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ABSTRACT 

Addition of Three Dietary Fibers in an Extruded Whey and 

Cornstarch Expanded Snack Food 

by 

Alisha M. Wood, Master of Science 

Utah State University , 2006 

\.1ajor Professor: Dr. Marie K. Walsh 
epartment: Nutrition and Food Sciences 

Different fiber types were incorporated in an extruded expanded high-protein 

mack food. Three dietary fibers (powdered cellulose , wheat fiber, and oat fiber) were 

;;elected based on ease of extrusion , percent total dietary fiber, visible expansion , and 

11 

~ommercial availability . A high-fiber , high-protein snack food containing whey protein , 

ormal cornstarch , and pregelatinized waxy cornstarch was extruded using the three 

;;elected fibers. The fibers replaced the normal cornstarch at 30, 60, and 80% yielding 

extrudates with three fiber levels (18, 36, and 48%). Each treatment or combination of 

fiber type and extrudate fiber level was extruded in triplicate. A control with no fiber 

added was also extruded in triplicate. 

Extrudate characteristics were evaluated on physical ( expansion ratio, air cell size, 

density, and breaking force) and chemical (moisture content , water absorption index, 

water solubility index, water and total soluble protein , and water soluble carbohydrat e) 



Ill 

parameters. The physical and chemical characteristics of the extrudates were found to 

be greatly affected by combined interaction of the fiber type and level of fiber in the 

extrudate. As the amount of fiber in the extrudate increased, moisture content increased 

(p < 0.0001) associated with a decrease in expansion ratio (p < 0.0001), air cell size (p < 

0.0001), and water solubility index (p = 0.0013) and increased extrudate density (p < 

0.0001), breaking force (p < 0.0001), and water absorption index (p < 0.0001). 

Dependent extrusion parameters (pressure, motor torque, barrel and die temperature of 

the mix, barrel and die temperatures, residence time, and product flow rate) were 

recorded and analyzed. All dependent extrusion parameters were influenced by the level 

of fiber incorporation in the extrudates (p < 0.0001). The temperature at the die was also 

significantly influenced by the type of fiber used, and the level of fiber and fiber type 

interaction (p< 0.0001). Differences were deemed statistically significant at p < 0.05. 

The possibility exists to incorporate dietary fiber at levels > 30% in extruded whey and 

cornstarch products. 

(108 pages) 
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INTRODUCTION AND OBJECTIVES 

Introduction 

The U.S. snack food market has reached sales of$21.8 billion for 2001 (Moraru 

and Kokini 2003). Popular health diets include snacks as part of the weight management 

program. To name a few, the Atkins and South Beach diets stress inclusion of high-fiber, 

high-protein, low-fat, low-sugar and low carbohydrate snacks (Agatson 2003). 

Consumers are aware of the overall connection between diet and health. This has lead to 

the growth of the functional and fortified food and beverage market which grew from 

$18.4 billion in 2001 to $23.4 billion in 2004 (Anon 2005b). The appeal of functional 

foods is in the ability of a food product or added component if eaten as part of a varied 

diet, to provide health benefits beyond basic nutrition (Deis 2003). Dairy whey and plant 

fiber are very nutritional and relatively inexpensive functional food ingredients that are 

incorporated into a variety of nutritional snack foods. Currently, no high-fiber, high­

protein, low-carbohydrate, and low-fat extruded snack foods are commercially available. 

There is not a snack or functional food product touting both whey protein and dietary 

fiber as the main ingredients. 

Whey, a by-product of cheese manufacturing, retains 50% of the original nutrients 

in milk; largely lactose, vitamins, minerals, and soluble protein (Bylund 1995). Whey is 

an inexpensive, highly nutritional value-added commodity (Bylund 1995; Martinez-Serna 

and Villota 1992). The protein from whey is a complete protein source containing all 

essential amino acids requisite for healthy body maintenance and growth. Whey protein 

in the form of whey protein concentrate (WPC), and whey protein isolate (WPI) has been 



successfully incorporated in infant formulas, power bars, muscle gain powders, and 

extruded expanded products. 
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Dietary fiber is defined by American Association of Cereal Chemists (2001) as 

the edible part of plants or analogous carbohydrates that are resistant to digestion and 

absorption in the human small intestine with complete or partial fermentation in the large 

intestine. American Association of Cereal Chemists (2001) further defined dietary fibers 

as promoting beneficial physiological effects including laxation, and/or blood cholesterol 

attenuation, and/or blood glucose attenuation. Consumers recognize the need for 

increased dietary fiber, however , are only consuming half of the current recommended 

consumption of dietary fiber (Deis 1999; Butrum and others 1988; Harland and Narula 

2001 ). Dietary fiber is used as a functional food ingredient to help consumers increase 

dietary fiber consumption , thus, providing positive health benefits ranging from offsetting 

chronic diseases and cardiovascular disease to increasing fecal bulk and reducing the 

severity of constipation (Crosby 2005). 

Dietary fiber and whey products, such as whey protein concentrate (WPC), have 

been incorporated into extruded expanded snack products with varying levels of success. 

Extrusion technology employs the continuous mixing, kneading, and expulsion of 

moistened , starchy, and/or proteinaceous materials through an orifice or die thereby 

allowing formation of the extrudate (Burtea 2001; Harper 1981 ). A variety of products 

can be made with extrusion technology. Extrusion of whey protein eliminates a waste 

disposal issue of the cheese industry while providing consumers with high quality protein 

in a convenient form of a snack food. Dietary fiber inclusion in expanded snack foods 

has also been researched . Whey protein and dietary fiber both tend to have detrimental 



effects on extrudate characteristics such as decreased expansion ratio, air cell size, and 

increased hardness, and density (Cudy and Zall 1982; Moore and others 1990; Camire 

and King 1991; Martinez-Serna and Villota 1992; Jin and others 1995; Kim and Maga 

1987; Onwulata and others 1998, 2001; Huber 2001; Allen 2004). As extrusion is an art 

all of its own, the possibility to extrude both dietary fiber and WPC in a snack food 

exists. The success or acceptability of the extrudate will depend on the ability to 

manipulate extrusion conditions, material selection (fiber type), product formulation and 

the intended use of the extrudate. 

Hypothesis 

3 

Dietary fiber type and level influence the physical and chemical characteristics of 

extruded expanded snack products containing whey protein concentrate (WPC80) and 

cornstarch. 

Objectives 

Twelve fiber samples were extruded with WPC 80 (Lomira, WI) and normal 

cornstarch (Agro , Memphis, TN) at a composition of approximately 30% whey protein, 

15 to 30% dietary fiber, and the remainder normal cornstarch. Extrudates were evaluated 

and three dietary fibers were selected for extrusion in a high-fiber, high-protein extruded 

snack food. Selection of three fibers was based on ease of extrusion, visible expansion, 

percentage of total dietary fiber in the sample and availability of dietary fiber source. 
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The three selected fibers were incorporated in an expanded snack food product 

containing 32% whey protein , 30% normal cornstarch and 10% pregelatinized waxy 

cornstarch (National Starch and Chemical, Bridgewater , NJ) and extruded. Normal 

cornstarch was substituted with 3 different dietary fibers at 4 levels (0, 30, 60, and 100 % 

wt/wt) yielding 0, 18, 36, and 48% total dietary fiber. Independent extrusion parameters 

of dry feed rate , screw speed and extrusion temperature zones throughout the extruded 

barrel and die exit were optimized and set for each fiber level. Dependent extrusion 

parameters of pressure , motor torque, observed barrel and die exit temperatures , 

temperature of the mix in the barrel and at the die, as well as residence time were 

recorded and analyzed. Extrudates were analyzed for physical ( extrudate breaking, 

extrudate density, air cell diameter, and expansion ratio) and chemical (water adsorption 

index and water solubility index, moisture , water and total soluble protein, and water 

soluble carbohydrate) characteristics . 
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LITERATURE REVIEW 

Whey 

Whey is a by-product of cheese production (Bylund 1995). In the cheese 

manufacturing process, butter-fat and casein are precipitated from milk to make cheese 

curd leaving a liquid solution known as whey. This greenish-yellow, aromatic liquid is a 

major waste disposal issue for the food industry. Whey comprises 80-90% of the total 

volume of milk used for the production of cheese (Bylund 1995). Thus, from every 100 

pounds of milk used for the manufacturing of cheese, only 10 pounds of cheese is 

produced with the subsequent generation of90 pounds of whey. Traditionally, whey was 

viewed solely as waste having no intrinsic value and not effectively utilized. Whey 

disposal methods varied from dumping onto fields and usage as pig feed. Companies are 

trying to find new usages for whey, due to environmental concerns and economical 

issues. 

Whey is an inexpensive, highly nutritional value-added commodity, retaining 

50% of the original nutrients in milk; largely lactose, vitamins, minerals, and soluble 

protein (Bylund 1995; Martinez-Serna and Villota 1992). In addition to a high nutritional 

profile, whey has a broad range of functional properties such as solubility, viscosity, 

gelation, water-binding, foaming stability and emulsifying capacity. These attributes 

allow whey to be included in a myriad of products including beverages, sport bars, snack 

foods, pasta, meat products and analogs (Kilara 1994). Nonetheless, with only 50% 

utilization, whey remains one of the largest reservoirs of high quality protein residing 



outside of daily human consumption (Bylund 1995). The high whey supply and low 

demand, allows for the innovative usage of whey ingredients. 

Whey composition 

Whey is primarily water (Bylund 1995). Composition of whey varies depending 

on the type of whey and the milk used to make cheese. Sweet whey has a pH of 5.9-6.6 

and is the by-product of hard, semi-hard or soft cheeses (acid-set cheeses) . Mineral-acid 

set cheeses yield acid whey with a pH of 4.3-4.6 (Bylund 1995). Generally speaking, 

whey is 93% water, 6.3% solids, 4.9% lactose , 0.9% protein, 0.5% minerals, and 0.05% 

fat (Mittal and Usbome 1985). 
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Whey contains 20% of the total milk proteins. Whey protein is very nutritional as 

it has a high protein efficiency ratio (PER) between 3.2-3.4 (Cuddy and Zall 1982). PER 

represents the amount of weight gained (grams) relative to the amount of protein 

consumed (grams) and is used to determine protein quality. The biological value (BV) 

measures the amount of nitrogen retained by the body in comparison to the amount of 

nitrogen absorbed and is also used to determine protein quality (Pasin and Miller 2000). 

Whey protein has a high BV of 104 (Haines 2005). Therefore, the body is able to 

efficiently digest and use whey protein to improve health. 

Whey protein is a complete protein containing all essential amino acids required 

for healthy body maintenance and growth. The two main groups of proteins in milk are 

casein and whey proteins. Casein proteins precipitate at a pH 4.6 and account for 80% of 

the total protein in milk. Whey proteins are soluble at pH 4.6 and are the remaining 20% 

of milk protein (Bylund 1995; Huffman and Harper 1999). The groups of whey proteins 



present in high concentrations are beta-lactoglobulin (25%), alpha-lactalbumin (55%), 

and serum albumin ( 12%) (Morr 1992). Beta-lactoglobulin and alpha-lactalbumin 

compose the majority of total protein in whey (80-90%). 

Lactoferrin, lactoperoxidase, lysozyme and lipoprotein are also categorized as 

whey proteins (Walsh and others 2000). These make up the remaining 20% of whey 

proteins. Whey protein is a popular protein supplement for its complete amino acid 

content and high levels of branched chained amino acids-leucine, isoleucine, and valine. 

The non-immune protection oflactoferrin and lactoperoxidase against infection add to 

the acceptability of whey ingredients as a functional food ingredient (Wade 1994) 

Whey processing 

7 

Liquid whey is processed after cheese manufacturing to retard microbial growth, 

remove leftover cheese fines and provided an ingredient for further usage in other 

products. There are many ways to process liquid whey into whey protein ingredients. 

However , any form of heat treatment is detrimental to the proteins. Heating denatures the 

proteins and limit whey protein. 

Different processing methods result in different compositions of whey products 

and ingredients. The unreliability of whey ingredients and inconsistent product frustrate 

the efficient incorporation of whey into food products (Hugunin 1987). These are two 

reasons for low whey usage. Whey protein concentrate (WPC), whey protein isolate 

(WPI), and whey permeate (WP) are among the most common whey ingredients (Table 

1 ). 

Whey powder or sweet whey solids (SWS) are liquid whey with the water 



~emoved through reverse osmosis and evaporation techniques. This yields a 

~oncentrated protein product with levels of 13% protein , 76% lactose, 10% ash, and 1 % 

at. Ice cream and bakery products often include SWS. 

fable 1. Composition of various whey products 

Whey Protein Concentrate Whey Protein Isolate Whey Permeate 

Water 4-5% 4.5% 5% 

Protein 35-80% > 90% 0 .05% 

Lactose 53-7% 1% 81.7 % 

Fat 4-7% 1% 0.2% 

Ash 4-7% 3% 8.3 % 

(Huffman 1996; Hale 2000 ; Bylund 1995; Inglet 2004). 
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Whey protein concentrate is a powder obtained through drying the retentates from 

ultrafiltration of liquid whey (Bylund 1995). Protein levels range from 35-80% with 

lactose and fat increasing as the protein level decreases (Table 1 ). Whey protein 

concentrate can be tailor-made for any desired specification . The product WPC80 has 

80% protein , 4-7% lactose, and 4-7% fat. The food industry uses WPC80 quite 

extensively in products ranging from meat extenders to fruit beverages to fat replacers. 

Whey protein isolate (WPI) is furthered processed with ion exchange or 

membrane processes to remove the fat and lactose and increase the protein concentration 

to greater than 90% (Huffman and Harper 1999). Infant formulas and sport drinks 

incorporate WPI. Whey permeate (WP) is considered a by-product of whey processing. 

It is liquid whey with the water , fat, and protein removed. Thus, all the minerals remain. 



Research using WP as an inexpensive growth medium for mushroom mycelia has been 

successful (lnglet 2004) . 

Whey protein functionality 

Whey ingredients have functional properties ideal for many food applications. 

9 

The nutritional appeal of whey protein lends the status of being a functional food additive 

to promote increased nutrition. Sports drinks utilize whey ingredients because of low 

viscosity of whey proteins. This allows for a high concentration of protein without the 

need to consume large volumes of liquid. Upon heating, the viscosity and water-holding 

capacity of whey proteins increase. The partial unfolding of the proteins from heat 

denaturation liberates water-binding sites (Huffman 1996). The volume occupied by the 

protein expands as more water is trapped and viscosity increased. This attribute of 

increased viscosity and water-holding capacity upon heating gives whey proteins the 

ability to improve gelation in food systems. Various types of gels can be produced from 

heated whey proteins. An irreversible gel has inhibited syneresis because the water is 

held within the capillaries of the gel matrix. Whey proteins begin gelation when heated 

to 65° C and at concentrations of 7% in aqueous solutions (Huffman 1996). The type of 

gel formed depends on processing conditions, pH, protein concentrations , and other food 

ingredients. Gelation can improve textural characteristics of hardness, elasticity , and 

cohesiveness of food products. Thus, the quality of yogurt, meats and cakes can be 

modified with inclusion of whey protein ingredients. 

