elliptical Cylindrical Coordinate System and showed

that the curvilinear system has definite advantages for studying motion along a known, fixed

elliptical trajectory. He also noted that in studies involving the dynamic or geometric char-

acteristics associated with a known ellipse, the elliptical cylindrical coordinate system has

some advantages. Jones [41] continued Stern’s work by developing a state transition matrix

for the cylindrical coordinate system derived by Stern. Berreen and Crisp [42] formulated

special relative motion equations in curvilinear coordinates for a probe ejecting from a

space station and found that by employing curvilinear coordinates, their approximate solu-

tion could be used over larger relative displacements than earlier solutions in a rectangular

coordinate frame. The derivation of the relative motion equations in a cylindrical coordi-

nate frame has been available for some time [43], though its utility has not been realized

until more recent research publications [44]. In Ref. [44], the nonlinear equations of relative

orbital motion in a cylindrical frame are presented. These nonlinear equations are linearized

about a circular reference orbit resulting in a set of linear time-invariant relative motion

differential equations. These equations can be written as

δr̈ − 3n2δr − 2Rnδθ̇ = 0 (4.1)

δθ̈ + 2n
R
δṙ = 0 (4.2)

δz̈ + n2δz = 0 (4.3)

where δr is the relative radial position change, δθ is the relative azimuth angle, and δz

is the relative cross-track position change. Although the derivation for these equations is



37

similar to the derivation for the Cartesian HCW equations, there is a significant difference.

Since the nonlinear equations of motion in cylindrical coordinates are not a function of δθ

or δż, the above linearized equations are valid for arbitrarily large δθ and δż. This nuance

of the linearization process in curvilinear coordinates was noted by Gobetz [45]. This is an

important result of the linearization process that provides increased accuracy over the HCW

equations for arbitrarily large δθ (downrange separation) and δż (cross-track velocity).

The method of multiple scales has also been used to derive 2nd-order relative motion

equations in spherical coordinates [46]. Multiple scales is a perturbation theory that as-

sumes the solution will be a function of several timescales, each of which is independent

of the others. In Ref. [46], the linear, time-invariant equations of relative motion are also

derived for spherical coordinate frames. The equations are very similar to the Cartesian

HCW form and can be written as

δρ̈− 3n2δρ− 2nRδθ̇ = 0 (4.4)

δθ̈ + 2n
R
δρ̇ = 0 (4.5)

δφ̈+ n2δφ = 0 (4.6)

where δρ is the relative radial position change, δθ is the relative azimuth angle, and δφ is

the relative elevation angle. The linearization process in spherical coordinates is similar to

the linearization assumptions in cylindrical coordinates. Since the nonlinear equations of

motion in spherical coordinates are not a function of δθ or δφ̇, the above linearized equations

are valid for arbitrarily large δθ and δφ̇. The solution to these equations is known and is

very similar to the corresponding Cartesian solution of the HCW equations.

Schweighart and Sedwick [47] derived a set of linearized relative motion equations

with the J2 geopotential disturbance by performing orbit averaging of the gradient of the

J2 disturbance. Kechichian and Kelly [48] also derived an analytic first order solution
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of the J2 perturbation effects on relative satellite motion in Cartesian coordinates for a

spacecraft in a near-circular orbit with small eccentricity and arbitrary inclination. Schaub

and Alfriend [49] analytically derived J2 invariant relative orbits (relative orbits where

the effect of J2 would not cause relative separation over time because the orbits matched

in angular drift rate) specifically for spacecraft formations but it also has applications in

studying relative satellite motion with J2 perturbations.

4.1 Relative Satellite Motion Equations with J2 Perturbations

For the derivation of relative satellite motion equations with J2 perturbations, the

reference orbit must be chosen carefully. When no J2 perturbations are included, the

reference orbit is the chief orbit which results in the relative satellite motion expressions in

cylindrical and spherical coordinate frames as shown above in Eqs 4.1-4.6. The equations

for J2 perturbations in a spherical coordinate frame can be written as [6]

aJ2 = −3
4J2k2 [(3 cos(2φ)− 1) eρ + 2 sin(2φ)eφ] (4.7)

where k2 = µ
ρ2

(
req

ρ

)2
and states that the acceleration due to J2 perturbations can be written

as a function of φ, the inclination angle as measured from the equatorial plane. To use this

equation for the acceleration due to J2 perturbations, the reference orbit must be fixed in

the equatorial plane. A key difference of this derivation from the previous derivation of

relative satellite motion equation in a curvilinear frame is that the reference orbit is not

coincident with the chief orbit, but instead is fixed in the equatorial plane of the Earth.

Two satellites in orbit about a central body can be visualized in a spherical coordinate

frame as shown in Fig. 4.1. This figures shows two satellites, a chief and deputy satellite

that each have inclined orbits. The reference orbit in this figure is fixed in the XY inertial

plane of the Earth (the equatorial plane). The subscript c is used for the chief vehicle and

the subscript d is used for the deputy vehicle.
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Fig. 4.1: Spherical Coordinate Frame with Two Neighboring Satellites

The position vector of a satellite orbiting the Earth can be written as

r̄ = ρ eρ (4.8)

where ρ is the scalar distance from the center of the Earth to the center of mass of the

satellite and eρ is a direction vector in the current direction of the satellite. Taking the time

derivative of this equation yields an equation for the velocity of a satellite orbit the Earth

˙̄r = v̄ = ρ̇ eρ + ρ ėρ = ρ̇ eρ + ρ(ω̄ × eρ) (4.9)

where ρ̇ is the scalar radial velocity of the satellite and ω̄ can be expressed as

ω̄ = θ̇ ez − φ̇ eθ = θ̇ (cosφ eφ + sinφ eρ)− φ̇ eθ (4.10)

Substituting Eq. 4.10 into 4.9 results in a simplified expression for the velocity of a satellite

v̄ = ρ̇ eρ + ρθ̇ cosφ eθ + ρφ̇ eφ (4.11)
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Taking the time derivative of this equation yields an expression for the acceleration of an

orbiting satellite

˙̄v = ā = ρ̈ eρ+ ρ̇ ėρ+ ρ̇θ̇ cosφ eθ +ρθ̈ cosφ eθ−ρθ̇φ̇ sinφ eθ +ρθ̇ cosφėθ + ρ̇φ̇ eφ+ρφ̈eφ+ρφ̇ ėφ

(4.12)

where

ėρ = ω̄ × eρ = θ̇ cosφ eθ + φ̇ eφ

ėθ = ω̄ × eθ = −θ̇ cosφ eρ + θ̇ sinφ eφ (4.13)

ėφ = ω̄ × eφ = −θ̇ sinφ eθ − φ̇ eρ

Substituting Eq. 4.13 into 4.12 yields

ā =
(
ρ̈− ρθ̇2 cos2 φ− ρφ̇2

)
eρ (4.14)

+
(
2ρ̇θ̇ cosφ+ ρθ̈ cosφ− 2ρθ̇φ̇ sinφ

)
eθ +

(
2ρ̇φ̇+ ρθ̇2 sinφ cosφ+ ρφ̈

)
eφ

The acceleration due to gravity can be written as

ag = − µ
ρ2 eρ (4.15)

From Ref. [6], the acceleration due to J2 perturbations can be written in spherical

coordinates as

aJ2 = −3
4J2k2 [(3 cos(2φ)− 1) eρ + 2 sin(2φ)eφ] (4.16)

where k2 = µ
ρ2

(
req

ρ

)2
.

From Newton’s Law, we can equate Eq. 4.15, 4.16 and 4.14 as
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− µ
ρ2 eρ −

3
4J2

µr2
eq

ρ4 [(3 cos(2φ)− 1) eρ + 2 sin(2φ)eφ] =
(
ρ̈− ρθ̇2 cos2 φ− ρφ̇2

)
eρ (4.17)

+
(
2ρ̇θ̇ cosφ+ ρθ̈ cosφ− 2ρφ̇θ̇ sinφ

)
eθ

+
(
2ρ̇φ̇+ ρθ̇2 sinφ cosφ+ ρφ̈

)
eφ

This equation can be split into the orthogonal components, eρ, eθ, eφ to get

eρ : ρ̈ = ρθ̇2 cos2 φ+ ρφ̇2 − µ
ρ2 − 3

4J2
µr2

eq

ρ4 (3 cos(2φ)− 1)

eθ : θ̈ = −2ρ̇θ̇
ρ + 2φ̇θ̇ tanφ

eφ : φ̈ = −2ρ̇φ̇
ρ − θ̇

2 sinφ cosφ− 3
2J2

µr2
eq

r5 sin(2φ)

(4.18)

This set of equations can be written with a subscript c to denote the equations of

motion of the chief vehicle and with the subscript d to denote the equations of motion of

the deputy vehicle:

eρc : ρ̈c = ρcθ̇
2
c cos2 φc + ρcφ̇

2
c −

µ
ρ2

c
− 3

4J2
µr2

eq

ρ4
c

(3 cos(2φc)− 1)

eθc : θ̈c = −2ρ̇cθ̇c

ρc
+ 2φ̇cθ̇c tanφc

eφc : φ̈c = −2ρ̇cφ̇c

ρc
− θ̇2

c sinφc cosφc − 3
2J2

µr2
eq

ρ5
c

sin(2φc)

(4.19)

eρd
: ρ̈d = ρdθ̇

2
d cos2 φd + ρdφ̇

2
d −

µ
ρ2

d
− 3

4J2
µr2

eq

ρ4
d

(3 cos(2φd)− 1)

eθd
: θ̈d = −2ρ̇dθ̇d

ρd
+ 2φ̇dθ̇d tanφd

eφd
: φ̈d = −2ρ̇dφ̇d

ρd
− θ̇2

d sinφd cosφd − 3
2J2

µr2
eq

ρ5
d

sin(2φd)

(4.20)
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We define the spherical deputy states in the same manner as the spherical chief states

plus some small deviation.

ρd = ρc + δρ

θd = θc + δθ (4.21)

φd = φc + δφ

Taking the second derivative yields

δρ̈ = ρ̈d − ρ̈c

δθ̈ = θ̈d − θ̈c (4.22)

δφ̈ = φ̈d − φ̈c

These relationships are substituted into Eqs. 4.20 to yield

δρ̈ = (ρc + δρ)
(
θ̇c + δθ̇

)2
cos2 (φc + δφ) + (ρc + δρ)

(
φ̇c + δφ̇

)2

− µ

(ρc + δρ)2 −
3
4J2

µr2
eq

(ρc + δρ)4 (3 cos (2 (φc + δφ))− 1) (4.23)

− ρcθ̇
2
c cos2 φc − ρcφ̇2

c + µ

ρ2
c

+ 3
4J2

µr2
eq

ρ4
c

(3 cos(2φc)− 1)

δθ̈ = −
2 (ρ̇c + δρ̇)

(
θ̇c + δθ̇

)
(ρc + δρ) + 2

(
φ̇c + δφ̇

) (
θ̇c + δθ̇

)
tan (φc + δφ) (4.24)

+ 2ρ̇cθ̇c
ρc
− 2φ̇cθ̇c tanφc

δφ̈ = −
2 (ρ̇c + δρ̇)

(
φ̇c + δφ̇

)
ρc + δρ

−
(
θ̇c + δθ̇

)2
sin (φc + δφ) cos (φc + δφ) (4.25)

− 3
2J2

µr2
eq

(ρc + δρ)5 sin (2 (φc + δφ)) + 2ρ̇cφ̇c
ρc

+ θ̇2
c sinφc cosφc + 3

2J2
µr2

eq

ρ5
c

sin(2φc)
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These are the exact nonlinear two-body with J2 perturbation equations of relative

orbital motion in spherical coordinates. The coordinates of the chief are assumed to be

known. From these equations it is evident that the dynamics are independent of the relative

azimuth angle since it does not appear in that equation. These equations are valid for

arbitrary chief eccentricity. There is a singularity in these equations when the inclination

of the satellite approaches a polar orbit (as φ → 90◦). This is a remnant of writing the

equations of motion in the spherical coordinate frame.

4.2 Linearized Equations of Motion with J2

Next, the above equations are linearized about a reference orbit. Certain linearizing

assumptions are made to arrive at a set of linearized relative orbital motion equations

that include J2 perturbations. Similar to the HCW cylindrical/spherical set of linearized

equations, since δθ does not appear anywhere in the above set of nonlinear equations,

the relative azimuth angle, δθ, can be arbitrarily large. One difference between previous

linearization processes is that now δφ̇ does appear in the above set of nonlinear equations

so now the relative elevation angle rate must be assumed to be small to first order. The

nonlinear equations of motion for a deputy vehicle in Eq. 4.20 can be written in the form

ẋ = f(x) (4.26)

where
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f(x) =



ρ̇d

θ̇d

φ̇d

ρ̈d

θ̈d

φ̈d



(4.27)

and the first-order Taylor Series expansion of Eq. 4.26 can be written as

Ẋ = ∂f

∂x
|chiefX (4.28)

where

∂f

∂x
= ∇f(x) =

 ∂f
∂ρ

∂f
∂θ

∂f
∂φ

∂f
∂ρ̇

∂f

∂θ̇

∂f

∂φ̇

 (4.29)

where

∂f

∂ρ
=



0

0

0

2µ
ρ3 + θ̇2 cos2 φ+ φ̇2 + 3J2µR2

eq(6 cos2 φ−4)
ρ5

2ρ̇θ̇
ρ2

4ρ̇φ̇ρ4+15J2µR2
eq sin 2φ

2ρ6



,
∂f

∂θ
=



0

0

0

0

0

0



(4.30)
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∂f

∂φ
=



0

0

0

− sin 2φ(θ̇2ρ5− 9
2J2µR2

eq)
ρ4

2φ̇θ̇
(
tan2 φ+ 1

)
− cos 2φ(θ̇2ρ5+3J2µR2

eq)
ρ5



,
∂f

∂ρ̇
=



1

0

0

0

−2θ̇
ρ

−2φ̇
ρ



(4.31)

∂f

∂θ̇
=



0

1

0

2θ̇ρ cos2 φ

−2ρ̇
ρ + 2φ̇ tanφ

−θ̇ sin 2φ



,
∂f

∂φ̇
=



0

0

1

2φ̇ρ

2θ̇ tanφ

−2ρ̇
ρ



(4.32)

These partial derivatives are evaluated for the chief states. Eqs. 4.30-4.32 form a 6x6

Jacobian matrix that is a function of the instantaneous inertial states of the chief vehicle.

This Jacobian can be multiplied by the relative position and velocity of the deputy vehicle

with respect to the chief vehicle to arrive at Eq. 4.28. To implement these equations in

the IROD algorithm, it is assumed that the instantaneous inertial states of the chief vehicle

are known. The Jacobian is also used to write a differential equation for a state transition

matrix, Φ,

Φ̇ = FΦ, Φ(0) = I (4.33)
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where F = ∂f
∂x |chief is the Jacobian matrix from above and the initial condition of the state

transition matrix is identity. The exact, nonlinear differential equations for the chief, along

with the differential equations for the state transition matrix, are numerically integrated

using a Runge-Kutta integrator to arrive at solutions for the relative position and velocity

states, i.e., X(t) = ΦX0 .

These are linearized relative motion equations with J2 that are implemented in the

IROD algorithm. These equations closely approximate the nonlinear motion of a satellite

with J2 perturbations except at higher inclinations because the same singularity at φ = 90◦

occurs in these linearized equations.
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CHAPTER 5

INITIAL RELATIVE ORBIT DETERMINATION PROBLEM, N = 3 OBSERVATIONS

5.1 Initial Orbit Determination

Orbit determination is the art of processing measurements to determine the orbit of a

celestial body or orbiting satellite. The techniques of orbit determination go back hundreds

of years. Johannes Kepler used available line-of-sight angle measurements of Mars to de-

termine its elliptical orbit. Orbit determination was used by early astronomers to map the

solar system and derive the planetary laws of motion. Orbit determination techniques also

exist to determine the orbits of satellites around Earth. Orbit determination is also an im-

portant part of space situational awareness. Identification of orbital debris is the first step

in any debris removal mission [50]. Knowing the orbits of spacecraft assets and neighboring

orbital debris is essential for propagating trajectories forward to determine probability of

collisions. Initial Orbit Determination (IOD) schemes often require earth-based observa-

tions, an initial guess, and an iterative solution whose convergence criteria require a human

in the loop.

5.2 Initial Relative Orbit Determination

An alternative to initial orbit determination from observations on Earth is initial rel-

ative orbit determination (IROD) which can be employed by a neighboring satellite, does

not require an initial guess and does not require an iterative solution. If a satellite asset

has a camera on-board, it can take LOS measurements of unknown orbital debris objects to

determine the relative position and relative velocity of the unknown orbital debris object.

The satellite asset can then use its knowledge of its own orbital states to determine the

inertial position and velocity states of the orbital debris object and repeat this process for

any neighboring debris object, thus identifying and characterizing the orbits of many un-
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(a) Gauss’ Initial Orbit Determination problem.
Three line-of-sight measurements are required to
uniquely determine the position and velocity of an
orbiting satellite.

(b) Initial Relative Orbit Determination Problem.
Three relative line-of-sight measurements are re-
quired to uniquely determine the relative position
and velocity of a neighboring satellite.

known and potentially hazardous debris objects. Figure 5.1a shows the basic setup for an

initial orbit determination problem of an orbiting satellite where measurements are taken

from Earth. Figure 5.1b shows the basic setup for an initial relative orbit determination

problem where a neighboring satellite is making observations of another satellite.

Gauss’ initial orbit determination problem is well known and determines the position

and velocity of an orbiting body using only angle measurements [51]. By taking elevation

and azimuth angle measurements, i.e. LOS measurements of an orbiting body, an observer

can determine the orbit of the body. For a solution to Gauss’ problem, at least 3 observations

(6 angle measurements) are required to determine the position and velocity uniquely.

The initial relative orbit determination problem is solved in a similar way, however,

Woffinden [3] showed that using Hill-Clohessy-Wiltshire (HCW) dynamics to represent the

relative motion of two satellites, no number of LOS measurements will uniquely determine

the relative states of a neighboring satellite. In other words, relative orbits whose state

histories differ only by a scalar multiple, posses the same LOS history. The unique relative

states cannot be determined if the following conditions are satisfied:

• Linearized Relative Dynamics

• No thrusting maneuvers
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• LOS measurements only (no range information)

• No Camera Offset from the Center of Mass

• LOS measurements can be written in a homogeneous form (AX0 = 0)

• No other perturbing forces are included

However, using angle measurements, the relative states can be determined with some special

considerations. These considerations include taking into account the camera offset of the

deputy vehicle when observing the chief vehicle [13] or using higher-order dynamics to model

the relative motion [52].

IROD algorithms have been developed using the 2nd-order Quadratic Volterra (QV)

solution [52]. This IROD algorithm makes use of Macaulay resultant expressions to solve n

polynomial equations in the IROD algorithm [53]. This IROD algorithm is mathematically

intensive since the solution to n polynomial equations is not trivial.

Other research has investigated using the relative satellite motion equations in spher-

ical coordinates to formulate an approximate IROD algorithm [12]. Although any IROD

algorithm will not exactly determine the relative states of a satellite, the estimate can used

to initialize a Kalman filter where, with more measurements, the estimation errors will

decrease.

5.3 Line-Of-Sight Measurements

The advantages of using line-of-sight (LOS) angle measurements from a chief vehi-

cle to a target vehicle have been realized since the early 1960’s [54]. Weight and power

requirements may exclude other radar or range measurements devices from being imple-

mented on-board. Cameras, from which LOS measurements can be extracted are relatively

cheap, light and do not require a lot of power for use. Also, when security or discretion

are required for certain missions, LOS measurements are not invasive as opposed to LIDAR

measurements where the observed vehicle is splashed with a low-level laser. Since LOS
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Fig. 5.1: Line-Of-Sight in Spherical Coordinates for an Arbitrary Chief Inclination

measurements are so simple, they have also been proposed as a useful backup navigation

tool in the event that the primary guidance system fails.

5.4 Derivation of LOS Measurement Equations

The following section outlines the derivation of the second-order measurement equations

that are implemented in a newly derived IROD solution. First, the measurement equations

are derived from the exact relative LOS relationships of a chief and deputy vehicle. Then,

these nonlinear relationships are expanded to second order using a Taylor Series expansion.

Two satellites in orbit about a central body can be visualized in a spherical coordinate

frame as shown in Figure 5.1.

Since the chief orbit is not defined as being in the X-Y inertial plane, some care has

to be taken when deriving the angle measurement equations. Figure 5.1 shows how first an

intermediate coordinate system is defined. This coordinate system is defined by the position
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vector of the chief vehicle and the inertial z-axis. The unit position vectors of the chief in

this intermediate coordinate system can be written as

îρc =



cosφc

0

sinφc


, îθc =



0

1

0


, îφc =



− sinφc

0

cosφc


(5.1)

The unit position vector of the deputy, îρd
can be written as

îρd
=



cosφd cos δθ

cosφd sin δθ

sinφd


=



cos (φc + δφ) cos δθ

cos (φc + δφ) sin δθ

sin (φc + δφ)


(5.2)

The relative position vector, r̄rel, can be written as

r̄rel = (ρc + δρ) îρd
− ρcîρc (5.3)

Now, the azimuth angle, α, and the elevation angle, β, are defined as

tanα = r̄rel · îρc

r̄rel · îθc

(5.4)

tan β = r̄rel · îφc

r̄rel · îθc

(5.5)

where

r̄rel · îρc = (ρc + δρ) îρd
· îρc − ρc

= (ρc + δρ) [cosφc cos (φc + δφ) cos δθ + sinφc sin (φc + δφ)]− ρc (5.6)



52

r̄rel · îθc = (ρc + δρ) îρd
· îθc = (ρc + δρ) cos (φc + δφ) sin δθ (5.7)

r̄rel · îφc = (ρc + δρ) îρd
· îφc = (ρc + δρ) [cosφc sin (φc + δφ)− sinφc cos (φc + δφ) cos δθ]

(5.8)

Then, the in-plane azimuth angle measurement, tanα, is written as

tanα = r̄rel · îρc

r̄rel · îθc

= (ρc + δρ) [cosφc cos (φc + δφ) cos δθ + sinφc sin (φc + δφ)]− ρc
(ρc + δρ) cos (φc + δφ) sin δθ (5.9)

The out-of-plane elevation angle measurement,tan β, is given by

tan β = r̄rel · îφc

r̄rel · îθc

= (ρc + δρ) [cosφc sin (φc + δφ)− sinφc cos (φc + δφ) cos δθ]
(ρc + δρ) cos (φc + δφ) sin δθ (5.10)

and Eq. 5.10 can be simplified

tan β = [cosφc sin (φc + δφ)− sinφc cos (φc + δφ) cos δθ]
cos (φc + δφ) sin δθ (5.11)
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The state X(t) can be written in two different ways. One is in the traditional spherical,

ρ, θ, φ coordinates

X(t) =



δρ(t)

δθ(t)

δφ(t)

δρ̇(t)

δθ̇(t)

δφ̇(t)



(5.12)

or the state vector can be written using arc-lengths in the azimuth, δŷ and elevation, δẑ

directions

Xρŷẑ(t) =



δρ(t)

δŷ

δẑ

δρ̇(t)

δ ˙̂y

δ ˙̂z



=



1

ac

ac

1

ac

ac





δρ(t)

δθ(t)

δφ(t)

δρ̇(t)

δθ̇(t)

δφ̇(t)



= T−1X(t) (5.13)

where ac is the semi-major axis of the chief vehicle. This new state vector is constructed

with consistent units (all of the units are in meters and meters/second) for better numerical

accuracy and stability.
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5.4.1 First-Order Measurement Equation Expansion

The numerator and denominator of Eqs. 5.9 and 5.11 can be expanded to first-order

about δρ = 0, δθ = 0 and δφ = 0. The first order expansions of the azimuth and elevation

equations are

δρ− ρcδθ cosφc tanα ≈ 0 (5.14)

δφ− δθ cosφc tan β ≈ 0 (5.15)

5.4.2 Second-Order Measurement Equation Expansion

The numerator and denominator of Eqs. 5.9 and 5.11 can be expanded to second-order

about δρ = 0, δθ = 0 and δφ = 0. The second order expansions of the azimuth and elevation

equations are

δρ− ρc
2 δφ

2 − ρc
2 cos2 φcδθ

2 (5.16)

−δθ tanα (cosφcδρ+ ρc cosφc − ρc sinφcδφ) ≈ 0

sinφc cosφc
2 δθ2 − tan β (cosφc − δφ sinφc) δθ + δφ ≈ 0 (5.17)

Eqs. 5.14 and 5.15 can be rewritten using the relationships δρ = Φρ(ti)X0, δθ =

Φθ(ti)X0 and δφ = Φφ(ti)X0

(Φρ(ti)− ρc cosφc tanαΦθ(ti)) X0 ≈ 0 (5.18)

[− tan β cosφcΦθ(ti) + Φφ(ti)] X0 ≈ 0 (5.19)

Now, Eqs.5.18 and 5.19 can be rewritten in a more compact form

bαi X0 ≈ 0, bβi X0 ≈ 0 i = 0, 1, 2 (5.20)
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or using Eq. 5.13 the compact form can be written as

bαi TXρŷẑ ≈ 0 bβi TXρŷẑ ≈ 0 i = 0, 1, 2 (5.21)

where

bαi = Φρ(ti)− ρc cosφc tanαΦθ(ti) (5.22)

bβi = − tan β cosφcΦθ(ti) + Φφ(ti) (5.23)

And Eqs. 5.16 and 5.17 can be rewritten using the same, transition matrix relation-

ships:

XT
0

[
−ρc2 ΦT

φ (ti)Φφ(ti)−
ρc
2 cos2 φcΦT

θ (ti)Φθ(ti)
]

X0

XT
0

[
− cosφc tanαΦT

θ (ti)Φρ(ti) + ρc sinφc tanαΦT
θ (ti)Φφ(ti)

]
X0

+ [Φρ(ti)− ρc cosφc tanαΦθ(ti)] X0 ≈ 0 (5.24)

XT
0

[sinφc cosφc
2 ΦT

θ (ti)Φθ(ti) + tan β sinφcΦT
θ (ti)Φφ(ti)

]
X0 (5.25)

+ [− tan β cosφcΦθ(ti) + Φφ(ti)] X0 ≈ 0

Notice that Eqs. 5.24 and 5.25 can be rewritten in a more compact form

XT
0 A

α
i X0 + bαi X0 ≈ 0 (5.26)

XT
0 A

β
i X0 + bβi X0 ≈ 0 i = 0, 1, 2
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or using Eq. 5.13 the compact form can be written as

XT
0 T

TAαi TX0 + bαi TX0 ≈ 0 (5.27)

XT
0 T

TAβi TX0 + bβi TX0 ≈ 0 i = 0, 1, 2

where

Aαi = −ρc2 ΦT
φ (ti)Φφ(ti)−

ρc
2 cos2 φcΦT

θ (ti)Φθ(ti) (5.28)

− cosφc tanαΦT
θ (ti)Φρ(ti) + ρc sinφc tanαΦT

θ (ti)Φφ(ti)

Aβi = sinφc cosφc
2 ΦT

θ (ti)Φθ(ti) + tan β sinφcΦT
θ (ti)Φφ(ti) (5.29)

The ultimate goal of the IROD algorithm derived below is to find a solution of the

initial relative states, X0, in Eq. 5.27.

