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ABSTRACT 

Petrology of Passive Margin-Epeiric Sea Sediments: 

the Garden City Formation, North-central Utah 

by 

Susan K. Morgan, Master of Science 

Utah State University, 1988 

Major Professor: Dr. Peter T. Kolesar, Jr. 
Department: Geology 

The Lower Ordovician Garden City Formation is part of the thick 

sequence of Lower Paleozoic limestones, dolostones, and minor 

siliciclastic sedimentary rocks of the western United States. The 

carbonate rocks were formed predominantly by shallow water deposition 

in tropical, passive-margin epeiric seas. 

The Garden City Formation is composed of nine lithotypes which 

represent the various environments. The formation is a storm-

influenced transgressive sequence which may be divided into inner-

shelf shallow subtidal and outer-shelf deep subtidal environments 

separated by a skeletal accumulation. The skeletal accumulation, 

formed by storm initiation, was a submerged topographic high, below 

normal wave base. The inner shelf includes the initial peritidal 

transgressive and shoreface material, which was extensively reworked 

by storm action, and a patchy distribution of shallow subtidal 

deposits. It is characterized by shoreward fossil banks and mud 

mounds, a restricted fauna, large amounts of terrigenous material and 

repeated occurrences of storm-created intraclastic layers within a 

ix 



nodular limestone. 

The outer shelf sediments have a diverse fauna, are extensively 

burrowed and bioturbated, and have significant amounts of chert. 

Uncommon intraformational conglomerate layers signify deposition 

below mean storm-wave base. 

The Garden City Limestone facies were deposited in broad, energy­

related zones parallel to the ancient shoreline. These facies were 

compared to the model of epeiric sea deposition presented by Shaw 

(1964) and Irwin (1965). There was a lack of evidence within the 

Garden City sediments to support the existence of an extensive, 

shoreward, tideless low-energy zone as predicted by the model. The 

inner shallow subtidal environments remained near normal marine 

conditions, with water circulation provided by tidal action. 

Early diagenetic features of the Garden City Formation include 

compaction, micritization, cementation and neomorphism. Chert 

formation preceded pressure solution and probably represents 

silicification of burrows. 

Dolomitizing fluids moved along faults, unconformities, and 

bedding planes to selectively dolomitize the formation. Near-surface 

weathering resulted in dedolomitization and the oxidation of pyrite 

to hematite. 

(168 pages) 
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CHAPTER I 

INTRODUCTION 

The Lower Ordovician Garden City Limestone is part of the thick 

sequence of Lower Paleozoic carbonate rocks of the western United 

States. The Paleozoic carbonate rocks were formed predominantly by 

shallow water deposition in tropical epeiric seas. 

In Utah the Garden City Formation has long been recognized as 

a shallow water deposit, and it is unique in the large amounts of 

intraformational conglomerate and chert it contains. The fauna of 

the formation has been described in detail elsewhere, and many of the 

faunal zones have been correlated with other Ordovician limestones 

{Ross 1951). To date, however, there has not been a comprehensive 

study of the petrology of the formation, detailing the depositional 

environments and diagenetic changes recorded in the rocks. 

The purpose of this paper is twofold. First, lithotypes are 

defined, depositional environments interpreted, and local 

paleogeography reconstructed. The sediments of the Garden City 

Formation were examined to provide a test of the broad applicability 

of epeiric sea deposition as defined by Shaw (1964) and Irwin (1965). 

The sediments were also analyzed to determine the importance of storm 

sedimentation on shallow water deposition. Second, the diagenetic 

events are outlined and a model of diagenesis for the Garden City 

Formation is proposed. 

The information gained from this study will add to the general 

knowledge of epeiric sea deposition and the effects of storm 

sedimentation on passive continental margins. 



CHAPTER II 

DEPOSITIONAL ENVIRONMENTS OF A STORM-INFLUENCED PASSIVE 

MARGIN EPEIRIC SEA: THE LOWER ORDOVICIAN GARDEN 

CITY FORMATION, NORTH-CENTRAL UTAH 

INTRODUCTION 

The thick sequences of Lower Paleozoic carbonate rocks in the 

western United States represent predominantly shallow water 

deposition in tropical epeiric seas. In Utah the Lower Ordovician 

Garden City Formation was deposited as a transgressive sequence, 

following an upper Cambrian hiatus, when the sea flooded vast areas 

of the craton. The formation has large amounts of intraformational 

conglomerate and is unique as the first Paleozoic formation to 

contain considerable amounts of chert. 

The purpose of this paper is to use the sediments of the Garden 

City Formation to test the model of epeiric sea deposition 

presented by Shaw (1964) and Irwin (1965). The Garden City limestone 

was chosen for study because its ·sediments were deposited in such a 

sea and to date no comprehensive study of the formation has been 

done. 

Shaw's and Irwin's models describe three generalized energy 

zones within epeiric seas: a seaward, broad, low-energy zone; a 

middle narrow, high-energy zone; and a landward, broad, low-energy 

zone. They suggest that tide action was unlikely in the low-energy 

interior regions of epeiric seas. These interior regions should 

contain deposits characteristic of very-shallow restricted water 
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environments including evaporites, mudcracks, syngenetic dolomite, 

numerous pellets, and fine-grained carbonate mud. There was a 

conspicious lack of evidence within the Garden City sediments to 

support the existence of an extensive, shoreward, tideless low-energy 

zone. Instead, it was determined that tidal action was probable in 

the Ordovician sea, providing water circulation responsible for near 

normal marine conditions in the Garden City sediments. 

The sediments were also analyzed to ascertain the importance of 

storm sedimentation on shallow water deposition. Storm sedimentation 

has a strong influence on the deposits of the Garden City Formation 

and was probably the primary source of the abundant intraformational 

conglomerates. 

GEOLOGIC SETTING 

The Garden City Formation is a Lower Ordovician limestone which 

crops out from north-central and western Utah to southeastern Idaho. 

Its equivalents, the House and Fillmore limestones of the Pogonip 

Group, crop out to the south and west in Utah and extend into eastern 

Nevada (Hintze 1951). The Garden City limestone terminates to the 

east at the western margin of the Green River Basin (Williams 1955). 

The termination is probably a result of non-deposition and signifies 

the location of the craton (Hintze 1951). In the study area of 

north-central Utah the formation lies disconformably on the Cambrian 

Saint Charles Formation (Taylor and Landing 1981) and has an abrupt 

upper contact with the Middle Ordovician Swan Peak Quartzite. It 

ranges in thickness from 322 meters in the east to 549 meters in in 

the west (Hanson 1949). 
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Sections of the Garden City Formation that were studied in 

detail are located in the Bear River Range and the Wellsville 

Mountains of north-central Utah (Fig. 1). This area lies on the 

western margin of the Idaho-Wyoming overthrust belt. The two 

mountain ranges trend north and are separated by the Cache Valley 

graben. They are made up of a thick sequence of Paleozoic 

miogeoclinal shallow-water limestones and dolostones with minor 

amounts of siliciclastic rocks. Strata of the Wellsville Mountains 

are folded in a northeast-dipping homocline, while those in the Bear 

River Range form the northeast-trending Logan Peak Syncline and 

Strawberry Valley Anticline. The mountains are part of the Cache 

allochthon (Crittenden 1972) which has been moved east 48 to 64 km by 

Cretaceous thrust faulting (Crittenden 1961). 

PREVIOUS WORK 

Previous studies of the Garden City Formation have concentrated 

both on the paleontology of the formation (Clark 1935; Ross 1951; 

Berry 1962) and on its part in the stratigraphic and structural 

evolution of the eastern Great Basin (Richardson 1913; Mansfield 

1927; Williams 1948; Hanson 1949; Rigby 1958; Schaeffer 1960; Miller 

1984). Ross (1951) noted the presence of intraformational 

conglomerate, channel scour-and-fill, and ripple marks as strong 

evidence for shallow-water deposition. Stratigraphic descriptions 

have subdivided the Garden City Formation into two informal 

lithologic members: a lower intraformational conglomerate member and 

an upper cherty member (Hanson 1949; Ross 1951; Rigby 1958; Schaeffer 

1960). 



IDAHO 
UTAH 

MALAD RANGE 

Idaho 

Utah 

WELLSVILLE 
MOUNTAINS (418)\ 
~ 

(42s) D 
Brigham City 

5 

RANGE 

Fig. 1. Outcrop pattern of the Lower Ordovician Garden City 
Formation in north-central Utah. Circled numbers show locations of 
measured sections. Numbers in parentheses are thicknesses in 
meters (modified from Ross 1951). 



The most recent work on the formation used paleomagnetism and 

conodont biostratigraphy to define the contact in north-central Utah 

between the Garden City Formation and the underlying Cambrian Saint 

Charles Formation (Taylor et al. 1981; Taylor, Landing, and Gillett 

1981; Taylor and Landing 1981). The contact was found to be a 

diachronous disconformity, becoming younger towards the southeast. 

METHODS 

Five stratigraphic sections of the Garden City Formation (Fig. 

1) were measured using a Brunton compass and Jacob-staff and 

described in detail. The sections ranged in thickness from 322 to 

494 meters. Field information warranted the division of the sections 

into identifiable lithologic units. The units were then sampled at 

ten meter intervals using a stratified systematic sampling method 

(Krumbein and Graybill 1965). A total of 277 samples were collected. 

Polished slabs and acetate peels from all samples, plus 77 thin 

sections stained with alizarin red-Sand potassium ferricyanide to 

6 

aid in recognition of dolomite, iron-rich calcite, and iron-rich 

dolomite, were analyzed with petrographic and binocular microscopes 

for lithotype and environmental information. The thin sections were 

point counted, with a minimum of 300 points per slide. Ten acetate 

peels were point counted using a 10 square per inch grid. The 

remainder of the peels were estimated using comparison charts from 

Flugel (1982). X-ray diffraction of insoluble residues of all samples 

and detailed field relationships provided additional data. 



LITHOTYPES 

Nine lithotypes are identified in the Garden City Formation and 

were named using the classification of Dunham (1962). The lithotypes 

consist of nodular wackestone/mudstone with packstone lenses, 

intraclastic packstone/grainstone, green shale, laminated packstone/ 

grainstone, cryptalgalaminite, fossiliferous packstone, boundstone, 

Calathium/sponge, and burrowed fossiliferous wackestone/packstone 

with chert. Variability exists within most lithotypes and is 

described where appropriate. The various lithotypes may have formed 

in more than one type of environment; therefore stratigraphic 

relationships were used in environmental interpretations. 