Whey proteins have a wide range of solubility. Denatured proteins have reduced 

solubility between pH 3-5 because the isoelectric point of some whey proteins is reached 



10 
between pH 4.5-5.3. Thus, isoelectric precipitation occurs. However, most whey 

proteins (80%) remain soluble unless heated above 70° C (Huffman 1996). The addition 

of sugar can increase solubility in heated whey products. Salad dressings benefit from 

the solubility range of whey proteins. The acidic environment of salad dressings does not 

hinder the emulsification functional properties of whey ingredients. The hydrophobic 

and hydrophilic regions of whey proteins allow oil or water droplets to be encapsulated 

by the formation of an interfacial membrane. The same holds true with the stabilizing of 

foams but with an interfacial membrane foaming around air. Whey protein can be used 

to prevent creaming in dairy products and oil/water separation in salad dressings 

(Huffman 1996). 

Dietary Fiber 

Nutritionally , dietary fiber is defined by the American Association of Cereal 

Chemists (2001) as the edible parts of plants or analogous carbohydrates resistant to 

digestion and absorption in the human small intestine with complete or partial 

fermentation in the large intestine. Thus, dietary fiber includes polysaccharides , 

oligosaccharides , lignin, and associated plant substances . Dietary fibers promote 

beneficial physiological effects including laxation, and/or blood cholesterol and glucose 

attenuation (AACC 2001). Increased dietary fiber intake has been associated with 

improved heath through reduced incidence of coronary heart disease, obesity, diverticular 

disease, diabetes , and some cancers (Blaylock and others 1996). The National Cancer 

Institute of American, American Dietetics Association and the Dietary Guidelines for 

Americans (2000) all recommend consumption of20-35 g/day of dietary fiber for a 2,000 
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calorie diet (Butrum and others 1988; Harland and Narula 2001). However, Americans 

are consuming only half of the recommended levels. The National Center for Health 

Statistics, Hyattsville, MD, reports that Americans consume on average only 14-15 grams 

of fiber intake per day (Deis 1999). The Surgeon General's Report on Nutrition and 

Health advises increase consumption of dietary fiber. 

Dietary fiber composition 

Dietary fiber is, therefore, an umbrella term enshrouding a complex 

mixture of plant components resistant to digestion by the alimentary enzymes of humans 

(Pro sky and Devries 1991; Dreher 2001 ). Thus, all are non-digestible polymers 

(BeMiller and Whistler 1996). Dietary fiber is also used to describe the supporting 

structure of cell walls and the substances intimately associated with them (Dreher 2001 ). 

Primary components of dietary fiber are hydrogen-bonded saccharides such as cellulose, 

hemicelluloses, pectins, lignins, gums, and mucilages (Dreher 2001; BeMiller and 

Whistler 1996). Most human consumption of dietary fiber is obtained from the cell walls 

of fruits, vegetables, cereals, and other seeds (Selvendran and Verne 1988). 

Dietary fiber is divided into two categories- insoluble and soluble. Insoluble fiber 

increases fecal bulk, renders softer feces, and shortens bowel transit time (Dreher 2001 ), 

all desirable heath benefits. Good dietary sources of insoluble fiber are dried beans, peas, 

vegetables, nuts, and whole grain cereals (Dreher 2001). Soluble fiber lowers serum 

cholesterol levels, slows gastric emptying, retards glucose absorption, and enhances 

immune function (Dreher 2001). Good dietary sources of soluble fiber include whole 

grain oats and barley, oat bran, some fruits, dried beans, and other legumes (Dreher 



2001). In a typical diet , 75% of all dietary fibers are consumed in the insoluble form 

(Dreher 2001; Deis , 1999). 

Insoluble dietary fiber 
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Cellulose is the primar y structure found in insoluble dietary fiber (Cho and others 

1997). Ubiquitous in nature, cellulose is the most abundant source of insoluble fiber 

(Deis 1999). Cellulose is a linear polymer of up to 10,000 monomer units of beta 1-4 

linked D-glucose. This polysaccharide has a degree of polymerization of300-1500 

(Dreher 1987). The insolubility of cellulose in water , dilute acids and hot dilute alkali 

solutions is largely due to the tight hydrogen bonding between polymer chains (Cho and 

others 1997). The high degree of intermolecular hydrogen bonding provides cellulose 

with st rong tensile strength and shear (Cho and others 1997). Humans lack the enzyme 

necessary to break the beta 1-4 linkage (Dreher 1987). Cellulose can absorb 3.5 - 10 

times its weight in water (Deis 1999). Water absorption increases with an increase in the 

length of cellulose fiber (Deis 1999). Cellulose can be purified into a vast array of 

cellulose derivatives. Such examples are methylcellulose and microcrystalline cellulose. 

Hemicellulose , unlike cellulose, is soluble in dilute alkali solutions (Cho and 

others 1997; Prosky and Devries 1991 ). A heterogeneous group of saccharide polymers 

containing xylose, manose , glucose, and galactose compose hemicellulose. Side chains 

of glucose , arabinose , and glucuronic acid are present in hemicellulose (Prosky and 

Devries 1991). Hemicellulose is a mixture of soluble and insoluble fibers (Cho and 

others 1997). 



Lignin is a highly cross-linked phenylpropane polymer included in the 

definition of dietary fiber (IOM 2001). The North American diet does not contain huge 

amounts of lignin. Poorly digested, lignin is a highly water-insoluble compound 

covalently bound to fibrous polysaccharides (IOM 2001). Lignin is found as a complex 

with either cellulose or hemicellulose within plant cell walls (Dintzis 1982). These 

lignin-carbohydrate complexes and the physiological effects on dietary fiber are the 

reasons lignin is included in the definition of dietary fiber (IOM 2001 ). 
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Resistant starches are escapees of starch digestion in the small intestine that are 

fermented in the large intestine (Deis 1999). This carbohydrate serving as "functional 

fiber" is classified into 3 categories RS 1, RS2, RS3 (Cho and others 1997). RS 1 is starch 

physically inaccessible to digestion. RS2 are ungelatinzed, intact starch granules. RS3 

starches retrograde after processing (Deis 1999; Cho and others 1997). Commercial 

resistant starches are high amylose starches modified by biochemical and/or physical 

processing to maximize total dietary fiber. The largest source of naturally occurring 

resistant starch is legumes (IOM 2001). 

Soluble dietary fiber 

Soluble dietary fibers are composed mainly of gums and pectins (Prosky and 

Devries 1991 ). A number of gum varieties contribute to the total dietary fiber content of 

the food supply (Prosky and Devries 1991). Gums are hydrophilic colloids that easily 

dissolve in water and impart a thickening and gelling effect (Glicksman 1982). Agar, 

alginate, carrageenan, flax seed gum, modified celluloses , xantham gum, locust bean gum 



and guar gum are common gums used in food products to improve food quality and 

serve as dietary fiber functional food ingredients (Prosky and Devries 1991 ). 

Beta glucans are gums and an important source of soluble dietary fiber. Beta 

glucans are glucose polymers resistant to digestive hydrolysis . The glucose monomers 

are linked with beta 1-4 and beta 1-3 linkages (Prosky and Devries 1991). Beta glucans 

are largely found in barley (3.0%), oats (2.5% to 6.6%), and rye (1.9-2 .9%) (Cho and 

others 1997; Deis 1999). Oat bran has half of the total dietary fiber in beta glucans 

allowing for FDA approval of health claims on food labels. As gums, beta glucans can 

form heat-irreversible gels when heated in an aqueous suspension (Dea 1982). 
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Pectins also constitute soluble dietary fiber and are widely found in fruits, 

vegetables , legumes, and roots. A water-soluble fiber, pectin is a polymer of D­

galacturonic acid linked by alpha 1-4 linkages with side chains of arabinose , xylose , 

rhamnose , glucose and galactose (Dreher 1987; Prosky and Devries 1991 ). Pectins have 

a wide range of functional properties based on its water-binding abilities . Pectins, like 

gums, are soluble dietary fibers used to aid in the texture , gelling, thickening, and 

emulsification of food products. 

Functional characteristics of dietary fiber 

Dietary fiber can be obtained from various sources from fruits to seaweed. No 

matter the form, dietary fiber can provide a multitude of functionalities that may be 

utilized in many food products. As consumers become further educated with the role of 

dietary fiber and the protective effects against cardiovascular disease and various cancers , 

foods products listing added or enhanced fiber may find a larger consumer market. The 
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Solubility affects the nutritional properties of dietary fiber. Insollit,lwmM. Wood 

provides laxative effects. Soluble fiber protects against cardiovascular disease as plasma 

lipids are altered (Oakenfull 2001 ). Cooking increases the rate of solublization (Cho and 

others 1997). Particle size is important because smaller particles dissolve rapidly, due to 

a greater surface area (Cho and others 1997). 
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Viscosity, in a nutshell, is the resistance to flow (Dreher 1987). Water-soluble 

dietary fiber has the polysaccharide characteristic of producing viscous solutions 

(Oakenfull 2001). At low concentrations, dietary fiber exists as "random coils" (Cho and 

others 1997). Thus, as the concentration of dietary fiber increases the random coils are 

forced together and become entangled with other molecules (Oakenfull 2001). The result 

is an increased product viscosity. An increase in the rate of shear or stirring causes a 

decrease in viscosity (Oakenfull 2001). The molecular size and weight of the 

polysaccharide, pH, electrolytes, temperature and water-binding capacity variedly affect 

viscosity (Prosky and Devries 1991). 

Water-Binding Capacity (WBC) or water holding capacity (WHC) is the ability of 

dietary fiber to hold water under specific conditions (Dreher 1987). Polysaccharides 

have numerous free hydroxyl groups allowing hydrogen bond formation with water. 

Thus, soluble and insoluble fibers entrap water through gelation. Insoluble fibers absorb 

water in a sponge like fashion. Factors influencing WBC or WBC are pH, ionic strength, 

and particle size (Dreher 1987). 

Cation Exchange, or mineral binding, is seen with dietary fiber. The presence of 

free carboxyl groups on the sugar residues and the uronic acid content allows dietary 

fiber the functional capacity of cation exchange (Cho and others 1997). Dietary fiber can 

bind minerals such as calcium, iron, magnesium, and copper (Dreher 1987; Harland and 

Narula 2001; Cho and others 1997). Binding of metal ions by dietary fiber is pH 

dependent (Cho and others 1997). Mineral binding is lower at an acidic pH than at a 

neutral pH (Cho and others 1997). 



17 
Dietary fiber in food 

Cereals are a common source for dietary fiber. Oat, wheat, barley, and corn are 

the most commonly used sources for dietary fiber. Oat bran, as defined in the United 

States, is not more than 50% of the original starting material and provides at least 5.5% 

on a dry weight basis beta-glucan soluble fiber and a total dietary fiber content of 16% on 

a dry weight bases (Malkki 2001). Soluble fiber must account for one-third of the total 

dietary fiber in oat bran (Malkki 2001). Wheat bran has 35-45% dietary fiber (Dreher 

2001) . The bran consists of the outer coats of the wheat grain, namely the pericarp , seed 

coat , and aleurone layer (Dreher 1987). The bran composes 12-15% of the wheat grain 

(Cho and Clark 2001) . Barley fiber may serve as a great ingredient in many functional 

foods. An assortment of both soluble and insoluble fiber can be separated from barley 

grains. The soluble fraction of barley is high in beta-glucans (Fastnaught 2001). Dietary 

fiber content of barley varies with cultivars , growing conditions and processing methods 

(Fastnaught 2001). Com bran can be refined or unrefined. Refined com bran has 80-

90% total dietary fiber. Products with com bran have increased levels of dietary fiber, 

improved texture and increased water and fat absorption (Dreher 1987). 

Health benefits of dietary fiber 

Dietary fiber is a key factor in the holistic health of an individual. Decrease in 

dietary fiber intake is associated with an increase in obesity, colon-cancer, colitis, 

constipation, coronary heart disease, hyperlipidemia, and maturity-onset diabetes (Prosky 

and Devries 1991 ). On the flip side, short term and long term improvements to the health 



status of an individual can be seen with increases in dietary fiber in the diet (Prosky 

and Devries 1991). 

Soluble fiber aids in the control of diabetes. Blood sugar level swings are 
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limited , as digestion and absorption of carbohydrates are slowed by soluble fiber (Prosky 

and Devries 1991 ). High-fiber foods slow stomach emptying promoting satiety. This 

leads to reduced food intake, thereby controlling obesity (Oakenfull 2001 ). Constipation 

and diverticulosis is lessened with insoluble fiber consumption. Fecal bulk is also 

increased and laxation and regularity are improved. Soluble fibers trap nutrients, and bile 

acids in a gel matrix (Oakenfull 2001). Thus, absorption of cholesterol and bile acids in 

the small intestines is inhibited as viscosity in the intestine is increased by dietary fiber 

(Cho and others 1997). The benefits of sufficient dietary fiber intake are varied. 

Numerous studies have been conducted on dietary fiber and the role in various health 

issues. Studies on cardiovascular disease (Anderson and others 2000), obesity (Miller 

and others 1994), satiety (Burley and others 1987), colon cancer (Lanza 1990), 

diverticular disease (Dreher 1987) and diabetes have shown a positive correlation with 

dietary fiber intake. 

Dietary fiber in high doses (greater than 35 g daily) can have deleterious health 

effects (Dreher 1987). Noted side effects are negative mineral balance, bowel obstruction 

leading to constipation, increased abdominal pressure, and increased flatulence (Dreher 

1987; Prosky and Devries 1991). 
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Labeling of dietary fiber 

The definition of what constitutes dietary fiber has undergone much question and 

debate over the past years. Currently, dietary fiber is defined , as proposed by the Institute 

of Medicine (2001 ), as follows: 

1. Dietary Fiber consists of non-digestible carbohydrates and lignin that are 

intrinsic and intact in plants. 

2. Added Fiber consists of isolated, non-digestible carbohydrates that have 

beneficial physiological effects in humans. Total Fiber is the sum of Dietary 

Fiber and Added Fiber . (IOM 2001) 

Thus, naturally occurring resistant starch, as in legumes and pasta, are considered dietary 

fiber. 

The Food and Drug Administration has no written definition of dietary fiber for 

the purpose of food labeling and health claims (IOM 2001) . The Nutrition Labeling and 

Education Act of 1990 (NLEA) require total dietary fiber to be included as part of total 

carbohydrates declared on the label. Dietary fiber labeling is required unless the product 

contains less than 1 gram of fiber per serving. Declaration of soluble and insoluble fiber 

is voluntary unless a health claim is reported regarding the content (Gelroth and Ranhotra 

200 I). Dietary fiber has O kcal/gram for insoluble fiber and 4 kcal/gram for soluble fiber. 

FDA regulations for nutrient content claims on fiber-containing foods are as 

follows: 

1. "good source of," "fiber fortified," or "contains" fiber require 10-19% of 

the recommended daily intake of fiber or 2.5 grams of fiber per 

servmg. 



2. "high fiber" or "rich in" fiber must contribute a minimum of 5 grams 

per serving or 20% or more of the recommended daily intake of fiber 

per serving (Deis 1999; Gelroth and Ranhotra 2001 ). 

The FDA has 4 approved health claims for foods pertaining to fiber. 
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1. Fiber-containing grain products, fruits, and vegetables help reduce the risk 

of cancer and cardiovascular disease. 

2. "Fiber food" health claim is permitted for foods containing fiber "without 

fortification." 

3. Oats and psyllium are rich in soluble fiber, which reduces the risk of 

coronary heart disease. Thus, food products must contain 0.75 grams of 

soluble fiber from oat or 1. 7 grams of soluble fiber from psyllium husk per 

serving in order to tout claims ofreducing the risk of heart disease. 

4. Whole grain foods with greater than 51 % whole grain ingredients can 

make a claim to reduce in heart disease and certain types of diseases 

(Gelroth and Ranhotra 2001). 