5.5 Approximate Angles-Only IROD Solution , N = 3 Observations

Given three observations (three azimuth and three elevation angles), an approximate,

non-trivial solution to the first-order linearized measurement equations in Eq. 5.20 is de-

termined by singular value decomposition [55] of the matrix

B =



bα0

bβ0

bα1

bβ1

bα2

bβ2



= UΣV ∗ (5.30)
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where the elements of B are given by Eq. 5.22 and U = [u0, u1, u2, u3, u4, u5] contain the

six left-singular vectors, V = [v0, v1, v2, v3, v4, v5] contains the 6 right-singular vectors,

and Σ is a diagonal matrix of singular values, σi, i = 0, 1, 2, 3, 4, 5. Since BX0 ≈ 0, there

exists a singular value, σ0, with an associated right-singular vector, v0, that satisfies

Bv0 = σ0u0 ≈ 0 (5.31)

Coincidentally, the selection of the correct singular value, σ0, and the associated correct

right singular vector is vital for an accurate IROD solution. The smallest singular value and

its associated right singular vector, are sometimes not the correct singular value eigenvector.

The correct right singular vector is in the same direction as the first LOS measurement.

Since the azimuth and elevation angles are used in the IROD solution, the azimuth and

elevation angles can be used to calculate an approximate LOS unit vector. The LOS unit

vector can be calculated as



x̂

ŷ

ẑ


=



sinα

cosα cosβ

cosα sin β


(5.32)

where α and β are the initial azimuth and elevation angles, x̂, ŷ, and ẑ are the unit vectors

in the radial, downrange and cross-track directions respectively. To find the correct right

singular vector, the dot product of the LOS unit vector in Eq. 5.32, is dotted with each of

the right singular vectors is computed and the maximum result is the correct right singular

vector (in the correct direction).

Thus, based only on the first-order expansion of the azimuth and elevation measurement

model, X0 is approximately a scalar multiple of v0

X0 = k0v0 (5.33)
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where k0 is unknown.

Since the true solution for X0 is expected to be near k0v0, the proposed structure of

the solution to the six quadratic equations is expressed in terms of six unknown parameters,

k0, δk1, δk2, δk3, δk4, δk5

X0 = k0v0 + δk1v1 + δk2v2 + δk3v3 + δk4v4 + δk5v5 = k0v0 + V5δk (5.34)

where V5 = [v1, v2, v3, v4, v5] and δk = [δk1, δk2, δk3, δk4, δk5]T and the six right-singular

vectors, vi, i = 0, 1, 2, 3, 4, 5 span the six-dimensional solution space. In this way of for-

mulating the problem, k0v0 is the larger or dominate term of the solution and V5δk is the

smaller or minor part of the solution. Thus, the six unknown parameters of X0 have been

replaced by the six unknown parameters k0, δk1, δk2, δk3, δk4, δk5. The advantage in for-

mulating a solution in this form is that all of the δk’s can be assumed to be small compared

to k0 which is not possible with the unknown parameters of X0.

The six unknown parameters, k0 and δk can be determined by first substituting Eq.

5.34 into Eq. 5.26

k2
0vT0 A

α
i v0 + 2k0vT0 A

α
i V5δk + δkTV T

5 A
α
i V5δk + bαi k0v0 + bαi V5δk ≈ 0 (5.35)

and a similar expression for Aβi and bβi . If the second-order term, δkTV T
5 A

∗
iV5δk, is assumed

to be small, Eq. 5.35 can be rewritten as

(
k2

0vT0 A
∗
iv0 + b∗

i k0v0
)

+
(
2k0vT0 A

α
i V5 + bαi V5

)
δk ≈ 0 (5.36)

where the last five equations can be solved for δk in terms of k0

δk = − (k0D5 +B5V5)−1
(
k2

0C5 + k0B5v0
)

(5.37)
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where

B5 =



bβ0

bα1

bβ1

bα2

bβ2



, C5 =



vT0 A
β
0 v0

vT0 A
α
1 v0

vT0 A
β
1 v0

vT0 A
α
2 v0

vT0 A
β
2 v0



, D5 =



2vT0 A
β
0V5

2vT0 A
α
1V5

2vT0 A
β
1V5

2vT0 A
α
2V5

2vT0 A
β
2V5



(5.38)

Now, Eq. 5.37 can be substituted back into Eq. 5.36 to produce a single scalar equation

in one unknown, k0

(
k2

0c0 + bα0k0v0
)
− (k0d0 + bα0V5) (k0D5 +B5V5)−1

(
k2

0C5 + k0B5v0
)
≈ 0 (5.39)

where

c0 = vT0 A
α
0 v0 (5.40)

d0 = 2vT0 A
α
0V5 (5.41)

Dividing both sides of Eq. 5.39 by
(
k2

0c0 + bα0k0v0
)
to get

1− (k0d0 + bα0V5) (k0D5 +B5V5)−1
(
k2

0C5 + k0B5v0
)(

k2
0c0 + bα0k0v0

) ≈ 0 (5.42)

The solution to Eq. 5.42 for k0 requires the inverse of a 6×6 matrix in terms of k0. This

can be greatly simplified by making use of the following identity, the Matrix Determinant

Lemma [56]:

Det
[
1− PQ−1R

]
= Det [Q−RP ]

Det [Q] (5.43)
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So from Eq. 5.42 we can write

P = k0d0 + bα0V5

Q = k0D5 +B5V5 (5.44)

R = k2
0C5 + k0B5v0
k2

0c0 + bα0k0v0

which gives us

1− PQ−1R = 0 (5.45)

Taking the determinant of both sides of this equation and applying the identity in Eq.

5.43 results in
Det [Q−RP ]

Det [Q] = 0 (5.46)

Now, multiplying both sides by Det [Q] and substituting P , Q, and R from Eq. 5.44

into the equation above gives

Det

[
(k0D5 +B5V5)−

(
k2

0C5 + k0B5v0
)

(k0d0 + bα0V5)
k2

0c0 + k0bα0 v0

]
= 0 (5.47)

Since the denominator k2
0c0+k0b

α
0 v0 is a scalar it can be factored out of the determinant

to produce the final result

Det
[(
k2

0c0 + k0b
α
0 v0

)
(k0D5 +B5V5)−

(
k2

0C5 + k0B5v0
)

(k0d0 + bα0V5)
]

= 0 (5.48)

A k0 can be factored out from the determinant to reduce the order of the polynomial

from Eq. 5.48.

Det [(k0c0 + bα0 v0) (k0D5 +B5V5)− (k0C5 +B5v0) (k0d0 + bα0V5)] = 0 (5.49)

The equation is a maximum 10th-order polynomial in k0 where sometimes the order

of the polynomial will be less if the 5x5 matrix in Eq. 5.49 is not fully populated. So,

there are a maximum of 10 roots resulting from the solution of the 10th-order polynomial
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equation in k0. The selection of feasible roots (roots that yield feasible IROD solutions)

is not a trivial problem and Section 5.7 explains this root selection process in detail. The

roots of this polynomial are substituted back into Eq. 5.37 to find δk. The solution for the

initial relative states is then just given by Eq. 5.34

X0 = k0v0 + V5δk (5.50)

5.6 Improving the IROD Solution, N = 3 Observations

Once an approximate solution to the IROD problem is obtained, a simple iterative

algorithm can be applied to improve the solution. The approximate solution in Eq. 5.50

will not exactly satisfy the 6 quadratic equations in Eq. 5.26 because the second-order

terms in δk have been neglected. The objective of the following iterative scheme is to

recover these second-order terms and determine a more accurate solution to the 6 quadratic

equations using the approximate solution as a starting point. It is important to point out

that although an exact solution is typically found in a few iterations, this is not the exact

solution to the original 2-body relative motion problem (with or without J2). It is only the

exact solution to the problem modeled by the second-order measurement equations and the

linearized equations of relative motion in spherical coordinates.

Starting with the initial approximate solution X0, let the exact solution be given by

X∗
0 = X0 + δX0. Substitute X∗

0 into Eq. 5.26 and neglecting second-order terms in δX0

produces

XT
0 A

α
i X0 + 2XT

0 A
α
i δX0 + bαi (X0 + δX0) ≈ 0, i = 0, 1, 2 (5.51)

XT
0 A

β
i X0 + 2XT

0 A
β
i δX0 + bβi (X0 + δX0) ≈ 0, i = 0, 1, 2

These 6 equations can then be used to solve for δX0

δX0 = −M−1N (5.52)
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where

M =



2XT
0 A

α
0 + bα0

2XT
0 A

β
0 + bβ0

2XT
0 A

α
1 + bα1

2XT
0 A

β
1 + bβ1

2XT
0 A

α
2 + bα2

2XT
0 A

β
2 + bβ2



, N =



XT
0 A

α
0 X0 + bα0 X0

XT
0 A

β
0 X0 + bβ0 X0

XT
0 A

α
1 X0 + bα1 X0

XT
0 A

β
1 X0 + bβ1 X0

XT
0 A

α
2 X0 + bα2 X0

XT
0 A

β
2 X0 + bβ2 X0



(5.53)

The value of X∗
0 = X0 + δX0 is then used as a staring point for the next iteration,

i.e., set X0 = X0 + δX0 and repeat Eqs. 5.52-5.53. This is equivalent to a simple Newton-

Raphson procedure applied to a set of 6 quadratic equations in 6 unknowns. The algorithm

is simple and typically converges in a few iterations.

5.7 Feasible Root Selection Process

Included in this section is an explanation of the root selection process for one relative

motion example. This example is a Leader-Follower case with downrange separation of 500

km, J2 is off and the inclination of the chief vehicle is 10◦. For comparison, the true initial

relative states (in arc-length form) are given as
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

ρd

δŷ

δẑ

ρ̇d

δ ˙̂y

δ ˙̂z



=



0.000000007160716

4.924117812741954

0.868509867326283

0.000000000015400

0.000011241018532

−0.000031345509776



× 105 (m)/(m/s)

Since all of the results that test the IROD solution are simulated results, the true initial

relative states are known and that information can be used and compared with the IROD

solutions to calculate an error residual from truth. For this particular case, there are 9 roots

from the matrix determinant equation and they are given as

X0 =



0.000000000023

0.000000000023

0.000000000023

0.000000000023

−3270.193936206584

−862.361321304611

0.07358976907

4.709345584467

71.652935259169



× 105meters
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Feasible roots are chosen that satisfy the following criteria:

• Positive (the setup of the test cases assume the deputy vehicle always has a positive

downrange separation in the vbar direction)

• Within 100 meters and 10,000 km (eliminates solutions that are outside the bounds

of the relative motion models utilized)

Given the above criteria in this particular case, there are three feasible solutions

k0 = feasible roots =



0.07358976907

4.709345584467

71.652935259169


× 105meters

Each of the above feasible roots is then plugged into the equation

X0 = k0v0 − V5 (k0D5 +B5V5)−1
(
k2

0C5 + k0B5v0
)

(5.54)

to get a feasible solution to the IROD problem. Residuals are then calculated for each of

the feasible solutions. The feasible solutions are calculated to be

X0(1) =



−0.0258896705108

0.0724269170709

0.01277082042662

−0.00000009112455

0.00000404517151

0.00000072197355



× 105 (m)/(m/s)
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X0(2) =



−0.01012074024748

4.64040329119092

0.81822830160532

0.00000077384716

0.0000205747459

−0.00002602237964



× 105 (m)/(m/s)

X0(3) =



32.82238715997516

71.76430694142002

12.65398356561613

−0.03044115776186

−0.05034332617120

−0.01142891918514



× 105 (m)/(m/s)

Since these feasible solutions (X0) do not exactly satisfy the quadratic equations (because

the second-order terms were assumed to be small), a simple iterative improvement algorithm

is used to iterate on the above feasible solutions so that the quadratic equations are satisfied

to numerical precision. The iteratively improved roots (X∗
0) are calculated to be
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X∗
0(1) =



−0.00258960749630

0.0724451517600

0.01277403488316

−0.00000009114631

0.00000404617348

0.00000072215020



× 105 (m)/(m/s)

X∗
0(2) =



−0.00001762926979

4.925646184880150

0.86852431980422

0.000000212582642

0.00000563288540

−0.00003239511931



× 105 (m)/(m/s)

X∗
0(3) =



54.13796843968275

90.21583586633945

15.9074859040208

−0.04970477766798

−0.08268648712777

−0.01858280625684



× 105 (m)/(m/s)
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Table 5.1: First of Three Feasible IROD Solutions and Residuals

X∗
0(1)

Position Error (percent) 99
Quadratic Residual (percent) 2.9× 10−12

Linearized Spherical Residual (rad) 8.4× 10−4

2-body/J2 residual (rad) 2.8× 10−5

Dot Product Residual (rad) 2.8× 10−5

ROE Ratios xr = 1.003 yr = 0.015 ar = 1.002
Er = 0.015 Az = 1.000 ψ = 0.015

Table 5.2: Second of Three Feasible IROD Solutions and Residuals

X∗
0(2)

Position Error (percent) 3.4× 10−2

Quadratic Residual (percent) 3.7× 10−14

Linearized Spherical Residual (rad) 4.5× 10−3

2-body/J2 residual (rad) 1.8× 10−3

Dot Product Residual (rad) 1.8× 10−3

ROE Ratios xr = 1.000 yr = 1.000 ar = 1.000
Er = 1.000 Az = 1.000 ψ = 1.001

The second feasible solution, X∗
0(2), is closest to the true initial relative states. Even

though the first and third solutions also satisfy the quadratic equations (the quadratic

residual percent is low) these solutions do not yield the correct initial relative states (refer

to the percent position error). For an on-board implementation of this IROD algorithm,

the task of disambiguation, choosing which of the IROD solutions is the best estimate, is

not a trivial problem. The disambiguation problem is acknowledged but not pursued in

this research. However, an example of some desired residuals for this case are shown in the

tables below:

Table 5.3: Third of Three Feasible IROD Solutions and Residuals

X∗
0(3)

Position Error (percent) 2× 103

Quadratic Residual (percent) 1.2× 10−12

Linearized Spherical Residual (rad) 1.8× 10−1

2-body/J2 residual (rad) 1.8× 10−1

Dot Product Residual (rad) 8.2× 10−1

ROE Ratios xr = 0.107 yr = 7.663 ar = 0.032
Er = −5.948 Az = 2.789 ψ = 30.406
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The linearized spherical residual is a LOS residual where the deputy vehicle is initialized

at the IROD estimate and then propagated forward using the linearized, spherical equations

of relative motion. At each measurement time, the LOS of the propagated linearized deputy

is compared with the measured LOS vectors and the residual is calculated.

The 2-body/J2 residual is very similar. The deputy vehicle is initialized at the IROD es-

timate and then propagated forward using the nonlinear two-body +J2 perturbation (when

J2 is turned on in the simulation) equations of motion. At each measurement time, the

LOS of the propagated 2-body/J2 deputy is compared with the measured LOS vectors and

the residual is calculated.

The Dot Product Residual is very similar to the 2-body/J2 residual. At each measure-

ment time, the LOS of the propagated 2-body/J2 deputy is dotted with the measured LOS

vector and the RMS of those dot products are the residual.

The Relative Orbital Element (ROE) ratios are just helpful metrics for visualizing the

relative motion shape in the LVLH frame. The ratios are the estimated relative orbital

elements divided by the true relative orbital elements. Again, this is a residual that is

available only when running simulation cases since the true relative orbital elements would

be unknown when implementing this IROD algorithm on-board an actual mission.

For all of the cases presented for the rest of the paper, only the number of solutions

and the percent position error residual will be tabulated. For the purpose of verifying that

the IROD algorithm gives accurate solutions close to the true initial relative states, this

is the best metric. The metric would not be available, however, when taking real LOS

measurements from an unknown object since the true initial relative states are unknown

and the problem of disambiguation needs to be addressed.

5.8 IROD Performance Tables (Simplified Models)

In this section the IROD algorithm is tested with linearized dynamics (including J2)

and second-order measurement equations. The value of performing the following test on

the IROD algorithm is to verify that the IROD algorithm is able to correctly extract the

correct IROD solution using the same dynamics and measurement equations that the IROD
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solution itself is derived from. This is a valuable step to implement before introducing

nonlinearities in the form of nonlinear dynamics and using nonlinear measurement models

for the LOS measurements. Once the IROD algorithm shows that it consistently and

accurately finds the correct initial relative states, we can say that the IROD solution works

in the environment that it was derived in and then the IROD algorithm can be tested in

a nonlinear environment. A number of cases are shown below where the variables can be

listed as:

• Trajectory type - Leader-Follower, Flyby, Football Orbits

• Downrange Separation: 0.5 km, 5 km, 50 km, 500 km

• J2 Perturbations are ON

• Cross-track Separation: 0%, 10%

• Iterative Improvement Algorithm (ON or OFF)

• Orbital Elements - inclination (0◦, 10◦, 45◦, 60◦) and eccentricity (0, 0.01, 0.1)

For the cases where only three observations (three azimuth, three elevation angles) are used,

it is necessary to introduce some cross-track separation into each trajectory. Without any

cross-track motion, all of the trajectories are in-plane and the problem becomes unobserv-

able (four observations are required when in-plane trajectories are considered). Although

the J2 perturbation does introduce some cross-track motion, the motion is small and the

total time from the first to the last measurement is typically not long enough for J2 pertur-

bations to cause precessions that would make the problem observable without more angle

measurements.

Three relative motion trajectories are simulated with other varying parameters. Figures

A through C show how each of these cases are initialized. Each figure shows the relative

motion of a deputy vehicle with respect to a chief vehicle in a LVLH frame with LOS vectors

pointing from the deputy to the chief at each measurement time. These figures show how

each of the simulation cases presented in the following tables are initialized.
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Fig. 5.2: Leader-Follower Relative Motion Simulation, 500 km Separation, LEO, N = 4
Observations, Tf = 3000 sec

Fig. 5.3: Flyby Relative Motion Simulation, 500 km DownrangeSeparation, 70 km LEO,
N = 4 Observations, Tf = 3000 sec
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Fig. 5.4: Football Relative Motion Simulation, 500 km Downrange Separation, LEO, N = 4
Observations, Tf = 3000 sec

As a reminder, the IROD algorithm determines an approximate solution to six quadratic

equations with six unknowns. So, a simple iterative improvement method is used (a Simple

Newton Raphson method) to arrive at the exact solution to the six quadratic equations

with six unknowns (to numerical precision). In the tables below, the iterative improvement

method is labeled in columns with a “Q”. So, each case has listed two numbers or solutions;

the IROD algorithm comes up with an approximate solution and then the Q method finds

the exact solution (to numerical precision).

For most of the cases shown below, the percent position errors are the preferred metric

displayed because these are all simulation results where the true relative position of the

deputy is known and it provides the best metric of the accuracy of the IROD algorithm in

these simulation cases. When implemented in an actual, on-board mission, the true initial

relative states are not known so some sort of LOS residual would be preferred to determine

the accuracy of the IROD solutions. Each table also includes a column that notes the

number of feasible solutions the IROD algorithm generated (labeled as Num.). For all of

the cases below, the IROD solution with the lowest percent position error was chosen as

the “best” solution. The problem of disambiguation, choosing which of multiple IROD

solutions is the most accurate or “best” is a non-trivial but separate problem that is not
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Table 5.4: Color-Code Categorization for Percent Position Tables

Percent Position Range Highlighted Color
0-20% (good) black
21-50% (poor) blue

50% and up (bad) red

Table 5.5: Percent Position Errors, Simplified Models, Leader-Follower, N = 3, ∆t =
1000 sec, ∆z = 10%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 2 1.0e-6 9.1e-10 2 8.9e-5 1.2e-9 2 9.2e-4 1.8e-9
5 km 2 1.0e-4 1.4e-10 2 7.9e-4 7.2e-11 2 9.1e-3 1.7e-10
50 km 2 1.0e-2 2.2e-12 2 1.5e-3 1.1e-11 2 8.2e-2 1.8e-11
500 km 2 1.2 3.2e-12 2 1.1 2.3e-13 2 2.6e-1 4.5e-12

10◦

0.5 km 3 2.7e-4 8.7e-10 3 3.8e-4 3.9e-9 3 2.0e-3 7.3e-9
5 km 3 2.5e-3 6.8e-11 3 3.6e-3 3.0e-10 3 2.0e-2 1.5e-9
50 km 3 6.3e-3 1.9e-11 3 1.6e-2 4.4e-11 3 1.8e-1 3.7e-11
500 km 3 4.8e2 3.5e-12 3 4.5e2 2.4e-12 3 1.2 8.6e-12

45◦

0.5 km 3 4.2e-2 3.7e-9 3 7.2e-2 5.6e-8 2 1.1e-2 5.1e-10
5 km 3 4.3e-1 2.1e-9 3 7.3e-1 1.5e-9 2 1.1e-1 3.6e-10
50 km 3 4.5 4.6e-11 3 8.1 2.8e-10 2 1.1 5.0e-11
500 km 3 62 52 3 54 3.8e-11 2 9.1 3.1e-13

60◦

0.5 km 3 1.0e5 4.3e-9 2 7.0e5 1.5e-7 2 1.4e-2 6.3e-9
5 km 3 1.7 2.2e-9 2 9.0 4.6e-9 2 1.4e-1 4.8e-10
50 km 3 17 4.5e-12 2 65 5.4e-10 2 1.4 9.7e-12
500 km 3 94 94 2 1.2e2 1.5e-7 2 15 4.e-13

addressed or included in this work. For the following cases the final time is Tf = 2000 sec

with ∆t = 1000 sec for N = 3 observations and the propagation time step is 10 sec. Table

5.4 shows a color-coding categorization of the percent position errors shown in the following

tables.

The Leader-Follower cases above show very good agreement between the best IROD

solution from the IROD algorithm and the true relative position. Even if the approximate

IROD solution is unable to accurately estimate the initial relative states, the iterative

improvement (the Q column) on the IROD solution is able to iterate to a more accurate

estimate of the initial relative states and decrease the percent position error of the estimate.