Nodular Wackestone/Mudstone with Packstone Lenses 

The nodular wackestone/mudstone lithotype consists of very silty 

limestone, sedimentary boudinage and nodular limestone punctuated 

with lenses of planar-laminated, hummocky cross-stratified, and 

uncommon ripple-laminated limestone. Minor amounts of whole and 

fragmented fossils, chiefly trilobites, pelmatozoans, sponge 

spicules, and rare lingulid brachiopods, and peloids occur as 

packstone lag deposits. Few fossils except sponge spicules occur in 

the mudstones, whereas clotted fabrics are common, possibly resulting 

from compaction of peloids. The predominantly horizontal and 

infrequent vertical burrows in the mudstones and wackestones are 

filled with pellets. Stylolites concentrate non-carbonate material, 

resulting in many wavy silty partings. 

These limestones have a wide range of visible nodularity which 
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depends on the amount of argillaceous material and burrowing/ 

bioturbation, and on the weathering aspect of the outcrop. They 

grade from very nodular (Fig. 2A) to sedimentary boudinage, 

alternating pinched layers of limestone and very silty limestone 

(Fig. 28). The average insoluble residue is 25%, with kaolinite 

being the dominant clay mineral. The clay minerals are concentrated 

in the very silty limestone layers. 

Sedimentary structures include horizontal and vertical trace 

fossils, ripple marks, hummocky cross-stratification, planar­

laminations, load structures, and possible mudcracks. The trace 

fossils have variable diameters up to 2 mm and consist of burrow 

casts and trails. The horizontal trace fossils and ripple marks are 

seen in associated float and on the infrequently-exposed bedding 

surfaces. Rippled, hummocky cross-stratified and planar-laminated 

limestones generally occur in lenses, 1 to 30 cm thick, within 

otherwise nodular or layered limestones. Some of the ripple marks 

are draped by argillaceous material. Possible mudcracks are observed 

only in polished slabs, but never on bedding surfaces. Load 

structures occur at the contacts of coarse- and fine-grained 

limestones, with the coarse material protruding down into the 

underlying finer-grained material (Fig. 28). The limestone lenses 

and sedimentary structures appear to be primary features unaffected 

by bioturbation (compare with Demicco 1983). 

Nodular bedding has been interpreted by Wanless (1979) as a 

diagenetic imprint of pressure solution on bioturbated, originally 

layered argillaceous and calcareous material. There is much eviden~e 

for pressure solution in the nodular limestones. Stylolites are 

8 



Fig. 2. Range of nodularity in nodular wackestone/mudstone. A) 
Well-developed nodular bedding B) Sedimentary boudinage, 
alternating pinched layers of limestone and very silty limestone. 
Arrows point to load structures. Diameter of lens cap is 5 cm. 
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common and form stylolaminations and wispy stylonodular features in 

these limestones. 

Nodular limestones are the predominant lithotype of the lower 

informal member of the Garden City Formation. This lithotype 

resulted from retention of primary depositional features with some 

diagenetic reshaping. The dark, yellow-orange argillaceous material 

imparts an overall yellowish-gray color to the member. Nodular 

layers generally weather more readily to form slopes and incompetent 

outcrops. 

10 

Intraformational conglomerate layers and lenses between 8 cm and 

3 m thick recur throughout the nodular wackestone/mudstone lithotype. 

The layers and lenses have abrupt upper and lower contacts. 

Environment of Deposition.--A shallow subtidal, low-energy 

depositional environment has been postulated for the formation of 

sedimentary boudinage and silty nodular wackestone/mudstone (Wilson 

1969; Cook and Taylor 1977; Aigner 1985). The stratigraphic 

associations with shoal water lithotypes of fragmented fossiliferous 

packstone and mud mounds strengthen the shallow subtidal 

interpretation. There is no evidence to suggest subaerial exposure 

of the sediment by tidal action. Packstone lenses of shell-lag and 

planar-laminated material probably resulted from storm-related 

currents. 

The intraformational conglomerate layers and lenses signify a 

drastic change in the hydrologic regime. The lenses and layers are 

predominantly single-event storm deposits composed of a couplet of 

intraformational conglomerate topped by laminated fine-grained 



limestone. The pattern of the deposits and stratigraphic location, 

similar to those described by Bayer et al. (1985), suggest a distal 

environment which was affected by hurricane-velocity storms. 

Intraclastic Packstone/Grainstone 

Intraclasts are the dominant allochems in the intraclast 

packstone/grainstone lithofacies. The intraclasts are in a fossil­

iferous packstone to grainstone matrix composed of brachiopod, 

pelmatozoan, gastropod, unidentified mollusc shells, and trilobite 

debris, and uncommon Nuia and peloids. Nuia is a problematical 

codiacean alga restricted in occurrence to lower Ordovician rocks 

(Wray 1977). Many of the bioclasts have micrite rims. Sparite is 

neomorphic, and is in most cases clear, suggesting recrystallization 

of original cement. 

Intraclasts show two time periods of burrowing/boring. Burrows 

and borings restricted to intraclasts occurred prior to transport, 

whereas faunal activity after transport is indicated by burrowing of 

both matrix and intraclasts. 

Most clasts have rounded, smooth boundaries with truncated 

fossils. The rounding, due to transport, plus surface borings 

suggest extensive lithification of the sediment to firmgrounds or 

hardgrounds. 

11 

The intraclasts have the following compositions: micrite, with 

or without sponge spicules; fossiliferous quartz-laminated 

packstones; fossiliferous packstone/wackestones; and peloid-laminated 

packstones. They are bladed to blocky, well-rounded to subangular. 
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Bladed clasts may reflect thin hardground or firmground formation or 

be a result of algal mat binding. Since there is a paucity of 

evidence for either algal activity or subaerial exposure, break-up of 

lithified sea floor was probably the most important source of 

intraclasts. 

Some of the smaller intraclasts are casts of fossils with little 

to no shell material retained, but with the fossil shape still 

recognizable. This may have been an important source of the small 

intraclasts. If the clasts were exhumed after the shell had been 

dissolved, they may have been reworked so any original organism shape 

is unrecognizable. 

A small number of intraclasts, irrespective of composition, have 

synaeresis-type cracks (topside and bottomside) which are filled with 

clear sparite. The cracks do not extend past the clast boundary. 

Cracks may form from subaerial exposure. The cracks subsequently 

became filled by cementing material. 

Environment of Deposition.--The intraclastic packstone/grainstone 

lithotype may have formed as: 1) storm sheet deposits, representing 

single events or an amalgamation of a series of events; 2) storm 

surge channel deposits; and/or 3) tidal channel deposits. Outcrop 

geometry of the intraformational conglomerate provides clues to its 

origin. The author used the criterion of consistent lateral extent 

over tens of meters to signify storm sheet deposits. Many of the 

conglomerate units contain erosion surfaces within, evidence of 

multiple storm deposits. 

Conversely, channel deposits would probably pinch out laterally 



in distances of ten meters or less to produce an overall lens shape. 

Storm-surge channel deposits, as opposed to tidal channel deposits, 

would more likely be burrowed, with organisms returning after the 

current subsided. Storm-surge channel deposits would also be more 

likely to have fining-upwards sequences. Many channel deposits were 

identified and attributed to storm activity because they contained 

burrowed, fining-upwards sequences. Actual tidal channels were 

difficult to identify, particularly due to the paucity of intertidal 

evidence in associated lithotypes. 

Storm sheet deposits show evidence for waning currents, with 

stacked Bouma-type sequences of hummocky cross-stratified to planar­

laminated material followed by settled, previously-suspended fine 

material (Selley 1976). Many of the laterally extensive intraforma­

tional conglomerate units are topped by planar-laminated wackestone/ 

mudstone material. Intraclasts, exhumed fossils, infiltration 

fabric, and conglomerate/wackestone couplets within the sheet 

deposits suggest a strong current followed by a waning current, 

typi ca 1 of storms. 

Some of the intraformational conglomerate beds had been 

lithified early on the sea floor as evidenced by erosional surfaces 

truncating clasts (Fig. 3). Osmond (1963) al so found erosional 

surfaces on some intraclast layers in the Garden City Formation 

13 

in the Stanbury Mountains. Lithification resulting in firmgrounds or 

hardgrounds may be due to slow sedimentation rates and submarine 

cementation in shallow subtidal environments (Sepkoski 1982). These 

are the same processes that are forming lithified sediments off t he 

Florida coast today (Multer 1977). 



Fig. 3. Intraformational conglomerate with erosional surface 
(outlined in black) truncating clasts (arrows), evidence for early, 
sea-floor lithification. 
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Green Shale 

Calcareous to clayey grayish olive-green shale is interbedded in 

layers from 1 to 30 cm thick within the nodular limestone lithotype 

in all locations. Kaolinite is the primary clay mineral in the shale 

facies. The shale increases in abundance to the south and southwest 

at sections four and five. 

Environment of Deposition.--The presence of kaolinite indicates a 

terrigenous source and a near-coastal shallow-sea environment of 

deposition for the shale {Flugel 1982). The increase in abundance at 

sections four and five could have resulted from proximity to a 

fluvial source. The variability in the shale and silt content within 

sections and from section to section may have resulted from a shift 

in source area, seasonal changes in stream input, or storm pulses as 

noted by Ball (1983). 

The shale has abrupt contacts with, and is frequently sandwiched 

between, intraformational conglomerate layers, an indication of a 

drastic change in water energy. Mount { 1984) noted that rare-event 

input of sediments will result in abrupt, not gradational, contacts 

between siliciclastic and carbonate rocks. Therefore, the shale may 

represent event deposition. 

Laminated Packstone/Grainstone 

Well-sorted pelmatozoan fragments and peloids comprise the 

laminated packstone/grainstones. Variability in the amounts of these 

allochems creates a range in composition from primarily pelmatozoan 

fragments to a mixture of peloids and pelmatozoan fragments. 



Scattered throughout are minor amounts of intraclasts and lingulid 

brachiopod and trilobite fragments. Many of the bioclasts have 

micrite rims. Some fossils are infilled with micritic material that 

is different than the surrounding matrix. This suggests exhumation 

and redeposition of the fossils (LaPorte 1967). The most likely 

source of currents strong enough to exhume fossils is storms (Kreisa 

1981). Laminations result from increased quartz-silt and clay 

content and parallel alignment of the long axis of allochems. 

The rocks are very-thin- to thin-bedded, planar-laminated to 

hummocky cross-stratified, and graded, and form either lenses within 

the nodular limestones or separate units which are found directly 

above nodular limestones or intraformational conglomerates (Fig. 4). 

Laminated limestones have been dolomitized in the lowermost 1 to 3 

meters of the formation. 

Environment of Deposition.--Sedimentary structures and laminations 

similar to those in the laminated packstone/grainstone have been 

related to deposition by waning storm currents by Kreisa (1981), 

Aigner (1985), and Duke (1985). The fine-grained material put in 

suspension by storm-wave turbulence is rapidly deposited during 

waning currents. The presence of the laminated packstone/grainstone 

units scattered within the nodular limestone and above some 

intraformational conglomerates argues for their intermittent-storm­

generated origins. 
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Fig. 4. Laminated packstone/grainstone (A) above nodular limestone 
(B). An intraformational conglomerate layer (C) was deposited 
directly on top. A small channel (outlined by white line) was 
eroded into the laminated packstone/grainstone. 