Functional Foods 

American consumers are aware of the positive correlation between lifestyle and 

eating habits to health and well being (Hasler, 1998). As consumers learn to optimize 

health through diet, the market for foods with altered nutritional characteristics and 

unchanged sensory attributes widens (Riaz 1999). The functional and fortified food and 

beverage market grew from $18.4 billion in 2001 to $23.4 billion in 2004 (Anon 2005b). 

This growth is expected to continue. The United States food-fiber market was reported 
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by Strategic Analysis of the United States Food Fiber Industry to have earned a 

revenue of$193 million in 2004 (Pszczola 2006). A global growth consulting company, 

Frost & Sullivan, estimated the future of the United States of the food-fiber market to 

reach $495 million by 2011 (Pszczola 2006). The appeal of functional foods is in the 

ability of a food product or added component if eaten as part of a varied diet, to provide 

health benefits beyond basic nutrition (Deis 2003) 

Dietary fiber is a functional food component that provides positive health benefits 

ranging from offsetting chronic diseases such as diabetes and cardiovascular disease to 

increasing fecal bulk and reducing the severity of constipation (Crosby 2005). Foods 

containing dietary fiber can be touted as a functional food with health benefits. In order 

to make a health claim for reduced risk of coronary heart disease, food products must 

contain at least 0.75 g of oat soluble fiber per serving (Gelroth and Ranhontra 2001). 

Foods must contain at least 2 g of dietary fiber per serving to be considered a good source 

of fiber (Gelroth and Ranhontra 2001). 

Consumers respond positively to foods labeled a good source or high-fiber food 

(IFIC 2000). "Increased consumer interest in the potential biomedical or calorie 

reduction benefits of dietary fiber and the Food Drug Association's (FDA) reassessment 

of its policy for allowing health messages has created a demand for the development of 

high fiber foods" (Dreher 1987). This trend continues. Opinion Dynamics Corp found 

Americans are more likely to buy products based on health labeling such as "high-fiber," 

"low in fat," or "high in protein" (Anon 2005a). Consumers recognize the need for 

increased dietary fiber consumption. Dietary fiber can be incorporated into food products 

as a functional food in improve consumers health. 
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Snack Foods 

The U.S. snack food market has reached sales of $21.8 billion for 2001 

(Moraru and Kokini 2003). This growing industry caters to all generations from the 

walking toddler to the geriatric adult. Popular health diets include snacks as part of the 

weight management plan. To name a few the Atkins and South Beach diets stress snack 

inclusion, snacks of a high-fiber, high-protein, low-fat, low-sugar, and even low 

carbohydrate content (Agatson 2003). This urging, along with the increasing awareness 

of the connection between diet and overall health, increases the need for functional food 

snack products for health conscious consumers. 

The snack food industry has three broad classes or generations. The highest 

selling snack products are the first-generation products of the baked and fried nature such 

as com chips, crackers, and potato chips (reviewed in Allen 2004). Second-generation 

products are thermoplastic extruded collets (reviewed in Allen 2004). These are low 

moisture products (<15%) oven-dried for further crispiness (Huber and Rokey 1991). 

Products can also be extruded at higher moisture levels and deep- fried. The nature of 

these products is the result of direct expansion of the dough as it exits the extruder die. 

The degree of starch gelatinization and melting of the dough in the extruder will 

determine the internal structure of the product (Colonna and others 1989). The collets 

can be dusted with flavor. The cheese flavored puffed com snacks are classic examples 

of popular second-generation snack products. 

Third-generation snack products or pellets are extruded snacks puffed by 

additional methods such as frying, baking, secondary expansion extrusion, or micro­

waving (Huber and Rokey 1991; Matz 1993). These half products or pellets are extruded 
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at high moisture levels resulting in extrudates with little or no expansion. The 

extrudates are dried to moisture levels less than 12% (Huber and Ro key 1991; Matz 

1993). These pellets can be bagged and stored up to a year before the final cooking or 

puffmg stages (Matz 1993). Before consumption, the pellets enter a final cooking stage 

and are puffed by frying, microwaving or baking. The pellets are transformed as the 

water vaporization inside the starch matrix causes the product to expand (reviewed in 

Allen 2004 ). The extruded pellets may also be flaked to produce ready-to-eat cereals and 

snack foods (reviewed in Allen 2004) . 

Extrusion Technology 

Extrusion technology employs the continuous mixing, kneading, and expulsion of 

moistened, starchy, and/or proteinaceous materials through an orifice or die thereby 

allowing formation of the extrudate (Burtea 2001; Harper 1981 ). An extruder is basically 

a pump that produces enough pressure to force material through a die (Rauwendaal 

1998). There are different kinds of extruders based on the desired type of extrudate. The 

single and twin screw cooking extruders represents the two most commonly utilized 

extruders in the food industry. 

Extrusion history 

For over seventy years, extrusion technology has been pivotal in the development 

of food product innovations in the food industry. The mid-1930's ushered in the first 

major commercial application of single-screw extruders in Italy with the production of 

pasta from semolina (Rokey 2000; Huber 2000). In the mid-1940's, single-screw 

extruders were used to produce the first extrusion-cooked, expanded com snack (Huber 



2000; Rokey 2000). The high temperature, short-time heat treatment within the 

extruder was sufficient to allow complete starch gelatinization (Huber 2000). Thus, as 

the extrudate leaves the die, pressure is be released, moisture is flashed off, and an 

exothermic post die expansion transpires making possible the "puffed" characteristic 

(Riaz 2000). 
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Expanded pet food was produced by single-screw extrusion technology in the 

1950's. This led to the commercial development of the continuous cooking extruder, 

thereby, eliminating process steps, increasing efficiency and reducing production costs 

(Riaz 2000). Today, extruded cooked expanded pet food accounts for the largest volume 

of extrusion-cooked products in the United States (Ro key 2000). 

Textured vegetable protein production through extrusion cooking was used in the 

1970's giving rise to meat extenders and meat analogs. The application of extrusion 

technology continues as its versatility, high productivity, minimal cost and improved 

energy efficiency is attractive to food manufacturers . Extrusion technology spawns high 

quality products. In 1998, 3. 7 million tons of extruded products were produced in the 

United States, representing a retail value of $3.62 billion (Bregenzer 1998). The 

development and application of twin-screw extruders is widening the extruded product 

market. Research in extrusion technology continues especially in the application of 

healthy, functional snack foods. 

Extrusion process 

An extruder is not limited in application. Thermoplastic extrusion technology is 

used particularly in the snack food industry to transform grains and high-protein materials 
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into a variety of palatable snack foods through a series of complex physical processes 

(Huber 2001; Camire 1991 ). Extrusion exposes food to heat and shear stress allowing for 

the interaction of starch and protein. Starch gelatinizes and proteins denature allowing 

for the molecules to realign and interact, forming matrices (Harper 1981 ). An extruder is 

composed of an Archimedean flighted helical screw that rotates within a fixed metal 

barrel or cylinder. Dry materials are added to the barrel via a feed hopper. The hopper 

allows for a constant and uniform introduction of materials to the extruder, thus 

preventing surging and providing product uniformity. Liquid such as water or sodium 

hydroxide may be added just after the hopper or inlet feed . 

The material is conveyed forward through the barrel by the rotating force of the 

screw and the frictional force at the barrel (Rauwendaal 1998). The helical screw 

provides conveyance , heating, melting and mixing of the material throughout the barrel 

(Rauwendaal 1998). Screws allow for extrusion to be a continuous process. The screw 

design is important as paddles on the screw control the flow and mixing of the materials. 

Typical extruders have one or two screws. Twin-screw extruders offer advantages over 

single screw extruders. Twin-screw extruders vary in design by the different degrees of 

screw meshing and direction of rotation. This allows for a variety of materials to be 

extruded. Low moisture materials can be extruder and eliminates the need for a 

preconditioning stage . The twin-screw design provides self-swiping capabilities allowing 

positive forward transport of the material through the barrel to the die exit. The constant 

flow of material and pressure at the die will then allow for extrudate uniformity. 

Heating zones line the extruder barrel. Barrel temperature is measured by 

thermocouples and can be monitored and controlled. Heat allows for melting of the 



material to form a dough. Increased mixing and heating throughout the barrel 

generates pressure at the die end. Sufficient pressure must be generated to overcome 

resistance of the die and discharge the material. Formation of an expanded or "puffed" 

extrudate results from the sudden decrease of pressure leaving the die and the water 

vaporization of the extrudate (Rauwendaal 1998). Extrudate shape is dependent on the 

die design. 
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The extrusion process can indeed be considered its own form of art. The 

reproducibility of a desired product greatly resides on the ability of the operator to control 

extrusion process parameters (Huber 1991 ). Independent variables that directly control 

product quality attributes are formulation, material feed rate, liquid feed rate, screw 

speed, screw design and paddle configuration, die configuration, and barrel temperatures 

(Huber 1991). Product temperature within the barrel and at the die, residence time, barrel 

pressure, and specific mechanical energy are among the dependent variables. Final 

product quality can be measured through final moisture content, extrudate expansion (i.e. 

bulk density, size, and shape), solubility, texture, color and flavor (Huber 1991 ). 

Extrusion research 

Traditionally snack foods have inferior nutritional qualities. Many efforts to add 

nutritional value to extruded snacks have been attempted with the inclusion of soy, whey, 

and meat proteins with varying results. Incorporation of whey proteins not only utilizes 

the excess supply of whey protein, but also adds high quality protein, thereby, increasing 

the nutrient density of the snack food. Fiber has also been investigated as a value-added 



ingredient to many types of snack foods. As with any snack food, the success of an 

extrudate depends largely on consumer acceptance and the application of the extrudate. 

Whey in extruded products 

27 

Whey proteins have been manipulated over the years through various 

technologies to yield ingredients with usage potential in an array of food applications. 

Thermoplastic extrusion of whey proteins is a continuous process with little waste. 

Process parameters are easily controlled and cost is limited. Whey protein extrusion 

promotes protein aggregation through the breaking and reforming of disulfide bonds as a 

result of protein denaturation. Whey protein extrusion is feasible. However, success is 

limited by the acceptability of the extrudates. 

Hale (2000) successfully extruded textured whey protein for use in a meat patty. 

Acceptability of extrudate was dependent on the texture of the product, which contained 

whey protein concentrate, cornstarch and sodium hydroxide. Her work was later 

followed by Allen (2004) who extruded whey protein concentrate at varying levels with 

different types of starches. It was found that starch type had the greatest impact on 

extrudate characteristics. Normal cornstarch with 32% protein had higher sensory scores 

despite smaller expansion and higher bulk density. Pregelatinized waxy cornstarch at 

each protein level (32 and 40%) yielded extrudates with greater expansion and lower bulk 

densities than those with normal cornstarch. However, tooth pack was greater yielding 

lower sensory scores. 

Many other researchers have incorporated whey proteins into extruded starch 

blends with limited success due to the detrimental effects on extrudate properties 



(Martinez-Serna and Villota 1992; Kim and Maga 1987; Onwulata and others 1998). 

The main problems inherent with whey addition are reduced cross-sectional expansion, 

increased hardness, heightened non-enzymatic browning, and difficulty in extrusion 

(Cuddy and Zall 1982; Martinez-Serna and Villota 1992). 

Dietary fiber in extruded products 
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Huber and Rokey (1991) state that fiber, cellulose, bran, and fruit-derived pectins 

can successfully be blended with cereal grains or protein blends. Expanded snacks can 

have addition of 20% fiber and protein with little effect on flavor and expansion. More 

soluble fibers and proteins, however, can be added in higher levels. High levels of fiber 

yield soft-textured snacks. This is due to the fact that fiber absorbs water. Water 

retention inhibits water loss at the die and reduces expansion (Camire and King 1991). 

Artz and others (1990) showed that the water-holding capacity of fiber decreased with 

increased extrusion temperature . 

Fiber containing bran particles added to extruded products cause premature 

rupture of gas cells leading to reduced expansion (Moore and others 1990). Lue and 

others (1991) found reduced particle size of sugar beet fiber improved both radial and 

longitudinal expansion of extrudates. 

High fiber decreases expansion and yields extrudates with high bulk densities 

(Burglund and others 1994; Huber 1991). Jin and others (1995) contributed reduced 

radial expansion to increased fiber content. Jin and others (1995) found fiber caused 

thickening of the cell walls and decreased air cell size in the micro structure of the 

extrudate. Purity of fiber directly influences expansion characteristics (Huber 2001). 



Low levels oflow-molecular weight starches will counter effects of fiber and protein 

additions (Huber and Rokey 1991; Huber 1991). 
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Onwulata and others (2000) conducted research extruding triticale and wheat 

products with 20 g and 40 g dietary fiber from wheat bran. It was found that starch 

expands better than flour. Only percent fiber and product flow rate affected product 

hardness . Extrudates with 20 g fiber and high flow rates were softer than higher fiber and 

slower flow rates. Increased fiber was associated with increased breaking strength of 

extrudates. 

Azlyn and others (1989) found optimal fiber replacement in extruded products to 

be 20 g per 100 g of product. Huber (1991) reports beet , fruit , pea and soy fibers can be 

added up to 30% without significantly reducing expansion. Oat and rice fibers with high 

lipid and protein levels are not optimal fibers for extrusion (Huber 2001). High lipid and 

protein levels reduce extrudate expansion. Fibers with the lowest level of protein and 

lipid in conjunction with smallest particle size allow for the highest degree of expansion 

(Huber 2001). 

Onwulata and others (2001) extruded a cornmeal snack with wheat bran fiber 

(12 .5 and 50%) and milk proteins (25%). It was concluded that whey products with 

wheat bran fiber addition , even at levels higher than 12.5%, could improve extrudate 

expansion and other product characteristics of an extruded cornmeal snack. 

Camire and King (1991) extruded cornmeal snacks with soy protein isolate and 

either cotton linter cellulose or soy cotyledon fiber. It was found that low levels of soy 

protein isolate increased expansion and low levels of cottonseed fiber decreased 

expansion. Higher soy protein levels altered sensory attributes of color , expansion , and 



flavor. A blend of10% fiber (either source) and 15% soy protein isolate was found 

acceptable through sensory testing. 
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Research on extrusion of dietary fiber has shown that processing affects the 

physiological effects of dietary fiber. However, the effects of extrusion on dietary fiber 

are unclear. The changes that can occur in dietary fiber from extrusion vary, largely 

depending on extrusion conditions, processing materials , and to some extent the method 

of fiber determination (Lue and others 1991; Wang and others 1993; Camire and Flint 

1991; Gualberto and others 1997). 

Rinaldi and others (2000) extruded wet okara and soft wheat flour. Wet okara 

contained > 20% protein and >50% dietary fiber and was added to a soft wheat flour 

blend at 33.3 % and 40% . Increased fiber content resulted in extrudates with decreased 

radial expansion and increased bulk density and breaking strength. Extrusion brought 

about a decrease in insoluble fiber and increased soluble fiber content. The greatest 

increase in soluble fiber content was apparent at higher extrusion temperatures . The 

blend with the higher fiber ( 40% wet okara) showed an increase in total dietary fiber 

(TDF) , possibly due to the formation of enzyme-resistant starch. 

Lue and others (1991) extruded sugar beet fiber and com meal. Sugar beet fiber 

was extruded at 10, 20, and 30%. The insoluble, soluble, and total dietary fiber levels did 

not change significantly among the 30% sugar beet fiber extrudates. However, non­

significant differences were observed from the raw and extruded materials. It was noted 

that changes in dietary fiber depended on extrusion conditions and processing materials. 