For the most part, an increase in downrange separation of the leader-follower configuration

will increase the percent position error of the initial IROD estimate (in the IROD column)

but ultimately decrease the percent position error of the iteratively-improved IROD solution
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Table 5.6: Percent Position Errors, Simplified Models, Flyby, N = 3, ∆t = 1000 sec,
∆z = 10%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 2 1.0e-3 6.5e-9 2 1.1e-3 5.8e-9 2 5.7e-3 2.0e-8
5 km 2 1.0e-2 2.2e-10 2 1.1e-2 5.0e-10 2 5.7e-2 2.5e-9
50 km 2 9.2e-2 4.6e-11 2 1.0e-1 7.2e-11 2 5.9e-1 8.8e-11
500 km 2 2.8e-2 2.2e-12 2 1.2e-1 1.3e-12 2 10 9.3e-11

10◦

0.5 km 2 5.4e-3 3.5e-9 2 9.2e-3 9.1e-8 1 2.1e-3 1.4e-9
5 km 2 5.4e-2 3.9e-9 2 9.3e-2 3.8e-9 1 2.1e-2 3.5e-9
50 km 2 5.5e-1 3.6e-10 2 1.0 6.2e-10 1 2.0e-1 3.8e-11
500 km 2 8.1 1.3e-10 2 6.8 1.7e-10 1 1.6 5.8e-12

45◦

0.5 km 2 6.9e-3 4.7e-9 2 6.1e-3 7.4e-10 2 2.6e-3 6.1e-9
5 km 2 6.9e-2 6.5e-10 2 6.1e-2 9.3e-10 2 2.6e-2 5.1e-10
50 km 2 6.8e-1 9.4e-11 2 6.0e-1 3.5e-11 2 2.7e-1 2.9e-11
500 km 2 6.4 6.7e-12 2 5.8 2.1e-12 2 3.1 6.5e-12

60◦

0.5 km 2 1.3e-2 1.3e-9 2 1.1e-2 6.9e-9 2 1.6e6 2.3e-9
5 km 2 1.3e-1 2.6e-10 2 1.1e-1 6.9e-10 2 4.7e-2 3.2e-10
50 km 2 1.3 2.6e-11 2 1.1 6.9e-11 2 4.7e-1 1.8e-11
500 km 2 13 6.1e-12 2 12 3.3e-12 2 1.4e3 4.8e-13

(in the Q column). The percent position errors are low enough that they validate the

accuracy of the IROD solution. There are only two cases, where the separation is large

(500 km) and the inclination is large, where the IROD algorithm is not able to accurately

estimate the initial relative motion states.

The Flyby cases above show good agreement between the best IROD solution and the

true initial relative position. Even if the initial IROD solution does not get an accurate

estimate, the iterative improvement of that IROD solution is able to decrease the per-

cent position error and show good agreement between truth and the IROD estimate. The

same trend of decreasing percent position error for increasing downrange separation is also

apparent in these flyby cases.

The Football cases above show good agreement between the best IROD solution and

the true initial relative position. For several of the cases above, the initial IROD estimates

(in the IROD column) are very poor (the percent position errors are very large) so the

neglected second order terms are significant. Including them in the iterative improvement

then reduces the percent position error and shows that the IROD algorithm is able to find

good estimates for the initial relative states. The same trend of decreasing percent position
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Table 5.7: Percent Position Errors, Simplified Models, Football, N = 3, ∆t = 1000 sec,
∆z = 10%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 3 1.1e-3 3.6e-10 3 1.1e-3 1.0e-9 1 5.4e-4 8.8e-10
5 km 3 9.6e5 1.7e-11 3 1.3e6 3.5e-11 1 5.8e-3 9.8e-11
50 km 3 1.5e-1 2.0e-12 3 8.0e4 7.2e-12 1 1.1e-1 1.2e-11
500 km 2 1.0e3 2.3e-13 2 9.6e2 6.4e-13 2 5.7e2 1.5e-12

10◦

0.5 km 4 7.3e4 3.0e-9 4 6.9e-4 2.6e-9 4 7.6e-5 7.0e-11
5 km 4 2.1e4 1.1e-10 4 8.3e-3 1.2e-11 4 3.0e-3 4.9e-11
50 km 4 1.5e5 3.4e-13 4 2.4e-1 1.2e-12 4 2.9e-1 1.3e-11
500 km 4 13 4.0e-13 4 14 6.1e-13 2 33 4.3e-11

45◦

0.5 km 2 1.5e-1 1.1e-8 2 3.4e-1 6.5e-9 1 3.2e-2 3.0e-9
5 km 2 1.5 6.7e-10 2 3.8 5.0e-9 1 3.2e-1 3.0e-10
50 km 2 22 6.1e-10 2 50 1.5e-2 1 2.7 2.6e-11
500 km 3 9.1e-1 6.8e-12 3 5.1e-1 6.3e-12 3 3.1 7.8e-14

60◦

0.5 km 1 1.1 7.4e-8 1 2.6e-1 7.8e-9 1 3.4e-2 3.2e-9
5 km 1 10 1.9e-9 1 2.6 5.8e-10 1 3.4e-1 4.2e-10
50 km 1 44 1.5e-10 1 20 1.3e-10 1 3.3 5.4e-12
500 km 3 1.3e3 2.3e-11 3 25 1.2e-11 3 27 8.9e-12

error for increasing downrange separation is also apparent in these football cases.

This section outlined an approximate Initial Relative Orbit Determination algorithm

that uses three line-of-sight observations (six angle measurements) to determine an estimate

for the initial relative states. A simple iterative improvement algorithm is also derived,

which takes into account the previously-neglected second-order terms of the measurement

equations and provides a better estimate of the initial relative states. Several example

relative motion cases are presented above where the dynamics are linearized and the mea-

surement equations are second-order. Cases are presented for a variety of inclinations,

eccentricities and relative motion configurations. For almost all of these cases tabulated

above, the IROD algorithm is able to accurately extract the correct initial relative states,

validating that in this simplified environment, the IROD algorithm functions well.
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CHAPTER 6

INITIAL RELATIVE ORBIT DETERMINATION PROBLEM, N > 3 OBSERVATIONS

6.1 Approximate Angles-Only IROD Solution, N > 3 Observations

An approximate solution to the IROD problem can be formulated for more than three

observations. Most satellite tracking mission are not restricted to only three observations

of neighboring satellites. Since more observations may be available, this algorithm makes

use of those observations, with the idea that more observations over a longer period of time

will provide a better estimate of the initial relative states. The derivation with N > 3 is

very similar to the N = 3 derivation.

From the first order expansion of the measurement equation, Eq. 5.20 can be used

where instead of three observations, N observations are available

bαi X0 ≈ 0, bβi X0 ≈ 0 i = 0, 1, 2, ...n− 1 (6.1)

With N observations, the B matrix is formed as

B2n×6 =



bα0

bβ0
...

bαn−1

bβn−1


(6.2)

where the dimensions of B are 2n × 6 where n is the number of observations. Taking the

singular value decomposition of this B matrix will yield B = UΣV ∗where

U2n×2n = [u0, u1, · · · , u2n−1] (6.3)

V6×6 = [v0, v1, · · · , v5] (6.4)
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And Σ still provides 6 singular values, σi, i = 0, 1, 2, 3, 4, 5 where σ0 is a singular value and

v0 is the right-singular vector that is associated with σ0 which satisfies

Bv0 = σ0u0 ≈ 0 (6.5)

The selection of the correct right-singular vector is not trivial. The correct right singular

vector is in the same direction as the first LOS measurement. The selection of the correct

eigenvector and its associated eigenvalue is the same process with N > 3 as it is when

N = 3. The proposed structure of the solution is now written as

X0 = k0v0 + δk1v1 + δk2v2 + δk3v3 + δk4v4 + δk5v5 = k0v0 + V5δk (6.6)

where V5 = [v1, v2, v3, v4, v5] and δk = [δk1, δk2, δk3, δk4, δk5]T . The six unknown

parameters, k0 and δk can be determined by first substituting Eq.6.6 into

XT
0 A

α
i X0 + bαi X0 ≈ 0 i = 0, 1, 2, ..., n− 1 (6.7)

XT
0 A

β
i X0 + bβi X0 ≈ 0 i = 0, 1, 2, ..., n− 1

This produces

k2
0vT0 A

α
i v0 + 2k0vT0 A

α
i V5δk + δkTV T

5 A
α
i V5δk + k0b

α
i v0 + bαi V5δk ≈ 0, i = 0, 1, 2, ..., n− 1

(6.8)

k2
0vT0 A

β
i v0 + 2k0vT0 A

β
i V5δk + δkTV T

5 A
β
i V5δk + k0b

β
i v0 + bβi V5δk ≈ 0, i = 0, 1, 2, ..., n− 1

(6.9)

If the second-order term, δkTV T
5 A

α
i V5δk, is assumed to be small, Eq. 6.8 can be rewritten

as

(
k2

0vT0 A
α
i v0 + k0b

α
i v0

)
+
(
2k0vT0 A

α
i + bαi

)
V5δk ≈ 0, i = 0, 1, 2, ..., n− 1 (6.10)

(
k2

0vT0 A
β
i v0 + k0b

β
i v0

)
+
(
2k0vT0 A

β
i + bβi

)
V5δk ≈ 0, i = 0, 1, 2, ..., n− 1 (6.11)
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At this point, we have 2n equations and 6 unknowns, k0 and δk. The last 2n− 1 equations

can be written in the compact form

(
k2

0C2n−1 + k0B2n−1v0
)

+ (k0D2n−1 +B2n−1)V5δk = N +Mδk ≈ 0 (6.12)

where

B2n−1 =



bβ0

bα1
...

bαn−1

bβn−1


, C2n−1 =



vT0 A
β
0 v0

vT0 A
α
1 v0
...

vT0 A
α
n−1v0

vT0 A
β
n−1v0


, D2n−1 =



2vT0 A
β
0

2vT0 A
α
1

...

2vT0 A
α
n−1

2vT0 A
β
n−1


(6.13)

Applying a pseudo-inverse, least squares method, the value of δk that minimizes the

sum of the squares of the residuals of the last 2n− 1 equations is written as

δk = −
(
MTM

)−1
MTN (6.14)

= −
[
V T

5 (k0D2n−1 +B2n−1)T (k0D2n−1 +B2n−1)V5
]−1

× V T
5 (k0D2n−1 +B2n−1)T

(
k2

0C2n−1 + k0B2n−1v0
)

This solution for δk can then be substituted into Eq. 6.10 to produce a single scalar

equation in terms of the last unknown k0

(
k2

0vT0 A
α
0 v0 + k0b

α
0 v0

)
−
(
2k0vT0 A

α
0 + bα0

)
V5
(
MTM

)−1
MTN ≈ 0 (6.15)

Dividing both sides by
(
k2

0vT0 A
α
0 v0 + k0b

α
0 v0

)
produces

1−
(k0d0 + bα0 )V5

(
MTM

)−1
MTN(

k2
0c0 + k0bα0 v0

) ≈ 0 (6.16)

where

c0 = vT0 A
α
0 v0 (6.17)
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d0 = 2vT0 A
α
0 (6.18)

Letting

P = (k0d0 + bα0 )V5 (6.19)

Q = MTM = V T
5 (k0D2n−1 +B2n−1)T (k0D2n−1 +B2n−1)V5 (6.20)

R = MTN

k2
0c0 + bα0k0v0

= V T
5 (k0D2n−1 +B2n−1)T

(
k2

0C2n−1 + k0B2n−1v0
)

(6.21)

The same simplification process is followed as shown in the previous derivation, and it yields

Det
[(
k2

0c0 + k0b
α
0 v0

)
MTM −MTN (k0d0 + bα0 )V5

]
= 0 (6.22)

which can be simplified to

Det[V T
5 {(k0D2n−1 +B2n−1)T [

(
k2

0c0 + k0b
α
0 v0

)
(k0D2n−1 +B2n−1)

−
(
k2

0C2n−1 + k0B2n−1v0
)

(k0d0 + bα0 )]}V5] = 0 (6.23)

A single k0 can be factored out of this equation to arrive at

Det[V T
5 {(k0D2n−1 +B2n−1)T [(k0c0 + bα0 v0) (k0D2n−1 +B2n−1)

− (k0C2n−1 +B2n−1v0) (k0d0 + bα0 )]}V5] = 0 (6.24)

This results in a 15th-order polynomial (maximum) in k0. This means that there are a

maximum of 15 roots to the above polynomial equation. Since the order of the polynomial

equation is often less than 15, there are often less than the maximum amount of roots.

Again, the roots of this polynomial are substituted back into Eq. 6.14 to find δk. The

solution for the initial relative state is determined from Eq. 6.6

X0 = k0v0 + V5δk (6.25)
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6.2 Improving the IROD Solution, N > 3 Observataions

Once an approximate solution to the IROD problem is obtained, a simple iterative

algorithm can be applied to improve the solution. The approximate solution in Eq. 6.25

will not exactly satisfy the 2n quadratic equations in Eq. 6.7 because the problem is over-

determined (and there are residuals) and, more importantly, the second-order terms in δk

have been neglected. The objective of the following iterative scheme is to recover these

second-order terms and determine a more accurate solution to the 2n quadratic equations

using the approximate solution as a starting point. It is important to point out that

although an exact solution is typically found in a few iterations, this will not be the best

solution to the original 2-body relative motion problem (with or without J2). It is only the

best solution to the problem modeled by the second-order measurement equations and the

linearized equations of relative motion in spherical coordinates.

The objective function to be minimized can be written as a sum

J =
n∑
i=1

(
XT

0 A
α
i X0 +Bα

i X0
)2

+
n∑
i=1

(
XT

0 A
β
i X0 +Bβ

i X0
)2

(6.26)

To find the minimum, take the partial of J with respect to X0 and set it to zero

∂J

∂X0
=

n∑
i=1

(
XT

0 A
α
i X0 +Bα

i X0
) [

2 (Aαi )T X0 + (Bα
i )T

]
(6.27)

+
n∑
i=1

(
XT

0 A
β
i X0 +Bβ

i X0
) [

2
(
Aβi

)T
X0 +

(
Bβ
i

)T ]
= 0

Starting with the initial approximate solution X∗
0, let the best solution be given by

X0 = X∗
0 + δX0. Substitute X0 into Eq. 6.27 which yields

0 =
n∑
i=1

(
(X∗

0 + δX0)T Aαi (X∗
0 + δX0) +Bα

i (X∗
0 + δX0)

)
×

[
2 (Aαi )T (X∗

0 + δX0) + (Bα
i )T

]
(6.28)

+
n∑
i=1

(
(X∗

0 + δX0)T Aβi (X∗
0 + δX0) +Bβ

i (X∗
0 + δX0)

)
×

[
2
(
Aβi

)T
(X∗

0 + δX0) +
(
Bβ
i

)T ]
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which, after neglecting second-order terms in δX0, simplifies to

0 =
n∑
i=1

(
X∗

0
TAαi X∗

0 +Bα
i X∗

0

) [
2 (Aαi )T X∗

0 + (Bα
i )T

]
+

n∑
i=1

(
X∗

0
TAβi X∗

0 +Bβ
i X∗

0

) [
2
(
Aβi

)T
X∗

0 +
(
Bβ
i

)T ]
(6.29)

+
n∑
i=1

[
2
(
X∗

0
TAαi X∗

0 +Bα
i X∗

0

)
(Aαi )T +

(
2 (Aαi )T X∗

0 +Bα
i

) (
2X∗T

0 Aαi +Bα
i

)]
δX0

+
n∑
i=1

[
2
(
X∗

0
TAβi X∗

0 +Bβ
i X∗

0

) (
Aβi

)T
+
(

2
(
Aβi

)T
X∗

0 +Bβ
i

)(
2X∗T

0 Aβi +Bβ
i

)]
δX0

Or 0 = N +MδX0 where M and N are defined as

N =
n∑
i=1

(
X∗

0
TAαi X∗

0 +Bα
i X∗

0

) [
2 (Aαi )T X∗

0 + (Bα
i )T

]
(6.30)

+
n∑
i=1

(
X∗

0
TAβi X∗

0 +Bβ
i X∗

0

) [
2
(
Aβi

)T
X∗

0 +
(
Bβ
i

)T ]

M =
n∑
i=1

[2
(
X∗

0
TAαi X∗

0 +Bα
i X∗

0

)
(Aαi )T (6.31)

+
(
2 (Aαi )T X∗

0 +Bα
i

) (
2X∗T

0 Aαi +Bα
i

)
]

+
n∑
i=1

2
(
X∗

0
TAβi X∗

0 +Bβ
i X∗

0

) (
Aβi

)T
+

(
2
(
Aβi

)T
X∗

0 +Bβ
i

)(
2X∗T

0 Aβi +Bβ
i

)

The value of δX0 that best satisfies these equations is

δX0 = −M−1N (6.32)

The value of X0 = X∗
0 + δX0 is then used as a staring point for the next iteration,

i.e., set X0 = X0 + δX0 and repeat Eq. 6.32. This is equivalent to a simple, semi-analytic,

nonlinear least-squares procedure applied to a set of 2n equations in 6 unknowns. The
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algorithm is simple and typically converges in a few iterations.

6.3 IROD Performance Tables (Simplified Models)

To verify that the IROD algorithm is able to extract the initial relative states from LOS

measurements, the algorithm is tested for a range of relative motion cases. The IROD algo-

rithm above is derived using linearized dynamics and second-order measurement equations.

To test that the IROD algorithm is working properly, LOS measurements are generated us-

ing the same environment of linearized dynamaics and second-order measurement equations

and then inserted into the IROD algorithm. IROD performance tables are generated for

a variety of relative motion cases, inclinations, eccentricities and number of observations.

The range of cases are shown below where the variables can be listed as:

• Trajectory type - Leader-Follower, Flyby, Football Orbits

• Downrange Separation: 0.5 km, 5 km, 50 km, 500 km

• J2 Perturbations are ON

• Cross-track Separation: 0%, 10%

• Iterative Improvement Algorithm (ON or OFF)

• Orbital Elements - inclination (0◦, 10◦, 45◦, 60◦) and eccentricity (0, 0.01, 0.1)

The final time remains remains the same for all number of observations, Tf = 3000 sec,

but the time between measurements changes inversely proportional to the number of mea-

surements. For N = 4, the measurement time interval is ∆t = 1000 sec, for N = 13 the

measurement time interval is ∆t = 250 sec and for N = 25 the measurement time interval is

∆t = 125 sec. The propagation time step is 10 sec for the N = 4 and N = 13 measurement

cases and 5 sec for the N = 25 measurement cases. Reducing the time interval from 10 sec

to 5 sec for the N = 4 and N = 13 measurement cases has no effect on the position errors

of the IROD algorithm.



82

Table 6.1: Percent Position Errors, Simplified Models, Leader-Follower, N = 4, ∆t =
1000 sec, ∆z = 0%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 2 2.7e-4 2.9e-11 2 1.6e-3 6.1e-9 1 1.6e-2 8.2e-9
5 km 4 3.2e-2 2.5e-11 2 6.3e-3 5.3e-10 1 1.6e-1 9.6e-10
50 km 4 4.8 4.8 2 5.4 5.4 5 1.2 1.7e-10
500 km 4 2.6 2.0e-12 4 20 20 2 9.4e-1 3.4e-12

10◦

0.5 km 2 3.2e-3 8.8e-9 2 1.9e-3 1.9e-3 1 1.7e-2 1.7e-2
5 km 2 1.8 1.5 2 2.1e-3 2.1e-3 1 1.6e-1 1.6e-1
50 km 4 14 14 2 3.6 3.6 1 1.3 1.3
500 km 4 10 10 4 6.3 6.4 2 1.5 1.8

45◦

0.5 km 2 1.5e-3 7.8e-7 1 3.4e-3 3.4e-3 1 1.2e-2 1.2e-2
5 km 2 1.0e-1 1e-1 1 1.4e-2 1.4e-2 1 1.2e-1 1.2e-1
50 km 4 1.3 1.3 1 5.4e-1 5.4e-1 1 1.0 1.0
500 km 3 7.9 7.8 3 6.9 7.4 1 4.7 4.7

60◦

0.5 km 4 2.7e-3 2.1e-7 3 4.0e-3 4.0e-3 1 1.3e-2 1.3e-2
5 km 4 3.4e-2 3.4e-2 3 2.6e-2 2.6e-2 1 1.3e-1 1.3e-1
50 km 6 3.1 3.1 3 5.4e-1 5.4e-1 1 1.2 1.2
500 km 6 18 17 6 13 13 1 5.6 6.1

6.3.1 N=4 Observations, Simplified Models

For the Leader-Follower cases shown, the IROD algorithm works very well. The mea-

surements are calculated using linearized dynamics and the measurement equations are

expanded to second order. This is a simplified framework to validate the IROD algorithm

in the same framework in which the IROD solution was derived. It is interesting to note

that in many cases, as the downrange separation increases, the percent position error also

increases.

The IROD algorithm is able to find good solutions for the above Flyby cases. Again,

in this simplified framework, the IROD algorithm is able to accurately extract the correct

relative states and get answers that yield low percent position errors.

For the Football cases shown in the table above, the IROD algorithm is able to find

good solutions for a variety of orbital inclinations, eccentricities and downrange separations.

These results validate that the IROD algorithm works well in the simplified framework

(linearized dynamics and 2nd-order measurement equations) from which is was derived.

For the cases shown above where N = 4, the IROD algorithm performed very well. The

IROD algorithm was able to find the correct relative motion states in virtually every case
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Table 6.2: Percent Position Errors, Simplified Models, Flyby, N = 4, ∆t = 1000 sec,
∆z = 0%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 1 3.7e-6 8.1e-10 1 1.3e-4 9.5e-9 1 1.3e-3 1.4e-8
5 km 5 6.6e-5 6.2e-10 5 1.3e-3 1.0e-9 5 1.3e-1 6.7e-11
50 km 5 3.5e-3 3.8e-11 5 1.5e-2 9.2e-11 5 1.3e-1 1.3e-10
500 km 5 3.7e-1 3.3e-12 5 4.2e-1 1.0e-11 5 1.0 4.8e-12

10◦

0.5 km 1 3.2e-4 3.2e-4 1 9.4e-5 9.4e-5 1 1.7e-3 1.7e-3
5 km 1 3.6e-3 3.6e-3 1 1.3e-3 1.3e-3 1 1.6e-2 1.6e-2
50 km 1 7.8e-2 7.8e-2 1 5.1e-2 5.2e-2 1 1.4e-1 1.4e-1
500 km 1 5.7 5.4 1 4.6 5.5 1 2.9e-1 2.6e-1

45◦

0.5 km 1 1.1e-3 1.1e-3 1 8.8e-4 8.8e-4 1 1.2e-3 1.2e-3
5 km 1 1.1e-2 1.1e-2 1 8.9e-3 8.9e-3 1 1.2e-2 1.2e-2
50 km 1 1.2e-1 1.2e-1 1 1.0e-1 1.0e-1 1 1.1e-1 1.1e-1
500 km 1 2.4 2.5 1 2.2 2.2 2 2.2 2.2

60◦

0.5 km 1 2.3e-3 2.3e-3 1 2.1e-3 2.1e-3 1 2.5e-4 2.5e-4
5 km 1 2.3e-2 2.3e-2 1 2.1e-2 2.1e-2 1 2.8e-3 2.8e-3
50 km 1 2.5e-1 2.5e-1 1 2.4e-1 2.4e-1 1 5.8e-2 5.9e-2
500 km 1 4.8 4.9 1 4.8 4.9 2 11 11

Table 6.3: Percent Position Errors, Simplified Models, Football, N = 4, ∆t = 1000 sec,
∆z = 0%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 1 9.4e-2 9.7e-9 1 7.3e-2 5.1e-1 1 2.3e-2 7.0e-9
5 km 1 9.2e-1 3.9e-10 1 7.2e-1 4.3e-9 1 2.3e-1 6.5e-10
50 km 1 7.1 8.8e-11 1 5.8 3.0e-10 1 2.0 1.8e-10
500 km 6 27 58 6 25 18 6 21 19

10◦

0.5 km 1 9.6e-2 9.6e-2 1 7.3e-2 7.3e-2 1 1.8e-2 1.8e-2
5 km 1 9.4e-1 9.3e-1 1 7.2e-1 7.2e-1 1 1.9e-1 1.9e-1
50 km 1 7.3 7.3 1 5.8 5.8 1 1.8 1.8
500 km 2 15 20 2 12 17 2 11 9.1

45◦

0.5 km 1 1.5e-1 1.5e-1 1 1.1e-1 1.1e-1 1 3.1e-2 3.1e-2
5 km 1 1.5 1.5 1 1.1 1.1 1 3.1e-1 3.1e-1
50 km 1 13 13 1 10 10 1 2.9 2.9
500 km 2 7.9 11 2 7.1 10 2 3.6 5e-1

60◦

0.5 km 1 1.4e-1 1.4e-1 1 1.1e-1 1.1e-1 1 2.7e-2 2.7e-2
5 km 1 1.4 1.4 1 1.1 1.1 1 2.6e-1 2.6e-1
50 km 1 13 13 1 10 10 1 2.5 2.5
500 km 3 20 26 3 18 24 1 4 10
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Table 6.4: Percent Position Errors, Simplified Models, Leader-Follower, N = 13, ∆t =
250 sec, ∆z = 0%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 2 2.5e-4 2.2e-11 2 1.3e-3 5.9e-9 2 2.9e-2 4.8e-11
5 km 4 2.9e-2 3.3e-11 2 4.2e-3 2.5e-10 2 3.0e-1 1.e-10
50 km 4 2.8 2.8 2 7.3 7.3 2 3.9 7.4e-11
500 km 4 20 2.1e-12 4 18 2.1e-12 2 6.0 2.6e-12

10◦

0.5 km 6 1.2e-3 3.1e-8 6 1.4e-3 1.8e-8 2 1.0e-1 1.3e-8
5 km 4 1.7e-1 1.7e-9 6 4.4e-3 1.9e-9 2 1.2 2.8e-9
50 km 4 7.1 7.1 8 1.8 1.8 2 10 2.1e-10
500 km 8 19 20 8 9.4 5.6e-1 4 8.4 2.0e-12

45◦

0.5 km 6 3.2e-4 2.7e-7 6 1.1e-3 1.9e-7 2 8.8e-3 2.8e-9
5 km 8 8.0e-2 1.4e-8 6 2.6e-2 1.0e-8 2 9.0e-2 5.8e-12
50 km 7 8.2e-1 7.8e-10 6 1.0 1.3e-9 2 26 1.2e-11
500 km 7 4.5 5.8e-12 9 72 1.5e-11 2 7.2 6.7

60◦

0.5 km 6 3.5e-3 1.4e-7 4 1.2e-3 4.4e-8 2 2.0e-3 1.5e-9
5 km 6 1.2e-1 7.6e-8 4 1.8e-2 7.9e-10 2 2.0e-2 5.8e-10
50 km 8 5.0e-1 4.3e-10 4 6.9 3.2e-11 2 1.9e-1 4.0e-11
500 km 11 3.1e2 1.6e-12 11 3.6e2 1.8e-11 2 2.2e-1 2.3e-12

and the percent position errors are tabulated to show how far off the best IROD solution

was to the true relative motion states. The number of solutions are also tabulated, though

there is no correlataion between the number of solutions and the accuracy of the IROD

solutions.