17 
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Cryptalgalaminite 

Cryptalgalaminites are a rare lithotype recognized in only one 

of the measured sections, within the nodular limestones. They form 

successive cryptalgally laminated layers, 2.5 to 16 cm thick, which 

have been diagenetically altered to chert. The cryptalgalaminites 

are interbedded with unaltered intraformational conglomerate, having 

a combined total thickness of 76 cm. Possible tepee structures and a 

elastic dyke cross-cut the thin-laminated units. In one layer, small 

digitate stromatolites, with maximum amplitude of 13 mm, underlie the 

sheet-like algal mat. Both the algal mat and stromatolites are 

dissected by vertical burrows. 

Environment of Deposition.--Cryptalgalaminites form by the sediment­

binding ability of algae and bacteria (Aitken 1967) and may have 

subtidal to intertidal origins (Scoffin 1987). Tepee structures in 

the algal mat and the mat's presence above digitate stromatolites 

indicate local shoaling to a tidally influenced environment. 

A patchy distribution of intertidal sequences defined by the rare 

cryptalgalaminites and possible mudcracks is interspersed in the 

nodular lithotype. However, the cryptalgalaminites and mudcracks are 

not found together nor is there an order to their occurrence from one 

section to another. They may have formed as intertidal shoals 

within the subtidal zone in response to localized hydrodynamic 

regimes and increased carbonate production. 
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Fossiliferous Packstone 

There are two major fossiliferous packstone deposits within the 

Garden City Limestone. In addition, lenses of fossiliferous packstone 

lag deposits are scattered throughout the lithotype. The biota of 

both types of fossiliferous packstones are similar, and include 

pelmatozoan, trilobite, the problematic alga Nuia, gastropod and 

other mollusc, brachiopod, rare lingulid brachiopod, and rare 

bryozoan fragments. Some bioclasts have micrite rims. Geopetal and 

infiltration fabrics are common. Many horizons of fossiliferous 

packstone are topped by fine material which probably represent a 

slackening of current. 

Fragmented Fossiliferous Packstone.--These packstones are composed of 

fragmented skeletal material (fossil hash) and intraclasts and occur 

only in the lower part of the formation. The fragmented 

fossiliferous packstone outcrops are tinged orange-pink and are 

massive, with local planar laminations and hummocky cross­

stratification. They recur vertically as layers and lenses from 0.3 

to 3.5 meters thick interspersed with nodular wackestone/mudstone 

layers and mud mounds. 

Environment of Deposition.--Fragmented fossiliferous packstones 

form small skeletal banks within a shallow subtidal environment. 

These represent local agitated shoal conditions on the shelf. Fossil 

accumulations may result from storm action moving skeletal debris 

onshore with subsequent winnowing and reworking by bottom turbulence 

from norm~l wave action (Aigner 1985). The accumulations are 

irregular, both in thickness and in the frequency of occurrence from 



section to section. The repeated occurrence signifies several 

shoaling or apparent regressive cycles. 

Whole-fossil Fossiliferous Packstone.--Higher in the formation the 

packstones consist primarily of whole, unsorted fossils, uncommon 

intraclasts, some of which are shell molds, and peloids. The 

packstones form burrowed, thin-bedded outcrops. This lithotype is 

found in all sections and varies from 24 to 30 meters thick. 

Infrequent intraformational conglomerate lenses are scattered within 

the lithotype. There is a high concentration of brachiopods, 

pelmatozoan column fragments, and Nuia. Infiltration fabric and 

burrowing are common. 
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Environment of Oeposition.--The whole-fossil fossiliferous 

packstone is interpreted as a skeletal build-up which created a 

submerged topographic high, below normal wave-base but still affected 

by storm wave-base. The skeletal accumulation separates the inner 

and outer shelves. Waning storm currents allowed deposition of 

suspended sediments which caused infiltration fabrics. Whole fossils 

and the amount of micrite argue for a below-normal-wave-base, less­

agitated environment. The accumulation may have been initiated and 

subsequently perpetuated by storm accretion. The open-marine seaward 

side of the skeletal build-up would be a natural habitat for 

pelmatozoans and brachiopods. The accumulations did not form a 

continuous front but were dissected by channels, shown by lenses of 

intraformational conglomerate. The channels allowed storm effects 

landward of the accumulations. ·;here is no evidence to suggest that 

these accumulations ever built up to a shoal environment. 
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Bounds tone 

Mud mounds and stromatolites make up the boundstones which recur 

vertically with varying thicknesses in each location. The mud mounds 

are domal to mushroom shaped, and are between 15 and 76 cm in diameter 

and between 13 and 71 cm high. Some mounds have coalesced to form 

sheets. Mud mounds generally are grouped along the same horizon. 

They are common in some sections while nearly absent in others. 

The mounds are surrounded by two types of material. Nodular 

limestones pinch out against, and drape over, most of the mud mounds 

(Fig. SA). The mud mounds may grow from a nodular limestone or an 

intraclastic substrate. A small proportion of mud mounds are 

surrounded by, and in some cases propagated from, the fragmented 

fossiliferous packstone. A layer composed of light-colored sheet­

like mounds dissected by channels filled with the darker-colored 

fragmented fossiliferous packstone is present in each location (Fig. 

SB). The channels have very sharp, but irregular boundaries with the 

mound rock indicating the mounds were somewhat consolidated prior to 

channel cutting (Toomey 1970). The channel cutting may have been 

initiated by shoaling. 

Differential weathering in section three has exposed the three­

dimensional nature of the mounds. The mounds are tubular shaped and 

extend into the outcrop (Fig. SC). Church (1974) al so found 

uniformly aligned "sausage-shaped" mounds in the correlative House 

Limestone of the Ibex Mountains. Mud mounds result from current 

activity and preferential bottom stabilization by orranisms (Toomey 

1970; Church 1974; Pratt and James 1982). Since the mounds appear 



Fig. 5. Features of mud mounds found in the Garden City Formation. 
A) Mud mound of the boundstone lithotype outlined by dark line. 
Note that the nodular limestone pinches out against the mound (arrow) 
and drapes over the mound. Diameter of lens cap is 5 cm. B) Light­
colored sheet-like mound horizon dissected by a channel (outlined 
by black lines) filled with darker-colored fragmented fossiliferous 
packstone. These represent an apparent regression into shoal 
conditions. C) Weathering reveals the three dimensional nature of 
mud mounds at section three. The mounds are tubular shaped and 
extend into the outcrop (arrow). Diameter of lens cap is 5 cm. 





to parallel the shoreline in both section three and in the Ibex area 

studied by Church, the hydrodynamic processes must have been 

influenced by the ocean/land interface. 
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Float associated with the mud-mound zone contains rare, isolated 

stacked hemispheroidal stromatolites. The stromatolite morphology 

and the surrounding medium of fragmented fossiliferous packstone 

suggest that the stromatolites may have grown on top of the mounds 

and extended into shallower and more turbulent water. Stromatolites 

also occur at the base of the formation in section four and are 

associated with cryptalgalaminites in section three. 

Internally the mud mounds reveal very few scattered fossils of 

Nuia, sponge spicules, and pelmatozoan fragments in a micrite matrix. 

A lower algal mat layer is evidenced by silt-floored, parallel 

fenestrae interspersed with quartz silt layers. This is similar to 

evidence used by Pratt (1982a) to determine algal mats. The algal 

mat is overlain by spongiform and clotted fabrics. This gives the 

appearance of a colonization sequence similar to that of equivalent 

Ordovician mounds elsewhere in Utah (Church 1974). However a more 

detailed analysis of the Garden City mud mounds is needed before such 

a sequence can be documented. 

The mounds have a massive to rare, faintly-laminated fabric, but 

do not exhibit the mottled texture that characterizes thrombolites. 

According to Kennard and James's (1986) recent nomenclature, they are 

most accurately named spongiform microbial boundstones. 

Environment of Deposition.--Mud mounds are associated with both the 

fragmented fossiliferous packstone banks and the nodular 
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wackestone/mudstone lithotypes. They grew in shoal conditions within 

the shallow subtidal zone. Several of the mounds have channels 

eroded into them with subsequent infilling of fossil debris. The 

eroded channels may indicate a relative drop in sea level. Modern 

mud mounds have proven to be storm-wave-resistant; therefore storm 

currents probably had little deleterious effect on ancient mounds 

{Ball et al. 1967). Mounds are well developed and exposed in only 

three sections; in addition, they do not display much lateral 

continuity. Therefore a patchy distribution of the mounds, dependent 

on local conditions, is postulated. Orientations of tabular mounds 

indicate they formed parallel to the shoreline. 

Calathium/Sponge 

Calathium is a dasycladacean algae {Church 1974) and is 

associated with listhid sponges in the Garden City Formation. 

Calathium is rare, scattered randomly throughout the sections, and 

generally increases in abundance just below the chert zone in the 

upper part of the formation. At section three a prolific Calathium/ 

sponge assemblage forms a prominent unit, 3.3 meters thick. 

Environment of Deposition.--Because the fossils are whole and well­

preserved in a wackestone/packstone {Fig. 6), and because these 

fossil types would probably not survive transport, this is interpreted 

as an autochthonous assemblage indicative of low energy in a deeper, 

below-normal-wave-base environment {Wray 1977). The unit's thickness 

and presence in all sections also indicates autochthonous origins. 

Stratigraphic location of the Calathium/sponge lithotype directly 



Fig. 6. Calathium (arrows) forming a prominent unit at section 
three, just below the chert zone. Sponges are associated with the 
Calathium. Diameter of lens cap is 5 cm. 

25 



26 

above the whole fossiliferous packstone skeletal accumulation suggests 

they may have enjoyed a position seaward of the skeletal accumulation. 

Due to poor outcrop exposure the lateral extent and config­

uration were not determined. However, since the concentration is 

limited locally it may represent a patch reef community that 

developed in association with the skeletal bank. 

Burrowed Fossiliferous Wackestone/Packstone With Chert 

This lithotype is characterized by whole and fragmented fossils, 

rare intraclasts, and peloids disseminated throughout a stylolitic 

wackestone by bioturbation and burrowing. Clotted fabric and 

synaeresis-type cracks filled with clear sparite are most prevalent 

in this lithotype, whereas very few intraformational conglomerate 

lenses or layers are present. The lithotype also contains 

fossiliferous packstone lag deposits. The fossil assemblage exhibits 

high variability but low abundance of types. Fossils include 

sponge spicules, trilobites, brachiopods, gastropods, unidentified 

molluscs, pelmatozoans, Nuia, conodonts, and ostracods. Ostracods 

are limited to this lithotype. 

Sections two, four, and five exhibit a unique feature. The 

uppermost 33 to 45 meters of the three sections are dolostone and 

have recurring horizontal bands and irregular blebs of sparite (Fig. 

7), These may be stromatacti s structures ( Bathurst 1980). 