Gualberto and others ( 1997) extruded wheat , oat, and rice bran at varying screw 

speeds. Total dietary fiber (TDF) was not affected in wheat bran at 148-180° C and 



screw speeds of 200 rpm. Insoluble fiber decreased in wheat, oat and rice bran. 

Increase of soluble fiber was greatest at screw speeds of 225, 305 rpm for rice and oat 

bran, and at screw speeds of305 and 450 rpm for wheat bran. 
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Lukesova and others (1996) found that extrusion of crisp bread in a twin-screw 

extruder brought a decrease in TDF in extrudates containing wheat flour. In extrusion 

with a single-screw extruder, the main differences were noted in the decrease of insoluble 

dietary fiber. Vegetable crisp bread extrudates had a decrease in soluble dietary fiber 

while non-vegetable extrudates had an increase in soluble dietary fiber. Single-screw 

extrusion only showed a significant decrease in TDF in one of the crisp bread extrudates 

Extrusion of wheat bran was found to increase fiber digestibility in rats (Aoe and 

others 1989). Increased digestibility was the result of an increase of soluble fiber of the 

wheat bran extrudate. The soluble dietary fiber increased in wheat bran extruded at 136, 

and 160° C. Additionally, a decrease in insoluble fiber was attributed to solubilization of 

dietary fiber during processing and possible release of the soluble hernicellulose fraction 

from the dietary fiber in the wheat bran (Aoe and others 1989). 

Extrudate Analysis 

Common methods as cited in the literature for extrudate analysis, chemically 

and physically, employ a narrow range of tests (Jin and others 1995; Mohammed and 

others 2000; Onwulata and others 2000; Allen 2004; Hale 2000; Taylor and others 2006). 

Chemical tests include moisture determination, total and water soluble protein using the 

Lowry assay (Lowry and others 1951 ), soluble carbohydrate (Dubois and others 1956), 

water adsorption index (WAI) and water solubility index (WSI) as described by Jin and 



others (1995). Physical tests often include extrudate breaking strength, density, 

expansion ratio, and air cell size. 
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Dietary fiber has much controversy as the definition of what constitutes dietary 

fiber is often not defmed. The complexity of defming dietary fiber is due to the fact 

dietary fiber is a combination of chemical substances of distinct composition and 

structure and not a simple chemical compound (Rodriguez and others 2006). Therefore, 

there are many methods for fiber determination all focusing on different components or 

constituents of dietary fiber (Rodriquez and others 2006; Lukesova and others 1996). 

There is not a precise and accurate methodology for dietary fiber determination 

(Rodriguez and others 2006). However , generally speaking, dietary fiber analysis can be 

divided into 2 main groups: enzymatic-gravimetric methods and chemical methods. The 

enzymatic-gravimetric method quantitates fiber as the residue that remains after treatment 

to the sample with specific enzymes that degrade ash and protein (Rodriguez and others 

2006, Lukesova and others 1996). The chemical method determines the non-starch 

polysaccharides (Rodriguez and others 2006; Lukesova and others 2006) . 
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MATERIALS AND METHODS 

Fiber Selection 

An extruded snack food product was produced with 32% total whey protein 

(WPC 80, Grande Cheese, Lomira WI) and 60% normal cornstarch (Argo, Memphis, TN) 

as the standard control. Twelve dietary fiber samples with varying amounts of% total 

dietary fiber(% TDF) were obtained from different sources (Table 2). 

Table 2. Dietary fiber sources and% total dietary fiber (TDF) composition 

Fiber Type %TDF Source 

Orange fiber OF 400 60 J.Rettenmaier USA LP, Schoolcraft, MI 

Apple fiber AF401 55 J.Rettenmaier USA LP, Schoolcraft, MI 

Oat fiber HF 600 96 J.Rettenmaier USA LP, Schoolcraft, MI 

Oat fiber HF 401 90 J.Rettenmaier USA LP, Schoolcraft, MI 

Wheat Fiber WF 600 97 J.Rettenmaier USA LP, Schoolcraft, MI 

Powdered Cellulose 100 J.Rettenmaier USA LP, Schoolcraft, MI 

L601 

Oatvantage Oat fiber 100 Nuture Advanced Oat Technologies, Devon, 

PA 

Cargill Maizewize 60 60 Cargill, lndianapo lis, IN 

Cargill Maizewize 80 80 Cargill, Indianapolis, IN 

Fibersol-2 100 ADM Specialty Ingredients Division, Decatur, 

IL 

Litesse 90 Danisco Sweeteners, Ardsley, New York 

Oat Fiber X 100* Roman Meal Milling Company, Tacoma, WA 

*%TDF was assumed to be 100%. 
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The twelve different sources of dietary fiber were separately blended with 

cornstarch and WPC80 to make 10 lb. dry blends (Table 3). Cornstarch and WPC 80 did 

not exceed 40 and 45% (wt/wt), respectively, of the dry blend. Final %TDF level of each 

dry blend varied based on % TDF content of sample and amount of sample available for 

extrusion. Each protein:starch:fiber blend was randomly extruded. 

Table 3. Composition of 10 lb. dry blends used for fiber selection. 

Fiber Type % Total % Protein % 
Dietary Fiber (From WPC Cornstarch 

(TDF) 80) 
Orange fiber OF400 15.5 42 20 
Apple fiber AF 40 I 15 38 24 
Oat fiber HF 600 24 38 37 
Oat fiber HF 40 I 28 44 13 
Wheat Fiber WF 600 24 39 25 
Powdered Cellulose L60 I FCC 20 37 33 
Oatvantage Oat fiber 36.5 38 16 
Cargill Corn fiber Maizewize 60 18 36 23 

·-
Cargill Corn fiber Maizewize 80 40 32 16 
Fibersol-2 40 40 10 
Litesse 38 40 8.3 
Oat Fiber X 55* 26 II 

*% TDF in fiber sample was assumed to be 100%. 

Extrusion 

Fibers were extruded in random order employing a bench-top scale APV Baker 

MP-19TC twin-screw extruder (APV Maker, Inc., Grand Rapids, MI). Dry feed was 

added to the extruder and mixed with liquid feed (0.1 M NaOH) in the barrel (Allen 

2004). Liquid feed rate was held constant at 5.6 g I min. Die temperature and 

temperature zones along the barrel and were controlled and monitored with CAL3200 

Autot1me temperature controllers (Cal Controllers, Inc., Libertyville, IL). The four barrel 
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temperature wnes were set at 25, 25,115, 135°C for all extrusion runs . Die 

temperature or temperature of extrudate exiting the die was set for 145° C. Other 

independent extrusion conditions of dry feed rate and screw speed were initially set at a 

rate of 500 rpm for dry feed rate, and 200 rpm for screw speed. There were some minor 

variations in dry feed rate and screw speed to optimize extrusion of each dietary fiber 

sample (Appendix A Table Al). Optimized extrusion was defmed as absence of product 

surging , indicating a state of equilibrium and minimal elastic recoil of exiting extrudate. 

Torque and pressure was measured using a NRC120 Safeguard Meter (Anders 

Electronics , London , UK) and an EPRJ 3M-6M561 pressure transducer (Dynisco 

Instruments , Franklin , MA) , respectively. The exit die was conical with a 2.5 mm 

diameter. The extruded was cleaned with water between extrusion runs. Extrudates were 

allowed to dry overnight at room temperature and then stored in plastic bags . 

Extrusion at Four Different Fiber Levels 

An extruded snack food product was produced containing 32% total protein and 

50% normal cornstarch and 10 % pregelatinized waxy cornstarch (National Starch and 

Chemical , Bridgewater , NJ) as the standard control (0% fiber) . Pregelatini zed waxy 

cornstarch was used to help with expansion of the product (Allen 2004) and incorporated 

at a constant 10% (wt/wt) for each blend (Table 4). A 10 lb. mix was made for each dry 

blend. The three different fibers selected: Vitacel Powdered Cellulose L601 FCC (J. 

Rettenmaier USA LP, Schoolcraft, MI) Vitacel Oat fiber HF600 (J. Rettenmaier USA LP, 

Schoolcraft , MI) and Vitacel Wheat Fiber WF600 (J. Rettenmaier USA LP, Schoolcraft, 

Ml) were separately blended with the normal cornstarch, pregelatinized waxy cornstarch 
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and WPC80 to form final% TDF levels of 18, 36 and 48% (wt/wt). Adjustments were 

made in formulations to account for different % TDF content of each fiber sample. The 

fiber content levels of extrudates were based on estimated 30, 60, and 80% replacement 

of the 60% starch (combined normal cornstarch and pregelatinized waxy cornstarch) in 

the 10 lb. dry blend of the control with each fiber type selected. The dry blend had a final 

total protein content of 32% using WPC80 (Table 4). Treatments were extruded in block 

form with each fiber type representing one block . Each fiber level was extruded in 

random order within each block. Each fiber type, fiber level and control was extruded in 

triplicate yielding 10 treatments (3 fiber types, 3 fiber levels and 1 control in triplicate) 

for a total of 30 samples. All samples were extruded as described previously. The 

extruded was cleaned between extrusion runs with water. Extrudates were allowed to dry 

overnight at room temperature and then stored in plastic bags. 

Table 4. Composition of 10 lb. dry blends used for extrusion at different fiber levels. 

% Fiber Sample % Protein % Normal % 
Level (From Cornstarch Pregelatinized 

WPC80) Waxy 
Cornstarch 

0 Control 32 50 10 
18 Powdered Cellulose 32 32 10 
18 Wheat Fiber WF 600 32 31.5 10 
18 Oat Fiber HF 600 32 31 10 
36 Powdered Cellulose 32 14 10 
36 Wheat Fiber WF 600 32 12.9 10 
36 Oat Fiber HF 600 32 12.5 10 
48 Powdered Cellulose 32 2 10 
48 Wheat Fiber WF 600 32 1 10 
48 Oat Fiber HF 600 32 0 10 
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Die temperature and temperature zones along the barrel were set and monitored 

with CAL3200 Autotune temperature controllers (Cal Controllers, Inc., Libertyville, IL). 

The four barrel temperature zones (25, 25,115, 125°C) were set for all extrusion runs. 

Die temperature or temperature of extrudate exiting the die was set for 13 5° C. 

Independent extrusion parameters of dry feed rate and screw speed were 

determined for each fiber level and used to optimize product extrusion based on a 

constant liquid feed rate of 5.6 g/rnin (Table 5). In general, each fiber level had a unique 

extrusion condition varying only slightly between fiber types. Optimized extrusion was 

obtained with absence of product surging indicating a state of equilibrium and minimal 

elastic recoil of exiting extrudate. All set and observed independent extrusion parameters 

were recorded. Dependent extrusion parameters such as of residence time, torque, 

pressure, TOM of die and barrel, and barrel and die temperatures were recorded. 

Table 5. Optimal extrusion parameter ranges for various fiber levels. 

% Fiber level Dry feed rate Screw speed Residence Product 

(rpm) (rpm) (sec) Flow (g/s) 

0 425 180-200 65-69 42.5 

18 450-475 180-200 73-90 25.8-35.7 

36 425-450 180-200 80-89 25.7-29.2 

48 250-300 140-160 114-137 14.4-17.0 

After all extrudate samples were collected, food coloring was added to the barrel 

with the dry feed. The time from food coloring addition in the barrel to the exiting of 

colored product from the die was recorded as residence time. Four extrudate samples 
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were randomly collected for 20 seconds and weighed. Product flow was then 

calculated for each extrusion run. The 4 collected samples were used for moisture 

determination. Extrudates were further analyzed for WAI, WSI, water and total soluble 

protein, water soluble carbohydrate, extrudate breaking strength, air cell diameter , 

expansion ratio and diameter. The samples were analyzed in triplicate unless otherwise 

noted. Comparison of extrudates was conducted using analysis of variance. Because the 

effects of dietary fiber addition to a high-protein extruded snack foods was the focus of 

this study , the effects of extrusion on dietary fiber were not evaluated and dietary fiber 

content of extrudates was not tested. It should also be noted that the exact composition 

of the fiber sources (i.e. dietary fiber components) were not known. Thus, selection of 

the appropriate method for dietary fiber determination would be difficult. 

Physical tests 

Samples were embedded in melted household wax (Parowax , Roswell , GA) and 

allowed to cool. Amount of sample embedded in wax varied based on the diameter of the 

extrudate . Approximately 4-8 extrudates per sample were used. Embedded extrudates 

were cut lengthwise as close to the center as possible with a razor to expose the 

longitudinal cross section. Images of the cross section were taken using a stand-mounted 

Nikon Coolpix 5700 digital camera (Nikon USA, Melville, NY) . Camera settings 

included a focal length of 15.7 mm, a Fine picture setting , F3.6 and a 2560 x 1920 pixel 

resolution. Paper squares with known areas of 1, 0.5 and 0.25 cm2 area were placed 

along-side the extrudate and photographed with every extrudate cross sectional image. 



39 
Clear air cells (12) from the images of the cross sections were randomly 

selected and analyzed using Adobe PhotoShop (Adobe Systems Inc., San Jose, CA). Air 

cell surface area was outlined with the Magnetic Lasso tool generating a total pixel count 

within the outlined circumference. Pixel counts of the known paper squares areas were 

used to make a standard curve. Total pixel counts of the air cells were compared to the 

standard curved to determine air cell size. 

A Salter 235 shear device with a Warner-Bratzler shear cell (GR Electric 

Manufacturing, Manhattan, KS) was used to provide shear values for extrudate breaking 

strength. Ten extrudates were randomly selected from each starch: fiber ratio and 

sheared. Extrudate length and diameters at point of shear where measured with calipers. 

Sheared, measured extrudate fragments were weighed. Breaking strength force was 

calculated using the following equation: 

Force (Pa) (9. 7865 N/kg) (breaking strength (kg)) x 1000 

n ((extrudate diameter (mm))/2)2 

The ratio of cross sectional area of each extrudate (CS) to the area of the die exit 

was used for expansion ratio calculation. Ten values were obtained for randomly 

selected extrudate samples. 

A gravimetric displacement method was not used to determined extrudate density, 

due to concern of media entering the extrudate's air cells, thus, altering the volume 

measurements (Allen 2004). Instead, a simple mathematical formula was used: 
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Density (g/cm 3

) = ---~s~ec,a;g=m=e=n~t ~w~e=ig=h~t _....(g_,,,) _____ _ 

segment length (mm) 7t (dave(mm))/2)2 

where dave is the average of the initial and final diameters of a given extrudate segment 

taken at point of shear. Length and weight measurements of each extrudate sample used 

for breaking strength determination were used for density calculation. A total of ten 

values per sample were obtained. 

Chemical tests 

Four 20-second samples randomly collected during each extrusion run were 

weighed to determine product flow rate and then used for moisture determination. The 

first and third samples were immediately dried overnight for at least 16 hours at 70° C in 

a drying oven while the second and third samples were them dried 24 hours later under 

the same conditions. Pans were allowed to cool and were weighed. Percent moisture 

content was calculated as the percent weight difference before and after drying. Data 

reports an average of 12 samples. 