6.3.2 N=13 Observations, Simplified Models

The IROD algorithm is also tested when more observations are taken (N = 13) but

the final time remains constant at Tfinal = 3000 sec. These results show that the IROD

solution performs well when more than three or four measurements are taken.

The Leader-Follower cases above show that the IROD solution is able to extract the cor-

rect solution when N = 13. With more measurements, the number of polynomial equations

increases and the number of feasible roots and consequentially, solutions, also increases.

The IROD algorithm is able to find good solutions for the flyby cases when N = 13.

For these flyby cases, an increase in separation yields to a better IROD solution and thus

lower percent position errors.
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Table 6.5: Percent Position Errors, Simplified Models, Flyby, N = 13, ∆t = 250 sec,
∆z = 0%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 1 8.8e-7 2.6e-9 3 1.2e-4 6.1e-9 1 1.7e-3 9.9e-9
5 km 5 3.7e-5 5.5e-10 5 1.2e-3 6.3e-10 5 1.7e-2 5.6e-11
50 km 5 5.0e-3 7.4e-11 5 1.6e-2 3.7e-11 5 1.7e-1 6.2e-11
500 km 7 5.5e-1 5.6e-12 5 6.3e-1 8.5e-12 5 1.8 5.7e-3

10◦

0.5 km 1 2.4e-3 8.8e-9 1 2.4e-3 5.1e-9 1 2.8e-3 1.0e-7
5 km 1 2.3e-2 5.5e-10 1 2.3e-2 1.1e-9 1 2.7e-2 1.3e-8
50 km 5 1.3e-1 2.2e-10 5 1.5e-1 2.0e-10 5 2.0e-1 1.5e-9
500 km 9 2.8e2 9.7e-12 9 3.2 1.1e-11 5 2.0 7.3e-11

45◦

0.5 km 1 9.6e-3 2.7e-9 1 1e-2 7.0e-8 2 2.9e-2 1.2e-10
5 km 1 9.5e-2 6.1e-9 1 1.0e-1 5.3e-9 2 3.0e-1 5.4e-10
50 km 5 8.5e-1 6.5e-11 5 9.2e-1 5.0e-10 2 3.2 2.5e-10
500 km 5 4.3 1.0e-11 5 4.6 2.8e-11 2 1.6 6.1e-11

60◦

0.5 km 2 1.4e5 1.9e-9 2 1.4e5 8.3e-9 2 3.1e-3 1.3e-8
5 km 2 4.2e-2 5.8e-10 2 4.1e-2 1.6e-10 2 3.1e-2 1.5e-9
50 km 2 1.2e3 4.0e-11 2 1.3e3 9.4e-11 2 1.9e3 1.6e-10
500 km 2 6.8e-1 9.7e-12 2 5.1 5.8e-12 2 7.9e-1 2.6e-11

Table 6.6: Percent Position Errors, Simplified Models, Football, N = 13, ∆t = 250 sec,
∆z = 0%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 2 3.3e-2 2.8e-9 2 3.5e-2 2.9e-9 2 9.0e-2 2.3e-10
5 km 6 3.3e-1 2.5e-10 6 3.5e-1 2.2e-10 6 9.0e-1 4.3e-11
50 km 6 3.1 7.1e-11 6 3.3 6.5e-11 6 8.5 1.7e-2
500 km 6 19 1.4e-12 8 1.4e2 4.0e-12 6 26 24

10◦

0.5 km 4 1.1 2.0e-9 3 7e-1 9.9e-9 3 4.3e-2 5.2e-8
5 km 4 180 1.9e-9 3 8.1 1.7e-10 3 4.4e-1 4.8e-9
50 km 6 71 1.6e-10 6 48 1.3e-10 1 5.4 6.0e-10
500 km 8 16 1.9e-11 8 16 4.4e-11 8 11 1.1e-10

45◦

0.5 km 6 2.5e4 5.7e-9 4 1.3e4 1.1e-8 3 7.1e-2 4.1e-9
5 km 6 5.8e3 2.7e-10 6 2.2e3 7.1e-10 3 7e-1 2.9e-10
50 km 10 7.4 2.4e-11 10 1.4e2 1e-10 5 5.5 2.8e-11
500 km 6 24 6.8e-12 6 25 1.8e-11 6 26 4.1e-12

60◦

0.5 km 6 4.3e-2 3.3e-11 6 4.9e-2 8.6e-10 3 1.5e-1 6.2e-9
5 km 10 2.8e3 1.4e-10 10 4.9e-1 1.7e-10 3 1.4 6.4e-10
50 km 10 4.0 4.2e-12 10 4.6 1.1e-11 5 8.8 4.6e-11
500 km 8 31 6.5e-12 8 32 9.6e-12 6 35 34
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Table 6.7: Percent Position Errors, Simplified Models, Leader-Follower, N = 25, ∆t =
125 sec, ∆z = 0%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 2 2.4e-4 3.3e-11 2 1.3e-3 1.6e-8 2 2.e-2 1.0e-8
5 km 4 2.9e-2 2.8e-11 2 3.5e-3 4.7e-9 2 2.2e-1 2.2e-1
50 km 4 2.5 2.5 2 6.9 6.9 2 2.7 1.1e-10
500 km 4 19 2.9e-12 4 17 5.7e-12 2 7.8 6.4e-12

10◦

0.5 km 6 9.6e-4 3.6e-8 6 1.4e-3 2.6e-8 2 4.4e-2 1.9e-8
5 km 4 1.8e-1 3.1e-9 6 4.4e-3 5.1e-9 2 4.7e-1 1.0e-9
50 km 4 7.1 7.0 8 1.4 1.4e-12 2 10 4.8e-10
500 km 8 19 21 8 8.2 3.4e-1 4 7.6 1.6e-11

45◦

0.5 km 6 3.2e-4 2.4e-7 6 1.1e-3 2.1e-7 2 7.0e-3 3.2e-9
5 km 8 7.7e-2 5.9e-9 6 2.4e-2 2.3e-8 2 7.1e-2 1.4e-10
50 km 7 7.9e-1 8.5e-10 6 1.0 1.7e-9 2 8.8e-1 1.9e-11
500 km 9 4.4 1.8e-11 9 4.7 1.8e-11 2 9.8 9.3

60◦

0.5 km 6 3.5e-3 1.7e-7 6 1.2e-3 9.1e-9 2 1.8e-3 3.9e-9
5 km 6 1.1e-1 7.6e-10 6 1.7e-2 9.4e-9 2 1.8e-2 2.7e-10
50 km 8 4.7e-1 1.9e-9 4 6.1 1.4e-11 2 1.8e-1 1.5e-11
500 km 11 3.0e2 3.0e-12 11 3.5 4.1e-13 2 48 3.2e-12

For the Football cases tabulated above, the IROD algorithm is able to find good solu-

tions for N = 13 observations. For many of the cases, an increase in downrange separaation

yields a decrease in the percent position error. Also, there are several cases where the initial

IROD solution is bad but after implementing the iterative improvement method, the IROD

solution is much better. The iterative improvement method reduces the residual of the

original quadratic equation.

For these cases, increasing the number of measurements from four to thirteen still yields

good results and the IROD algorithm is able to find good solutions for the relative motion

states.

6.3.3 N=25 Observations, Simplified Models

The IROD algorithm is also tested when more observations are taken (N = 25) but

the final time remains constant at Tfinal = 3000 sec (the time between measurements gets

smaller). These results show that the IROD solution performs well when 25 measurements

are taken.

For the Leader-Follower cases shown above where N = 25, the IROD algorithm is
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Table 6.8: Percent Position Errors, Simplified Models, Leader-Follower, N = 25, ∆t =
125 sec, ∆z = 0%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 1 1.3e-6 1.2e-8 1 1.2e-4 9.4e-9 1 1.8e-3 4.6e-9
5 km 5 3.4e-5 1.2e-9 5 1.2e-3 6.4e-10 5 1.8e-2 2.9e-10
50 km 5 5.1e-3 1.3e-10 5 1.6e-2 1.1e-10 5 1.8e-1 6.5e-11
500 km 7 5.7e-11 1.3e-11 5 6.5e-1 8.4e-11 5 1.8 3.6e-3

10◦

0.5 km 1 2.3e-3 3.9e-9 1 2.3e-3 1.2e-8 1 2.5e-3 1.3e-7
5 km 1 2.2e-2 2.7e-11 1 2.2e-2 1.3e-9 1 2.4e-2 1.4e-8
50 km 5 1.3e-1 1.8e-11 5 1.4e-1 2.7e-10 5 1.8e-1 2.1e-9
500 km 9 4.8 2.1e-12 9 3.2 1.3e-11 5 2.2 1.1e-10

45◦

0.5 km 1 9.9e-3 1.3e-8 1 1.0e-2 2.5e-8 2 1.9e-2 3.8e-9
5 km 1 9.8e-2 1.8e-9 1 1.0e-1 6.2e-10 2 1.9e-1 2.1e-9
50 km 5 8.8e-1 1.2e-10 5 9.6e-1 4.6e-11 2 1.9 9.2e-11
500 km 5 4.2 1.2e-11 5 4.6 2.7e-12 2 2.6e-1 1.4e-11

60◦

0.5 km 2 1.4e5 6.0e-9 2 4.0e-3 7.2e-9 2 2.1e5 1.5e-9
5 km 2 4.1e-2 1.9e-11 2 4.1e-2 3.9e-10 2 3.0e-2 1.1e-10
50 km 2 4.6e-1 8.6e-11 2 1.4e3 3.0e-11 2 2.0e3 4.6e-11
500 km 2 5.8 2.3e-11 2 10 4.8e-12 2 4.5e-2 6.8e-12

able to find good solutions for the relative states. Even when the approximate solution

to the IROD problem (the percent position error in the IROD column) is poor, the iter-

ative improvement method can find a good solution with only a few iterations. With the

linearized propagation and second-order measurement equations, varying the inclination or

the eccentricity does not seem to effect the accuracy of the IROD solutions.

For the Flyby cases shown above, the IROD algorithm is able to consistently find an

accurate estimate of the initial relative states when N = 25. Even though the approximate

IROD estimates are good, the iterative improvement improves the estimate and reduces

the percent position errors. Varying the inclination and eccentricity of the relative motion

cases has no effect on the accuracy of the IROD solution.

For the Football cases shown above, the IROD algorithm is able to estimate the initial

relative states very well. Out of all of these football cases, the IROD solution was not

able to find a “good” solution in two cases (highlighted in blue). Even when the initial

estimate of the IROD algorithm was bad (highlighted in red), the iterative improvement on

the polynomial equations was able to get good IROD solutions.

This chapter showed the derivation of an IROD algorithm that is able to take more
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Table 6.9: Percent Position Errors, Simplified Models, Leader-Follower, N = 25, ∆t =
125 sec, ∆z = 0%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 2 2.7e-2 2.7e-9 2 2.9e-2 3.3e-9 4 5.7e-2 5.4e-9
5 km 6 2.7e-1 3.8e-10 8 2.9e-1 4.4e-11 6 5.7e-1 1.1e-10
50 km 6 2.5 4.3e-11 6 2.7 3.5e-11 6 5.4 1.8e-9
500 km 6 16 2.8e-11 6 17 8.5e-2 6 24 22

10◦

0.5 km 4 1.5e-1 2.9e-9 4 2.3e-1 4.8e-8 3 6.1e-2 6.2e-8
5 km 4 1.4 1.6e-9 4 7.1e2 4.1e-9 3 3.2e3 6.6e-9
50 km 6 8.9 1.7e-10 6 1.1e2 3.9e-10 3 7.8 8.7e-10
500 km 8 18 1.2e-11 8 18 9.3e-11 8 13 1.3e-10

45◦

0.5 km 4 4.0e-2 1.8e-9 4 4.4e-2 8.8e-10 4 3.4e4 5.6e-9
5 km 8 3.3e3 1.0e-9 8 3.0e3 2.3e-10 4 1.4e2 4.1e-11
50 km 10 3.0e2 3.2e-11 10 1.6e3 3.8e-11 10 3.3e2 4.5e-11
500 km 6 23 2.0e-11 6 23 1.3e-11 6 24 1.5e-12

60◦

0.5 km 4 2.5e-2 7.4e-9 4 2.7e-2 2.5e-10 4 1.7e4 5.5e-9
5 km 10 2.5e-1 7.8e-10 8 2.7e-1 4.0e-11 8 7.5e-1 5.8e-10
50 km 10 3.4e2 4.4e-11 10 3.4e2 3.1e-12 10 1.3e2 4.8e-11
500 km 8 29 7.1e-12 8 29 1.6e-12 6 33 31

than three observations (more than six LOS angle measurements) and process them to get

an estimate of the initial relative states. After the derivation of the approximate IROD al-

gorithm, and iterative improvement scheme was derived that seeks to minimize the residual

of the set of polynomial equations and account for the previously neglected second-order

terms in the approimate IROD derivation. The N > 3 IROD algorithm was then tested for

a variety of relative motion cases, eccentricities, inclinations, and number of measurements

when the measurements are calculated using linearized propagation and second-order mea-

surement equations. Testing the IROD algorithm in this simplified environment validates

that the IROD algorithm is correctly estimating the initial estimates because it is being fed

measurements from the same simplified environment from which the IROD algorithm was

derived. The results show that the IROD algorithm is working properly and can estimate

the initial relative states for a wide variety of relative motion cases.
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CHAPTER 7

LOW EARTH ORBIT RESULTS

This chapter shows how the IROD algorithm performs when testing relative motion

trajectories at LEO with nonlinear dynamics (2-body + J2 perturbations) and the mea-

surement equations are the exact nonlinear expressions for the LOS measurements. The

results are presented din the same same table format as in previous chapters. The number

of measurements, cross-track separation, relative motion trajectories, downrange separa-

tion, inclination and eccentricity are all varied to provide a basis for how well the IROD

algorithm performs in a number of different relative motion scenarios in LEO. The percent

position errors of the IROD estimates of the initial relative states are presented for these

cases.

7.1 N=4 Observations, Nonlinear Dynamics, ∆t = 1000 sec

The Leader-Follower cases with N = 4 observations, nonlinear dynamics, and nonlinear

LOS measurement equations are shown in Table 7.1. In all the cases, the out-of-plane motion

is small (only due to differential J2). The time between measurements is ∆t = 1000 sec. The

total measurement period is 3000 sec. It is seen that the IROD algorithm cannot accurately

estimate the correct initial relative states. When the eccentricity or the inclination is large,

the IROD algorithm struggles to find an estimate close to the true relative states. In

several cases, the IROD algorithm is not able to even find a solution (marked with NS for

No Solution). However, when the inclinations are small and the eccentricities are small, the

IROD algorithm performs well and the percent position errors are low.

Table 7.2 shows the performance of the IROD algorithm when considering Flyby cases

with nonlinear dynamics and nonlinear measurement equations. The Flyby cases performed

better than the Leader-Follower cases in terms of percent position errors (the errors were

lower). The Flyby cases performed well even at high eccentricities but not very well at
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Table 7.1: Percent Position Errors, Nonlinear, Leader-Follower, N = 4, ∆t = 1000 sec,
∆z = 0%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 2 2.0e-4 4.8e-4 2 1.0 1.0 1 25 25
5 km 4 3.2e-2 1.3e-4 2 1.1 1.1 1 25 25
50 km 4 4.8 4.8 2 9.5 9.5 1 22 23
500 km 4 2.6 4.2e-2 4 20 20 2 12 13

10◦

0.5 km 2 1.0e-1 1.0e-1 2 13 13 1 31 31
5 km 4 1.0 8.1e-1 2 16 16 1 31 31
50 km 4 11 11 2 1.0e-1 1.0e-1 1 28 28
500 km 4 17 17 4 33 33 2 13 12

45◦

0.5 km 2 11 11 0 NS NS 1 72 72
5 km 2 1.6 1.6 0 NS NS 1 72 72
50 km 4 41 41 2 35 35 1 73 73
500 km 4 27 27 4 18 18 2 59 59

60◦

0.5 km 4 31 31 2 1.8e6 1.4e6 0 NS NS
5 km 4 7.0 7.0 2 1.8e5 1.4e5 1 80 80
50 km 4 52 52 4 51 51 1 82 82
500 km 6 34 33 6 28 29 2 74 74

Table 7.2: Percent Position Errors, Nonlinear, Flyby, N = 4, ∆t = 1000 sec, ∆z = 0%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 1 4.5 4.5 1 4.9 4.9 1 9.8 9.8
5 km 5 4.5 4.5 5 4.9 4.9 5 9.8 9.8
50 km 5 4.4 4.4 5 4.8 4.8 5 9.6 9.7
500 km 5 3.3 3.3 5 3.6 4.0 5 8.1 9.0

10◦

0.5 km 1 5.4 5.4 1 5.8 5.8 1 9.9 9.9
5 km 1 5.4 5.4 1 5.8 5.8 1 9.9 9.9
50 km 1 5.4 5.4 1 5.7 5.7 1 9.7 9.7
500 km 1 10 9.3 1 9.4 8.9 1 9.1 9.1

45◦

0.5 km 1 19 19 1 19 19 1 7.6 7.6
5 km 1 18 18 1 19 19 1 7.6 7.6
50 km 1 18 18 1 18 18 1 7.1 7.1
500 km 1 16 16 1 16 16 1 3.3 3.3

60◦

0.5 km 1 21 21 1 21 21 1 8.8 8.8
5 km 1 21 21 1 21 21 1 9.0 9.0
50 km 1 21 21 1 21 21 1 10 10
500 km 1 18 18 1 17 17 1 22 22
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Table 7.3: Percent Position Errors, Nonlinear, Football, N = 4, ∆t = 1000 sec, ∆z = 0%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 1 8.2 8.3 1 13 13 1 25 25
5 km 1 7.8 8.5 1 12 13 1 24 25
50 km 1 5.0 10 1 9.8 14 1 23 24
500 km 6 20 15 6 21 16 1 25 23

10◦

0.5 km 1 7.7 7.7 1 12 12 1 24 24
5 km 1 7.3 7.3 1 12 12 1 24 24
50 km 1 4.7 4.7 1 9.5 9.5 1 23 23
500 km 2 19 18 2 20 19 1 25 25

45◦

0.5 km 1 22 22 1 26 26 1 33 33
5 km 1 22 22 1 25 25 1 33 33
50 km 1 18 18 1 22 22 1 32 32
500 km 2 22 21 2 23 22 1 29 28

60◦

0.5 km 1 57 57 1 60 60 1 63 63
5 km 1 57 57 1 60 60 1 63 63
50 km 1 55 55 1 58 58 1 63 63
500 km 3 35 34 3 40 40 2 61 60

high inclination angles. In the Leader-Follower cases, there is no relative motion between

the chief and deputy vehicle because they are at the same orbital radius and separated by

a nearly constant true anomaly. In the Flyby cases, although they have the same initial

downrange separation as the Leader-Follower cases, the deputy vehicle (the vehicle being

observed) is moving towards the chief vehicle. So, the deputy vehicle is spending more time

closer to the chief vehicle, thus more time in an environment that is better approximated as

linear. The linearized equations in the IROD algorithm are able to more accurately estimate

the initial relative states of these Flyby cases when compared to the Leader-Follower cases.

Table 7.3 shows the IROD performance for a range of Football cases using nonlinear

dynamics and nonlinear measurement equations. Similar to the Leader-Follower cases, as

the eccentricity and inclination of the two satellites increases, the IROD algorithm performs

poorly, unable to get a good estimate of the relative states.

The cases above are repeated with an out-of-plane separation equal to 10% of the initial

separation (i.e. ∆z = 10%). Tables 7.4-7.6 show the results for the Leader-Follower, Flyby,

and Football orbit cases, respectively.

For the Leader-Follower cases in Table 7.4, an increase in the cross-track motion does
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Table 7.4: Percent Position Errors, Nonlinear, Leader-Follower, N = 4, ∆t = 1000 sec,
∆z = 10%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 2 2.1e-2 2.0e-2 2 1.6 1.6 1 27 27
5 km 2 7.5e-2 9.5e-2 2 1.9 1.9 1 26 26
50 km 4 4.0 4.0 2 6.7 6.7 1 22 22
500 km 4 3.5 4.0 4 22 22 2 23 23

10◦

0.5 km 2 8.9e-1 8.9e-1 2 8.6 8.6 1 39 39
5 km 2 2.8 2.8 2 9.2 9.2 1 39 39
50 km 4 6.2 6.2 2 9.5 9.4 1 35 35
500 km 4 11 11 4 15 14 2 12 12

45◦

0.5 km 2 11 11 0 NS NS 1 76 76
5 km 2 21 21 0 NS NS 1 76 76
50 km 2 45 45 2 32 32 1 77 77
500 km 4 28 29 4 18 19 2 66 66

60◦

0.5 km 4 25 25 2 1.7e6 1.3e6 0 NS NS
5 km 4 8.1 8.2 2 1.7e5 1.2e5 1 82 82
50 km 4 50 50 4 48 48 1 83 83
500 km 6 43 44 6 29 29 2 83 83

not seem to improve the IROD solutions. At high inclinations and high eccentricities, the

IROD algorithm is again unable to find accurate solutions.

For the Flyby cases in Table 7.5, an increase in the cross-track motion results in some

increase in the percent position errors. However, the IROD algorithm is able to get good

reasonable estimates for high eccentricity cases, and for high inclination cases.

For the Football cases in Table 7.6, the IROD algorithm once again cannot find good

estimates for the relative states at high inclinations and eccentricities. At low inclinations

and low eccentricities (i = 0− 10◦, e = 0− 0.01), the IROD algorithm performs well.