Stromatactis form in subtidal environments but so far have only been 

described in association with bioherms (Ross et al. 1975; Bathurst 

1980). However, dolomitization has obscurred most of the petro-



Fig. 7. Horizontal bands (possible stromatactis?) (arrows) in 
dolomitized burrowed fossiliferous wackestone/packstone. 
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graphic information. 

This lithotype comprises all of the uppermost informal cherty 

member previously mentioned. Its most stunning aspect is the 

gradual increase in black, gray, and white chert to a maximum of 40 

to 50% of the rock and then a similar gradual decline to no chert. 

The gradational changes are apparent at all locations, but the 

thickness of the chert unit between localities varies from 33 to 55 

meters. 
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The chert's habit is nodular, banded, and anastomosing and 

appears to follow burrows or areas of bioturbation. The white color 

is probably a weathering rind since it extends 10 mm or less below 

the surface. Numerous relict sponge spicules are apparent within the 

chert. The limestone within the chert zone is similar to that above 

and below; however there is a marked increase in monaxon and rare 

triaxon sponge spicules in the limestone. This suggests a biogenic 

source for the chert. 

Dolomite formation has been related to chert formation (Knauth 

1979). Secondary dolostone is present in the chert zone. Dolostone 

also is prominent below the contact with the Swan Peak Formation. It 

has an irregular lateral contact with the limestone which suggests a 

diagenetic origin. 

There is a dramatic increase in angular to subangular quartz­

silt and fine sand content in the uppermost 1.5 meters of the facies. 

Environment of Deposition--The peloids, prolific burrowing and 

bioturbation, variety of fossils, and lack of wave-generated 

sedimentary structures indicate a deeper subtidal environment, below 
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normal-wave and most storm-wave bases. The limited occurrences of 

intraformational conglomerate layers may represent rare megastorms or 

storm surge channels. Pockets of coarse fossiliferous material and 

erosional surfaces may reflect storm-induced oscillatory currents 

(Kreisa 1981). Insoluble residue and visual appearance indicate only 

minor amounts of silt and clay minerals were deposited in the open 

marine deep subtidal environment. Pyrite is found in slightly higher 

amounts indicating local reducing conditions. 

DISCUSSION 

Storm Sedimentation 

Storm (event) sedimentation dominated the Garden City Formation, 

particularly the lower informal member (Table 1). Storms are 

responsible for onshore and some offshore movement of material (Fig. 

8). Coastal water set-up, a result of wind, barometric effects, and 

wave action move material landward (Aigner 1985). This water returns 

offshore by bottom gradient currents, forming storm-surge channels 

which move material seaward. Offshore material is deposited as 

laminated, graded storm layers (Aigner 1985). Lag deposits and 

erosional surfaces are common. Mean wave-base is greatly increased 

during storms to a storm wave-base estimated at 40-80 meters deep 

(Flugel 1982). Kreisa (1981) noted oscillatory currents created by 

storm waves occurring at depths to 200 meters. Therefore much of an 

epeiric sea bottom would be influenced by storm sedimentation. Study 

of modern storm deposits indicates the rock record may be biased in 

favor of sporadic catastrophic depositional events overprinting 



Table 1. Storm-generated features and their observed occurrences in the 
Garden City Formation (see Kreisia 1981 for references to most features). 

Sedimentary Feature Common Uncommon 

Interbedded coarse (storm deposits) 
and fine (normal deposits) x 

Sharp erosional contacts between 
and within layers x 

Gutter casts x 

Lag deposits x 

Lag - suspension couplets x 

Exhumed bioclasts x 

Infiltration fabrics x 

Reworked intraclasts (intraclast 
composed of intraclasts) x 

Intraformational conglomerates x 

Escape burrows x 

Hummocky cross-stratification x 

Laminated beds - usually graded x 

Reworked skeletal accumulations x w 
0 



STORM PROCESSES AND MATERIAL TRANSPORT 

ONSHORE MATERIAL TRANSPORT Coastal 
Water Set - Up 

Barometric Effect Wave Effect 

• 
' '-::------------------------.... 

max 200 m ...... 

Bottom gradient current 

wave effects 

OFFSHORE MATERIAL TRANSPORT 

Fig. 8. Onshore transport of material is a result of barometric and 
wind effects moving water shoreward. Offshore transport results from 
water returning in bottom gradient currents. Oscillatory bottom 
currents are from storm wave effects (modified from Aigner 1985). 



normal deposition (Hayes 1967). Normal intermittent deposits are 

reworked by storms numerous times, with only the strongest event 

recognizable (Seilacher 1982). 

Depositional Environments 

The deposits of the Garden City Formation can be divided into 

inner-shelf peritidal and outer-shelf subtidal environments. The 

inner-shelf peritidal deposits include reworked material and shallow 

subtidal nodular limestones interspersed with mud mounds and shoals 
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of fossil banks and rare cryptalgalaminites. The outer shelf is a 

deeper subtidal environment composed of one basic lithotype, the 

fossiliferous wackestone/packstone. These two facies were separated 

by a submerged, muddy, predominantly whole-body skeletal accumulation. 

Figure 9 is a schematic diagram using lithotypes and facies relation­

ships to reconstruct the Ordovician shelf environments. The environ­

ments were responses to bathymetric and associated water-energy 

positions in an epeiric sea which had minor bottom irregularities and 

small slope breaks. 

The initial transgression, a shallow water encroachment on the 

craton, is represented by reworked material of the following variety 

of lithotypes: laminated packstone/grainstone, intraclastic 

packstone/grainstone and nodular wackestone/mudstone. In association 

with these lithotypes are dolomitized sediments and rare stromato­

lites. The lithotypes do not appear to have a specific sequence of 

relationships to each other nor are they developed extensively. The 

sequence of relationships may have resulted from reworking which is 

typical of nearshore transgressive deposas. Iden and Moore (1983) 
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and Einsele (1985) noted that strandline deposits in transgressive 

sequences are reworked by wave and storm erosional events to produce 

fossil lag and amalgamated intraclast deposits with relict thin­

laminated carbonate sands. A modern analogy, the Holocene trans­

gression in Biscayne Bay, Florida, produced extensive eroded, 

reworked and redistributed material (Wanless 1969). Kreisa (1981) 

has also demonstrated that thick amalgamated storm layers are a 

product of shallow water. 

The base of the Garden City Formation is characterized by 

numerous erosional surfaces within thick, large-bladed intraclastic 

layers and lenses. The intraclastic layers are interbedded with 

planar-laminated lenses and layers and rare stromatolites • . Lingulid 

brachiopods are most common in this facies. The intermixed nodular 

limestones indicate that shallow subtidal conditions and/or quiet 

water lagoonal pockets were adjacent to the reworked intertidal 

material with the environments shifting in varying responses to 

storms and water depth changes. 
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On the leading edge of a transgression, in accordance with 

Walther's Law (Wilson 1975), one would expect coevolving supratidal, 

shoreline, and intertidal deposits. However, there is a conspicuous 

lack of evidence for these environments in the Garden City Formation. 

A relatively rapid transgression and reworking of material may have 

obliterated these characteristic deposits. A mud-flat shoreline with 

low amplitude tidal influence also could account for the lack of 

supratidal and intertidal deposits. 

The epeiric sea depositional models of Irwin (1965) and Shaw 

(1964) call for low depositional slopes, < 0.3 meters per mile, which 
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dictate that facies be deposited in broad, energy-related zones 

parallel to the ancient shoreline (Irwin 1965). The stratigraphic 

evidence confirms that the Garden City facies were indeed deposited 

this way. Figure 10 represents a north-south cross section of the 

Garden City facies. It illustrates the broad, parallel deposition of 

the facies to the locally southern shoreline. 

Shaw's and Irwin's model of epeiric sea deposition also requires 

that there was no tidal influence over extensive, landward, low­

energy deposits. With no tidal influence there would have been no 

means for promoting water circulation. Shaw (1964) has argued that 

storms, rivers, and precipitation could not provide sufficient input 

to maintain consistent normal-marine conditions; these could only be 

maintained by tidal action. The result of no tidal circulation would. 

have been restricted marine environments of high salinity and 

associated evaporite deposition (Shaw 1964). In the study area no 

such deposits developed. This may have been a function of a steeper 

depositional slope than required in the Shaw-Irwin model. 

The inner shallow subtidal environment probably remained near 

normal-marine conditions. Evidence includes occurrences of trace 

fossils, brachiopods and crinoids within fossil banks, Nuia, and 

scattered whole Calathium fossils, essentially a normal-marine biota. 

Although faunal variability appears restricted, trilobites are 

ubiquitous. Ross (1951) has identified up to 17 species within one 

faunal zone of the facies. There is also a complete lack of direct 

or indirect evidence for any evaporite formation. If the subtidal 

was normal marine, then there must have been tidal effects. Many 

workers (see Klein and Ryer 1978) have also found evidence for tidal 



Fig. 10. Generali zed north-south cross-section of the Garden City 
Limestone in the study area. Sections one, two, and three were used. 



N 
T 

• . • -,. - . -& . IA 

• 

--
...... IL./\ 

...... 

~ 

• 
~ --• ,/ 

/ 
/ 7' -,-
~ 
3 

Dolostone 

Reworked 
lntraclastic 
Limestone 

,~ 

-

, 
, 

~ -. 
---

• • 

- •1 -
• - ... 

, 
= 

., /A ..... 

-
-

"" L 

-
I 

~ ,_ -. - , 
., --..,,. 

/ "7' --= 
, _ __,,, / 

Cal a thrum 

~ Nodular 
~ Limestone 

Fragmented 
Fossil 
Packs tone 

2 

, 
T 

, -. 
• 

•1 . 
AC 

• . - -:- . -.. 
• a -. ., 

,~ L 

-

-

,_. 

~ 

,~ -

~ 

-

- -. 

-
-

I -

• ~ 
........ ~ -

100m 

Whole 
Fossil 
Packs tone 

-
-
_.. _.. 

µiS Burrowed 
~ Wackestone 

36 

s 
I I 

I . 
• 1• 

. -. ,..... 

J 
~ 

~ 

-
r 

I . 
-

--:::,,,.- 1 
~ 

10km 

• Mud Mound~ 

Chert 



action within epeiric seas. 

The shallow subtidal zone was influenced by tides, had lower 

faunal diversity and production, and had considerable terrigenous 

input of quartz silt- and clay-sized particles. The outer deeper 

subtidal zone had higher faunal diversity and production, with very 

little terrigenous material. The environmental differences are 

attributed to the terrigenous material and its damping effect on 

faunal grain production (La Porte 1969). 
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The rare intertidal deposits within the subtidal environment are 

interpreted as shoal islands formed by increased carbonate 

production, perhaps similar to, but not as well developed as, those 

described in the Ordovician St. George Group by Pratt and James 

(1986) and the Lower Devonian Manilus Formation described by LaPorte 

(1967). These irregular shoals may have been analogous to the 

anastomosing mud banks of Florida Bay (Multer 1977, p. 64). 