The water adsorption index (WAI) and water solubility index (WSI) were 

determined using minor modifications to procedures as described by Jin and others 

( 1995). Samples were blended. The finely ground sample was then sifted through a# 16 

sieve and then through a #60 sieve. Particles that passed through both sieves were used 

for WAI and WSI determination. Into a tared centrifuge tube, approximately 0.5 g of 

ground sample was weighed and 5.0 ml of distilled water was added. The mixture was 
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sealed, immediately inverted, and allowed to hydrate for 15 minutes. The sealed tube 

was inverted every 5 minutes to ensure proper mixing. Samples were centrifuged for 15 

minutes at 1000 x g using a Sorvall RC-SB fixed angle rotor (DuPont Instruments, 

Wilmington, DE). The resultant supernatant was decanted into a pre-weighed aluminum 

dish, allowed to dry overnight in a drying oven (70° C) and then re-weighed. Centrifuge 

tubes were reweighed after supernatant removal to determine the sediment weight. WAI 

and WSI values were calculated as described by Onwulata and others (1998). WAI 

values were reported as grams of water absorbed per 100 grams sample. However, WSI 

values are reported as grams of sample solubilized per 100 grams sample. WSI and WAI 

analysis was done in triplicate for each replicate. 

Extrudate samples for protein measurements were prepared as described for WAI 

and WSI except sample portions that passed through a #16 sieve and retained in a #60 

sieve were used for analysis. For each ground sample, 2 portions of approximately 0.2 g 

were added into a 15-rnl centrifuge tube. Into one tube a 10-ml solution of 1 % w/v 

sodium dodecyl sulfate and 1 % v/v beta-mercaptoethanol (SDS/BME) was added. In the 

other tube, 10-ml of distilled water was added. The sealed tubes were rocked overnight 

on a laboratory rocker (Rocking Platform 200, VWR Scientific, Bristol, CT) on a rocker 

setting of 4. The samples were centrifuged for 15 min at 5000 x g, filtered through 

Whatman 4 glass fiber filters, and analyzed for water soluble and total soluble protein 

using a modified Lowry protein assay (Pierce , Rockford , IL) with bovine serum albumin 

as standard (Lowry and others 1951 ). SDS/BME filtrates were diluted 1: 11 and 200 µl 

were assayed. Distilled water filtrates were not diluted and 200 µl were assayed. 

Analysis was in triplicate for each replicate. Values for distilled water filtrates were used 



for water soluble protein determination and SDS/BME filtrates provided values for 

total soluble protein determination . 
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For water soluble carbohydrate , the distilled water filtrates were diluted 1 :20 with 

1 ml being assayed using a phenol/sulfuric acid method or the Dubois Assay (Dubois and 

others 1956). D-glucose was used as the reference standard. Each sample filtrate or 

replicate was analyzed in triplicate. Sample filtrates of SDS/BME solution were not used 

for water soluble carbohydrate analyze due to interference with the colorimetric glucose 

assay (Allen 2004) . 

Statistical Analysis 

Treatment means for dependent extrusion parameters and physical and chemical 

results were calculated and analyzed using the proc glm function in Statistical Analysis 

Software (SAS) version 9.0 (SAS Institute , Inc., Cary, NC). Analysis of variance 

(ANOV A) was used to compare treatment means and identify statistically significant 

differences at the 95% confidence level. Fiber inclusion, fiber type and fiber type/fiber 

level interactions were set as fixed factors and were analyzed based on ANOV A results . 



43 
RESULTS AND DISCUSSION 

Various dietary fiber samples were extruded in a high-protein snack food. Three 

dietary fiber samples (powdered cellulose , wheat fiber and oat fiber) were selected for 

further application in the extrusion of a high-protein, high-fiber snack food. Dietary fiber 

selection was based on ease of extrusion, apparent radial expansion, percentage of total 

dietary fiber in the sample and availability of dietary fiber source . 

The effects of the addition of the three chosen fiber types (powdered cellulose, 

wheat, and oat) on extrudate characteristics were analyzed . The fibers were added to the 

extrudate replacing the normal cornstarch in a 10 lb. dry blend at levels of 30, 60, and 

80% corresponding to total dietary fiber levels of 18, 36, and 48%. Each fiber type/level 

and control (no fiber added) combination was extruded in triplicate. Independent 

parameters such as screw speed, dry feed rate, and extrusion temperatures were optimized 

for each fiber level and recorded (Table 5). Liquid feed was held constant at 5.6 g/min 

for each extrusion run. The extrudates were examined for the physical parameters of 

breaking force, density, expansion ratio, and air cell size. Chemical analysis was 

conducted on the extrudates for moisture content, W Al, WSI, water soluble protein, total 

soluble protein and water soluble carbohydrate. Dependent extrusion parameters of 

residence time, product flow rate, motor torque, pressure, observed die and barrel TOM, 

die and barrel temperatures were recorded. Extrudate measurements for all parameters 

(physical, chemical , and dependent extrusion) were analyzed for statistical differences 

and correlations and compared to each other and to a 0% fiber control. 



Fiber Selection 

Extrudates for all dietary fiber sources were compared and three dietary fibers 

were selected for further extrusion application. Selection was based on: 

1) Ease of extrusion of each fiber sample. Could a product be successfully 

extruded? 

2) Visible radial expansion. Was there a "puffed" appearance of the extrudate? 

3) % Total dietary fiber content. Did the fiber sample have significant TDF? 

4) Availability of fiber sample. Could sufficient amounts of sample be obtained? 
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The three fiber sources not successfully extruded under the aforementioned 

extrusion parameters (Appendix A Table Al) and dry blend compositions (Table 3) 

included Oat fiber X, Litesse, and Fibersol-2 fiber sources. Unsuccessful extrusion was 

determined by seizing of extruder before extrusion parameters could be obtained and/or 

inability to consistently form an extrudate. 

Visible radial expansion was greatest in the extrudates from Vitacel Oat fiber 

HF600, Vitacel Apple fiber AF401, Cargill Corn fiber Maizewize 60, Vitacel Powdered 

Cellulose L601 FCC, and Vitacel Wheat fiber HF600 (Appendix B Fig. Bl) . 

Samples with similar % TDF content were desired since this would allow for 

comparison of extrudates with similar compositions of% TDF, % protein and% 

cornstarch . Vitacel Apple fiber AF401 and Cargill Corn fiber Maizewize 60 contained 

60% TDF. Vitacel Powdered Cellulose L601 FCC was assumed to be 100% TDF, and 

Vitacel Oat fiber HF600 and Vitacel Wheat fiber WF600 had 96 and 97% TDF, 

respectively. Therefore, Powdered Cellulose L601 FCC, Vitacel Oat fiber HF600, and 



Vitacel Wheat fiber WF600 were the closest in% TDF and as already mentioned, 

better suited to continue research. 
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Cargill Com fiber Maizewize 60 and Maizewize 80 were in the prototype stages 

and sufficient quantities of fiber sample could not be obtained . Vitacel Powdered 

Cellulose L601 FCC, Vitacel Oat fiber HF600 and Vitacel Wheat Fiber WF600 were then 

selected for extrusion at four different fiber levels. 

Extrusion at Four Different Fiber Levels 

Three different fiber types (powdered cellulose, wheat, and oat) were extruded 

with normal cornstarch , pregelatinized waxy cornstarch and WPC80 to form a high­

protein , high-fiber snack food . The effects of dietary fiber addition on extrudate 

characteristics were examined . The physical , chemical and dependent extrusion 

parameter s were analyzed for statistical differences and correlations. 

Physical Parameters 

Extrudate characteristics exhibited highly statistical differences based on the 

amount of fiber in the extrudate (18, 36, 48%) and to some degree by the type of fiber 

(powdered cellulose , wheat fiber and oat fiber) used (for more detailed statistics on 

physical parameters see Appendix D Tables Dl-D8) . Generally , as the amount of fiber in 

the extrudate increase, negative effects on physical parameters were observed. These 

findings were consistent with previous research (Onwulata and others 2000 ; Lue and 

others 1991; Rinaldi and others 2000). Expansion ratio was strongly influenced by fiber 

level (p < 0.0001) in the extrudate and the fiber level/fiber type interaction (p < 0.0001), 



while air cell size was significantly influenced (p < 0.0001) only by fiber level (for 

more detailed statistics see Appendix D Table Dl-D2). 
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Expansion ratio (Fig. 1) and air cell size (Fig. 2) both decreased with an increase 

of the amount of fiber present in the extrudate. Powdered cellulose had the lowest 

expansion and wheat fiber had the highest expansion ration with 18% fiber. However, as 

fiber increased to 36 or 48%, powdered cellulose had the highest expansion ratio. There 

was no difference between air cell size of the extrudates at all TDF levels. The 48% TDF 

level was significantly different from the other fiber levels for both expansion ratio and 

air cell size, except for wheat fiber. No expansion was observed at the 48% TDF level 

(Appendix C Fig. Cl), nor were there any air cells present (Appendix C Fig. C2). There 

was more of a layered effect observed in the extrudate interior for all samples. Generally, 

as the amount of fiber increased in the extrudates, regardless of fiber type, extrudate air 

cells were smaller and more numerous. Fiber particle size has been shown to reduce air 

cell size and reduce extrudate expansion (Moore and others 1990; Lue and others 1991; 

Huber 2001 ). Powdered cellulose may have more air cells present than the other fiber 

types and less unexpanded material despite no differences in air cell size between fiber 

types. However, expansion ratio and air cell size is also influenced by moisture content 

of the extrudate, extrudate temperature, pressure during extrusion and the water 

absorption of the fiber and starch in the extrudate. These factors will be discussed below. 

All fiber types were significantly less than the control (0% TDF) for both expansion ratio 

and air cell size at every fiber level. 
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Fig. 1. Expansion ratio of extrudate s ( +, Powdered Cellulose; • , Wheat ; £ Oat). Control 
(0% TDF) , not shown, has a mean of 13.49 and letter sharing of ' e' . Points are means of 
all three extrusion blocks . Means sharing letter are not different at p > 0.05. 
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Fig. 2. Air cell size of extrudates ( +, Powdered Cellulose; • , Wheat; _. Oat) . Control 
(0% TDF), not shown, has a mean of0.22195 and letter sharing of 'c ' . Points are means 
of all three extrusion blocks. Means sharing letter are not different at p > 0.05. 
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Expansion ratio is attributed to the degree of starch gelatinization. As stated 

previously, dietary fibers binds water more tightly than starch (Harper 1981; Gomez and 

Aguilera 1984; Bhattacharya and Hanna 1987; Moraru and Kokini 2003). As more water 

is structurally bound by fiber, less water is made available for starch gelatinization and 

moisture flash-off as the extrudate leaves the die (Onwulata and others 1998; Lue and 

others 1991 ). This would result in decreased extrudate expansion as less steam would be 

available to act as a leavening agent (Camire 1991). Decreased expansion may be a 

result of insufficient starch in the extrudate and not just the presence of dietary fiber. 

Extrudate density (Fig. 3) and breaking force (Fig. 4) where both influenced by 

fiber type, fiber level and the fiber type/fiber level interactions with p < 0.0001 for all 

parameters. The same trends were observed with density and breaking strength. Each 

fiber type at 48% TDF was significantly different than the other fiber levels. Each fiber 

type had an increase in extrudate density and breaking force as the fiber level increased. 

Thus, as breaking strength and density increased, extrudate expansion ratio and air cell 

size decreased. Powdered cellulose had the lowest density and breaking strength. Wheat 

usually had the highest density and breaking strength at all fiber levels. There was no 

difference between samples and the control for breaking force at 18% TDF. Powdered 

cellulose was not significantly different from the control at 18% TDF for density. 

Despite no differences between fiber types with air cell size at 36 and 48% TDF, and 

expansion ratio at 48% fiber levels, there were differences between fiber types with 

density and breaking strength at 36 and 48% TDF levels. Other parameters, such as W Al 

and moisture, may affect the expansion ratio and air cell formation in the extrudates. 
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Fig. 3. Extrudate density(+, Powdered Cellulose; • , Wheat; A, Oat). Control (0% TDF), 
not shown, has a mean of0.0225 and letter sharing of 'a'. Points are means of all three 
extrusion blocks. Means sharing letter are not different at p > 0.05. 
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Fig. 4. Breaking force of extrudates ( +, Powdered Cellulose; • , Wheat; A, Oat). Control 
(0% TDF), not shown, has a mean of 16.68 and letter sharing of 'a'. Points are means of 
all three extrusion blocks. Means sharing letter are not different at p > 0.05. 
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Correlations of Physical Parameters 

All physical parameters were significantly correlated with each other (Table 6). 

Air cell size was negatively correlated with density and breaking force. Density and 

breaking force were positively correlated with one another. Cross-sectional images of 

extrudates support these relationships (Appendix C Fig. C2). As the fiber level increased, 

less expansion was seen, with a decrease in air cell size associated with a denser, harder 

extrudate . Expansion ratio was negatively correlated with density, breaking strength and 

positively correlated with air cell size (Table 6) as consistent with findings of Rinaldi and 

others (2000). Jin and others (1995) attributed decreased expansion to the thickening of 

the extrudate cell walls and decreased air cell size. Fiber has also been shown to cause 

premature rupture of air cells thereby reducing air cell size and expansion (Moore and 

others 1990). Moore and others (1990) found smaller air cell sizes would allow easy exit 

of steam, thereby limiting expansion of the dough matrix during the flashing process. 

Table 6. Correlations among physical parameters . Bold text indicates significant (p < 
0.05) coefficients 

Expansion ratio Air cell size Density Breaking force 
Expansion ratio 1.00 

Air cell size 0.83 1.00 
Density -0.83 -0.58 1.00 

Breaking force -0.76 -0.53 0.97 1.00 
-

Decreased expansion ratio will bring an increase in density and breaking strength. 

This is especially true when fiber level in the extrudates increased. This is a result of the 

fiber particles thickening the cell wall of the extrudates. The 48% TDF level yielded 

extrudates with no expansion and air cell size. 



Chemical Parameters 

Moisture content of extrudates was strongly influenced (p < 0.0001) by the 

level of fiber incorporated in the extrudate. Both WAI (p < 0.0001, p = 0.0028, p < 

0.0001) and WSI (P < 0.0001, p = 0.0371, p = 0.0013) were strongly influenced by the 

fiber level, fiber type, and fiber level/fiber type interactions, respectively (for detailed 

statistics on chemical parameters see Appendix E Tables El-E12). 
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Generally , moisture content (Fig. 5) and WAI (Fig. 6) increased with increasing 

fiber level of the extrudate. With moisture content, there was no difference between fiber 

types at each fiber level. The 48% TDF level was statistically different from the other 

fiber levels. Oat fiber at 18% TDF level was the only fiber type to not be statistically 

different from the control. The significant increase of moisture content at 48% TDF level 

can be attributed to increase fiber leading to more water being bound during extrusion 

(Moraru and Kokir , 2003; Onwulata and others 1998). Thus, as more water is 

structurally bound by fiber, less water may become available for moisture flash-off as the 

extrudate leaves the die (Onwulata and others 1998; Lue and others 1991), allowing for 

extrudates with higher moisture content. 

The WAI is the amount of water an extrudate can absorb. WAI is usually 

dependent on the starch present in the extrudates. It was found that WAI generally 

exhibited an increase with an increase in fiber. There were no differences between fiber 

types at 18% TDF. However, at the 36% and 48% TDF levels, powdered cellulose was 

statistically different from the other fiber types. Powdered cellulose had no differences in 

WAI at all fiber levels. Both oat and wheat fibers were not statistically different from 

each other at all fiber levels. Oat and wheat fibers absorbed the most water , thus having 
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the highest WAI . Powdered cellulose at 48% TDF was significantly different from the 

control and oat and wheat fibers. 
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Fig . 5. Moisture content of extrudates (+, Powdered Cellulose ; • , Wheat; •, Oat). 
Control (0% TDF) , not shown , has a mean of9 .7325 and letter sharing of ' a ' . Points are 
means of all three extrusion blocks . Means sharing letter are not different at p > 0.05. 