The IROD algorithm has a difficult time at higher inclinations because of the unique

reference orbit that is chosen to accommodate the J2 perturbations. In previous formula-

tions of linearized relative motion equations without the J2 perturbation, the reference orbit

is the chief orbit. This is not the case in the linearized equations with J2 that are used in

the IROD algorithm. Since the acceleration due to the J2 perturbation is a function of the

latitude of the spacecraft with respect to the equatorial plane, the inclination of the chief

and deputy vehicle now affects the relative satellite motion of these objects where before the

inclination had no affect on the relative motion. In short, as the inclination of the neigh-
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Table 7.5: Percent Position Errors, Nonlinear, Flyby, N = 4, ∆t = 1000 sec, ∆z = 10%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 1 3.5 3.5 1 3.8 3.8 1 7.7 7.7
5 km 5 3.5 3.5 5 3.8 3.8 5 7.7 7.7
50 km 5 3.9 3.7 5 4.3 4.0 5 9.7 8.6
500 km 5 2.5 2.6 5 2.9 2.9 5 7.4 7.4

10◦

0.5 km 1 5.8 5.8 1 6.3 6.3 1 12 12
5 km 1 5.8 5.8 1 6.3 6.3 1 12 12
50 km 1 5.8 5.8 1 6.3 6.3 1 12 12
500 km 1 10 9.4 1 9.7 9.1 1 11 11

45◦

0.5 km 1 23 23 1 24 24 1 30 30
5 km 1 23 23 1 24 24 1 29 29
50 km 1 23 23 1 23 23 1 29 29
500 km 1 20 20 1 21 21 1 24 24

60◦

0.5 km 1 28 28 1 29 29 1 31 31
5 km 1 28 28 1 29 29 1 31 31
50 km 1 28 28 1 28 28 1 30 30
500 km 1 24 24 1 25 25 1 19 19

Table 7.6: Percent Position Errors, Nonlinear, Football, N = 4, ∆t = 1000 sec, ∆z = 10%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 1 8.4 8.5 1 13 13 1 25 25
5 km 1 8.0 8.7 1 13 13 1 24 25
50 km 1 15 9.7 1 7.4 10 1 23 23
500 km 6 20 15 6 21 17 1 25 22

10◦

0.5 km 1 15 15 1 18 18 1 25 25
5 km 1 14 14 1 18 18 1 25 25
50 km 1 10 10 1 14 14 1 24 24
500 km 2 20 19 2 20 20 1 27 25

45◦

0.5 km 1 42 42 1 41 41 1 38 38
5 km 1 42 42 1 41 41 1 37 37
50 km 1 37 37 1 37 37 1 36 36
500 km 4 29 28 2 29 29 1 32 32

60◦

0.5 km 1 67 67 1 67 67 1 66 66
5 km 1 67 67 1 67 67 1 66 66
50 km 1 66 66 1 67 67 1 66 66
500 km 3 38 38 3 44 44 2 65 64
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Table 7.7: Percent Position Errors, Nonlinear, Leader-Follower, N = 13, ∆t = 250 sec,
∆z = 0%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 2 1.1e-2 5.1e-3 2 1.9 1.9 2 23 25
5 km 4 2.9e-2 1.9e-4 2 2.2 9.3e-2 2 23 25
50 km 4 2.8 2.8 2 1.4e-1 8.5 2 28 28
500 km 4 5.8e-1 4.2e-2 4 18 1.4e-1 2 6.1 8.6

10◦

0.5 km 6 4.2e-2 3.6e-2 6 7.1e-1 7.1e-1 2 10 10
5 km 4 1.7e-2 8.4e-2 6 7.9e-1 1.6e-1 2 12 12
50 km 4 4.7 4.7 8 5.4 5.4 2 10 30
500 km 8 14 17 6 13 3.8 4 21 13

45◦

0.5 km 6 6.7 6.2 6 51 51 1 3.5e4 3.6e4
5 km 8 4.7 4.7 6 48 48 2 90 90
50 km 4 30 12 6 12 26 2 3.5e2 7.2e1
500 km 8 12 8.5 4 13 13 2 62 71

60◦

0.5 km 6 17 17 3 1.7e4 3.8e3 1 1.1e5 1.1e5
5 km 6 48 27 4 77 94 2 97 100
50 km 4 99 100 6 1.0e2 36 2 95 100
500 km 6 2.1e2 99 4 91 100 2 73 73

boring vehicles increases, the dynamics in spherical coordinates become more nonlinear, the

linearized relative motion equations are less accurate, and the IROD algorithm is unable to

find a good solution for the initial relative states.

7.2 N=13 Observations, Nonlinear Dynamics, ∆t = 250 sec

The cases in the previous section are repeated with N = 13 observations, the measure-

ment time interval is ∆t = 250 sec, and the measurement period is 3000 sec. The results

are shown in Tables 7.7-7.9.

For the Football cases shown above, the same trends are present. The N = 4 cases show

better percent position errors than the N = 13 cases, and the IROD algorithm works well

when the inclinations and eccentricities are small. At larger inclinations and eccentricities

the IROD algorithm only gets bad estimates of the relative states. The above cases are

repeated for some cross-track motion and the results are similar to the above results for

N = 13. The N = 13 cases show the same general trends as the N = 4 cases, however,

overall performance is seen to be better for the N = 4 cases.

The above cases were repeated for some out-of-plane motion (∆z = 10%), i.e. 10% of
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Table 7.8: Percent Position Errors, Nonlinear, Flyby, N = 13, ∆t = 250 sec, ∆z = 0%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 1 4.1 4.6 1 4.3 5.0 1 6.2 11
5 km 5 4.1 4.6 5 4.3 5.0 5 6.2 11
50 km 5 4.0 4.5 7 4.2 4.9 5 6.0 11
500 km 5 2.8 3.7 7 2.9 2.9 5 4.3 4.3

10◦

0.5 km 1 4.3 4.9 1 4.3 5.1 1 2.9 5.9
5 km 1 4.3 4.9 1 4.3 4.3 1 2.9 5.9
50 km 5 4.3 4.8 5 4.3 4.9 5 3.0 5.8
500 km 9 1.6e2 3.6 9 6.0e2 3.8 7 2.3e-1 4.7

45◦

0.5 km 1 1.4e2 100 1 1.5e2 100 1 2.0e4 2.0e4
5 km 1 1.4e2 1.4e2 1 1.4e2 1.4e2 1 2.2e3 2.2e3
50 km 5 98 98 5 98 98 5 99 100
500 km 5 98 98 5 98 98 5 99 100

60◦

0.5 km 1 1.4e5 99 1 1.4e5 100 1 2.0e5 100
5 km 1 1.4e4 100 1 1.4e4 100 1 2.0e4 100
50 km 5 98 98 5 98 98 5 99 100
500 km 5 98 98 5 98 98 5 99 100

Table 7.9: Percent Position Errors, Nonlinear, Football, N = 13, ∆t = 250 sec, ∆z = 0%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 2 6.7 7.3 2 3.9 7.7 2 64 14
5 km 6 6.9 7.3 6 4.0 7.7 6 68 14
50 km 6 8.0 7.4 6 4.2e2 7.8 6 63 72
500 km 6 26 10 6 27 11 6 39 38

10◦

0.5 km 4 1.3e3 23 3 51 51 3 1.9e4 37
5 km 4 1.3e3 25 3 1.4e3 46 3 1.6e3 42
50 km 6 9.5 27 2 15 28 1 50 41
500 km 6 35 25 6 37 26 6 43 38

45◦

0.5 km 5 2.5e4 84 3 2.6e4 84 3 2.6e4 86
5 km 4 2.5e3 97 3 2.5e3 98 3 36 100
50 km 8 93 93 4 96 100 3 26 100
500 km 8 97 100 8 98 100 8 99 100

60◦

0.5 km 5 2.5e5 98 5 1.8e5 98 21 100
5 km 5 2.9e3 100 5 2.6e3 100 3 22 100
50 km 10 96 96 6 98 100 3 27 100
500 km 8 97 100 8 98 100 8 99 100
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Table 7.10: Percent Position Errors, Nonlinear, Leader-Follower, N = 13, ∆t = 250 sec,
∆z = 10%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 5 5.0e-2 7.4e-2 3 10 4.1 4 45 33
5 km 5 3.4e-2 2.0e-3 5 12 12 4 1.5e2 96
50 km 4 3.2 4.6e-1 4 13 13 4 3.1 26
500 km 6 18 1.9e-1 6 18 6.3e-1 4 25 28

10◦

0.5 km 4 5.8e-3 5.7e-2 4 1.4 1.4 4 18 18
5 km 4 2.3 3.8e-1 4 3.7 3.4 4 21 21
50 km 8 13 14 6 10 6.6 4 49 36
500 km 8 17 8.9e-1 8 19 1.0 4 5.8 52

45◦

0.5 km 3 1.8 1.2 4 61 61 1 3.8e4 2.5e3
5 km 5 3.8 3.4 4 58 58 1 3.8e3 1.7e2
50 km 8 5.7 5.8 4 16 23 2 3.9e2 65
500 km 8 14 18 0 37 74 2 72 72

60◦

0.5 km 3 8.9 8.9 3 1.4e4 3.0e3 1 1.2e5 58
5 km 3 19 20 4 82 98 1 1.2e4 83
50 km 8 1.6e2 11 4 41 56 1 1.1e3 1.2e3
500 km 8 95 100 8 1.3e2 97 2 83 83

the initial separation. Once again, the N = 13 cases show the same general trends as the

N = 4 cases, however, the overall performance is seen to be better for the N = 4 cases.

The general trend shows that the N = 4 observation cases are more accurate than the

N = 13 cases shown above.

7.3 N=25 Observations, Nonlinear Dynamics, ∆t = 125 sec

The cases in the previous sections are repeated with N = 25 observations, the measure-

ment time interval is ∆t = 125 sec, and the measurement period is 3000 sec. The results

are shown in Tables 7.13-7.15.

The key conclusion from these results is that the N = 25 results are very similar to the

N = 13 results. The above cases are repeated for some out-of-plane motion (∆z = 10%),

i.e. 10% of the initial separation. Once again, the N = 25 cases show the same general

trends as the N = 4 and N = 13 cases, however, the overall performance is better for the

N = 4 cases.

The key conclusion is the N = 25 cases show the same general trends as the N = 4

and N = 13 cases, however, the overall performance is better for the N = 4 cases, even for
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Table 7.11: Percent Position Errors, Nonlinear, Flyby, N = 13, ∆t = 250 sec, ∆z = 10%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 1 4.5 4.8 1 4.8 5.2 1 11 13
5 km 5 4.6 4.9 5 4.9 5.4 5 12 14
50 km 5 6.3 4.8 5 6.8 5.3 5 19 14
500 km 5 5.0e2 1e2 5 2.7e4 4.5 5 1.6e2 100

10◦

0.5 km 5 2.7 2.9 5 2.5 2.8 5 12 12
5 km 5 2.7 2.9 5 2.5 2.8 5 12 7.7
50 km 9 2.8 2.8 9 8.5e3 1.6 7 11 7.9
500 km 9 1.2e2 1.9 9 15 1.8 9 11 6.1

45◦

0.5 km 1 4.3e3 4.3e3 1 1.5e4 2.9e2 1 2.6e5 2.6e5
5 km 1 1.3e3 90 1 2.2e3 69 2 96 100
50 km 5 99 100 5 99 100 2 96 100
500 km 9 80 79 5 84 89 5 99 100

60◦

0.5 km 1 3.1e5 99 1 3.2e5 99 1 5.1e5 5.1e5
5 km 1 3.1e4 2.8e4 1 3.2e4 100 1 5.1e4 5.2e4
50 km 5 99 100 5 99 100 1 5.1e3 5.1e3
500 km 5 99 100 5 99 100 5 99 100

Table 7.12: Percent Position Errors, Nonlinear, Football, N = 13, ∆t = 250 sec, ∆z = 10%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 2 18 27 2 6.8 7.1 4 82 100
5 km 6 29 30 6 4.1 7.1 6 6.5e2 22
50 km 6 92 31 6 1.1e2 32 10 4.4e3 2.5e3
500 km 10 4.2e3 1.8e3 10 3.1e6 3.3e3 10 6.5e6 2.8e4

10◦

0.5 km 6 48 48 6 44 44 5 54 54
5 km 8 4.4e3 19 8 4.3e3 10 7 8.0e3 29
50 km 10 3.3e2 27 10 28 27 3 51 40
500 km 6 28 21 6 30 23 6 40 34

45◦

0.5 km 6 5.6e5 29 6 5.1e5 35 5 1.1e5 71
5 km 6 5.5e4 85 6 5.0e4 86 6 9.8e2 86
50 km 10 4.1e3 99 10 98 98 8 1.0e2 86
500 km 8 22 85 8 20 86 8 7.5 88

60◦

0.5 km 6 1.1e6 93 6 1.0e6 94 6 2.8e5 97
5 km 10 97 100 10 97 100 6 77 100
50 km 10 97 100 10 97 100 10 98 100
500 km 10 95 100 10 95 100 8 97 100



98

Table 7.13: Percent Position Errors, Nonlinear, Leader-Follower, N = 25, ∆t = 125 sec,
∆z = 0%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 2 6.7e-3 7.7e-3 2 2.4 2.4 2 23 25
5 km 4 2.9e-2 2.3e-4 2 2.4 8.7e-2 2 24 25
50 km 4 2.5 2.5 2 1.3 7.4 2 27 25
500 km 4 9.3e-2 4.5e-2 4 17 6.8e-1 2 10 18

10◦

0.5 km 6 6.9e-2 6.7e-2 6 1.0 1.0 2 12 12
5 km 4 8.3e-3 9.0e-2 6 1.2 1.1e-1 2 12 12
50 km 4 4.6 4.7 8 5.2 5.2 2 52 26
500 km 8 14 17 6 13 4.8 4 17 14

45◦

0.5 km 6 7.2 6.1 6 50 50 1 4.6e4 2.0e3
5 km 8 13 13 6 48 48 2 84 100
50 km 4 31 10 6 14 24 2 4.5e2 66
500 km 8 43 38 4 13 14 2 62 62

60◦

0.5 km 6 17 17 6 79 94 1 1.3e5 1.3e5
5 km 6 50 28 6 76 94 2 95 100
50 km 2 1.1e3 2.2e2 6 1.2e2 30 2 93 100
500 km 6 2.3e2 98 4 92 100 2 73 73

Table 7.14: Percent Position Errors, Nonlinear, Flyby, N = 25, ∆t = 125 sec, ∆z = 0%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 1 4.0 4.6 1 4.2 5.0 1 5.5 11
5 km 5 4.0 4.6 5 4.2 5.0 5 5.5 11
50 km 5 3.9 4.5 5 4.1 4.9 5 5.4 11
500 km 5 2.7 3.7 5 2.8 4.1 5 3.7 3.7

10◦

0.5 km 1 4.1 4.9 1 4.1 5.1 1 1.5 6.4
5 km 1 4.1 4.9 1 4.1 4.1 1 1.5 6.4
50 km 5 4.1 4.8 5 4.1 5.0 5 1.6 6.3
500 km 9 2.0e2 3.7 9 3.8 3.8 7 9.4e2 5.2

45◦

0.5 km 1 1.5e2 100 1 1.7e2 100 1 3.1e4 3.2e4
5 km 1 1.5e2 1.5e2 1 1.6e2 1.6e2 1 3.3e3 3.4e3
50 km 5 98 100 5 98 100 5 99 99
500 km 5 98 100 5 98 100 5 99 99

60◦

0.5 km 1 1.4e5 99 1 1.5e5 100 1 2.1e5 100
5 km 1 1.4e4 100 1 1.5e4 100 1 2.1e4 100
50 km 5 98 100 5 98 100 5 99 99
500 km 5 98 100 5 98 100 5 99 100
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Table 7.15: Percent Position Errors, Nonlinear, Football, N = 25, ∆t = 125 sec, ∆z = 0%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 2 7.2 7.1 2 5.0 7.5 4 36 14
5 km 6 7.3 7.1 6 5.1 7.5 8 37 14
50 km 6 8.2 7.2 6 5.8 7.7 6 1.7e2 15
500 km 6 22 10 6 23 10 6 35 34

10◦

0.5 km 4 30 28 4 18 29 3 64 64
5 km 4 2.8e3 2.2 4 2.8e3 1.8 3 3.3e3 39
50 km 8 70 27 8 38 29 3 20 40
500 km 6 45 25 6 47 27 6 61 37

45◦

0.5 km 3 3.3e4 81 3 3.2e4 82 3 3.4e4 83
5 km 4 3.3e3 95 4 87 87 3 3.4e3 99
50 km 8 99 100 8 99 100 3 66 100
500 km 8 26 93 8 96 100 8 98 100

60◦

0.5 km 3 4.2e4 100 3 4.2e4 100 3 1.7e4 100
5 km 4 92 100 4 93 100 3 1.7e3 100
50 km 8 99 100 8 99 100 3 2.2e2 100
500 km 8 96 100 8 96 100 8 98 98

Table 7.16: Percent Position Errors, Nonlinear, Leader-Follower, N = 25, ∆t = 125 sec,
∆z = 10%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 5 9.8e-2 5.4e-2 3 10 4.0 2 43 32
5 km 5 3.2e-2 2.0e-3 5 12 12 4 63 75
50 km 4 3.2 5.7e-1 4 13 13 4 23 40
500 km 6 18 1.9e-1 6 18 6.4e-1 4 25 29

10◦

0.5 km 4 9.7e-2 5.2e-2 4 2.8 2.8 4 27 27
5 km 4 2.6 5.5e-1 4 6.7 6.8 4 28 28
50 km 8 12 12 6 9.9 6.7 4 100 12
500 km 8 17 9.3e-1 8 19 9.0e-1 4 11 45

45◦

0.5 km 3 2.2 1.5 4 68 68 1 4.6e4 3.1e3
5 km 5 5.4 3.4 4 64 64 1 4.6e3 2.3e2
50 km 8 6.8 6.8 4 15 24 2 4.6e2 59
500 km 8 13 16 8 29 26 2 72 72

60◦

0.5 km 3 9.2 9.2 3 1.3e4 2.6e3 1 1.3e5 76
5 km 3 19 22 4 86 99 1 1.3e4 84
50 km 8 1.6e2 14 4 57 57 1 1.3e3 98
500 km 8 1.3e2 100 8 1.4e2 97 2 83 83
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Table 7.17: Percent Position Errors, Nonlinear, Flyby, N = 25, ∆t = 125 sec, ∆z = 10%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 1 4.4 4.7 1 4.6 5.2 1 10 13
5 km 5 4.4 4.9 5 4.7 5.4 5 11 14
50 km 5 5.2 4.8 5 5.5 5.4 5 15 14
500 km 5 3.7e2 4.1 5 2.4e4 4.5 5 1.2e3 12

10◦

0.5 km 5 2.6 2.9 5 2.4 2.8 5 12 12
5 km 5 2.6 2.9 5 2.4 2.8 5 12 6.7
50 km 9 7.0e3 1.8 9 2.4 2.7 7 11 6.9
500 km 9 25 1.9 9 98 1.8 9 11 5.7

45◦

0.5 km 1 9.6e2 9.6e2 1 2.7e3 2.7e3 1 2.4e5 2.4e5
5 km 1 7.2e2 7.2e2 1 1.2e3 97 1 2.4e4 2.4e4
50 km 5 98 98 5 98 98 1 2.4e3 2.4e3
500 km 9 98 98 5 82 85 5 99 100

60◦

0.5 km 1 2.9e5 2.9e5 1 3.0e5 3.0e5 1 4.9e5 4.6e5
5 km 1 2.9e4 2.9e4 1 3.0e4 3.0e4 1 4.9e4 4.6e4
50 km 5 98 98 5 98 100 1 4.9e3 4.6e3
500 km 5 98 100 5 98 100 5 99 100

Table 7.18: Percent Position Errors, Nonlinear, Football, N = 25, ∆t = 125 sec, ∆z = 10%

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 2 22 27 2 16 28 2 2.5e2 56
5 km 6 29 30 6 20 32 6 3.1e2 44
50 km 6 85 23 6 41 32 8 9.2e2 96
500 km 10 2.9e2 4.1e3 10 99 2.7e3 10 8.6e3 3.9e3

10◦

0.5 km 8 37 28 8 32 28 7 69 69
5 km 8 1.6e3 11 8 1.2e3 20 7 9.6e3 10
50 km 8 1.3e2 27 8 4.8e2 27 3 4.6e2 39
500 km 6 40 22 6 42 23 6 57 34

45◦

0.5 km 6 1.8e5 48 6 1.4e5 55 4 4.8e4 78
5 km 10 1.7e4 88 10 1.3e4 89 4 4.7e3 88
50 km 10 97 97 10 97 97 8 98 100
500 km 6 39 86 8 37 87 8 18 89

60◦

0.5 km 6 7.8e5 94 6 7.0e5 94 6 6.1e4 99
5 km 10 96 100 10 96 100 10 97 97
50 km 10 95 100 10 96 100 10 97 100
500 km 10 92 100 10 92 100 8 94 100
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some cross-track motion. For most of the cases presented above, the IROD algorithm is able

to find good estimates for the initial relative states when the inclination and eccentricity

are low. Although the inclinations and eccentricities of LEO objects vary greatly, a better

potential application for this IROD algorithm may be GEO objects where the inclinations

and eccentricity of all GEO objects are low and fall into a small range. The IROD algorithm

may perform much better and find accurate IROD estimates if tested on GEO objects where

the inclinations and eccentricities are small. Chapter 10 tests the IROD algorithm against a

range of GEO cases, presenting the percent position errors while varying the relative motion

trajectories, inclination, eccentricity, downrange separations, and cross-track motion.
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CHAPTER 8

EFFECT OF EXCLUDING J2 FROM IROD ALGORITHM FOR LEO

This chapter shows the importance of including the J2 perturbation in the IROD

algorithm models when the measurements include J2 effects.One of the main motivations of

this new formulation of the IROD algorithm was to include J2 perturbation effects. Previous

research has shown that the J2 perturbation has a large effect on relative motion at LEO [57].

In LEO, the J2 perturbation is a more dominant effect than other spherical harmonic

perturbations or perturbations due to third-bodies [7]. The question that this section seeks

to answer is: How does the IROD algorithm perform when J2 perturbations are excluded

from the IROD algorithm but included the dynamics of the deputy and chief? The test cases

shown below vary the number of measurements, relative motion trajectories, separation

between chief and deputy, inclination and eccentricity. The dynamics are propagated using

2-body and J2 perturbations, but the J2 perturbations are turned off in the IROD algorithm.

The percent position errors are tabulated for these cases in Tables 8.1-8.3.

8.1 N=4 Observations, Nonlinear Dynamics, ∆t = 1000 sec

This section presents a range of LEO relative motion cases where the IROD algorithm

does not include perturbations due to J2 but the dynamics used to generate the four LOS

measurements have J2 included. Some cross-track motion is also added.

Several interesting trends are evident in these Leader-Follower cases. For many of the

cases, the IROD algorithm cannot find a solution (noted with NS) or the solution error is

large (marked in red). From these results, it is evident that including the J2 perturbations

in the IROD algorithm is vital for arriving at a good initial estimate when the measurements

are generated using J2 perturbations.

The exception is when the vehicle separation is large. In the cases, the IROD algorithm

without J2 is able to find better estimates than at smaller vehicle separations. This can
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Table 8.1: Percent Position Errors, Nonlinear, Leader-Follower, N = 4, ∆t = 1000 sec,
∆z = 0%, NO IROD J2

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 4 1.6e-2 7.2e-4 2 46 100 0 NS NS
5 km 4 3.3 1.0e-3 2 27 100 0 NS NS
50 km 4 1.7 4.2e-4 2 26 100 0 NS NS
500 km 4 2.0 4.2e-2 4 25 25 2 44 54

10◦

0.5 km 2 9.3e7 3.0e6 2 56 69 0 NS NS
5 km 2 5.6e2 99 2 25 28 0 NS NS
50 km 4 23 23 2 16 16 0 NS NS
500 km 4 15 15 4 33 33 2 44 45

45◦

0.5 km 2 1.9e3 1.0e3 0 NS NS 0 NS NS
5 km 4 4.8e4 3.5e4 0 NS NS 0 NS NS
50 km 2 18 18 2 44 44 0 NS NS
500 km 4 4.0 4.3 4 23 23 2 60 60

60◦

0.5 km 2 1.4e4 1.1e3 0 NS NS 0 NS NS
5 km 5 1.9e4 1.5e4 0 NS NS 0 NS NS
50 km 4 18 18 2 65 65 0 NS NS
500 km 6 10 10 6 20 20 2 74 74

be explained by considering the effect that the J2 perturbation has on the relative motion

of the satellites. At small separations the effect of the J2 perturbation on relative motion

is relatively large where a small change in the relative motion due to the J2 is much more

apparent when the vehicles are closer than when they are further apart. At larger sep-

arations the effect of the J2 perturbation on the LOS angle measurements is smaller, so

the J2 perturbation has a much smaller effect on the relative motion at larger separations.

Since the effect of relative J2 is small at larger separations, the LOS measurements at larger

separations are similar with or without the including of J2 perturbations. Since the LOS

measurements are similar with or without the J2 perturbations at large satellite separations,

the IROD algorithm is able to find better estimates at larger separations.