The upper contact of the Garden City with the Swan Peak Formation 

throughout the study area is abrupt. This may represent a discon­

formity. A more detailed analysis of this contact, specifically 

noting the fossil content, would be helpful in answering questions 

about its nature. 

PALEOGEOGRAPHY 

Deposition of the Garden City Formation started in the 

Tremadocian Age and continued through the Arenigian Age of the Early 

Ordovician Period, a span of 27 million years. During that time North 

America was part of the Laurentia paleocontinent which rotated 

counterclockwise to the south (Scotese et al. 1979). The equator was 
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located within 10-150 of north-central Utah which produced a tropical, 

humid climate (Scotese et al. 1979; Taylor et al. 1981). 

The Early Ordovician was a time of tectonic quiescence and 

cratonic subsidence, which resulted in widespread epeiric seas (Sloss 

1964). The rocks of the Garden City Formation were deposited in the 

Cordilleran miogeocline (Stewart and Poole 1974) by an easterly 

transgression of a broad, shallow sea over the stable craton. The 

shelf/slope transition to deep water was in central Nevada (Cook and 

Taylor 1977). At maximum transgression, the shallow shelf extended 

into Utah (Fig. 11). 

The Garden City Formation represents a long-term transgressive 

sequence of an open-marine shallow-shelf epeiric sea extending west as 

much as 500 km from the exposed craton at maximum transgression 

(Stewart and Poole 1974). The sedimentary environments are storm­

influenced and are oriented parallel to the shoreline. The lower 

disconformable contact is marked by a thin, basal, very silty lime­

stone layer above the massive, dolomitic upper Saint Charles 

Formation. 

Utah was divided into two depositional basins by the emergent 

Tooele Arch, the Northern Utah Basin to the north and the Ibex Basin 

to the south (Hintze 1973). Figure 12 shows the thicknesses of the 

Garden City Formation and the equivalent Pogonip Group which define 

the paleotopographic high. The formation also thins to the north 

into Idaho; its deposition probably was influenced by the submerged 

Arco Arch (Oaks et al. 1977). In the study area the formation thins 

to the southeast. Such thinning suggests that the shoreline was to 

the south and east, in agreement with regional data. 



39 

-- - -, l 

/ , (lscn ., ,I 
I f).tCO - -

" 

SHALLOW 
SHELF 

Tooele Arch 
c::> .. 

... 

Study Area ........ :::::: 
....... :::::::::: 

.,,.::::::::::::: ················· ················· 

. ........................... . ················ ............ . ················ ············ ............................ ················ ........... . ................ ············ ················ ........... . ················· ........... . ............................... ················· ........... . ................. ........... . ················· ........... . .................. ........... . ················· ........... . .................. ........... . ················· ........... . ................. .......... . ················· .......... . ................. .......... . ················· ··········· ················· ··········· .................. ··········· ·················· .......... . ·················· ··········· ·-- ························ ............ .. ··········· 

·········· ......... . ........... ......... . ············· ·········· .. ··································· ......... . .. ................................... ......... . .. ................................... ......... . .. ···································· ......... . .. ···································· ·········· .. ···································· ·········· . . . ...................... ~ . . . . . . . . . . . . . ........ . .. ···································· ......... .. .. ........................................ ·········· ... ···································· ........... . u.:_;.;.; __ ;.;.; __ ;.;.;_ :;.;.;: _:..:.;: ::..:.;: ::..:.;: ::..;.;: ::..;.;: ::..;.: ::..;.: _;.:.· :;.:.: :;.:.: :-: :-: :-: :.;..: ..................... -..: .. : : : : : : : : : : ............................................................. ................................................................ .............................................................. ························································ ························································ ························································ ............................................................. ························································ ........................................................... ............................................................ ························································ ............................................................ .......................................................... ........................................................ ........................................................... ............................................................ ......................................................... ......................................................... ........................................................ ····················································· ····················································· ........................................................ ··················································· ..................................................... . ....................................................... ,, 
:::::::::::::::::::::::::::::::::::::::::::::::: .... · 

1so km 

Fig. 11. Position of the slope break between deep water and 
shallow water deposition. The shoreline is at maximum 
transgression. A lower Ordovician paleolatitude and paleonorth are 
indicated (adapted from Eardly 1964; Hintze 1973; Scotese et al. 
1979). 
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Fig. 12. Garden City-Pogonip Group thicknesses in lOO's of meters. 
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Although part of the Tooele Arch was emergent, the epeiric sea 

had no topographic barriers to restrict circulation. It was not a 

sea surrounded by land, but was instead a vast expanse of open 

shallow water. Depocenters were controlled by gradually subsiding 

basins and gently uplifting arches. 
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The exposed barren craton to the east and the Tooele Arch to the 

south were sources of the silt- and clay-sized terrigenous material. 

Since there was no soil-stabilizing vegetation in the Ordovician, 

any weathering products would be highly susceptible to erosion by 

water and wind. The ubiquitous nature and the silt and clay size of 

the terrigenous material in the Garden City Formation suggest it may 

have been transported to the west by prevailing easterly trade winds 

and deposited in the sea ( Dalrymple et al. 1985). Field observa­

tions show an increase in the amount of siliciclastic material in 

sections four and five, which implies a more localized origin and is 

possible evidence for placing a fluvial source nearby. The field 

observations are substantiated by insoluble residue data from samples 

of the silty nodular limestone. Sections one, two, and three had 

average insoluble residues of 13, 11 and 12% respectively while 

sections four and five had 22 and 16%. The averages were calculated 

using samples within the same lithologic boundaries. No chert was 

present in any of the samples. Current influence may have 

effectively prevented deposition of the terrigenous material in the 

other sections. However, the rocks may not have retained their 

original spatial relationships, since Oviatt (1985) has inferred a 

north-moving thrust fault under the Wellsville Mountains. 



SUMMARY AND COIJCLUSIONS 

The Garden City Formation represents a storm-dominated 

transgressive sequence deposited in a broad epeiric sea. The 

formation is composed of nine lithotypes which represent various 

sedimentary environments. The transgression extended from the west 

covering the previously exposed and eroded Upper Cambrian Saint 

Charles Formation. The initial transgressive and shoreface material 

was extensively reworked by storm action and is characterized by 

erosional channels and thick intraformational conglomerate layers and 

lenses. 

The shelf was subdivided into two distinct environments, a 

shallow-subtidal inner shelf and a deeper-subtidal outer shelf (Fig. 

9). The shall ow inner shelf was characterized by shoreward fossil 

banks and mud mounds, a restricted fauna, large amounts of 

terrigenous material, and repeated occurrences of intraformational 

conglomerate layers. Excessive sediment production resulted in the 

formation of irregularly distributed shoal islands. 

The deeper outer-shelf sediments include a diverse fauna and are 

characterized by burrowing and bioturbation. They have a significant 

amount of black, white, and gray chert. The inner and outer shelf 

were separated by a submerged, storm-initiated skeletal accumulation. 

The restricted fauna of the shallow inner shelf resulted from 

terrigenous input creating an unfavorable habitat. The Garden City 

sediments do not contain interior regions of extensive, tideless low­

energy deposits as predicted by Shaw's (1964) and Irwin's (1965) 

models. Instead tides were an important aspect of the hydrodynamic 
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regime of the Ordovician epeiric sea and provided water circulation to 

maintain near normal marine conditions. 

Throughout the time of deposition of the Garden City Formation, 

Utah was located within 10-150 of the equator, which produced a 

humid, tropical climate. Deposition was controlled by the gradually 

subsiding Northern Utah Basin and Ibex Basin and the gently uplifting 

Tooele Arch. There were no topographic barriers to restrict 

circulation in the vast expanse of the Ordovician sea. The 

transition to deep water was in central Nevada (Fig. 11). 



CHAPTER III 

DIAGENESIS OF THE LOWER ORDOVICIAN GARDEN CITY 

LIMESTONE: PETROGRAPHIC EVIDENCE 

INTRODUCTION 

The Lower Ordovician Garden City Formation, located in north­

central to western Utah and southeastern Idaho, is part of a thick 

sequence of Lower Paleozoic shallow-water carbonate rocks that crop 

out in the western United States. In the study area of north-central 

Utah (Fig. 13) the Garden City Formation lies in diachronous discon­

formity on the Cambrian Saint Charles Formation (Taylor and Landing 

1981) and has an abrupt to gradational upper contact with the Middle 

Ordovician Swan Peak Quartzite. The formation thins to the south and 

east (322 m) and thickens to the north and west (549 m) (Hanson 

1949). It is predominantly limestone with minor amounts of silici­

clastic rocks; however, portions of the base and top are dolostone. 

Banded, nodular, and anastomosing chert dominate the upper portion. 

Previous work by Ross (1951) on the paleontology of the 

formation also included comments, based on outcrop data, on the 

diagenetic formation of the dolomite and chert. The purpose of this 

paper is to re-evaluate and expound upon the diagenetic events, using 

petrographic analysis and cathodoluminescence, and to define a model 

of diagenesis for the Garden City Formation. 
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Fig. 13. Outcrop pattern of the Lower Ordovician Garden City 
Formation in north-central Utah. Circled numbers show locations of 
measured sections. Numbers in parentheses are thicknesses in meters 
(Modified from Ross 1951). 
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LITHOTYPES AND ENVIRONMENTS 

The Garden City Formation is a storm-dominated transgressive 

sequence deposited within an epeiric sea under humid tropical 

conditions. Nine lithotypes compose the peritidal through deeper 

subtidal deposits. Peritidal environments consist of reworked 

transgressive and shoreface material. Adjacent shallow subtidal 

deposits include fossil banks, mud mounds, thin shales, and nodular 

limestones with interbedded storm layers and lenses of intraclast 

packstone/grainstones. A skeletal accumulation of fossiliferous 

packstone formed seaward of the shallow subtidal deposits at a slope 

break within the shelf and separated the shallow subtidal from 

deeper, bioturbated subtidal material. 

METHODS 

Samples from five stratigraphic sections (Fig. 13) which were 

used for lithotype and environment analyses were also used to 

determine diagenetic events. Acetate peels from 277 samples and 77 

thin sections were analyzed with petrographic and binocular micro­

scopes. The thin sections were stained with alizarin red-Sand 

potassium ferricyanide to aid in dolomite, iron-rich calcite, and 

iron-rich dolomite identification. Cathodoluminescence was used on 

selected thin sect ions. 
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DIAGENETIC EVENTS 

Diagenesis encompasses all changes, physical and chemical, that 

occur after sediment is deposited. These changes are affected by the 

original sediment and the pressure, temperature, and type of 

interstitial fluid to which the sediment is subjected. The effects 

in turn may be related to relative times of formation: early, 

intermediate, or late, and the specific depth of burial: surface, 

moderate, or deep. Diagenetic effects present in the Garden City 

Formation include compaction, neomorphism, cementation, micritization, 

the formation of minor amounts of pyrite and hematite, dolomitiza­

tion, dedolomitization, the formation of chert, and fracture-fill. 