Unlike moisture content and WAI , the ability of extrudates to be solublilized by 

water (WSI) was decreased with an increase of fiber (Fig. 7). This is consistent with the 

findings of Jin and others ( 1995) who reported an increase of fiber in extrudates from 

20% up to 40% caused an increase in WAI and a decrease in WSI. All fibers had 

significantly less WSI values than the control at all fiber levels. Generally, there was no 

difference in WSI between fiber types at each fiber level. Oat and wheat extrudates were 

more likely to absorb water than dissolve in water with an increase of fiber. At each fiber 

level , regardless of fiber type , WSI and WAI values were statistically different. 
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Fig. 6. WAI of extrudates ( +, Powdered Cellulose; • , Wheat; A ,Oat) . Control (0% 
TDF), not shown, has a mean of707.33 and letter sharing of 'c' . Points are means of all 
three extrusion blocks. Means sharing letter are not different at p > 0.05. 
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Fig. 7. WSI of extrudates (+, Powdered Cellulose; • , Wheat; A, Oat). Control (0% 
TDF), not shown, has a mean of 55.64 and letter sharing of'f . Points are means of all 
three extrusion blocks. Means sharing letter are not different at p > 0.05. 
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The total percentage of protein in extrudates resolublized after extrusion (total 

soluble protein) was influenced by the level of fiber (p = 0.0278) and the type of fiber 

used (p = 0.0278). Total soluble protein (Fig. 8) generally increased as the fiber level 

increased. However, powdered cellulose at the 48% TDF was higher in total soluble 

protein from the control and all levels of oat fiber. Generally, extrudates had >45% of 

the protein resolubilized after extrusion. This is indicative of the protein's involvement 

in some form of covalent bonding or cross-linking with other protein molecules, or with 

starch and/or fiber components. It was expected that 100% of the protein from the 

extrudates would be resolubilized after e>..1rusion. As mentioned in the methods for 

chemical tests, the protein of ground extrudate samples was solubilized by the addition of 

SDS, thereby, denaturing the proteins. Any proteins involved with disulfide bonds were 

cleaved by the addition of BME and thus were able to be denatured and resolubilized 

after extrusion. 

Water soluble protein (p < 0.0001, p = 0.004, p < 0.0001) and water soluble 

carbohydrate (p = 0.0004, p < 0.0001, p < 0.0001) were strongly influenced by fiber 

level, fiber type and fiber level/fiber type interaction, respectively. The percentage of 

protein soluble in water after extrusion (water soluble protein) was generally not 

significantly different between fiber types at any fiber level (Fig. 9). Water soluble 

protein for the control and oat at 48% TDF were significantly higher than all other fiber 

levels and fiber types. 
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Fig. 8. Total soluble protein of extrudates (+, Powdered Cellulose; • · Wheat; A, Oat). 
Control (0% TDF), not shown, has a mean of 47.16 and letter sharing of'a'. Points are 
means of all three extrusion blocks. Means sharing letter are not different at p > 0.05. 
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Fig. 9. Water soluble protein of extrudates (+, Powdered Cellulose; • · Wheat; A , Oat). 
Control (0% TDF), not shown, has a mean of 4.25 and letter sharing of 'e'. Points are 
means of all three extrusion blocks. Means sharing letter are not different at p > 0.05. 
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Different trends were observed for water soluble carbohydrate after extrusion 

(Fig. 10). The control was only significantly different the powdered cellulose at 48% 

TDF and the oat fiber at 18% TDF. No trend was observed for powdered cellulose and 

wheat fiber with an increase in fiber. Powdered cellulose was significantly higher than 

the wheat fiber at every fiber level. Oat fiber had a significant decrease in water soluble 

carbohydrate at the 36% TDF level. 
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Fig. 10. Water soluble carbohydrate of extrudates ( +, Powdered Cellulose; • , Wheat; A, 
Oat). Control (0% TDF), not shown, has a mean of98.02 and letter sharing of'a,b,c,d'. 
Points are means of all three extrusion blocks. Means sharing letter are not different at p 
> 0.05 . 

Water soluble carbohydrate was affected by both fiber content and fiber type. 

Hemicellulose, cellulose, and lignin have increased solubility through hydrolysis, 

dextrinization and or thermal degradation into low molecular weight fragments during 

extrusion (F ornal and others 1987; Huber 1991; Lue and others 1991; Camire and Flint 

1991; Lukesova and others 1996; Gualberto and others 1997). The open structure and 
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low stability of the glucosidic bonds between pentose and hexose sugar units allow for 

easy hydrolysis ofhemicellulose. Thus, soluble carbohydrate will be shifted upward 

about 4-5% (Huber 1991). This will account for the water soluble carbohydrate values 

above 100% for powdered cellulose and oat fiber. It is difficult to interpret the changes 

in water soluble carbohydrate because the fractions of dietary fiber (i.e. cellulose, 

hemicellulose, lignin) that comprise the fiber types are not known. The processing 

conditions of the fibers can affect functional properties of the fibers such as solubility. 

Wheat fiber had less water soluble carbohydrate than the control and the other fiber types 

but followed the same trend as the other fiber types between 36 and 47% TDF. The 

interactions of protein, starch and fiber, regardless of the fiber type or fiber level, are 

ambiguous and further analysis is needed. The fragmentation of fiber will affect analysis 

of WSI and WAI values. As stated before, the increase in WAI and decrease in WSI may 

reflect more of the nature of the fiber in the extrudates than the starch. 

Correlations Among Physical and Chemical Parameters 

There were limited correlations among chemical parameters (Table 7). Moisture 

content was negatively correlated with WSI. Water soluble protein and WAI were both 

positively correlated with WSI. WAI was also positively correlated with water soluble 

protein. These correlations may all be due to the presence of fiber in the extrudate . 

Moisture content and WSI (Table 8) were strongly correlated with all four 

physical parameters ( expansion ratio , air cell size, density, and breaking force). WAI 

was positively correlated with expansion ratio and air cell size. In general, WAI and WSI 

decreased , as the amount of fiber increased and starch decreased in extrudates. Thus, 
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more moisture was retained in the extrudate by the fiber preventing flash evaporation 

at the die causing extrudates to have smaller air cells, with less expansion and an increase 

of extrudate density and breaking force (Figs. 1-7, Appendix C Figs . Cl and C2). This is 

consistent with findings of Camire and King (1991 ). 

Table 7. Correlations among chemical parameters. Bold text indicates significant (p < 

0.05) coefficients 

Moisture WAia WSib Water soluble Total Water 
content carbohydrate soluble soluble 

protein protein 
Moisture 
content 1.00 
WAia -0.03 1.00 
WSI0 -0.80 0.31 1.00 

Water soluble 
carbohydrate -0.05 0.12 0.12 1.00 
Total soluble 

protein 0.14 -0.03 -0.13 0.12 1.00 
Water soluble 

protein -0.04 0.46 0.30 -0.02 -0.07 1.00 

a. Water absorption index 
b. Water solubility index 

Water soluble protein had low correlation with water soluble carbohydrate (Table 

7) and was positively correlated with expansion ratio and air cell size (Table 8). There 

was very little water soluble protein at all fiber levels as well as for the control. Total 

soluble protein generally increased as fiber increased. Total soluble protein was not 

correlated with any chemical parameter (Table 7). 

Since expansion ratio had low correlation with total and water soluble protein 

(Table 8), it was concluded that increased fiber was responsible for decreased expansion 

ratio rather than possible covalent interactions of starch and protein (Matthey and Hanna 
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1997; Taylor and others 2006). In contrast , water soluble carbohydrate was negatively 

correlated with expansion ratio and air cell size (Table 8). Water soluble carbohydrate 

analysis showed the control to have on average 98% solubility. Therefore , there were 

virtually no protein-starch covalent interactions in the control. The protein may have 

been involved in other covalent protein-protein interactions. Other possible reactions to 

decrease protein solubility may be Maillard or isopeptide reactions (Li and Lee 1998; 

Onwulata and others 1998; Taylor and others 2006). 

Table 8. Correlations among physical and chemical parameters . Bold text indicates 
significant (p < 0.05) coefficients 

Expansion Air cell size Density Breaking 
ratio force 

Moisture content -0.72 -0.54 0.90 0.84 
WAia 0.46 0.58 -0.04 0.03 
WSib 0.92 0.71 -0.89 -0.82 

Water soluble 
carbohydrate 0.05 0.00 -0.04 -0.05 

Total soluble protein -0.15 0.11 0.14 0.18 
Water soluble protein 0.36 0.39 -0.01 0.05 

a. Water absorption index 
b. Water solubility index 

Total soluble protein was positively correlated with density and negatively 

correlated with expansion ratio (Table 8). It appears that correlations are partly due to 

fiber type. Powdered cellulose had the lowest density and breaking force at every fiber 

level with the highest total soluble protein and water soluble carbohydrate (Figs. 3, 4, 8, 

10). Water soluble protein was the lowest for powdered cellulose (Fig. 9). The opposite 

was seen for the other two fibers in all cases. The differences total soluble protein, water 
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soluble protein, water soluble carbohydrate, density, and expansion ratio among fiber 

types are due to the compositional differences among fiber samples. Further analysis of 

the fiber components is needed to better understand the effects on extrudate 

characteristics. 

Extrusion Parameters 

Extrusion pressure was influenced by the level of fiber (p<0.0001) and by the 

type of fiber (p = 0.0109) (for detailed statistics on extrusion parameters see Appendix F 

Tables Fl-F15). Pressure for all fiber types decreased at the 48% TDF (Fig. 11). At 36 

and 48% TDF, there was no significant difference between fiber types. 
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Fig. 11. Pressure during extrusion. (+, Powdered Cellulose; • , Wheat ; £, Oat). Control 
(0% TDF), not shown, has a mean of 970 and letter sharing of 'd '. Points are means of 
triplicate extrusion runs. Means sharing letter are not different at p > 0.05. 
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Motor torque was greatly influence by the level of fiber (p < 0.0001) and by the 

interaction between the fiber level and fiber type (p = 0.0408). Unlike pressure , there 

was a statistically significant decrease of motor torque with an increase of fiber 

replacement at all levels (Fig . 12). Like pressure, there was no difference between fiber 

types at the 36 and 48% TDF levels. Powdered cellulose at the 18% TDF level was 

significantly different than the other fiber types and the control. A decrease in motor 

torque shows that less force is applied to the mix in the extruder. 
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Fig. 12. Motor torque during extrusion. ( +, Powdered Cellulose; • , Wheat ; A, Oat). 
Control (0% TDF) , not shown, has a mean of86.67 and letter sharing of 'd ' . Points are 
means of triplicate extrusion runs. Means sharing letter are not different at p > 0.05. 

The temperature of the mixture (TOM) in the barrel of the extruder was 

significantly influenced only by the level of fiber addition (p < 0.000 I). Die TOM was 

influenced by level of fiber, fiber type, and fiber type/ fiber level interactions (p < 0.0001, 

p = 0.0146, p = 0.0397, respectively). Die temperature was influenced hy level of fiber, 
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fiber type, and fiber type/ fiber level interactions (p < 0.0001, p < 0.0001, p < 0.0001, 

respectively). The level of fiber significantly influenced barrel temp (p < 0.0001). 

For all extrudates , TOM inside the barrel and die significantly decreased at the 

48% TDF level (Figs. 13 and 14). There was no trend observed between fiber types. 

There was no difference for wheat fiber at all fiber levels for die TOM. Due to equipment 

malfunct ion, die TOM was not recorded for any extrusion runs of powdered cellulose 

extruded at 36% fiber level. 
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Fig. 13. TOM inside end of barrel during extrusion . (+, Powdered Cellulose ; 11, Wheat; 
A, Oat) . Control (0% TDF), not shown, has a mean of 159.33 and letter sharing of ' b ' . 
Points are means of triplicate extrusion runs. Means sharing letter are not different at p > 
0.05. 

With die temperature, there was no difference between fiber types at the 48% 

TDF level (Fig. 15). All fiber types had a decrease in die temperature at 48% TDF. 

Powdered cellulose and oat fiber had no difference between the 18 and 36% TDF levels 
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but both were statistically different from the 48% TDF level of fiber replacement. 

Powdered cellulose at the 18 and 36% TDF levels was statistically different from the oat 

and wheat fibers. Barrel temperature exhibited a similar trend (Fig. 16). There were no 

differences between fiber types at any fiber level. The highest level ofTDF (48%) 

showed a statistically significant difference between the other replacement levels. 

Residence time (the amount of time the mix was inside the extruder), significantly 

increased at the 48% TDF level (Fig.17). The level of fiber addition (p < 0.0001) greatly 

influenced residence time. This is a result of decreased feed rate and screw speed with an 

increase in fiber to optimize extrusion. There was no difference between fiber types. 

Product flow rate (Fig. 18) was only influenced by the level of fiber incorporation 

(p < 0.0001). Fiber type did not affect product flow rate. Generally, product flow rate 

decreased with an increase in fiber level of the extrudate. 
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Fig. 14. TOM inside die during extrusion. (+, Powdered Cellulose; • , Wheat; _., Oat). 
Control (0% TDF), not shown, has a mean of147.60and letter sharing of ' b '. Points are 
means of triplicate extrusion runs. Means sharing letter are not different at p > 0.05. 



64 

140 

- 135 0 

d 
_______ d 

0 

Cl) 130 .... 
::I -ca 

125 .... 
Cl) 
Q. 

c b,c_-----=:---
a,b 

E 
120 {!!. a,b a 

.!!! 
c 115 

110 

18 36 48 

Extrudate % Total Dietary Fiber 

Fig. 15. Observed die temperature during extrusion . (+, Powdered Cellulose; • · Wheat ; 
.A., Oat). Control (0% TDF), not shown, has a mean of 129.33 and letter sharing of'c ' . 
Points are means of triplicate extrusion runs. Means sharing letter are not different at p > 
0.05 . 
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Fig. 16. Observed barrel temperature during extrusion. ( +, Powdered Cellulose; ., 
Wheat; .A., Oat). Control (0% TDF), not shown, has a mean of 135.67 and letter sharing 
of ' c '. Points are means of triplicate extrusion runs. Means sharing letter are not 
different at p > 0.05. 
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Fig. 17. Residence time during extrusion. (+, Powdered Cellulose; • , Wheat ; .A., Oat). 
Control (0% TDF), not shown, has a mean of66.67 and letter sharing of 'a ' . Points are 
means of triplicate extrusion runs. Means sharing letter are not different at p > 0.05. 
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Fig. 18. Product flow rate during extrusion. ( +, Powdered Cellulose; • , Wheat; .A., Oat). 
Control (0% TDF), not shown, has a mean of 42.45 and letter sharing of 'e ' . Points are 
m~ans of triplicate extrusion runs. Means sharing letter are not different at p > 0.05. 
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Correlations Among Physical, Chemical, and Extrusion Parameters 

All extrusion parameters were significantly correlated with one another, except 

for observed die temperature (Table 9) and generally, only the physical parameters were 

correlated with extrusion parameters (Table 10). As noted earlier , a decrease in 

expansion ratio was seen with an increase in fiber. This may also be attributed to 

pressure. Chinnaswamy and Hanna (1987) found the best expansion of starch extrudates 

occurred at 7 MPa or 1000 PSI. Even though these findings were for starch extrudates, 

there is probably an optimal extrusion pressure for maximum expansion in extrudates 

containing fiber. If the optimal pressure for fiber extrudates could be maintain during 

extrusion, maximal expansion could be achieved. Pressure was difficult to increase with 

the 48% TDF level because screw speed and dry feed rate had to be reduced to keep 

motor torque down in order to facilitate extrusion of such a high fiber formula. All 

extrusion parameters except residence time decreased at the 48% TDF level. This is 

consistent , since residence time was negatively correlated with all extrusion parameters. 