The Flyby cases above reinforce the previous trends. When compared to the previous

tables, where the J2 perturbation is included, these cases show that the IROD algorithm

finds worse estimates when the J2 perturbation is not included. The majority of the cases

show that the percent position errors are worse in the cases above where the J2 perturbations

are not included in the algorithm. Also, the IROD algorithm finds better estimates at larger

satellite separations since the relative J2 effect is smaller at larger separations.
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Table 8.2: Percent Position Errors, Nonlinear, Flyby, N = 4, ∆t = 1000 sec, ∆z = 0%, NO
IROD J2

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 0 NS NS 0 NS NS 0 NS NS
5 km 0 NS NS 0 NS NS 0 NS NS
50 km 5 20 20 5 23 23 5 44 44
500 km 5 2.0 5.2 5 5.5 5.9 5 11 12

10◦

0.5 km 0 NS NS 0 NS NS 0 NS NS
5 km 0 NS NS 0 NS NS 0 NS NS
50 km 1 23 23 1 27 27 1 46 46
500 km 1 11 11 1 11 11 1 12 12

45◦

0.5 km 0 NS NS 0 NS NS 0 NS NS
5 km 0 NS NS 0 NS NS 0 NS NS
50 km 1 65 65 1 67 67 1 59 59
500 km 1 21 21 1 21 21 1 8.3 8.3

60◦

0.5 km 0 NS NS 0 NS NS 0 NS NS
5 km 0 NS NS 0 NS NS 0 NS NS
50 km 1 80 80 1 80 80 1 47 47
500 km 1 24 24 1 23 23 1 17 17

Table 8.3: Percent Position Errors, Nonlinear, Football, N = 4, ∆t = 1000 sec, ∆z = 0%,
NO IROD J2

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 4 77 100 0 NS NS 1 1.3e3 1.3e3
5 km 0 NS NS 0 NS NS 1 1.0e2 1.0e2
50 km 1 28 32 1 22 26 1 10 12
500 km 6 21 15 6 22 16 1 25 22

10◦

0.5 km 0 NS NS 1 3.9e2 3.9e2 1 1.8e3 1.8e3
5 km 1 37 37 1 28 28 1 1.6e2 1.6e2
50 km 1 66 66 1 5.9 5.9 1 5.0 5.0
500 km 2 19 18 2 20 19 1 24 24

45◦

0.5 km 1 1.5e4 1.5e4 1 1.3e4 1.3e4 1 6.7e3 6.7e3
5 km 1 1.5e3 1.5e3 1 1.3e3 1.3e3 1 6.4e2 6.4e2
50 km 1 1.2e2 1.2e2 1 1.1e2 1.1e2 1 35 35
500 km 2 15 14 2 16 15 1 24 24

60◦

0.5 km 1 1.3e4 1.3e4 1 1.1.e4 1.1e4 1 4.5e3 4.5e3
5 km 1 1.3e3 1.3e3 1 1.1e3 1.1e3 1 4.0e2 4.0e2
50 km 1 94 94 1 68 68 1 15 15
500 km 3 24 23 3 29 28 2 54 54
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Table 8.4: Percent Position Errors, Nonlinear, Leader-Follower, N = 4, ∆t = 1000 sec,
∆z = 10%, NO IROD J2

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 2 5.5 4.5 2 9.4e2 9.3e2 0 NS NS
5 km 4 8.3 8.3 2 69 77 0 NS NS
50 km 4 2.2 2.1 2 18 17 0 NS NS
500 km 4 3.0 3.3 4 28 25 2 46 45

10◦

0.5 km 4 3.8e6 1.4e5 2 8.2e2 7.8e2 0 NS NS
5 km 2 55 49 2 60 60 0 NS NS
50 km 4 16 17 2 9.0 10 0 NS NS
500 km 4 10 10 4 14 13 2 44 44

45◦

0.5 km 2 2.8e3 5.5e2 0 NS NS 0 NS NS
5 km 4 3.2e4 1.1e5 0 NS NS 0 NS NS
50 km 2 5.9 6.5 2 41 41 0 NS NS
500 km 4 3.0 3.3 4 24 24 2 66 66

60◦

0.5 km 4 1.2e4 1.5e3 0 NS NS 0 NS NS
5 km 4 1.0e4 85 0 NS NS 0 NS NS
50 km 4 9.0 9.2 2 60 60 0 NS NS
500 km 6 10 10 6 21 20 2 82 82

The Football cases above are still consistent with the previous trends. The percent

position errors are worse in the cases above where the J2 perturbations are not included

in the algorithm. As in the previous cases, the IROD algorithm finds better estimates at

larger satellite separations since the relative J2 effect is smaller at larger separations.

The above cases were repeated for some out-of-plane motion (∆z = 10%), i.e. 10% of

the initial separation. These cases are shown in Tables 8.5-8.7.

These cross-track results in Tables 8.4-8.6 show the same trends.

8.2 N=13 Observations, Nonlinear Dynamics, ∆t = 250 sec

The following section re-runs the previous cases where now there are N = 13 observa-

tions taken within the same total time frame.

Increasing the number of observations for these Leader-Follower cases does not improve

the results. The IROD algorithm performs worse when the J2 perturbations are not included

in the algorithm but are used in generating the measurements. For the close separation

cases, the IROD algorithm performs poorly and often cannot find a solution at all.

These Flyby cases do not improve the results when more observations of the deputy
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Table 8.5: Percent Position Errors, Nonlinear, Flyby, N = 4, ∆t = 1000 sec, ∆z = 10%,
NO IROD J2

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 0 NS NS 0 NS NS 0 NS NS
5 km 0 NS NS 0 NS NS 0 NS NS
50 km 5 20 19 5 23 23 5 46 44
500 km 5 4.1 4.2 5 4.7 4.8 5 10 10

10◦

0.5 km 0 NS NS 0 NS NS 0 NS NS
5 km 0 NS NS 0 NS NS 0 NS NS
50 km 1 18 18 1 21 21 1 37 37
500 km 1 11 10 1 11 10 1 13 14

45◦

0.5 km 2 1.3e5 1.2e6 0 NS NS 0 NS NS
5 km 2 1.3e5 1.2e5 0 NS NS 0 NS NS
50 km 1 59 59 1 61 61 1 51 51
500 km 1 24 24 1 25 25 1 27 27

60◦

0.5 km 0 NS NS 0 NS NS 0 NS NS
5 km 0 NS NS 0 NS NS 0 NS NS
50 km 1 80 80 1 81 81 1 64 64
500 km 1 30 30 1 30 30 1 23 23

Table 8.6: Percent Position Errors, Nonlinear, Football, N = 4, ∆t = 1000 sec, ∆z = 10%,
NO IROD J2

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 4 77 77 0 NS NS 1 2.5e3 2.1e3
5 km 0 NS NS 0 NS NS 1 1.1e2 1.0e2
50 km 1 28 28 1 2.9e2 1.8e2 1 10 11
500 km 6 21 16 6 21 17 1 24 22

10◦

0.5 km 0 NS NS 1 34 34 1 1.7e3 1.7e3
5 km 1 94 94 1 13 13 1 1.5e2 1.5e2
50 km 1 17 17 1 14 14 1 7.2 7.4
500 km 2 20 19 2 20 20 1 26 24

45◦

0.5 km 1 1.4e4 1.4e4 1 1.3e4 1.3e4 1 6.6e3 6.6e3
5 km 1 1.4e3 1.4e3 1 1.2e3 1.2e3 1 6.2e2 6.2e2
50 km 1 1.1e2 1.1e2 1 97 97 1 30 30
500 km 2 21 20 2 22 21 1 27 27

60◦

0.5 km 1 1.5e4 1.5e4 1 1.2e4 1.2e4 1 4.6e3 4.6e3
5 km 1 1.4e3 1.4e3 1 1.2e3 1.2e3 1 4.0e2 4.0e2
50 km 1 1.0e2 1.0e2 1 74 74 1 17 17
500 km 3 26 25 3 31 30 2 57 57
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Table 8.7: Percent Position Errors, Nonlinear, Leader-Follower, N = 13, ∆t = 250 sec,
∆z = 0%, NO IROD J2

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 4 7.7e-1 4.1e-1 2 1.4e2 100 4 7.2e3 100
5 km 4 1.5e-1 1.3e-3 2 8.0 100 2 6.9e2 100
50 km 4 1.5 4.2e-4 2 24 100 4 58 99
500 km 4 4.1e-2 4.2e-2 4 22 3.8 2 22 36

10◦

0.5 km 3 67 79 4 2.5e2 100 4 5.8e2 100
5 km 3 12 42 6 50 100 4 30 100
50 km 8 10 3.4 6 17 88 2 25 100
500 km 8 18 17 6 14 8.1 4 40 42

45◦

0.5 km 4 4.8e2 100 6 2.0e3 100 2 1.8e4 100
5 km 6 95 56 6 1.6e2 100 2 1.7e3 100
50 km 7 97 97 6 28 100 2 1.3e2 100
500 km 8 21 17 4 4.9 6.0e-1 2 24 100

60◦

0.5 km 6 62 100 6 7.4e3 100 2 2.7e4 2.7e4
5 km 10 1.4e2 100 6 6.5e2 100 2 2.6e3 2.6e3
50 km 7 35 93 6 12 100 2 1.7e2 1.7e2
500 km 6 2.0e2 99 4 67 98 2 36 36

Table 8.8: Percent Position Errors, Nonlinear, Flyby, N = 13, ∆t = 250 sec, ∆z = 0%, NO
IROD J2

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 0 NS NS 0 NS NS 0 NS NS
5 km 0 NS NS 2 2.6e4 48 0 NS NS
50 km 7 1.1e3 15 7 5.1e3 17 5 48 45
500 km 5 4.3 5.4 7 4.7 4.7 5 8.4 8.4

10◦

0.5 km 0 NS NS 0 NS NS 1 1.5e3 1.5e3
5 km 1 82 84 1 85 100 1 1.5e2 1.5e2
50 km 5 12 12 5 12 13 5 9.9 8.9
500 km 9 2.1e2 4.5 9 2.9 4.7 5 5.8e-1 4.8

45◦

0.5 km 1 2.5e3 2.5e3 1 2.3e3 2.3e3 5 66 100
5 km 5 97 100 5 97 100 5 96 100
50 km 5 98 98 5 98 98 5 99 99
500 km 5 98 98 5 98 98 5 99 100

60◦

0.5 km 5 61 100 5 63 100 5 54 100
5 km 5 95 100 5 95 100 5 95 100
50 km 5 98 98 5 98 98 5 99 100
500 km 5 98 98 5 98 98 5 99 99
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Table 8.9: Percent Position Errors, Nonlinear, Football, N = 13, ∆t = 250 sec, ∆z = 0%,
NO IROD J2

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 6 3.9e3 100 6 4.0e3 100 6 1.5e2 100
5 km 6 49 49 6 51 51 6 1.0e3 51
50 km 6 37 10 6 42 10 6 71 1.3
500 km 6 26 8.9 6 27 10 6 39 37

10◦

0.5 km 8 74 100 6 80 100 3 8.8e2 8.8e2
5 km 8 7.0e2 12 8 7.4e2 65 3 40 40
50 km 6 21 14 6 39 16 1 41 27
500 km 6 42 24 6 42 26 6 45 37

45◦

0.5 km 3 2.9e4 100 3 2.7e4 100 3 1.2e4 100
5 km 3 2.9e3 100 3 2.7e3 100 3 1.2e3 100
50 km 3 2.8e2 100 3 2.5e2 100 3 93 100
500 km 8 98 98 8 98 98 8 99 100

60◦

0.5 km 5 3.9e4 100 5 3.6e4 100 3 1.5e4 100
5 km 5 3.9e3 100 5 3.6e3 100 3 1.5e3 100
50 km 5 4.0e2 100 5 3.7e2 100 3 1.4e2 100
500 km 8 98 100 8 98 98 8 99 100

vehicle are used for an IROD estimate. The results continue to be much poorer when the

J2 effects are not accounted for in the IROD algorithm.

These Football cases continue to be poor without the inclusion of J2 effects. Larger

separation cases get slightly better percent position errors but still not acceptable.

The above cases were repeated for some out-of-plane motion (∆z = 10%), i.e. 10% of

the initial separation. These cases are shown in Tables 8.10-8.12.

8.3 Summarizing Remarks

These results support the fact that the IROD algorithm needs to include the effects

of J2 for LEO when the J2 perturbation is included in creating the LOS measurements.

When J2 is not included, the IROD algorithm generally performs more poorly than with

the J2 term. The exception is when there are large relative separations, where the effect of

differential J2 perturbation on LOS angles is small.
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Table 8.10: Percent Position Errors, Nonlinear, Leader-Follower, N = 13, ∆t = 250 sec,
∆z = 10%, NO IROD J2

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 5 9.6 3.4 4 5.6e2 90 2 6.8e3 3.2e3
5 km 5 17 16 4 57 40 2 6.2e2 2.8e2
50 km 5 6.5 4.3 4 18 21 4 44 23
500 km 6 18 4.0e-1 6 17 9.7e-1 4 29 26

10◦

0.5 km 2 48 100 4 2.8e2 100 4 3.1e2 100
5 km 8 25 28 4 12 100 4 8.0 100
50 km 8 1.7 6.5 8 2.6e2 33 4 22 100
500 km 8 17 2.7e-1 8 19 2.7 4 32 37

45◦

0.5 km 0 NS NS 6 1.6e3 100 2 1.9e4 100
5 km 4 59 100 4 1.2e2 100 2 1.9e3 100
50 km 6 85 18 6 21 100 2 1.4e2 100
500 km 8 67 67 8 39 68 2 25 100

60◦

0.5 km 0 NS NS 4 6.2e3 100 2 9.8e4 100
5 km 4 6.0e2 100 4 5.4e2 100 2 9.7e3 100
50 km 6 1.9e2 28 4 2.5e3 100 2 9.2e2 100
500 km 8 94 100 8 1.1e2 96 2 48 48

Table 8.11: Percent Position Errors, Nonlinear, Flyby, N = 13, ∆t = 250 sec, ∆z = 10%,
NO IROD J2

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 0 NS NS 0 NS NS 1 3.5e3 2.3e2
5 km 2 1.2e2 100 2 1.4e2 99 1 4.3e2 72
50 km 5 21 14 5 26 15 5 39 20
500 km 5 1.5e2 2.0e2 5 2.6e4 5.9e2 5 7.0 5.5e2

10◦

0.5 km 4 8.2e5 3.5e3 4 9.2e5 3.7e3 3 4.1e3 4.1e3
5 km 5 90 100 5 91 100 3 4.2e2 100
50 km 9 7.5e3 10 9 8.9e3 8.8 9 48 8.8
500 km 9 1.2e2 2.8 9 12 4.1e3 9 12 7.3

45◦

0.5 km 5 76 100 5 74 100 5 98 100
5 km 5 96 100 5 96 100 5 91 100
50 km 5 98 98 5 98 98 5 99 99
500 km 7 81 68 5 86 89 5 99 100

60◦

0.5 km 5 36 100 5 32 100 5 85 100
5 km 5 93 100 5 92 100 5 90 100
50 km 5 98 100 5 98 100 5 98 100
500 km 5 99 100 5 99 100 5 99 100
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Table 8.12: Percent Position Errors, Nonlinear, Football, N = 13, ∆t = 250 sec, ∆z = 10%,
NO IROD J2

inc Dwn. Sep. e = 0 e = 0.01 e = 0.1
Num. IROD Q Num. IROD Q Num. IROD Q

0◦

0.5 km 6 2.7e3 99 6 2.6e3 99 6 1.1e3 99
5 km 6 1.5e3 46 6 1.4e3 21 6 1.3e2 99
50 km 6 2.4e3 1.5e2 6 2.5e3 2.7e2 10 7.8e3 2.6e3
500 km 10 1.2e5 1.7e4 10 5.8e3 3.7e3 10 3.6e4 3.1e4

10◦

0.5 km 12 65 100 12 3.2e3 41 7 8.8e2 8.8e2
5 km 12 4.7e2 78 12 96 100 7 38 38
50 km 8 11 10 8 2.4e2 11 3 2.0e2 25
500 km 6 34 20 6 35 22 6 41 34

45◦

0.5 km 5 5.4e4 100 5 5.1e4 100 5 2.5e4 100
5 km 5 5.4e3 100 5 5.1e3 100 5 2.5e3 100
50 km 5 5.1e2 100 5 4.9e2 100 3 2.3e2 100
500 km 8 23 87 8 23 87 8 98 100

60◦

0.5 km 5 8.2e4 100 5 7.9e4 100 5 4.6e4 100
5 km 5 8.2e3 100 5 7.9e3 100 5 4.6e3 100
50 km 5 8.1e2 100 5 7.8e2 100 5 4.6e2 100
500 km 10 95 100 10 95 100 8 97 96
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CHAPTER 9

MEASUREMENT ERROR ANALYSIS

All of the previous IROD solutions have been generated assuming no LOS measurement

error. In the real world, LOS measurement error is a real and important issue for IROD

algorithms and navigation problems in general. Measurement error is closely linked with

the accuracy of a camera where, the higher the accuracy, the lower the measurement error

but also the higher the cost. This chapter seeks to present several case studies that compare

IROD results with varying amounts of measurement error, specifically, measurement noise.

In future work, these results can be expanded to include a much more in-depth study of

measurement error effects including LOS measurement noise, bias, misalignment, and other

sources of error.

9.1 Measurement Error Analysis at LEO

Previous research shows that measurement noise can have a crippling effect in imple-

menting an IROD algorithm with noisy data [58]. Geller conducted a preliminary perfor-

mance analysis for an IROD algorithm, finding a clear dependence of orbit estimation perfor-

mance on the geometry of the relative orbits. The results from Geller’s performance analysis

can also be compared with the performance of the newly derived IROD algorithm (with

measurement noise) in the following subsections. There are several LEO cases presented

below with varying amounts of Gaussian white noise injected into the LOS measurements

to simulate varying amounts of camera noise when observing a nearby satellite. For brevity,

when the LOS measurements are generated using the Linearized dynamics and 2nd-order

measurement equations, it will be abbreviated as L2O (Linearized and 2nd-Order).

Data is collected based on a Monte-Carlo analysis (N = 100 samples) with various levels

of measurement noise injected into the 2nd-order measurement model or measurement noise

injected into the nonlinear models and shown in Tables .
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Table 9.1: Azimuth and Elevation Angles from L2O environment and Nonlinear Dynamics
for a Leader-Follower 5 km LEO case.

L2O Full Nonlinear

Azimuth Angles (rad)
−0.000354957494077
0.008527848817372
0.007995402447650
−0.001306718487425

−0.000354957509879
0.008524923708307
0.007986820364862
−0.001317752198797

Elevation Angles (rad)
0.087266455160634
0.039836567170945
−0.049958816940329
−0.086795814296264

0.087266462599716
0.039837171338920
−0.049957209379231
−0.086796085830501

9.1.1 Leader-Follower 5 km

As a starting point, the angle measurements for a Leader-Follower 5 km relative motion

configuration (i = 5◦, e = 0.01, ∆z = 0, J2 ON, ∆t = 1000 sec) with N = 4 observations

for L2O models and full nonlinear models are provided in Table 9.1.

Differencing the Azimuth and Elevation angles between the L2O environment and

Nonlinear environment yields

∆α =



0.000000158016979

0.029251090656827

0.085820827883769

0.110337113713500


× 10−4 rad

∆β =



−0.000743908272482

−0.060416797487139

−0.160756109734289

0.027153423697024


× 10−5 rad

Notice that the initial angle difference is very small in both the azimuth and elevation

direction. As the two simulations are propagated, the difference between the nonlinear and

linearized/2nd Order LOS angles grow.

The following data in Table 9.2 was collected based on Monte-Carlo Analysis (N = 100

samples) with various levels of measurement noise injected into the 2nd-order measurement

model.
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Table 9.2: Percent Position Errors and Standard Deviation with varying magnitudes of
measurement noise added to L2O LOS angles for 100 Monte Carlo Runs (Leader-Follower
5 km LEO)

σ ≈ 10−4 σ ≈ 10−5 σ ≈ 10−6 σ ≈ 10−7 σ ≈ 10−8 L2O
Avg. Pos. Err (%) 1774 543 198.3 24.4 2.41 1.6×10−2

Std. Dev. (%) 2192 437 175.2 22.3 1.55

Table 9.3: Percent Position Errors and Standard Deviation with varying magnitudes of
measurement noise added to Nonlinear LOS angles for 100 Monte Carlo Runs (Leader-
Follower 5 km LEO)

σ ≈ 10−4 σ ≈ 10−5 σ ≈ 10−6 σ ≈ 10−7 σ ≈ 10−8 Nonlinear
Avg. Pos. Err (%) 1772 508 217 27.9 4.55 4.4
Std. Dev. (%) 2406 432 174 25.1 2.57

The following data in Table 9.3 was collected based on Monte-Carlo Analysis (N =

100 samples) with various levels of measurement noise injected into the nonlinear angle

measurements.

These tables show that in this case (Leader-Follower, 5 km) the IROD algorithm works

well with small amounts of measurement noise (when σ ≈ 10−7−10−8 rad) but measurement

noise higher than this results in large percent position errors from the IROD algorithm. No

current camera exists with this kind of fidelity. Most cameras used for space applications

can be expected to have a measurement noise level around σ ≈ 10−3 − 10−5 rad. (For

Reference, the Hubble Space Telescope has a resolution of 2× 10−7 rad).

9.1.2 Leader-Follower 10 km

The angle measurements for a Leader-Follower 10 km relative motion configuration

(i = 5◦, e = 0.01, ∆z = 0, J2 ON, ∆t = 1000 sec) with N = 4 observations are provided in

Table 9.4.

Differencing the Azimuth and Elevation angles between the L2O environment and

Nonlinear environment yields
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Table 9.4: Azimuth and Elevation Angles from L2O environment and Nonlinear Dynamics
for a Leader-Follower 10 km LEO case.

L2O Full Nonlinear

Azimuth Angles (rad)
−0.000709914894280
0.008178849956370
0.007655549716292
−0.001643491942979

−0.000709915021044
0.008172998009809
0.007638375808699
−0.001665578643751

Elevation Angles (rad)
0.087266432843388
0.039835957551602
−0.049960411870646
−0.086795527841964

0.087266462599716
0.039837173363867
−0.049957203973071
−0.086796086686815

Table 9.5: Percent Position Errors and Standard Deviation with varying magnitudes of
measurement noise added to L2O LOS angles for 100 Monte Carlo Runs (Leader-Follower
10 km LEO)

σ ≈ 10−4 σ ≈ 10−5 σ ≈ 10−6 σ ≈ 10−7 σ ≈ 10−8 L2O
Avg. Pos. Err (%) 1135 205 67 15.8 1.2 7.4e-2
Std. Dev. (%) 1899 207 56 13.6 1.0

∆α =



0.000001267642974

0.058519465609471

0.171739075929753

0.220867007717396


× 10−4 rad

∆β =



−0.002975632870661

−0.121581226539269

−0.320789757534551

0.055884485142266


× 10−5 rad

The following data in Table 9.5 was collected based on Monte-Carlo Analysis (N = 100

samples) with various levels of measurement noise injected into the 2nd-order measurement

model.

The following data in Table 9.6 was collected based on Monte-Carlo Analysis (N =

100 samples) with various levels of measurement noise injected into the nonlinear angle

measurements.

The tables show that the IROD algorithm provides acceptable percent position errors
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Table 9.6: Percent Position Errors and Standard Deviation with varying magnitudes of
measurement noise added to Nonlinear LOS angles for 100 Monte Carlo Runs (Leader-
Follower 10 km LEO)

σ ≈ 10−4 σ ≈ 10−5 σ ≈ 10−6 σ ≈ 10−7 σ ≈ 10−8 Nonlinear
Avg. Pos. Err (%) 785.4 223.8 73.7 16.6 5.6 5.4
Std. Dev. (%) 953.8 214.8 66.5 13.5 1.7

Table 9.7: Azimuth and Elevation Angles from L2O environment and Nonlinear Dynamics
for a Leader-Follower 100 km LEO case.

L2O Full Nonlinear

Azimuth Angles (rad)
−0.007252919596027
−0.006934363476905
−0.006482032457115
−0.006393095043842

−0.007253043391941
−0.007153748311630
−0.007139600751983
−0.007254569698305

Elevation Angles (rad)
0.174526933197219
0.082923180174327
−0.098004619477766
−0.173574907842882

0.174532925199433
0.082924991999720
−0.098007439653141
−0.173581920075426

for measurement noise less than or equal to σ ≈ 10−7 rad. For higher measurement noise

levels, the IROD algorithm produces unacceptable estimation errors. Thus for 10 km sep-

aration, there are no cameras currently available that can be used to accurately estimate

the initial relative states.

9.1.3 Leader-Follower 100 km

The angle measurements for a Leader-Follower 100 km relative motion configuration

(i = 10◦, e = 0, ∆z = 0, J2 ON, ∆t = 1000 sec) with N = 4 observations are provided in

Table 9.7.