Compaction 

Compaction includes all processes, mechanical and chemical, that 

reduce the bulk volume, and hence porosity, of rocks (Flugel 1982). 

These processes can be influenced by grain type, grain size, and 

amount and timing of cementation. Mechanical compaction generally 

occurs during early burial diagenesis while chemical compaction takes 

place Jn the later stages of the diagenetic process. 

Mechanical compaction effects of dewatering, grain realignment, 

and grain breakage result from compressive stress exerted by the 

weight of the overlying sediment. Initial mechanical compaction can 

be overprinted by later pressure solution features (Shinn et al. 

1977; Pratt 1982b; Demicco 1983). Mechanical compaction can account 

for one third to one half of porosity reduction in mud-supported 

sediments (Scholle and Halley 1985). 



Evidence indicating that the Garden City sediment was 

mechanically compacted is abundant. Many of the long, thin, 

phosphatic lingulid brachiopod fragments are broken_.:!!!. situ (Fig. 

14A), whereas more resistant brachiopod and trilobite fragments are 

rarely broken. Shinn et al. (1977) have shown that substantial 

amounts of compaction can occur and result in only minimal shell 

breakage. Additional evidence for compaction are the possible 

realignment of the long axis of skeletal fragments, lenticular 

squashed burrows, interpenetration of intraclasts, and clotted 

fabrics. 

Burrow preservation with no appreciable deformation argues for 

early cementation of the burrows. In compaction experiments on 

modern carbonate sediments, Shinn and Robbin (1983) noted aligned 

grains, little shell breakage, and pellets and burrows that were 

obliterated or deformed. They suggested that only 100 meters of 

overburden are needed to produce these compaction features. 

The degree of preservation of peloids may be linked to the 

extent of early lithification. Good preservation of peloids 

indicates resistance to compaction due to early cementation, whereas 

poor preservation, resulting in clotted fabrics, indicates little to 

no early cementation. Clotted fabrics are common in sediments 

deposited in the subtidal environments of the Garden City Formation. 

The most obvious and pervasive evidence of compaction is the 

presence of solution features. These form in response to stress due 

to compaction or deformation and are a combination of pressure­

dissolution and shear fractures (Scoffin 1987). They can be of 
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Fig. 14. Photomicrographs of evidence for mechanical and chemical 
compaction in the Garden City Formation. A) Arrow points to broken 
in situ lingulid brachiopod fragment. Scale bar is 200 ~m. B) 
Inter-granular solution between intraclasts (arrow). Scale bar is 
200 nm. C) Stylolamination swarms ·(dark lines) in mudstone. Scale 
bar is 200 nm. All photomicrographs are plane-polarized light. 
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early, but are generally of late, diagenetic origin. Solution 

features are classified by Scholle and Halley (1985) into three 

types: inter-granular solution, solution seams, and stylol ites. 

Inter-granular solution occurs at contacts between grains where 

stress is concentrated. It is common in grainstones and forms early 

in the solution process. Solution seams form in fine-grained clay­

rich carbonate rocks and are associated with nodular limestones. The 

term "stylolite" is restricted to low- to high-amplitude sutured-seam 

solution features. The higher amplitude and larger stylolites 

generally form late in the solution process in wackestones to grain­

stones and at lithologic boundaries. 

Inter-granular solution, seam solution, including stylolam­

ination and wispy silt accumulations, and stylolites are common 

throughout the Garden City Formation. Stylolaminations and wispy 

silt accumulations dominate the wackestone/mudstone lithotype (Fig. 

148) while inter-granular solution (Fig. 14C) and stylolites are most 

common in the grainstone/packstone lithotypes. The microstylolites 

in the clay-rich zones create stylonodular fabrics. Stylolites 

almost always form between abrupt changes in lithotypes, an effect 

noted by Buxton and Sibley (1981). Nearly all stylolites formed 

parallel to bedding. The few that are perpendicular to bedding are 

of late diagenetic origin and may represent stresses applied during 

Late Cretaceous and Tertiary faulting. 

One of the most prominent facies of the formation is the nodular 

wackestone/mudstone which is interspersed with primary depositional 

layers and lenses of ripple-marked, planar-laminated and hummocky 
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cross-stratified limestone. The limestone nodules and lenses in the 

nodular wakestone/mudstone are nearly pure and are surrounded by, and 

in some cases draped by, quartz silt and clay minerals. The primary 

depositional features have been altered by some burrowing and 

diagenetic pressure dissolution (compare with Demicco 1983) which 

further enhances non-carbonate material concentrations (Wanless 

1979). 

Burial depths needed to produce pressure dissolution vary from 

over 300 meters to 4,000 meters (Scholle and Halley 1985). Deep 

burial appears to be the most important condition for pressure 

solution. Using the conodont alteration index (CAI) from conodonts 

found in the lower Garden City Formation, a minimum burial depth of 

5700 meters can be calculated for the formation (Gillett and Taylor 

1985). Such a significant burial depth could easily account for the 

pressure solution features. 

Mechanical compaction thus played an important role in altering 

the finer-grained Garden City sediments, with later pressure solution 

affecting all the sediments. 

Neomorphism and Cementation 

Neomorphism as defined by Folk (1965) encompasses all 

transformations between one mineral and itself or its polymorphs. 

The abundance of microspar and sparite suggests that much of the 

Garden City Formation has been affected by neomorphism. Size and 

shape (equigranular) of the grains were the criteria used to identify 

the neomorphic transformation of micrite (<5 ~m) to microspar (5-30 
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~m) (Folk 1965). To recognize the neomorphic origin of coarse 

sparite material the criteria were expanded to include the presence 

of: 1) large crystal diameters, up to 100 ~m together with an 

irregular distribution of sizes; 2) floating patches of residual 

micrite in clear sparite; 3) embayments of sparite altering 

allochems; and (4) the low occurrence of enfacial junctions (Bathurst 

1975). 

Neomorphism is common in the packstone/grainstone lithotypes. 

In some cases clayey, non-carbonate material was "pushed'' in front of 

the aggrading sparite and appears squeezed between sparite crystals. 

It is postulated that two different types of original material 

underwent neomorphism. Dirty sparite and squeezed clay indicate 

replacement of a fine-grained micrite/clayey matrix. In some cases, 

however, no dirty residue is present, but other neomorphic evidence 

remains. This indicates that neomorphism of original cement may have 

occurred. 

Three stages of cementation have taken place, an early rim 

cement, a later blocky, pore-space-filling cement, and a still later 

fracture-filling cement. Evidence for cementation in the Garden City 

Formation includes: skeletal grains with equant to bladed rim 

cements, and altered shells with unaltered micrite rims (Fig. 15). 

This is similar evidence for cementation used by Bathurst 1975. 

Some skeletal grains, particularly trilobite and mollusc 

fragments, have fringes of bladed to equant rim sparite as evidence 

for early cementation. Gillett (1983) noted the same feature in the 

equivalent Ordovician Goodwin Limestone in Nevada and attributed it 



Fig. 15. Photomicrographs of evidence for cementation in the Garden 
City Formation. A) Fringes of bladed to equant early rim cement 
(arrow) on a skeletal fragment. Scale bar is 100 ~m. B) Arrow 
points to altered bioclast with unaltered micrite rim. Scale bar 
is 200 ~m. All photomicrographs are plane-polarized light. 
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to the recrystallization of acicular marine cements. 

Syntaxial rims along with the preservation of uncompacted 

peloids and blocky sparite burrow infillings also may be the result 

of early cemention (Longman 1980). Syntaxial calcite rims are 

prevalent on pelmatozoan debris. They are less common on peloids 

and trilobite and mollusc fragments. The rims were formed as either 

early cement or neomorphic sparite and are most common in the coarse­

grained packstone/grainstones. Pelmatozoan and other bioclast 

fragments found in the fine-grained wackestone/mudstones generally do 

not have syntaxial rims. 

In the deep subtidal wackestone lithotype some of the bioclasts 

were totally altered to a sparry calcite mosaic within a micrite 

envelope. The shapes of the bioclasts indicate that they were 

originally molluscan shell fragments. 

The early cementing material was provided by marine phreatic 

waters while the later cementing material was most likely provided by 

pressure solution as suggested by Scholle and Halley (1985). 

Micritization 

Many bioclasts possess micrite rims as evidence for micriti­

zation, a process accomplished through the work of boring algae 

(Bathurst 1975}. Bathurst (1975) also noted that complete micriti-

zation of skeletal fragments was important in the origin of peloids 

in modern carbonate environments. The problematic codiacean alga 

Nuia commonly has been micritized in the Garden City Formation and 

may have been the source of some of the peloids (Fig. 16). 
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Fig. 16. Micritization of Nuia may have been the source of some of 
the peloids in the Garden City Formation. Photomicrograph of un­
altered Nuia (a), partially altered Nuia (b), and Nuia completley 
altered to peloids (c). Scale bar is 200 ~m. Plane-polarized light. 
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Dolomitization 

The Garden City Formation contains minor amounts of dolostone in 

all sections, mainly in variable thicknesses within the uppermost 50 

meters and also at the lower contact with the Saint Charles 

Formation. Additional scattered occurrences of dolostone are found 

throughout some sections. None of the dolostone appears to be 

facies controlled, as the contacts with limestone are irregular, 

irrespective of rock type. The major dolostone units are composed of 

xenotopic, fine- to medium-crystalline dolomite (Fig. 17). The 

original depositional textures, including intraclasts and bioclasts, 

and depositional structures are retained as ghost features. 

A number of . hypotheses have been suggested for dolomite 

formation (see discussion in Hardie 1987). Some of the dolostone 

found in the Garden City Formation may be attributed to migration of 

dolomitizing fluids along faults. In stratigraphic sections two, 

three, and five, scattered fault-controlled dolostone is recognized 

by field relationships of the dolostone to faults. The dolomite 

formed in zones that parallel the faults regardless of lithotype. 

Faulting, however, does not explain the persistent occurrence from 

section to section of both the lowermost and the upper dolostones. 

Dolostone occurs at the contact with the underlying dolomitized 

Saint Charles Formation. However Taylor and Landing (1981) 

attributed the dolomitization of the Saint Charles Formation to an 

unconformity and accompanying subaerial exposure of the Saint Charles 

before Garden City deposition. Thus a different mechanism, unrelated 

to the dolomitizing event of the S~int Charles Formation, must have 
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Fig. 17. Photomicrograph of the xenotopic texture of dolomite in the 
Garden City Formation. Scale bar is 200 ~m. Plane-polarized light. 
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formed the dolomite in the lower part of the Garden City. In 

section two, the lowermost dolomite may be related to faulting as 

Landing (1981) identified a shear zone in the upper Saint Charles and 

lower Garden City. 