The decrease in all temperature readings appears to also cause negative effects on 

extrudate characteristics. Heat generated from the extruder into the mixture can melt the 

proteins and gelatinize starch. Heat is necessary to cause vaporization of moisture at the 

die as the extrudate exits. A decrease in temperature can lead to a low viscosity of the 

extruder melt. This is detrimental to extrudate expansion , since the cellular matrix within 

the extrudate is unable to withstand the high vapor pressure upon exiting the extruder die 

and will collapse (Moraru and Kokini 2003). Alternatively, high temperatures can 

weaken the cellular matrix through either excessive softening and potential structural 

degradation of the starch melt (Moraru and Kokini 2003). Thus, a decrease in 
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temperature or an increase in temperature above an optimal temperature can reduce 

extrudate expansion (Moraru and Kokini 2003). 

As screw speed and product flow rates changed for the various fiber levels, all 

dependent extrusion parameters were affected (Table 5). Even though independent 

extrusion parameters of dry feed rate, screw speed and temperature were optimized, it 

may be possible to improve on extrudate characteristics with increased fiber. Further 

manipulation of extrusion parameters may allow for desirable extrudate characteristics 

such as improved expansion ratio and decreased breaking strength even at high levels of 

fiber. 

Table 9. Correlations among extrusion parameters. Bold text indicates significant (p < 

0.05) coefficients 

Pressure Torque Res. Product Die Barrel Die Barrel 
Time Flow TOM TOM Temp Temp 

Rate 
Pressure 1.00 
Torque 0.81 l.00 
Residence 
Time -0.82 -0.88 1.00 
Screw 
Speed 0.61 0.59 -0.83 
Dry Feed 
Rate 0.64 0.66 -0.88 
Product 
Flow Rate 0.80 0.95 -0.94 l.00 
Die TOM 0.53 0.55 -0.70 0.63 1.00 
Barrel 
TOM 0.77 0.69 -0.83 0.74 0.77 l.00 
Die Temp 0.32 0.37 -0.60 0.51 0.88 0.70 1.00 
Barrel 
Temp 0.72 0.74 -0.85 0.80 0.81 0.95 0.71 1.00 



Table 10. Correlations among extrudate physical, chemical, and extrusion parameters. 
Bold text indicates significant (p < 0.05) coefficients 

Pressure Torque Res. Product Die Barrel Die Barrel 
time flow TOM TOM Temp Temp 

Moisture 
content -0.81 -0.88 0.96 -0.92 -0.74 -0.85 -0.63 -0.87 

WSI 0.61 0.88 -0.83 0.91 0.49 0.55 0.37 0.65 
Expansion 

ratio 0.61 0.90 -0.76 0.92 0.43 0.52 0.36 0.62 
Air cell size 0.50 0.72 -0.61 0.77 0.40 0.37 0.28 0.48 

Density -0.68 -0.88 0.91 -0.93 -0.68 -0.78 -0.64 -0.84 
Breaking -0.63 -0.77 0.87 -0.84 -0.69 -0.77 -0.65 -0.84 

force 
Water 
soluble 0.03 0.22 -0.15 0.19 0.12 0.28 0.26 0.35 

carbohydrate 
Total 

soluble 0.04 -0.15 -0.05 -0.01 -0.17 0.15 0.24 0.10 
protein 
Water 
solub le 0.12 0.21 0.05 0.13 -0.06 -0.14 -0.28 -0.10 
protein 
WAI 0.17 0.28 -0.09 0.26 .0.06 -0.16 -0.15 -0.08 

Liquid feed levels were kept the same throughout all extrusion runs. 

Manipulating liquid feed during extrusion will change extrudate characteristics . 

Increased liquid feed may allow for a higher dry feed rate, decreased residence time, 

faster screw speed, which could increase temperature and exiting pressure . Increased 
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liquid feed may increase the amount of moisture available for starch gelatinization. This 

may also lead to improved extrudate characteristics such as expansion. However, the 

consumer acceptability of the extrudates will determine what is acceptable for extrudate 

characteristics both physically and chemically. 

Interestingly, moisture content, WSI, and all physical parameters were correlated 

with all extrusion parameters. Moisture content, density, and breaking force were all 

highly positively correlated with residence time and negatively correlated with all other 
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extrusion parameters. The opposite held true for WSI and expansion ratio. Again, 

reducing residence time can help improved extrudate expansion since moisture content, 

breaking strength and density could be reduced, thereby improving expansion ratio and 

air cell size. Air cell size was generally positively correlated with all extrusion 

parameters. The exception was dry feed, die temperature and residence time. There was 

no correlation of air cell size with the dry feed rate or die temperature. The correlation 

with residence time was negative. No correlations among extrusion parameters were 

seen with WAI or total soluble protein. 

Conclusions 

Statistical differences were found between extrudates with the amount and type of 

fiber used. There was not always a linear association with the amount of fiber added and 

extrudate characteristics. Generally, the greatest differences with physical and chemical 

parameters were found with the extrudates with the highest fiber (48% TDF). There were 

differences between fiber types. Dependent extrusion parameters for extrudates with 18 

and 36% TDF were generally comparable to the control (0% TDF). Chemical and 

physical characteristics were comparable between the control and extrudates with 18% 

TDF. Powdered cellulose was different from the wheat and oat fibers for most physical 

parameters. The fiber composition in powdered cellulose may account for differences 

among fiber types. The manufacturing and processing of each fiber type before extrusion 

may affect the performance of the fibers during extrusion. Finding a fiber with decreased 

water absorption ability could produce extrudates with decreased moisture and improved 

expansion. 
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The greatest factor affecting all parameters was the amount of fiber added to 

the extrudates. It is possible that the effects of fiber such as decreased air cell size, 

expansion ratio and increased density and breaking strength is due to the absence of 

starch and limited gelatinization and not solely the presence of fiber. Further 

manipulation in all extrusion parameters could change both physical and chemical effects 

on extrudates. Sensory evaluation testing is needed to determine acceptance or rejection 

of extrudates. In conclusion , the addition of dietary fiber > 30% in extruded products 

with limited starch is feasible , based on results of this study. 
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SUMMARY AND FUTURE RESEARCH 

In this study , dietary fiber was incorporated into an extruded snack product 

consisting of WPC80 , normal cornstarch, and pregelatinized waxy cornstarch. Twelve 

different fiber types were extruded. From these twelve fiber samples , three dietary fiber 

types were selected for further research (powdered cellulose , wheat fiber and oat fiber). 

Selection was based on ease of extrusion , visible expansion, % TDF in the sample and 

sample availability. A 10 pound dry mix was made for each extrusion run consisting of 

WPC80 , cornstarch and pregelatinized waxy cornstarch. Fiber replaced the normal 

cornstarch at levels of 30, 60, and 80% yielding extrudates with 16, 38, and 48% TDF. 

Each combination of fiber type and fiber level was extruded in triplicate . A control of 

WPC80 , normal cornstarch and pregelatinized waxy cornstarch (0% TDF) was also 

extruded in triplicate . All extrusion samples had a total 32% protein (from WPC 80), and 

10% pregelatinized waxy cornstarch. Cornstarch decreased based on the amount of fiber 

added. 

Extrudate characteristics were evaluated based on physical parameters ( expansion 

ratio , air cell size , density , and breaking strength) and chemical parameters (moisture 

content, WAI, WSI, water soluble carbohydrate, total and water soluble protein). The 

level of fiber had a greater impact than the type of fiber added on extrudate 

characteristics. Generally, as the amount of fiber increased, moisture content increased 

leading to decreased expansion ratio, WSI, and air cell size and an increase in total 

soluble protein, density, WAI, and breaking strength. Dependent extrusion parameters 

were evaluated . Compared to 0% TDF control, dietary fiber addition resulted in 
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decreased pressure , torque, temperatures and increased residence time. The greatest 

statistical differences were seen at 48% TDF extrudates for all evaluated parameters. It is 

unclear whether the increased amount of fiber affected chemical and physical parameters 

more so than the decrease in starch. 

Dietary fiber can be incorporated into an extruded snack product. Extrudates with 

18% TDF were comparable to extrudates with 0% TDF (control). Extrudates with 48% 

were significantly different than the control (0% TDF). It is concluded that 48% fiber 

addition under the aforementioned extrusion conditions is too high for product 

requirements of low extrudate density and high expansion ratio. Extrudates containing 

TDF as high as 36% may be acceptable for some products, such as chips, crackers, and 

other snack foods. Sensory testing evaluation of the extrudates is needed to indicate 

acceptance or rejection of dietary fiber enriched extrudates . Dietary fiber incorporation 

was shown to have effects on extrudate characteristics. Effects of fiber may be overcome 

through changes in fiber types, extrusion parameters , and reformulation (increase starch). 

Final end use of extrudates will determine what extrudate characteristics are needed and, 

hence, application of dietary fiber in extruded snack foods. 

Further research is needed to illuminate the effects of fiber addition on an 

extruded high-fiber, high-protein snack food. Better understanding of extrusion on 

dietary fiber will improve development of dietary fiber analytical methods and the use of 

fiber in extruded products. Dietary fiber can produce extrudates with different 

characteristics such as an expanded product (18% TDF) to a very dense extrudate with no 

expansion ( 48% TDF). This allows for application to/and development of a wide range 

of extruded products . Different fiber combinations and fiber types may help overcome 
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detrimental extrudate characteristics. The possibility exists to incorporate dietary fiber 

even at levels >30% into extruded products . 
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Appendix A 

Extrusion Parameters for Fiber Selection 

Table Al. Extrusion parameters for fiber selection. Set extrusion parameters of dry feed 
rate and screw speed and observed extrusion parameters of barrel temperature and die 
temperature. 

Feed rate Barrel temp °C Die Temp Screw seed 
Fiber source rpm 1 2 3 4 oc rpm 
Orange fiber OF400 500 46 88 116 137 141 190 
Apple fiber AF 401 500 60 90 115 136 115* 190 
Oat fiber HF 600 500 45 91 116 116 114* 200 
Oat fiber HF 401 400 48 89 116 135 140 190 
Wheat Fiber WF 600 450 48 90 116 134 * 160 
Powdered Cellulose L601 500 45 89 115 136 140 180 
Oatvantage Oat fiber 400 43 87 117 139 145 200 
Maizewize 60 400 42 88 115 132 145 160 
Maizewize 80 450 40 87 116 139 112* 160 
Fibersol-2 ** 
Litesse 400 45 76 113 136 113* 190 
Oat Fiber X ** 

*Either no readings were obtained or incorrect readings were obtained due to equipment 
malfunction. 
* *Extrusion run was not successful (i.e. product surging, seizing of extruded or inability 
to reach set extrusion parameters) and data could not be obtained. 
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Appendix B 

Fiber Selection Extrudate Images 

Figure B 1. Fiber selection extrudate images . a. Vitacel Oat fiber HF600 ; b. Litesse; 
c. Vitacel apple fiber AF401 ; d. Oatvantage oat fiber; e. Fibersol-2; f. Maizewize 80 
corn fiber; g. Maizewise 60 corn fiber; h. Vitacel orange fiber OF 401; i. Vitacel oat 
fiber OF401 ;j. Vitacel powdered cellulose FCC L601; k. Vitacel wheat fiber WF600; 
I. Oat fiber X; m. Control (no fiber). 
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Appendix C 

Exterior and Cross-sectional Images of Extrudates 

J H 5'mm 

Figure Cl. Exterior images of extrudates with 32% protein and varying levels of total 
dietary fiber (TDF). a, Control-32 % WPC80 with no fiber; b, Powdered cellulose-
18% TDF; c, Wheat fiber- 18% TDF; d, Oat fiber-18 % TDF; e, Powdered cellulose-
36% TDF ; f, Wheat fiber- 36% TDF; g, Wheat fiber- 36% TDF; h, Powdered 
cellulose- 48% TDF ; i, Wheat fiber-48% TDF; j, Oat fiber-48% TDF. 
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Appendix C 

Exterior and Cross-sectional Images of Extrudates 

Figure C2. Air cell images of extrudates with 32% protein and varying levels of total 
dietary fiber (TDF). a, Control- 32% WPC80 with no fiber (0% TDF); b, Powdered 
cellulose-18% TDF; c, Wheat fiber- 18% TDF; d, Oat fiber- 18% TDF; e, Powdered 
cellulose- 36% TDF; f, Wheat fiber- 36% TDF; g, Wheat fiber- 36% TDF; h, 
Powdered Cellulose-48% TDF; i, Wheat fiber-48% TDF; j, Oat fiber-48% TDF. 
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Appendix D 

ANOVA Tables, and Means for Physical Parameters 

Table DJ. ANOVA table for expansion ratio 
Source DF Ty[!e I SS Mean Sguare F Value Pr>F 

Level 3 8965.077029 2988.3590 IO 4960.96 <.0001 
Fiber 2 2.691380 1.345690 2.23 0.1086 
Level*Fiber 6 36.697431 6.116239 10.15 <.0001 

Table 02 . Means for expansion ratio by fiber level/fiber type interaction . Means± standard 
deviation. Means sharing letter are not different at p > 0.05 

Treatment 

Control 

Powdered Cellulose 

Wheat Fiber 

Oat Fiber 

0% Fiber 

13.49 .± 1.40 
e 

18%Fiber 

6.88 ± 0.54 
d 

7.68 .± 0.58 
d 

7.31 .± 0.77 
d 

Table 03 . ANOVA table for air cell size (cm 2
) 

Source DF Ty[!e I SS Mean Sguare 
Level 3 3.45223587 1.15074529 
Fiber 2 0.00107537 0.00053768 
Level*Fiber 6 0.00362692 0.00060449 

36%Fiber 48%Fiber 

3.05 ± 0.29 0.80 .± 0.05 
c a 

1.78_±0 .13 0.70 ± 0.04 
b a 

1.89 .± 0.20 0.70 ± 0.05 
b a 

F Value Pr> F 
530 .86 <.0001 
0.25 0.7804 
0.28 0.9468 

Table 04. Means for air cell size (cm2
) by fiber level/fiber type interaction. Means± standard 

deviation . Means sharing letter are not different at p > 0.05 

Treatment 0% Fiber 18%Fiber 36%Fiber 48%Fiber 

Control 0.2220 .± 0.0891 
d 

Powdered Cellulose 0.0499 .± 0.0418 0.0136 .± 0.0089 0 
c a,b a 

Wheat Fiber 0.0342.±0.0115 0.0143 .± 0.0040 0 
a,b,c a,b,c a 

Oat Fiber 0.0389±0.0149 0.0114 .± 0.0019 0 
b,c a,b,c a 
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Table 05. ANOV A table for breaking force (kPa) 

Source DF Tnie I SS Mean Sguare F Value Pr> F 
Level 3 124486267 .3 41495422.4 1016.04 <.0001 
Fiber 2 5230204 .2 2615102 . 1 64.03 <.0001 
Level*Fiber 6 5767492 .2 961248.7 23.54 <.0001 