Differencing the Azimuth and Elevation angles between the L2O environment and

Nonlinear Dynamics yields

∆α =



0.000123795913763

0.219384834724863

0.657568294867322

0.861474654463804


× 10−3 rad
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Table 9.8: Percent Position Errors and Standard Deviation with varying magnitudes of
measurement noise added to L2O LOS angles for 100 Monte Carlo Runs (Leader-Follower
100 km LEO)

σ ≈ 10−3 σ ≈ 10−4 σ ≈ 10−5 σ ≈ 10−6 σ ≈ 10−7 L2O
Avg. Pos. Err (%) 673.5 22.8 17.0 8.43 6.69 6.7
Std. Dev. (%) 4181.3 16.2 6.6 5.7 0.59

Table 9.9: Percent Position Errors and Standard Deviation with varying magnitudes of
measurement noise added to Nonlinear LOS angles for 100 Monte Carlo Runs (Leader-
Follower 100 km LEO)

σ ≈ 10−3 σ ≈ 10−4 σ ≈ 10−5 σ ≈ 10−6 σ ≈ 10−7 Nonlinear
Avg. Pos. Err (%) 217.1 22.2 13.2 7.14 6.39 6.4
Std. Dev. (%) 703.3 23.0 5.93 4.94 0.71

∆β =



−0.599200221382268

−0.181182539295277

0.282017537472923

0.701223254356842


× 10−5 rad

The following data in Table 9.8 was collected based on Monte-Carlo Analysis (N = 100

samples) with various levels of measurement noise injected into the 2nd-order measurement

model.

The following data in Table 9.9 was collected based on Monte-Carlo Analysis (N =

100 samples) with various levels of measurement noise injected into the nonlinear angle

measurements.

The table above shows the IROD algorithm produces acceptable position errors when

the measurement noise is smaller than σ ≈ 10−3 rad. For larger magnitudes of measurement

noise, the IROD algorithm is unable to accurately estimate the relative states. The results

shown above are consistent with the expected position errors from [58]. Comparing these

results with those found in Ref. [58] reiterate the fact that at larger separations the noise

on the LOS measurements has a smaller effect on the IROD solution estimate. At close

range, having even a small amount of measurement noise on the on-board camera can make

the problem of relative orbit determination infeasible. These results are encouraging. They
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Table 9.10: Azimuth and Elevation Angles from L2O environment and Nonlinear Dynamics
for a Leader-Follower 500 km LEO case.

L2O Full Nonlinear

Azimuth Angles (rad)
−0.035480102265438
−0.025990322791439
−0.025582450030790
−0.034545050860747

−0.035495935055422
−0.026305443180980
−0.026500164607881
−0.035753994896742

Elevation Angles (rad)
0.087192090776899
0.039741339890699
−0.050080028255630
−0.086691010329626

0.087266462599716
0.039837382669864
−0.049956666971505
−0.086796173110891

show that at separations of 100 km or greater, the IROD algorithm can accurately estimate

the initial relative states when the LOS measurements have noise levels found in current

cameras used on-board spacecraft. At smaller separations, current cameras are not accurate

enough to be used in initial relative orbit determination applications.

9.1.4 Leader-Follower 500 km

The angle measurements for a Leader-Follower 500 km relative motion configuration

(i = 5◦, e = 0.01, ∆z = 0, J2 ON, ∆t = 1000 sec) with N = 4 observations are provided in

Table 9.10.

Differencing the Azimuth and Elevation angles between the L2O environment and

Nonlinear environment yields

∆α =



0.000015832789984

0.000315120389541

0.000917714577090

0.001208944035995


rad

∆β =



−0.074371822817249

−0.096042779165639

−0.123361284124844

0.105162781264725


× 10−3 rad

The following data in Table 9.11 was collected based on Monte-Carlo Analysis (N = 100
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Table 9.11: Percent Position Errors and Standard Deviation with varying magnitudes of
measurement noise added to L2O LOS angles for 100 Monte Carlo Runs (Leader-Follower
500 km LEO)

σ ≈ 10−3 σ ≈ 10−4 σ ≈ 10−5 σ ≈ 10−6 σ ≈ 10−7 L2O
Avg. Pos. Err (%) 56.2 18.5 18.5 18.4 18.4 18
Std. Dev. (%) 83.3 9.3 2.99 0.2 0.02

Table 9.12: Percent Position Errors and Standard Deviation with varying magnitudes of
measurement noise added to Nonlinear LOS angles for 100 Monte Carlo Runs (Leader-
Follower 500 km LEO)

σ ≈ 10−3 σ ≈ 10−4 σ ≈ 10−5 σ ≈ 10−6 σ ≈ 10−7 Nonlinear
Avg. Pos. Err (%) 56.5 33.8 36.5 36.5 36.5 36.5
Std. Dev. (%) 71.8 10.9 0.11 0.01 0.002

samples) with various levels of measurement noise injected into the 2nd-order measurement

model.

The following data in Table 9.12 was collected based on Monte-Carlo Analysis (N =

100 samples) with various levels of measurement noise injected into the nonlinear angle

measurements.

The above tables show that the IROD algorithm can reliably determine the initial

estimate when the measurement noise is below σ ≈ 10−3 rad . Larger magnitudes of error

result in larger percent position errors for the IROD estimates.

9.2 Measurement Error Analysis for GEO

This section provides a few case studies of the performance of the IROD algorithm

in GEO when the LOS measurements are injected with varying magnitudes of Gaussian

white noise. Only a few cases are presented to test the IROD algorithm and investigate

whether current camera technology used for on-board spacecraft imaging applications can

be implemented for relative orbit determination. Cases similar to those in Section 9.1 are

presented in this section except that the satellites are positioned at GEO. For each case, the

azimuth and elevation angles are presented using the L2O environment and the full nonlinear

environment, the angles differences are presented, and varying levels of Gaussian white noise

measurement error are injected into LOS measurements in a Monte Carlo analysis. The
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Table 9.13: Azimuth and Elevation Angles from L2O environment and Nonlinear Dynamics
for a Leader-Follower 5 km GEO case.

L2O Full Nonlinear

Azimuth Angles (rad)


−0.595187740938
−0.591855231793
−0.584025293028
−0.577584843028

×10−4


−0.595187736121
−0.593961709231
−0.591446559617
−0.591052348348

× 10−4

Elevation Angles (rad)
0.087266462394
0.066811070715
0.014853847558
−0.044163040825

0.087266462599
0.066811070746
0.014853847305
−0.044163041161

performance analysis completed in Ref. [58] is restricted to Low-Earth-Orbits only.

9.2.1 Leader-Follower 5 km

First, the angle measurements are tabulated for a Leader-Follower 5 km relative motion

configuration (i = 5◦, e = 0, ∆z = 0, J2 ON, ∆t = 9600 sec) with N = 4 observations.

Differencing the Azimuth and Elevation angles between the L2O environment and

Nonlinear Dynamics yields

∆α =



−0.000000048175172

0.021064774377036

0.074212665894140

0.134675053195348


× 10−5 rad

∆β =



−0.205036806977255

−0.030843980147743

0.253208589512388

0.335255295746961


× 10−9 rad

The following data in Table 9.14 was collected based on Monte-Carlo Analysis (N = 100

samples) with various levels of measurement noise injected into the 2nd-order measurement

model.

The following data in Table 9.15 was collected based on Monte-Carlo Analysis (N =

100 samples) with various levels of measurement noise injected into the nonlinear angle



120

Table 9.14: Percent Position Errors and Standard Deviation with varying magnitudes of
measurement noise added to L2O LOS angles for 100 Monte Carlo Runs (Leader-Follower
5 km GEO)

σ ≈ 10−7 σ ≈ 10−8 σ ≈ 10−9 σ ≈ 10−10 σ ≈ 10−11 L2O
Avg. Pos. Err (%) 798.4 65.7 4.8 6.81 2.16 8.9e-1
Std. Dev. (%) 1734.2 59.2 4.0 5.70 2.57

Table 9.15: Percent Position Errors and Standard Deviation with varying magnitudes of
measurement noise added to Nonlinear LOS angles for 100 Monte Carlo Runs (Leader-
Follower 5 km GEO)

σ ≈ 10−7 σ ≈ 10−8 σ ≈ 10−9 σ ≈ 10−10 σ ≈ 10−11 Nonlinear
Avg. Pos. Err (%) 1773 51.8 4.09 5.67 4.77 3.7
Std. Dev. (%) 3028 54.4 4.29 5.78 4.47

measurements.

These tables show that the IROD algorithm produces acceptable percent position errors

for measurement errors less than σ ≈ 10−8 rad. Any measurement errors larger than this,

result in unacceptably large errors on the initial estimate.

9.2.2 Leader-Follower 10 km

Next, the angle measurements for a Leader-Follower 10 km relative motion configura-

tion (i = 5◦, e = 0, ∆z = 0, J2 ON, ∆t = 9600 sec) with N = 4 observations are provided

in Table 9.16.

Differencing the Azimuth and Elevation angles between the L2O environment and

Nonlinear Dynamics yields

Table 9.16: Azimuth and Elevation Angles from L2O environment and Nonlinear Dynamics
for a Leader-Follower 10 km GEO case.

L2O Full Nonlinear

Azimuth Angles (rad)


−0.119037547765
−0.118399740991
−0.116959124092
−0.115761570102

× 10−3


−0.119037548387
−0.118821027592
−0.118443398215
−0.118455247318

× 10−3

Elevation Angles (rad)
0.087266461779
0.066811070375
0.014853847741
−0.044163040308

0.087266462599
0.066811070746
0.014853847304
−0.044163041159
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Table 9.17: Percent Position Errors and Standard Deviation with varying magnitudes of
measurement noise added to L2O LOS angles for 100 Monte Carlo Runs (Leader-Follower
10 km GEO)

σ ≈ 10−7 σ ≈ 10−8 σ ≈ 10−9 σ ≈ 10−10 σ ≈ 10−11 L2O
Avg. Pos. Err (%) 139.0 19.5 5.24 4.90 4.39 4.7
Std. Dev. (%) 203.9 13.7 2.76 1.58 1.15

Table 9.18: Percent Position Errors and Standard Deviation with varying magnitudes of
measurement noise added to Nonlinear LOS angles for 100 Monte Carlo Runs (Leader-
Follower 10 km GEO)

σ ≈ 10−7 σ ≈ 10−8 σ ≈ 10−9 σ ≈ 10−10 σ ≈ 10−11 Nonlinear
Avg. Pos. Err (%) 160.2 24.8 4.79 4.23 4.32 4.8
Std. Dev. (%) 350.8 18.6 2.69 1.63 1.14

∆α =



0.000000062146810

0.042128660088494

0.148427412307111

0.269367721650584


× 10−5 rad

∆β =



−0.820147297297957

−0.371490019301923

0.436872205078487

0.850340062252819


× 10−9 rad

The following data in Table 9.17 was collected based on Monte-Carlo Analysis (N = 100

samples) with various levels of measurement noise injected into the 2nd-order measurement

model.

The following data in Table 9.18 was collected based on Monte-Carlo Analysis (N =

100 samples) with various levels of measurement noise injected into the nonlinear angle

measurements.

The tables above show that the IROD algorithm can find acceptable estimates when

the measurement errors are less than σ ≈ 10−7. Larger magnitudes of measurement error

yields large position errors on the IROD estimates.
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Table 9.19: Azimuth and Elevation Angles from L2O environment and Nonlinear Dynamics
for a Leader-Follower 100 km GEO case.

L2O Full Nonlinear

Azimuth Angles (rad)
−0.001190374920754
−0.001184263947994
−0.001170976437346
−0.001159786245259

−0.001190375478897
−0.001188468072306
−0.001185820670371
−0.001186755559581

Elevation Angles (rad)
0.087266380585009
0.066811011133262
0.014853838770885
−0.044162999440064

0.087266462599716
0.066811070745891
0.014853847303974
−0.044163041158496

9.2.3 Leader-Follower 100 km

The angle measurements for a Leader-Follower 100 km relative motion configuration

(i = 5◦, e = 0, ∆z = 0, J2 ON, ∆t = 9600 sec) with N = 4 observations are provided in

Table 9.19.

Differencing the Azimuth and Elevation angles between the L2O environment and

Nonlinear Dynamics yields

∆α =



0.000005581429750

0.042041243121956

0.148442330253483

0.269693143215299


× 10−4 rad

∆β =



−0.820147074837019

−0.596126291524390

−0.085330888691809

0.417184322504260


× 10−7 rad

The following data in Table 9.20 was collected based on Monte-Carlo Analysis (N = 100

samples) with various levels of measurement noise injected into the 2nd-order measurement

model.

The following data in Table 9.21 was collected based on Monte-Carlo Analysis (N =

100 samples) with various levels of measurement noise injected into the nonlinear angle

measurements.



123

Table 9.20: Percent Position Errors and Standard Deviation with varying magnitudes of
measurement noise added to L2O LOS angles for 100 Monte Carlo Runs (Leader-Follower
100 km GEO)

σ ≈ 10−5 σ ≈ 10−6 σ ≈ 10−7 σ ≈ 10−8 σ ≈ 10−9 L2O
Avg. Pos. Err (%) 168.9 24.66 4.60 3.35 3.83 3.9
Std. Dev. (%) 167.3 25.08 3.46 0.971 0.047

Table 9.21: Percent Position Errors and Standard Deviation with varying magnitudes of
measurement noise added to Nonlinear LOS angles for 100 Monte Carlo Runs (Leader-
Follower 100 km GEO)

σ ≈ 10−5 σ ≈ 10−6 σ ≈ 10−7 σ ≈ 10−8 σ ≈ 10−9 Nonlinear
Avg. Pos. Err (%) 179.0 26.73 4.51 3.73 4.09 4.1
Std. Dev. (%) 180.0 26.81 3.36 0.77 0.06

These tables show that measurement errors larger than σ ≈ 10−6 rad yield unacceptable

position errors. These measurement errors are still too large for current cameras to be used

for IROD applications at GEO.

9.2.4 Leader-Follower 500 km

The angle measurements for a Leader-Follower 500 km relative motion configuration

(i = 5◦, e = 0, ∆z = 0, J2 ON, ∆t = 9600 sec) with N = 4 observations are provided in

Table 9.22.

Differencing the Azimuth and Elevation angles between the L2O environment and

Nonlinear Dynamics yields

Table 9.22: Azimuth and Elevation Angles from L2O environment and Nonlinear Dynamics
for a Leader-Follower 500 km GEO case.

L2O Full Nonlinear

Azimuth Angles (rad)
−0.005951807119753
−0.005921574560247
−0.005855414633048
−0.005799139640593

−0.005951876881958
−0.005942454633564
−0.005929719609008
−0.005934756740968

Elevation Angles (rad)
0.087264412245892
0.066809533442287
0.014853522469069
−0.044162090070610

0.087266462599716
0.066811070745855
0.014853847303952
−0.044163041158242
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Table 9.23: Percent Position Errors and Standard Deviation with varying magnitudes of
measurement noise added to L2O LOS angles for 100 Monte Carlo Runs (Leader-Follower
500 km GEO)

σ ≈ 10−3 σ ≈ 10−4 σ ≈ 10−5 σ ≈ 10−6 σ ≈ 10−7 L2O
Avg. Pos. Err (%) 18871 60.58 23.2 7.84 8.21 8.2
Std. Dev. (%) 68451 38.89 19.2 1.65 0.10

Table 9.24: Percent Position Errors and Standard Deviation with varying magnitudes of
measurement noise added to Nonlinear LOS angles for 100 Monte Carlo Runs (Leader-
Follower 500 km GEO)

σ ≈ 10−3 σ ≈ 10−4 σ ≈ 10−5 σ ≈ 10−6 σ ≈ 10−7 Nonlinear
Avg. Pos. Err (%) 42232 60.75 24.8 8.78 9.07 9.2
Std. Dev. (%) 89001 42.35 18.6 1.45 0.15

∆α =



0.000069762205479

0.020880073317282

0.074304975960427

0.135617100375044


× 10−3 rad

∆β =



−0.205035382452867

−0.153730356816650

−0.032483488295043

0.095108763242119


× 10−5 rad

The following data in Table 9.23 was collected based on Monte-Carlo Analysis (N = 100

samples) with various levels of measurement noise injected into the 2nd-order measurement

model.

The following data in Table 9.24 was collected based on Monte-Carlo Analysis (N =

100 samples) with various levels of measurement noise injected into the nonlinear angle

measurements.

These tables show that the IROD algorithm is able to find accurate estimates when

the LOS measurement error is less than σ ≈ 10−4 rad. This is barely attainable with the

best, most accurate cameras available for space imaging applications. Cameras that have

noise magnitude at levels of σ ≈ 10−5 rad are expensive but available currently.
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From the GEO test cases above, it is evident that IROD applications are more sensi-

tive to measurement noise at GEO than conducting IROD at LEO. Either a higher fidelity,

more accurate and ultimately more expensive camera must be used for IROD at GEO or

the distance of separation between satellites must be extended for more accurate and re-

liable results. Future research should include investigating the role of measurement errors

on a wider range of relative motion cases, satellite separations and noise magnitudes. Spe-

cial consideration should be prioritized for relative motion regimes where current camera

technology can be used to find acceptable IROD estimates.
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CHAPTER 10

GEOSTATIONARY ORBIT RESULTS

All of the previous relative motion analysis have been set at LEO. The utility of the

IROD solution can be extended by implementing it in Geostationary orbits. For the cases

shown in Table 10.1, the chief semi-major axis is 42, 164 km and the eccentricity is zero

(e = 0). The effect of the J2 perturbations is small at GEO and the data below include the

J2 perturbations in the dynamics and in the IROD algorithm.

Each of the tables below show three different relative motion trajectory configurations

(Leader-Follower, Flyby, Football), at three different downrange separations, for a matrix

of low inclination angles and low eccentricity values. The range of inclinations and eccen-

tricities is smaller for GEO than LEO since most GEO satellites lie within this small range

of inclinations and eccentricities. Some cross-track motion is also introduced (∆z) to the

deputy vehicle. The tables below tabulate the number of feasible solutions found by the

IROD algorithm (Num Sol. column), the percent position error of the best initial IROD

estimate (IROD column) and the percent position error of the iteratively improved IROD

estimate (Q column). The J2 perturbations are turned on for all cases.

10.1 N=4 Observations, Nonlinear Dynamics, ∆t = 9600 sec

The IROD performance with no cross-track motion (∆z = 0%) and N = 4 observations

is shown in Tables 10.1-10.2. It can be seen that the IROD algorithm is able to accurately

estimate the initial relative motion states for the cases considered at GEO.

The IROD performance with cross-track motion (∆z = 10%) for a range of relative

motion trajectories, inclinations and eccentricities acceptable for GEO satellites is shown

in Tables 10.3-10.4. The performance is good for almost all of the relative motion cases.
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Table 10.1: Percent Position Errors, N = 4, ∆t = 9600 s,∆z = 0%, e = 0

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 4 3.7 3.7 4 3.7 3.7
50 km 4 2.1e-1 7.1e-4 4 2.6 2.6
500 km 4 1.9 1.2e-3 4 8.6 9.2

Flyby
5 km 1 3.1 3.1 1 3.7 3.7
50 km 5 3 3 1 3.7 3.7
500 km 5 2.9 2.9 1 5.2 5.2

Football
5 km 6 5.6 5.6 2 5.1 5.1
50 km 6 5.6 5.5 2 5.1 5.1
500 km 6 5.5 4.7 2 7.2e-1 7.3e-1

Table 10.2: Percent Position Errors, N = 4, ∆t = 9600 s,∆z = 0%, e = 0.001

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 2 8.2 8.2 2 11 11
50 km 2 3.0e-1 5.1e-1 2 1.7e-2 1.7e-2
500 km 4 1.8 1.3e-1 4 17 17

Flyby
5 km 1 3.0 3.0 1 3.6 3.6
50 km 5 3.0 3.0 1 3.6 3.6
500 km 5 2.8 2.9 1 5.1 5.1

Football
5 km 6 5.5 5.5 2 5.0 5.0
50 km 6 5.5 5.4 2 5.0 5.0
500 km 6 5.4 4.6 2 6.5e-1 6.5e-1

Table 10.3: Percent Position Errors, N = 4, ∆t = 9600 s,∆z = 10%, e = 0

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 3 4.7e-3 4.7e-3 3 46 44
50 km 3 2.6e-2 3.4e-2 3 49 49
500 km 7 3.4e-1 3.3e-1 3 23 23

Flyby
5 km 1 2.7 2.7 1 2.6 2.6
50 km 5 2.7 2.7 1 2.6 2.6
500 km 5 2.1 2.3 1 4.3 4.3

Football
5 km 6 5.8 5.8 2 5.7 5.7
50 km 6 5.8 5.7 2 5.7 5.7
500 km 6 4.6 4.9 2 1.5 1.5
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Table 10.4: Percent Position Errors, N = 4, ∆t = 9600 s,∆z = 10%, e = 0.001

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 3 3.6e-2 3.6e-2 1 1.8e-1 2.6e-1
50 km 3 4.8e-2 5.6e-2 1 11 10
500 km 7 3.1e-1 3.1e-1 3 29 29

Flyby
5 km 1 2.7 2.7 1 2.6 2.6
50 km 5 2.6 2.6 1 2.6 2.6
500 km 5 2.0 2.3 1 4.2 4.2

Football
5 km 6 5.7 5.7 2 5.6 5.6
50 km 6 5.7 5.6 2 5.6 5.6
500 km 6 4.5 4.9 2 1.4 1.5

Table 10.5: Percent Position Errors, N = 13, ∆t = 2400 s,∆z = 0%, e = 0

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 4 1.8 1.8 4 6.6 6.7
50 km 4 1.8e-1 1.4e-3 4 1.4e-1 1.4e-1
500 km 4 1.7 7.2e-2 4 1.7 1.5e-1

Flyby
5 km 5 2.9 3.1 1 2.4 2.5
50 km 5 2.9 3.1 1 2.5 2.5
500 km 5 2.8 3.0 9 2.7 2.4

Football
5 km 6 7.6 6.4 3 22 22
50 km 6 7.6 6.4 7 22 22
500 km 6 7.6 5.9 7 87 19

10.2 N=13 Observations, Nonlinear Dynamics, ∆t = 2400 sec

Now the same set of parameters that were tested with N = 4 observations are tested

when N = 13 observations are available within the same time interval. The final time is kept

constant and the measurement interval is decreased. The same relative motion trajectories

are considered over the same range of inclinations and eccentricities. The IROD performance

with no cross-track motion (∆z = 0%) and N = 13 observations is shown in Tables 10.5-

10.6. It can be seen that the IROD algorithm is able to accurately estimate the initial

relative motion states for the cases considered at GEO.

The IROD performance with cross-track motion (∆z = 10%) for a range of relative

motion trajectories, inclinations and eccentricities acceptable for GEO satellites is shown

in Tables 10.7-10.8. The performance is good for almost all of the relative motion cases.
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Table 10.6: Percent Position Errors, N = 13, ∆t = 2400 s,∆z = 0%, e = 0.001

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 2 9.3 9.3 4 6.6 6.7
50 km 2 3.5e-1 4.9e-1 4 1.4e-1 1.3e-1
500 km 4 1.6 8.3e-1 4 1.7 1.4e-1

Flyby
5 km 5 2.8 3.0 1 2.3 2.4
50 km 5 2.7 2.9 1 2.3 2.4
500 km 5 2.4 2.5 9 2.6 2.6

Football
5 km 6 7.5 6.3 3 21 22
50 km 6 7.5 6.3 7 21 22
500 km 6 7.4 5.7 7 83 19

Table 10.7: Percent Position Errors, N = 13, ∆t = 2400 s,∆z = 10%, e = 0

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 5 2.4 2.4 7 14 11
50 km 5 1.7e-1 3.8e-2 7 12 12
500 km 9 1.7 6.5 8 4.5 4.3

Flyby
5 km 5 2.8 2.9 5 2.4 2.5
50 km 5 2.8 2.9 5 2.5 2.5
500 km 5 2.7 2.8 9 2.7 2.4

Football
5 km 5 30 30 5 20 21
50 km 5 31 31 9 20 21
500 km 5 1.4e2 31 7 20 22

Table 10.8: Percent Position Errors, N = 13, ∆t = 2400 s,∆z = 10%, e = 0.001

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 5 9.0e-1 8.5e-2 7 1.3e-1 1.0e-2
50 km 5 7.1e-1 7.1e-1 7 3.5 3.4e-2
500 km 9 1.6 5.4e-1 8 12 12

Flyby
5 km 5 2.8 2.8 5 2.4 2.4
50 km 5 2.8 2.8 5 2.4 2.4
500 km 5 2.6 2.7 9 2.7 2.7

Football
5 km 5 30 30 5 20 21
50 km 5 31 31 9 20 21
500 km 5 1.4e2 31 7 20 22
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Table 10.9: Percent Position Errors, N = 25, ∆t = 1200 s,∆z = 0%, e = 0

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 4 1.5 1.5 4 6.9 7.1
50 km 4 1.8e-1 6.8e-4 4 1.4e-1 1.4e-1
500 km 4 1.7 1.8e-1 4 1.7 3.2e-1

Flyby
5 km 5 2.9 3.1 1 2.4 2.6
50 km 5 2.8 3.1 1 2.4 2.5
500 km 5 2.7 3.0 9 2.6 2.4

Football
5 km 6 7.8 6.2 3 21 22
50 km 6 7.8 6.2 7 21 22
500 km 6 7.7 5.6 7 1.5e2 1.3

Table 10.10: Percent Position Errors, N = 25, ∆t = 1200 s,∆z = 0%, e = 0.001

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 2 11 11 4 6.1e-1 4.2e-1
50 km 2 3.6e-1 5.0e-1 4 1.0 1.0
500 km 4 1.6 1.1e-1 4 1.6 9.7e-1

Flyby
5 km 5 2.8 3.0 1 2.3 2.4
50 km 5 2.7 3.0 1 2.3 2.4
500 km 5 2.6 2.9 9 2.5 2.5

Football
5 km 6 7.7 6.1 3 21 22
50 km 6 7.7 6.1 7 21 22
500 km 6 7.6 5.5 7 1.4e2 1.4

10.3 N=25 Observations, Nonlinear Dynamics, ∆t = 1200 sec

Next, the same set of relative motion cases is tested with more observations, N = 25.