Dunham and Olson (1980) surveyed the distribution of limestone­

dolostone in lower and middle Paleozoic rocks of the Cordilleran 

miogeocline in Nevada and western Utah and found that the deeper 

water carbonate rocks to the west are primarily limestone, whereas 

the shallow water sediments of the east are preferentially 

dolomitized. They suggested the dolostone formed from mixing of 

freshwater and seawater and that the freshwater lens and recharge to 

the system was controlled by paleogeography. In this way they 

accounted for shifts in the limestone-dolostone boundary with time. 

It is possible that the dolostone of the Garden City Formation 

resulted in response to mixing of fresh and marine water. However, 

dolomite formed as a result of mixing of waters is predominantly 

clear and euhedral, with plane crystal faces (Folk and Land 1975). 

That is not the type of dolomite found in the Garden City. 

It is postulated instead that the dolostone of the Garden City 

Formation may have formed from deep-burial dolomitization processes. 

The evidence for deep-burial dolomitization includes: 1) xenotopic 

texture; 2) scattered zoned dolomite rhombs with dirty cores and 

clear rims; 3) ghost textures of original depositional environments 

preserved in crystalline dolomite; and 4) no boundaries of crystals 

evident with cathodoluminescence. Similar evidence was used by 

Lee and Friedman (1987) to prove deep-burial dolomitization in the 
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Ordovician Ellenburger Group carbonates. Gregg and Sibley (1986), 

however, attribute the xenotopic character of most dolomite to 

epigenetic conditions with temperature above 5ooc. 

Hardie (1987) claimed that buri~l dolomite can potentially form 

from any heated groundwater; therefore water composition is not as 

significant as is the fluid's ability to move at depth. According to 

Hardie (1987), burial dolostone will form at temperatures of 1000 C, 

with fluid migration concentrating dolomite formation at basin edges, 

at unconformities, and at basement highs. He further stated that at 

passive margins the dolomitizing fluid system can be driven updip via 

thermal anomolies. 

The lower dolostone may be related to dolomitizing fluids driven 

along the unconformity with the Saint Charles Formation, whereas the 

upper dolostone may somehow be related to fluids moving along the 

contact with the lowermost shale member in the Swan Peak Formation. 

Porphyrotopic dolomite also occurs as scattered euhedral rhombs 

in burrows, in clay-rich seams, and under some intraclasts (Fig. 

18A-C). Under cathodoluminescence the rhombs luminesce a darker 

orange than the background material, which indicates different modes 

of formation for the rhombs and the massive crystalline dolomite. 

The rhombs are generally associated with the finer-fraction clayey 

material and solution seams. The clays may contribute to the 

dolomitization by acting as membranes which impede ion migration, or 

as centers for nucleation of crystals (Kahle 1965). Fluids may have 

been able to migrate through the finer grained materials because they 

were not initially cemented as readily as the coarser fractions. 
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Fig. 18. Photomicrographs of dolomite rhombs in the Garden City 
Formation. A) Scattered euhedral dolomite rhombs in burrows. Scale 
bar is 200 ~m. B) Clay-rich limestone with euhedral rhombs. Scale bar 
is 200 ~m. C) Rhombs (arrow) formed under an intraclast. Scale bar 
is 200~m. D) Zoned dolomite rhombs, (a) iron-rich dolomite with 
limonite zones. and (b) non-iron-rich dolomite with limonite centers 
and ~ims. Scale bar is 200 um. All photomicrographs are plane­
polarized light. 





Staining revealed that some of the dolomite rhombs are zoned 

ferroan-dolomite and dolomite (Fig. 18D). This indicates a change in 

fluid composition as the crystals formed. Many rhombs have limonite 

rims, whereas some are completely altered to limonite or are zoned 

with limonite centers. Limonite is an alteration product of 

ferroan-rich dolomite (Gillett 1983). Iron-rich fluids may originate 

from the alteration of associated clay minerals providing a source 

for the iron (Bathurst 1975; Flugel 1982). The cause of the fluid 

composition changes required for rhomb zonation is unclear. 

Timing of the dolomitization derived from thin section 

information indicates that the dolomite formed after the chert and 

most stylolites. This implies a time of formation after pressure 

solution had begun. Euhedral dolomite rhombs, identified by catho­

doluminescence, floating in xenotopic crystalline dolomite represent 

a second dolomitizing event. Since minor stylolites occur in the 

dolostone, some pressure solution of the already dolomitized material 

may have been the source of fluids for the later dolomite rhomb 

formation. 

In several thin sections rhombohedral-shaped pores resulting 

from dissolution of dolomite rhombs are common. Some pores have 

remnant dolomite within; therefore dedolomitization replacement with 

calcite did not occur. The pores and remnant rhombs are limonite­

lined indicating that the original dolomite had an iron-rich 

composition. Dissolution of the dolomite could have been accom­

plished by migrating fluids which had been depleted with respect to 

magnesium. 
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Dedolomitization 

Many thin sections have evidence of dedolomitization, the 

process of calcitization of dolomite. Evamy's (1967) description of 

the process requires that original dolomite rhombs be replaced by 

equicrystalline, high-magnesium calcite. Friedman and Sanders' 

(1967) evidence for dedolomitization includes: 1) dolomite remnants 

within calcite crystals; 2) pseudomorphs of calcite after dolomite; 

and 3) ghost dolomite rhombs in ferric oxide zones. The evidence for 

dedolomitization within the Garden City Formation is primarily 

restricted to calcite pseudomorphs of dolomite rhombs concentrated in 

ferric oxide zones. Figure 19 shows limonite-rimmed calcite 

pseudomorphs after dolomite. Limonite-rimmed calcite and dolomite 

rhombs occur within the same thin section in iron-rich zones under 

intraclasts. No dolomite remnants were observed nor did any of the 

replaced calcite appear to be equicrystalline. However, the presence 

of zoned rhombs composed of calcite and outlined with limonite was 

interpreted as a result of dedolomitization. 

Friedman and Sanders (1967) noted that the dedolomitization 

process occurs in association with sulfate ions. Magnesium from 

dolomite combines with sulfate ions to form MgS04 and calcite. 

Sulfate ions can be supplied by the oxidation of pyrite (Evamy 1967; 

Friedman and Saunders 1967). There is ample evidence of the 

oxidation of pyrite to hematite in the Garden City Formation, which 

could provide a source for the sulfate ions. 
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Fig. 19. Evidence for dedolomitization, limonite-rimmed calcite 
pseudomorphs after dolomite (arrows). Pseudomorphs stain red with 
alizarin red-S. Calcite pseudomorphs and dolomite rhombs occur within 
the same thin section in iron-rich zones under intraclasts. Scale bar 
is 200 um. Plane-polarized light. 
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Pyrite and Hematite 

Scattered throughout the formation are small blebs of hematite 

pseudomorphs after pyrite, and rare pyrite. These occur as singular 

or clustered euhedral crystals and are associated with burrows or 

bioclasts and in some cases micritic intraclasts. There is more 

pyrite and hematite in the fauna-rich deeper subtidal lithotypes. 

More organics probably accumulated in these sediments because the 

less agitated, deeper environment resulted in less oxidation of 

organics. Berner (1984) found that pyrite is an early diagenentic 

alteration of metastable iron monosulfides produced by bacterial 

action on organic matter. Hematite is a late diagenetic alteration 

of the pyrite. No pyrite was observed on surface exposures, however, 

some was revealed in cut samples. 

Chert 

Chert is scattered throughout most of the formation as 

stringers, blebs, and nodules, with a notable concentration in the 

upper part of the formation. This upper chert zone varies in 

thickness from section to section, but all share the characteristic 

of a gradual increase of banded, anastomosing, and nodular chert 

until chert comprises up to 50% of the rock. Above this increased 

chert zone there is a corresponding gradual decrease in chert until 

none is present. 

The chert color is variable in shades of grey and pink, and 

black and white. Pink is limited to the bottom of the formation, 

and white is found in the upper chert zone in only one section. 
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Colors are probably associated with trace elements and organic 

matter. ' The white may be a weathering rind as it is less than 10 mm 

thick. The chert consists of megaquartz, microquartz, and rare 

length-fast chalcedony. The chalcedony has a brown hue, possibly 

from included organic matter. The chert selectively replaced 

bioclasts, especially pelmatozoan, trilobite, and brachiopod 

fragments. 

The chert in sections outside the chert zone replaced original 

material, leaving relict structures of fossils and intraclasts and in 

some cases lenses of intraformational conglomerate. No sponge 

spicules were observed within this chert; however the ubiquitious 

presence of sponge spicules in the sediment suggests that they could 

have been the source. In the chert zone of the upper member, the 

chert has abundant relict sponge spicules (Fig. 20). The limestone 

associated with the chert usually has high amounts of calcite­

replaced monaxon and uncommon triaxon sponge spicules and numerous 

peloids. The originally siliceous spicules probably provided a 

biogenic source for the silica. The anastomosing habit of some of 

the chert in the highly burrowed and bioturbated deeper subtidal 

facies suggests that fluid migration followed burrows. Such fluid 

migration is a result of the increased permeability and organic 

content of burrow-fill sediment (Eckdale and Bromley 1986). Banded 

cherts may be caused by clayey layers that stop or impede migration 

of fluids along bedding. 

Chert formation has been linked by Knauth (1979) to the mixing 

model for dolomitization. There is some dolostone associated with 
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Fig. 20. Photomicrograph of abundant relict sponge spicules in chert 
in the upper chert-rich zone of the Garden City Formation. Scale bar 
is 200 ~m. Plane-polarized light. 
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Fractures 

Nearly vertical calcite-filled fractures are very common 

throughout the Garden City Formation but tend to increase in the 

chert zone. The fractures cut all other features and are a late 

diagenetic event, probably related to late Cretaceous and early 

Tertiary faulting. At least two events exist as evidenced by the 

cross-cutting relationships of the fractures. 

DIAGENETIC MODEL 

The Garden City Formation was deposited during a slow and steady 

transgression, with storm influence and sea level fluctuations 

adding complexity to diagenetic events. From the features observed 

the following generalized model of diagenetic events of the Garden 

City Formation can be postulated. 

An early diagenetic feature formed at the sediment/water 

interface was the micritization of bioclasts by boring algae. A 

later diagenetic feature below the sediment/water interface, was the 

formation of pyrite. Reducing conditions, caused by abundant organic 

matter incorporated within the sediments, led to the pyrite 

formation. 

The numerous intraclasts attest to the fact that early 

lithification of the sea floor was common. Equant to bladed rim 

cement was precipitated on bioclasts, and is still preserved on some 

trilobite and mulluscan shell fragments. Early cement filled some 

burrows and surrounded peloids, preventing their obliteration by 

contemporaneous compaction. 