Table 06 . Means for breaking force (kPa) by fiber level/fiber type interaction . Means ± standard 
deviation. Means sharing letter are not different at p > 0.05 

Treatment 0% Fiber l8%Fiber 36%Fiber 48%Fiber 

Control 16.68 ± 4.53 
a 

Powdered Cellulose 71.57 ± 13.31 366 .50 ± 69.70 I 095.43 ± 429.39 
a b e 

Wheat Fiber 67.49± 16.15 880.97±256.91 1751.33 ± 322.47 
a d f 

Oat Fiber 73.50 ± 11.50 611.65 ± 174.76 1592.35 ± 315.73 
a c f 

Table 07 . ANOVA table for density (g/cm3
) 

Source DF Tn~e I SS Mean Sguare F Value Pr> F 
Level 3 1.72518485 0.57506162 5834 .79 <.0001 
Fiber 2 0.02516184 0.01258092 127.65 <.0001 
Level*Fiber 6 0.03111353 0.00518559 52.61 <.0001 

Table 08. Means for density (g/cm3
) by fiber level/fiber type interaction. Means± standard 

deviation . Mean s sharing letter are not different at p > 0.05 

Treatment 0% Fiber 18%Fiber 36%Fiber 48%Fiber 

Control 0.0225 ±0.0029 
a 

Powdered Cellulose 0.0291 ± 0.0028 0.0693±0 .0070 0. 1799 ± 0.0160 
a,b c f 

Wheat Fiber 0.0312 ± 0.0024 0.1216±0 .0086 0.1979±0 .0160 
b e g 

Oat Fiber 0.0316 ± 0.0033 0.1097±0.0598 0.2072 ± 0.0186 
b d h 
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Appendix E 

ANOV A Tables, and Means for Chemical Parameters 

Table EI. ANOV A table for moisture content(%) 
Source DF Tnie I SS Mean Sguare F Value Pr> F 
Level 3 4566.600417 1522.200139 424.45 <.0001 
Fiber 2 3.153039 l.576519 0.44 0.6452 
Level*type 6 58.478433 9.746406 2.72 0.0160 

Table E2. Means for moisture content(%) by fiber level/fiber type interaction . Means± standard 
deviation. Means sharing letter are not different at p > 0.05 

Treatment 

Control 

Powdered Cellulose 

Wheat Fiber 

Oat Fiber 

0% Fiber 

9.73 ± 0.39 
a 

Table E3. ANOV A table for WAI 
Source OF Tn!e I SS 

Level 3 408455.5067 
Fiber 2 17657.3067 
Level*Fiber 6 50792.2578 

18%Fiber 36%Fiber 48%Fiber 

13.03 ± 2.58 13.95 ± 1.17 24.08 ± 1.68 
b,c,d c,d e 

I l.73 ± 0.79 14.60 ± 0.62 23.60 ± 5.22 
b,c d e 

10.73 ± 0.95 13.51 ± 0.80 25.47 ± 1.37 
a,b c,d e 

Mean Sguare F Value Pr> F 
136151.8356 96.31 <.0001 
8828 .6533 6.25 0.0028 
8465.3763 5.99 <.0001 

Table E4. Means for WAI (g/1 OOg) by fiber level/fiber type interaction. Means± standard 
deviation . Means sharing letter are not different at p > 0.05 

Treatment 0% Fiber 18%Fiber 36%Fiber 48%Fiber 

Control 707.33 ± 42 .76 
c 

Powdered Cellulose 575.87 ± 16.20 527.56 ± 38.70 578.58 ± 53.70 
a,b a a,b 

Wheat Fiber 525.33 ± 38.78 576.93 ± 40.32 652 .80 ± 24.76 
a a,b c 

Oat Fiber 554.93 ± 28.17 592.98 ± 20.66 658.76 ± 43.25 
a,b b c 



Table E5. ANOV A for WSI (g/1 OOg) 
Source DF Type I SS 
Level 3 20376.76769 
Fiber 2 101.15352 
Level*Fiber 6 354.97759 

Mean Square 
6792 .25590 
50.57676 
59.16293 

F Value 
457.90 
3.41 
3.99 
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Pr> F 
<.0001 
0.0371 
0.0013 

Table E6. Means for WSI (g/ 1 OOg) by fiber level/fiber type interaction. Means± standard 
deviation . Means sharing letter are not different at p > 0.05 

Treatment 0% Fiber 18%Fiber 36%Fiber 48%Fiber 

Control 55.64 ± 3.98 
f 

Powdered Cellulose 46.09 ± 2.07 29 .64 ± 6.29 25.33 ± 4.97 
e c,d b,c 

Wheat Fiber 48 .31 ± 2.75 32.14 ± 5.60 18.0 ± 0.57 
e d a 

Oat Fiber 46.09 ± 3.85 26.27 ± 2.01 19.51 ± 1.97 
e c,d a,b 

Table E7. ANOV A table for total soluble protein (%) 
Source DF Type I SS Mean Square F Value Pr> F 
Level 3 804 .297072 268 .0989024 3.10 0.0278 
Fiber 2 1047.978859 523 .989430 6.06 0.0028 
Level*Fiber 6 890.451378 148.408563 1.72 0.1198 

Table E8. Means for total soluble protein( %) by fiber level/fiber type interaction . Means± 
standard deviation. Means sharing letter are not different at p > 0.05 

Treatment 0% Fiber 18%Fiber 36%Fiber 48%Fiber 

Control 47 .16±4 .98 
a 

Powdered Cellulose 48.31 ± 13.28 52.62 ± 11.46 58.85 ± I 0.67 
a a,b b 

Wheat Fiber 49.33 ± 10.07 47 .75 ± 12.01 50.35 ± 11.08 
a,b a a,b 

Oat Fiber 44.71 ± 7.61 46 .70 ± 7.66 46 .87 ± 7.54 
a a a 

Table E9. ANOVA table for water soluble protein (%) 
Source DF Type I SS Mean Square F Value Pr> F 
Level 3 19.84514098 6.61504699 49.77 <.0001 
Fiber 2 2.16855024 1.08427512 8. 16 0.0004 
Level*Fiber 6 4.96743409 0.82790568 6.23 <.0001 
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Table EI 0. Means for water soluble protein (%) by fiber level/fiber type interaction. Means± 
standard deviation. Means sharing Jetter are not different at p > 0.05 

Treatment 

Control 

Powdered Cellulose 

Wheat Fiber 

Oat Fiber 

0% Fiber 

4.25 ± 0.21 
d,e 

18%Fiber 

3.55 ± 0.26 
a,b,c 

3.93 ± 0.53 
c,d 

3.58 ± 0.52 
a,b,c 

Table E 11. ANOV A table for water soluble carbohydrate(%) 
Source DF Tn!e I SS Mean Sguare 
Level 3 4732 .394748 1577.464916 
Fiber 2 9992 . 194459 4996.097230 
Level*Fiber 6 8728.795150 1454.799192 

36%Fiber 48%Fiber 

3.22 ± 0.37 3.79 ± 0.36 
a b,c 

3.68 ± 0.38 3.83 ± 0.48 
b,c b,c 

3.45 ± 0.24 4.35 ± 0.37 
a,b e 

F Value Pr> F 
6.32 0.0004 
20.00 <.0001 
5.82 <.0001 

Table El2. Means for water soluble carbohydrate(%) by fiber level/fiber type interaction . Means 
± standard deviation . Means sharing letter are not different at p > 0.05 

Treatment 0% Fiber 18%Fiber 36%Fiber 48%Fiber 

Control 98.02 ± 7.50 
a,b,c,d 

Powdered Cellulose 107.01 ± 13.68 I 00.68 ± 6.85 111.27 ± 22.53 
c,d,e b,c,d,e d,e 

Wheat Fiber 80.68 ± 23.52 82.34 ± 17.85 90.81 ±26 .15 
a a a,b,c 

Oat Fiber 115.99± 13.93 86.25 ± 17.16 I 00 .94 ± 8.66 
e a,b b,c,d,e 



92 
Appendix F 

ANOV A Tables, and Means for Extrusion Parameters 

Table FI . ANOV A table for pressure (psi) 
Source DF Type I SS 

Level 3 1165808 .333 
Fiber 2 120072.222 
Level*fiber 6 72750 .000 

Mean Square 
388602.778 
60036 .111 
12125.000 

F Value 
35.54 
5.49 
1.11 

Pr> F 
<.0001 
0.0109 
0.3862 

Table F2. Means for pressure (psi) by fiber level/ fiber type interaction. Means± standard 
deviation. Means sharing letter are not different at p > 0.05 

Treatment 0% Fiber 18%Fiber 36%Fiber 48%Fiber 

Control 970 ± 122.88 
d 

Powdered Cellulose 603.33 ± 101.60 783.33±30 .55 406 .67 ± 11.55 
a,b,c b,c,d a 

Wheat Fiber 860.00 ± 50.00 913 .33 ± 55.08 550 .00 ± 168.23 
c,d d a,b 

Oat Fiber 866.67 ± 35. 11 870.00 ± 155.24 493.33 ± 124.23 
c,d c,d a,b 

Table F3. ANOVA table for motor torque(% capacity) 
Source OF Type I SS Mean Square F Value Pr> F 

Level 3 8004 .972222 2668.324074 134.92 <.000 l 
Fiber 2 220.666667 110.333333 5.58 0.0102 
Level*Fiber 6 314.444444 52.407407 2.65 0.0408 

Table F4. Means for motor torque(% capacity) by fiber level/fiber type interaction. Means± 
standard deviation. Means sharing letter are not different at p > 0.05 

Treatment 0% Fiber 18%Fiber 36%Fiber 48%Fiber 

Control 86.67 ± 2.89 
d 

Powdered Cellulose 63.33 ± 5.77 61.00 ± 8.54 42.67 ± 4.62 
c b,c a 

Wheat Fiber 76.67 ± 5.77 61.67 ± 2.89 49.33±5.13 
d b,c a,b 

Oat Fiber 80.00 ± 0.00 61.67 ± 2.89 46 .67 ± 2.89 
d b,c a 
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Table F5. ANOV A table for observed barrel temperature (0 C) 

Source DF Tn2e I SS Mean Sguare F Value Pr> F 
Level 3 757 .6388889 252.5462963 39.02 <.0001 
Fiber 2 16.1666667 8.0833333 1.25 0.3048 
Level*Fiber 6 11.6111111 1.9351852 0.30 0.9313 

Table F6. ANOV A table for observed barrel TOM (°C) 
Source DF T1:1!e l SS Mean Sguare F Value Pr> F 

Level 3 1203.147500 401.049167 40.57 < .0001 
Fiber 2 58.748889 29.374444 2.97 0.0703 
Level*Fiber 6 34.953333 5.825556 0.59 0.7356 

Table F7. Means for observed barrel temperature (°C) and observed barrel TOM (°C) by level. 
Means ± standard deviation . Means sharing letter are not different at p > 0.05 within columns not 
between columns 

Level Barrel Temperature 
oc 

0% Fiber I 35.67 ± 1.00 
b 

18% Fiber 134.67 ± 2.82 
b 

36% Fiber 133.78 ± 2.05 
b 

48% Fiber 124.22 ± 3.11 
a 

Table F8 . ANOV A table for observed die temperature (°C) 
Source OF Trne J SS Mean Sguare 

Level 3 454 .9722222 151.6574074 
Fiber 2 239.0555556 119.5277778 
Level*Fiber 6 154.2777778 25.7129630 

Barrel TOM 
oc 

I 59.33 ± 0.65 
b 

158.93 ± 3.79 
b 

I 59.40 ± 3.82 
b 

145.88 ± 3.47 
a 

F Value 
61 .34 
48.35 
10.40 

Pr> F 
<.0001 
<.0001 
<.0001 

Table F9. Means for observed die temperature (°C) by fiber level/fiber type interaction. Means± 
standard deviation . Means sharing letter are not different at p > 0.05 

Treatment 

Control 

Powdered Cellulose 

Wheat Fiber 

Oat Fiber 

0% Fiber 

129.33± 1.15 
c 

18%Fiber 

136.00 ± 1.00 
f 

123.33 ± 2.08 
a,b 

126.33 ± 3.06 
b,c 

36%Fiber 48%Fiber 

135.00 ± 1.00 I 23.00 ± 0.00 
d a,b 

126.67 ± 1.53 119.67 ± 2.08 
b,c a 

128.67 ± 1.53 121.00 ± 1.00 
c a 



Table FIO. ANOVA Table for observed die TOM (QC) 
Source 

Level 
Fiber 
Level*Fiber 

OF 
3 
2 
6 

Type I SS 
482.3274552 
41.8606454 
94 .6015768 

Mean Square 
160.7758184 
20 .9303227 
18.9203154 

F Value 
24.64 
3.21 
2.90 
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Pr> F 
<.0001 
0.0619 
0.0397 

Table Fl I . Means for observed die TOM (QC) by fiber level/fiber type interaction. Means± 
standard deviation. Means sharing letter are not different at p > 0.05 

Treatment 

Control 

Powdered Cellulose 

Wheat Fiber 

Oat Fiber 

0% Fiber 

147.60 ± 3.84 
b 

18%Fiber 

156. 10 ± 0.00 
c 

143.80 ± 2.79 
a,b 

I 49 .27 ± 1.06 
c 

Table Fl 2. ANOV A table for residence time (seconds) 
Source OF Type I SS Mean Square 

Level 3 19006.33333 6335.44444 
Fiber 2 98 .00000 49.00000 
Level*fiber 6 342.00000 57.00000 

36%Fiber 48%Fiber 

---------------- 13 8. 77 ± 0.49 
a 

147.13 ± 1.04 138.83 ± 2.60 
b a 

149.67 ± 1.82 140.13 ± 0.80 
c a,b 

F Value Pr> F 
317 .65 <.0001 
2.46 0.1070 
2.86 0.0303 

Table F 13. Means for residence time (seconds) by fiber level/fiber type interaction. Means± 
standard deviation. Means sharing letter are not different at p > 0.05 

Treatment 0% Fiber 18%Fiber 36%Fiber 48%Fiber 

Control 66.67 ± 2.08 
a 

Powdered Cellulose 85.33 ± 4.16 86.33 ± 2.52 122.33 ± 11.15 
b b c 

Wheat Fiber 74.33 ± 1.52 83.00 ± 4.36 126.67 ± 5.77 
a,b b c 

Oat Fiber 79.00 ± 3.46 86.33 ± 2.3 1 134.67 ± 2.52 
a,b b c 
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Table Fl 4. ANOVA table for product flow rate (g/s) 

Source DF Ty~e I SS Mean Sguare F Value Pr> F 
Level 3 3345.788119 115.262706 595.42 <.0001 
Fiber 2 5.960089 2.980044 1.59 0.2245 
Level*fiber 6 31.943356 5.323893 2.84 0.0310 

Table F15 . Means for product flow rate (g/s) by fiber level/fiber type interaction. Means±. 
standard deviation . Means sharing letter are not different at p > 0.05 

Treatment 0% Fiber 18%Fiber 36%Fiber 48%Fiber 

Control 42.45 ± 1.21 
e 

Powdered Cellulose 30.63 ±. 3.43 28.28 ±. 0.58 16. 15 ± 0.77 
b,c b a 

Wheat Fiber 34.53 ±. 1.11 28 .52 ±. 0.92 15.98 ± 0.60 
d b a 

Oat Fiber 34.78 ± 1.01 26.99 ±. 1.19 15.27 ±. 0.74 
c,d b a 
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