The total time is kept constant and the time interval between measurements is decreased.

The same range of relative motion trajectories, inclinations and eccentricities are considered

and the percent position errors are tabulated for these cases. The IROD performance with

no cross-track motion (∆z = 0%) and N = 25 observations is shown in Tables 10.9-10.10.

It can be seen that the IROD algorithm is able to accurately estimate the initial relative

motion states for the cases considered at GEO.

The IROD performance with cross-track motion (∆z = 10%) for a range of relative

motion trajectories, inclinations and eccentricities acceptable for GEO satellites is shown

in Tables 10.11-10.12. The performance is good for almost all of the relative motion cases.

These GEO cases show that the IROD algorithm’s capacity can be expanded to GEO
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Table 10.11: Percent Position Errors, N = 25, ∆t = 1200 s,∆z = 10%, e = 0

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 5 2.8e-1 9.7e-3 7 14 13
50 km 5 1.4e-1 1.1e-2 7 12 12
500 km 9 1.7 6.8e-1 8 4.4 4.4

Flyby
5 km 5 2.8 2.9 5 2.4 2.5
50 km 5 2.8 2.9 5 2.4 2.5
500 km 5 2.6 2.8 9 2.7 2.4

Football
5 km 5 30 30 5 20 21
50 km 5 31 31 9 20 21
500 km 5 41 31 7 20 22

Table 10.12: Percent Position Errors, N = 25, ∆t = 1200 s,∆z = 0%, e = 0

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 5 5.2e-1 1.5e-1 7 1.2e-1 4.2e-2
50 km 5 1.0 1.0 7 4.4 3.9e-2
500 km 9 1.5 5.5e-1 8 12 12

Flyby
5 km 5 2.7 2.8 5 2.4 2.4
50 km 5 2.7 2.8 5 2.4 2.4
500 km 5 2.6 2.7 9 2.6 2.6

Football
5 km 5 30 30 5 20 21
50 km 5 31 31 9 20 21
500 km 5 41 31 7 20 22



132

satellites, determining relative states of debris and neighboring, unknown satellite bodies

in the GEO region of space. When the IROD algorithm is restricted to small inclinations

and eccentricities, the algorithm is able to find solutions with an acceptable level of error

for almost all cases. These results show the utility of this algorithm for GEO initial relative

orbit determination scenarios.

10.4 N=4 Observations, Nonlinear Dynamics, Excluding J2 from IROD

As previously stated, one of the main motivations of this new formulation of the IROD

algorithm was to include J2 perturbation effects. Previous research has shown that the J2

perturbation has a large effect on relative motion at LEO [57]. At LEO, the J2 perturbation

is a more dominant effect than other spherical harmonic perturbations or perturbations due

to third-bodies [7] but is less significant as the radius of the orbit increases. Still the J2

perturbation has some effect at GEO and if the IROD algorithm’s main utility will be orbit

determination at GEO, characterizing whether the J2 effect is significant at GEO in this

application is vital. The question to be answered in this section is: Does neglecting the

inclusion of J2 effects at GEO affect the performance of the IROD algorithm?

Relative motion cases are presented below, similar to the previously shown tables above,

with varying downrange separations, inclinations, eccentricities, relative motion configura-

tions and cross-track separations.

For the relative motion cases in Tables 10.13-10.16, several trends can are evident.

Although not including the J2 perturbation does increase the error in some solutions, the

effect is not as stark as for the previously presented LEO cases. Out of all of the above

cases, only one case results in a NO SOLUTION from the IROD algorithm with all of the

other solutions being poor (marked in blue) or good (marked in black). It is also interesting

to note that the same trend is evident in the LEO cases, namely the percent position errors

decrease as the relative separation of the satellite increases, is also evident in the above

tables. Once again, the effects of relative J2 on LOS measurements are more significant at

closer separations at GEO than at larger separations.
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Table 10.13: Percent Position Errors, N = 4, ∆t = 9600 s,∆z = 0%, e = 0, NO IROD J2

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 4 2.5 2.5 0 NS NS
50 km 4 1.9e-1 6.4e-4 4 1.8 1.7
500 km 4 1.9 1.2e-3 4 8.7 9.1

Flyby
5 km 1 26 26 1 28 28
50 km 5 5.4 5.4 1 6.1 6.1
500 km 5 3.2 3.2 1 5.5 5.4

Football
5 km 6 35 35 2 35 35
50 km 6 1.5 1.4 2 1.1 1.1
500 km 5 5.1 4.3 2 2.3e-1 2.4e-1

Table 10.14: Percent Position Errors, N = 4, ∆t = 9600 s,∆z = 0%, e = 0.001, NO IROD
J2

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 2 20 20 2 21 22
50 km 2 24 24 2 24 25
500 km 4 2.1 2.7e-1 4 17 17

Flyby
5 km 1 26 26 1 28 28
50 km 5 5.3 5.3 1 6.0 6.0
500 km 5 3.1 3.1 1 5.3 5.3

Football
5 km 6 35 35 2 34 34
50 km 6 1.4 1.3 2 1.0 1.0
500 km 6 5.0 4.1 2 1.5e-1 1.7e-1

Table 10.15: Percent Position Errors, N = 4, ∆t = 9600 s,∆z = 10%, e = 0, NO IROD J2

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 3 4.2e-2 4.2e-2 3 51 49
50 km 3 6.3e-2 7.1e-2 3 49 49
500 km 7 3.1e-1 3.1e-1 3 24 24

Flyby
5 km 1 24 24 1 22 22
50 km 5 4.9 4.9 1 4.6 4.6
500 km 5 2.3 2.5 1 4.5 4.5

Football
5 km 6 34 34 2 33 33
50 km 6 1.7 1.6 2 1.7 1.7
500 km 6 4.3 4.5 2 1.0 1.0
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Table 10.16: Percent Position Errors, N = 4, ∆t = 9600 s,∆z = 10%, e = 0.001, NO IROD
J2

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 3 13 13 1 3.7 3.7
50 km 3 1.2 1.2 1 9.8 9.2
500 km 7 3.8e-1 3.8e-1 3 29 29

Flyby
5 km 1 25 25 1 23 23
50 km 5 4.9 4.9 1 4.7 4.7
500 km 5 2.3 2.6 1 4.4 4.4

Football
5 km 6 34 34 2 33 33
50 km 6 1.7 1.5 2 1.6 1.6
500 km 6 4.1 4.4 2 9.9e-1 1.0

Table 10.17: Percent Position Errors, N = 13, ∆t = 2400 s,∆z = 0%, e = 0, NO IROD J2

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 4 7.6e-1 7.6e-1 5 9.8 9.9
50 km 4 1.6e-1 1.3e-3 4 3.6e-2 2.8e-2
500 km 4 1.7 2.9e-3 4 1.6 1.1e-1

Flyby
5 km 5 22 26 1 9.8 11
50 km 5 4.8 5.3 1 3.1 3.3
500 km 5 2.9 3.1 9 2.7 2.5

Football
5 km 6 31 33 3 19 19
50 km 6 3.6 2.3 7 17 18
500 km 6 7.0 5.2 7 82 19

10.5 N=13 Observations, Nonlinear Dynamics, Excluding J2 from IROD

The previous cases are re-run with N = 13 observations and J2 perturbations turned

off in the IROD algorithm but included when generating the LOS measurements.

Tables 10.17-10.20 show the percent position errors as more measurements are included

in the IROD solution. The N = 13 cases shown above are consistent with the N = 4 cases

(i.e. an increase in the number of observations does not mean a noticeable increase in the

percent position error). Again, neglecting the J2 perturbations in the IROD algorithm often

yields incorrect solutions with high position errors compared to previous cases when the J2

effects were modeled in the IROD algorithm. Also, the cases where the separation is close

seem to be the worst cases in terms of percent position error and as the separation increases

between satellites, the errors decrease in the IROD estimate.
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Table 10.18: Percent Position Errors, N = 13, ∆t = 2400 s,∆z = 0%, e = 0.001, NO IROD
J2

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 2 20 35 4 22 28
50 km 2 24 24 4 7.6 9.8
500 km 4 1.8 2.8e-1 4 2.5 1.9

Flyby
5 km 5 23 26 1 9.7 11
50 km 5 4.8 5.3 1 3.1 3.3
500 km 5 2.9 3.1 9 2.7 2.7

Football
5 km 6 31 33 3 19 20
50 km 6 3.6 2.3 7 17 18
500 km 6 7.0 5.2 7 79 20

Table 10.19: Percent Position Errors, N = 13, ∆t = 2400 s,∆z = 10%, e = 0, NO IROD J2

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 5 4.4 4.4 7 13 13
50 km 5 8.2e-1 8.2e-1 7 12 12
500 km 9 1.7 7.0e-1 8 4.5 4.5

Flyby
5 km 5 20 19 5 6.3 7.4
50 km 5 4.2 4.4 5 2.8 3.0
500 km 5 2.8 2.9 9 2.7 2.4

Football
5 km 5 32 12 5 22 22
50 km 5 27 26 9 16 16
500 km 5 1.4e2 31 7 20 21

Table 10.20: Percent Position Errors, N = 13, ∆t = 2400 s,∆z = 10%, e = 0.001, NO
IROD J2

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 5 9.0 7.1 7 10 10
50 km 5 5.7 5.4 7 7.0 1.6
500 km 9 1.7 6.6e-1 8 12 12

Flyby
5 km 5 20 19 5 6.1 7.2
50 km 5 4.2 4.4 5 2.8 2.9
500 km 5 2.7 2.9 9 2.7 2.7

Football
5 km 5 31 12 5 22 22
50 km 5 27 26 9 16 16
500 km 5 1.4e2 31 7 20 21
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Table 10.21: Percent Position Errors, N = 25, ∆t = 1200 s,∆z = 0%, e = 0, NO IROD J2

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 4 4.3e-1 4.3e-1 5 9.8 9.9
50 km 4 1.6e-1 9.1e-4 4 4.0e-2 3.5e-2
500 km 4 1.6 1.4e-1 4 1.6 3.0e-1

Flyby
5 km 5 22 26 1 9.4 11
50 km 5 4.8 5.3 1 3.1 3.4
500 km 5 2.9 3.1 9 2.6 2.5

Football
5 km 6 30 33 3 19 19
50 km 6 3.9 2.1 7 17 18
500 km 6 7.2 5.1 7 1.4e2 1.3

10.6 N=25 Observations, Nonlinear Dynamics, Excluding J2 from IROD

Now the same cases are considered with more measurements. The same cases as above

are re-run with N = 25 observations.

The results from Tables 10.21-10.24 are consistent with the previous trends. Increasing

the number of observations does not noticeably decrease the performance of the IROD

algorithm although these cases show that the IROD algorithm does perform worse when J2 is

not included in the algorithm. Also, the IROD algorithm is more accurate at larger satellite

separations than at small separations due to the effect of relative J2 on LOS measurements

at GEO. Although the results are worse when the effects of J2 are not included in the IROD

algorithm for GEO objects, the percent position errors are acceptable compared to the LEO

results where J2 is neglected. This is consistent with the fact that J2 is not as strong a

perturbation on the relative motion at GEO than it is at LEO.

In previous chapters, the IROD algorithm was tested at LEO and results showed that

the IROD algorithm was able to find good estimates of the initial relative states for cases

with low eccentricity and low inclinations. Since most satellites at GEO have low inclination

and low eccentricity, it seemed like the IROD algorithm would lend itself well when testing

relative motion trajectories at GEO. So, this chapter presents a range of relative motion

cases at GEO, varying the inclinations, eccentricities, relative separations. For almost every

case, the IROD algorithm performs well, accurately estimating the initial relative states with

small percent position errors. Although the effect of the J2 perturbation is smaller at GEO
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Table 10.22: Percent Position Errors, N = 25, ∆t = 1200 s,∆z = 0%, e = 0.001, NO IROD
J2

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 2 20 34 4 22 28
50 km 2 24 24 4 7.2 9.3
500 km 4 1.8 2.8e-1 4 1.2 6.9e-1

Flyby
5 km 5 22 27 1 9.2 11
50 km 5 4.8 5.4 1 3.0 3.3
500 km 5 2.8 3.1 9 2.6 2.6

Football
5 km 6 30 33 3 19 19
50 km 6 3.8 2.1 7 17 18
500 km 6 7.2 5.1 7 1.4e2 1.4

Table 10.23: Percent Position Errors, N = 25, ∆t = 1200 s,∆z = 10%, e = 0, NO IROD J2

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 5 1.8 1.8 7 13 13
50 km 5 7.8e-1 7.8e-1 7 12 12
500 km 9 1.7 7.3e-1 8 4.4 4.4

Flyby
5 km 5 20 19 5 5.9 7.4
50 km 5 4.1 4.4 5 2.8 3.0
500 km 5 2.7 2.9 9 2.7 2.4

Football
5 km 5 31 12 5 22 22
50 km 5 27 26 9 15 16
500 km 5 40 31 7 20 21

Table 10.24: Percent Position Errors, N = 25, ∆t = 1200 s,∆z = 10%, e = 0.001, NO
IROD J2

Dwn. Sep. i = 0 i = 5◦

Num Sol. IROD Q Num Sol. IROD Q

Leader-Follower
5 km 5 9.4 7.4 7 13 13
50 km 5 5.5 5.5 7 6.6 1.5
500 km 9 1.6 6.6e-1 8 12 12

Flyby
5 km 5 20 19 5 5.7 7.3
50 km 5 4.1 4.4 5 2.7 2.9
500 km 5 2.7 2.9 9 2.6 2.7

Football
5 km 5 31 12 5 22 22
50 km 5 27 26 9 15 16
500 km 5 40 31 7 19 21
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than at LEO, the question of whether the IROD algorithm should include J2 effects at

GEO is important. Multiple relative motion cases are presented that show the importance

of including J2 perturbations in the IROD algorithm especially if the separation between the

observer and observed satellite is small. The algorithm has shown its utility when applied

to GEO initial relative orbit determination cases.
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CHAPTER 11

SUMMARY AND CONCLUSIONS

With an increase in space debris in the recent years, the number of untracked space

objects is increasing. Initial relative orbit determination can be used as a vital tool to

characterize the orbits of neighboring objects to track satellites of interest and avoid col-

lisions with debris. Previous research has shown that a spherical coordinate frame has

definite advantages and improved accuracy when formulating relative motion equations

over a Cartesian coordinate frame formulation.

Chapter 2 laid the groundwork for the previous research in orbital relative motion in

Cartesian coordinates. This chapter also introduced many of the common relative motion

trajectories that are referenced in orbital relative motion literature and used for test cases in

the subsequent chapters. The Hill-Clohessy-Wiltshire equations were derived with special

attention focused on the linearizing assumptions that are used to derived these relative

motion equations in Cartesian Coordinates. In order to get a closed-form solution for the

relative motion equations in Cartesian coordinates, the HCW equations make the linearizing

assumption that the two neighboring satellites be close to each other. So, the relative

position and velocity states are assumed to be small to first order and the chief orbit is

assumed to be circular. The Tshauner-Hempel equations also formulate orbital relative

motion equations in Cartesian coordinates but with the relaxation that the chief orbit can

have arbitrary eccentricity. A derivation of these equations was also provided where all of

the relative position and velocity states are assumed to be small to first order.

Chapter 3 provided the derivation of an IROD algorithm that utilizes the camera offset

from the center-of-mass to determine the relative orbit of a close, neighboring satellite. The

IROD algorithm uses three or more line-of-sight observations (six angle measurements)

to determine the initial relative states of a neighboring satellite. A small change to the

IROD camera algorithm also allows for a deputy satellite to use LOS observations to known
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features on a neighboring chief satellite for relative orbit determination. This IROD solution

takes the form of simple algebraic equations and requires the inversion of one matrix of

dimension 3N−6 whenN is the number of observations. Results from this chapter show that

the accuracy of the algorithm is dependent on the ratio of the camera offset to the deputy-

chief separation distance, the time-interval between observations, and standard deviation of

the measurement errors. The solution errors are proportional to the measurement error and

inversely proportional to the ratio of the camera-offset to the vehicle-separation distance

and for all cases examined, the solution accuracy depends on the magnitude of the camera

offset or the magnitude of a known target feature offset from the center-of-mass.

Chapter 4 provided the background on previous work in relative orbital motion in a

spherical coordinate frame and provides a derivation of new relative orbital motion mod-

els in spherical coordinates that take into account J2 perturbation effects. Although the

derivation for these equations in cylindrical coordinates is similar to the derivation for the

Cartesian HCW equations, its noted that there is a significant difference. Since the nonlin-

ear equations of motion in cylindrical coordinates are not a function of δθ or δż, the above

linearized equations are valid for arbitrarily large δθ and δż. This nuance of the linearization

process in curvilinear coordinates was noted by Gobetz [45]. This is an important result

of the linearization process that provides increased accuracy over the HCW equations even

for arbitrarily large δθ (downrange separation) and δż (cross-track velocity). The same

conclusions were drawn with the relative orbital motion equations derived in spherical co-

ordinates. This chapter also provided a derivation of relative orbital motion equations in

spherical coordinates with J2 perturbation effects. An important caveat in this derivation

is the choice of reference orbit when linearizing the nonlinear equations of motion. The

reference orbit is chosen to lie in the equatorial orbital plane since expressions already exist

for the J2 perturbations in spherical coordinates as as function of the inclination from the

equatorial orbital plane. Since the reference orbit is not coincident with the chief orbit,

cases where the chief and deputy have large inclinations yield less accurate results. There is

in fact a singularity in the relative motion equations when the orbit inclination of a satellite
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approaches 90◦.

Chapter 5 showed the derivation of an IROD algorithm that makes use of the previously

derived relative orbital motion equations with J2 effects from Chapter 4. The IROD algo-

rithm uses three LOS observations (six angle measurements) and derives an approximate

IROD algorithm which approximately solves a set of 6 quadratic equations in 6 unknowns.

The algorithm is approximate because it neglects small, second-order terms in its deriva-

tion. A simple, iterative improvement method that re-introduces the small, second-order

terms is also derived which, after a few iterations, is able to exactly solve the set of polyno-

mial equations to numerical precision. Example cases are tested in an environment where

the dynamics are linearized and the measurement equations are reduced to second-order

that show that the IROD algorithm performs well when given LOS measurements that are

consistent with the environment that the IROD algorithm was derived in.

Chapter 6 showed the derivation of a similar approximate IROD algorithm which makes

use of more than three LOS observations to arrive at an estimate of the initial relative

states. A new iterative improvement algorithm is also derived which makes use of the extra

LOS observations to find the best fit to the quadratic equations in a least squares sense.

Examples cases are again tested in the Linearized dynamics/Second-Order measurement

equation environment to show that the IROD algorithm performs expertly, with small

position errors in the initial relative states, to find an accurate estimate.

Results from Chapter 7 show that the IROD algorithm performs best in LEO when the

inclination and eccentricity of the satellites considered are small. For this reason, the IROD

algorithm was tested with many relative motion cases in GEO where the characterization

of GEO satellites requires them to have small inclinations and eccentricities. The GEO

results show that the IROD algorithm performs very well in these cases and its main future

application can be GEO missions.

For LEO orbits, the effects due to J2 can be significant [7] and previous research has

shown that the effect of J2 perturbations of relative motion at LEO is also significant [57].

Cases in Chapters 8 and 10 show that neglecting the J2 perturbations in the IROD algorithm
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when J2 perturbations are used in generating the LOS measurements, yields large percent

position errors for the initial state estimates. Neglecting the J2 perturbations at smaller

separations yields larger percent position errors than at larger separations due to the relative

effect of J2 perturbations on the LOS angles. These results show that the J2 perturbation

needs to be included in IROD algorithms for acceptable accuracy especially for small relative

separations. Some preliminary analysis is also presented that shows the effect on IROD

performance of varying magnitudes of measurement error in the LOS measurements. These

cases show that with the camera measurement errors found in current technology, the vehicle

separations must be large to find accurate IROD solutions.

Although the IROD algorithm works well in many of the cases presented in this re-

search, there are a number of problems associated with the IROD algorithm that require

further investigation. First, the IROD algorithm performs poorly at higher inclinations.

This is a remnant of using the spherical coordinate frame in deriving the relative satellite

motion equations. There is a singularity in the spherical coordinate frame as the inclination

approaches 90◦. Using the Cartesian coordinate frame would remove this singularity but it

would be more difficult to include the effects of J2 in a Cartesian coordinate frame and the

Cartesian coordinate frame would lose the effect of arbitrarily large δθ.

Another issue with the IROD algorithm deals with the iterative improvement algo-

rithm. When nonlinearities are included in generating the LOS measurements, the iterative

improvement often does not actually improve the estimate of the relative states from the

IROD algorithm. As a reminder, the iterative improvement algorithm provides the exact

solution (to numerical precision) to the IROD problem modelled using the second-order

measurement equations and the linearized relative motion equations and does not provide

the exact solution of the full, nonlinear two-body problem with J2 perturbations. Con-

versely, the cases presented in Chapter 5 and 6 that generate the LOS measurements using

the second-order measurement equations and linearized relative motion equations, the it-

erative improvement algorithm reduces the percent position errors to numerical precision,

i.e., the iterative improvement algorithm works well.
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Another problem of this IROD algorithm is that an increase in the number of LOS

observations does not necessarily decrease the errors of the initial relative state estimates.

It is expected that increasing the number of measurements would average out the errors of

the IROD estimates and make the problem of disambiguation easier. Unfortunately, the

LOS measurements generated with nonlinear dynamics and J2 perturbations introduces a

bias to the LOS measurements that increases the IROD estimate errors as the number of

measurements increases.

There are several avenues of further investigation that would append nicely to this body

of research and would be perfect follow-on projects for other Masters or Ph.D. students. A

more in-depth study of the effect of measurement error on the performance of the IROD

estimates is important for implementing this algorithm with real-world data. Errors in the

LOS measurements can come from a variety of sources such as camera measurement errors,

camera bias, camera misalignment and modeling errors. A comprehensive understanding of

these error sources and their effect on the performance of the IROD estimates is vital.

The topic of disambiguity is also an important and non-trivial problem that should

be investigated further in future research. As a reminder, all of this research deals with

simulated cases where the initial relative states are already known and thus the problem

of disambiguation is not present. In on-board applications, the true initial relative states

are not known, so a set of helpful residuals can be used in a process to disambiguate

multiple IROD solutions to arrive at the “best” solution. This disambiguation process is

ultimately essential when sifting through actual, on-board mission LOS measurements for

IROD applications. Some possible approaches to disambiguation of possible IROD estimates

to arrive at the best IROD estimate include: LOS residuals, consistency checking, initializing

a Kalman filter for each feasible IROD root, or initializing a nonlinear least square IROD

algorithm for each feasible IROD root. Disambiguity with LOS residuals can be achieved in

two ways: comparing LOS residuals using only the measurements used to obtain the IROD

solution or comparing LOS residuals using other measurements that were not used to obtain

the IROD solution (extra measurements). Consistency checking involves comparing the
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feasible IROD solutions based on one set of measurements to the IROD solutions obtained

from a different set of measurements. These and other disambiguating strategies for finding

the best IROD solution are excellent avenues of future research.

Future research also includes investigating other approaches to the solution of N

quadratic equations in 6 unknowns. Also, the process of feasible root selection is another

useful area of research. Currently, the IROD algorithm only selects positive roots within

a range acceptable for IROD algorithms. For N > 3 observations, there are often com-

plex roots and only the real parts of the complex roots are used in the IROD solution.

Investigating the meaning of complex roots and the criteria for feasible root selection are

both prospective and important areas of research for continued validation of this IROD

algorithm.

In summary, future topics include more measurement error analysis, disambiguity tech-

niques, approaches to the solution of N quadratic equations in 6 unknowns and feasible root

selection processes.
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