67 



Neomorphism occurred after early cementation as both micrite 

and original cement were altered. A blocky pore-filling cement 

probably formed in the mid- to late-eogenetic system. The chert also 

formed at this time since it was in place before much pressure 

solution took place. 
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Continued addition of overburden initiated pressure solution 

which undoubtably continued from early- through late-stage mesogenetic 

diagenesis. If in fact there was burial dolomitization it would have 

occurred within the mesogenetic system. 

Late Cretaceous thrust faulting and early Tertiary normal 

faulting probably caused the fractures in the Garden City Formation. 

These fractures are filled with a late-stage calcite cement. The 

faults were zones of weakness in the rock allowing migration of 

fluids that dolomitized the surrounding rock. Two stages of 

dolomitization occurred, the first replacing extensive portions of 

the rock and the second forming scattered euhedral rhombs within 

massive crystalline dolomite. 

Oxidation of pyrite to hematite and the formation of limonite 

are the last of the diagenetic processes and occurred near the 

surface as a result of weathering. 

SUMMARY AND CONCLUSIONS 

The diagenetic events present in the Garden City Formation 

include compaction, neomorphism, cementation, micritization, 

dolomitization, dedolomitization, formation of chert, and fracture­

fi 11 • 



Mechanical compaction includes grain breakage, grain 

realignment, squashed burrows, interpenetration of intraclasts, and 

clotted fabrics, all of which are early diagenetic features. 

Pressure solution, pervasive evidence for chemical compaction, occurs 

later in the diagenetic history. 

Three stages of cementation occurred: an early stage, a 

later blocky pore-filling cementation, and the last event, late 

fracture-fill cementation. Neomorphism affected micrite and the 

early stage cement, altering them to microspar and sparite 

respectively. Chert formation occurred before much pressure solution 

and was probably a late eogenetic process. Dolomitizing fluids moved 

along faults, unconformities, and bedding planes to selectively 

dolomitize the Garden City rocks. The dolostone in the formation 

does not appear to be facies controlled. Dedolomitization and the 

oxidation of pyrite to hematite were late diagenetic events resulting 

from near-surface weathering. 
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CHAPTER IV 

SUMMARY 
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The Garden City Formation represents a storm-dominated 

transgressive sequence deposited in an epeiric sea. The formation is 

composed of nine lithotypes which represent various depositional 

environments. The lithotypes consist of nodular wackestone/mudstone 

with packstone lenses, intraclastic packstone/grainstone, green shale, 

laminated packstone/grainstone, cryptalgalaminite, fossiliferous 

packstone, boundstone, Calathium/sponge, and burrowed fossiliferous 

wackestone/packstone with chert. Storm action extensively reworked 

the initial transgressive and shoreface materials which are 

characterized by erosional channels and intraformational conglomerate 

layers and lenses. 

The broad shelf of the epeiric sea may be subdivided into two 

distinct environments, a shallow subtidal inner shelf and a deeper 

subtidal outer shelf. The shallow inner shelf was characterized by 

shoreward fossil banks and mud mounds, a restricted fauna, large 

amounts of terrigenous material, and repeated occurrences of 

intraformational conglomerate layers. Irregularly distributed shoal 

islands were formed as a result of excessive sediment production. 

The deeper outer shelf sediments include a diverse fauna and are 

characterized by bioturbation and burrowing. These sediments have a 

significant amount of banded and anastomosing black, white, and grey 

chert. A storm-initiated skeletal accumulation separated the inner 

and outer shelves. 

Terrigenous input created an unfavorable habitat within the 



shallow inner shelf which resulted in a restricted fauna. Tides 

provided .water circulation to maintain near normal marine conditions 

in the shallow water, landward belt of the Ordovician epeiric sea. 
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The Garden City facies were compared to the model of epeiric sea 

deposition presented by Shaw (1964) and Irwin (1965). They describe 

three generalized energy zones and suggest that tide action was 

unlikely in the low-energy interior regions of epeiric seas. There was 

a lack of evidence within the Garden City sediments to support the 

existence of an extensive, tideless low-energy zone. 

A tropical, humid climate prevailed throughout the time of 

deposition of the Garden City Formation. Deposition was influenced 

by the subsiding Northern Utah and Ibex Basins and the uplifting 

Tooele Arch. The transition to deeper water was in central Nevada. 

The diagenetic events present in the Garden City Formation 

include compaction, neomorphism, cementation, micritization, 

dolomitization, dedolomitization, formation of chert, and fracture­

fill. 

Early diagenetic features of mechanical compaction include grain 

breakage, grain realignment, squashed burrows, interpenetration of 

intraclasts, and clotted fabrics. Numerous stylolites, stylo­

laminations, and inter-granular solution are evidence for later 

chemical compaction. 

Three stages of cementation occurred. Early rim cements were 

followed by blocky pore-filling cemehts and later fracture-fill 

cements. Neomorphism was common, affecting micrite and the early rim 

cement, altering them to microspar and sparite. Chert formation 



occurred before much pressure solution and probably represents 

silicified burrow fillings. 

Dolomite in the Garden City Formation does not appear to be 

facies controlled. Dolomitizing fluids moved along faults, 

unconformities, and bedding planes to selectively dolomitize the 

formation. Late diagenetic near-surface weathering resulted in 

dedolomitization and the oxidation of pyrite to hematite. 
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Appendix fl 

Petrographic, Insoluble Residue, and X-ray Data 



Explanation 

Thin sections were made from all samples from the High Creek 

Section. Sample numbers followed by an asterisk(*) were point 

counted with a minimum of 300 points. Petrologic data from samples 

in the remaining sections were estimated using acetate peels. The 

term bioclast refers to unidentified fossil fragments. 

The column after the sample number indicates the location (given 

in feet and meters) within the section that the sample was taken. 

Zero is always the bottom of the section. 

Insoluble residue compositions are listed in order of decreasing 

relative peak heights. 
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Sample Feet Percent Insoluble 
Number ( Meters) Rock Name Insoluble Residue Composition 

BF-15 384 Limestone: clay-, bioclast-bearing 10.3 Quartz, microcline, ill i te, 
(117.0) burrowed stylonodular mudstone chlorite trace 

BF-16 411 Limestone: quartz-, brachiopod-, 5.5 Quartz, microcline 
(125.3) peloid-, trilobite-, pelmatozoan-

bearing intraclast grainstone with 
stylolites 

BF-17 440 Limestone: dolomite-rhomb-, clay- 5.4 Quartz, microcline, plagioclase, 
(134.0) bearing burrowed mudstone with illite 

stylol ites 

BF-18 444 Limestone: brachiopod-, pelmatozoan-, 6.0 Quartz, microcline, ill i te 
(135.3) trilobite-bearing intraclast grainstone 

with stylol ites 

BF-19 447 Limestone: burrowed stylonodular 19.0 Quartz, microcline, ill ite 
(136.2) mud stone 

BF-20 474 Limestone: quartz-, dolomite-rhomb-, 18 .3 Quartz, microcline, kaolinite 
(144.5) brachiopod-, peloid-bearing intraclast-, 

trilobite-rich pelmatozoan burrowed 
grainstone with stylolites 

BF-21 485 Limestone: trilobite-, quartz-, 11.3 Quartz, microcline, illite 
(147.8) dolomite-rhomb-, peloid-, 

pelmatozoan-bearing intraclast 
grainstone with stylolites 

BF~22 504 Limestone: quartz-, bioclast-bearing 12.8 Quartz, microcline, illite 
(153.6) stylonodular burrowed wackestone trace 

o:> 
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Sample Feet Percent Insoluble 
Number ( Meters) Rock name Insoluble Residue Composition 

BF-23 195 Limestone: Nuia-, spicule-, 11. 9 Quartz, microcline, i 11 i te 
(59.0) quartz-bearing sponge(?)-, algal 

mat-rich wackestone with floored 
fenestrae and stylolites 

BF-09 208 Limestone: clay-, quartz-, 9.5 Quartz, microcline, i 11 ite, 
(63.4) dolomite-rhomb-, trilobite-, Nuia-, chlorite, mixed clay, unid. 

bioclast-bearing pelmatozoan wackestone pk. @ 10.9 
with stylolites 

BF-10 235 Limestone: molluscan-, peloid-, 7.0 Quartz, microcline 
(71.6) intraclast-, quartz-bearing pelmatozoan 

trilobite thin-laminated burrowed 
packstone with stylolites 

BF-11 275 Limestone: pelmatozoan-. chert-rich 19.6 Quartz, microcline 
(83.8) trilobite intraclast grainstone with 

stylol ites 

BF-12 301 Limestone: peloid-, dolomite-rhomb-, 13.8 Quartz, microcline, ill i te 
(91.7) trilobite-, pelmatozoan-, quartz-bearing trace 

intraclast grainstone with lower 
laminated silty mudstone with stylolites 

BF-13 330 Limestone: trilobite-, molluscan- 17.3 Quartz, microcline, illite 
(l00.6) bearing pelmatozoan-rich intraclast 

packstone with stylolites 

BF-14 361 Limestone: quartz-, brachiopod- 3.0 Quartz, microcline, pl agiocl ase, 
(110.0) bearing trilobite-rich pelmatozoan i 11 i te 

graded burrowed thin-laminated 
grain stone 

ex:> 
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BLACKSMITH FORK SECTION 1 

Sample Feet Percent Insoluble 
Number {Meters) Rock Name Insoluble Residue Composition 

BF-03 74 Limestone: quartz-bearing burrowed 17. 2 Quartz, microcline, chl orite, 
(22.6) stylolaminated mudstone ill ite 

BF-04 104 Limestone: trilobite-, pelmatozoan-, 5.1 Quartz, microcline, ill ite, { 31. 7) peloid-bearing intraclast packstone chlorite 
with stylolites 

BF-05 130 Dolostone: quartz-, 
(39.6) thin-laminated vuggy 

pyrite-bearing 10.2 
crystalline 

Quartz, microcl ine, pyrite 

BF-06 134 Limestone: Nuia-bearing peloid-, 4.3 Quartz, microcline, chlorite { 39. 7) pelmatozoan-~ilobite-rich intraclast and illite traces 
laminated, burrowed packstone with 
styl ol ites 

BF-07 148 Limestone: trilobite-, clay-, peloid-, 7.5 Quartz, microcline, plagiocl ase, 
(45.0) dolomite-rhomb-bearing pelmatozoan- chlorite and illite traces 

rich intraclast imbricated packstone 
with stylolites 

BF-01 167 Limestone: brachiopod-, trilobite-, 9.3 Quartz, microcline, i 11 i te 
(50.9) intraclast-, quartz-, bioclast-, 

pelmatozoan-bearing peloid-rich 
dasycladacean alga packstone/wackestone 

BF-08 178 Limestone: quartz-, bioclast-bearing 8.4 Quartz, microcline 
(54.2) trilobite-, intraclast-rich pelmatozoan 

peloid packstone with stylolites 
co 
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S?.mple Feet Percent Insoluble 
Number (Meters) Rock Name Insoluble Residue Composition 

BF-24 534 Limestone: quartz-bearing peloid- 10 .o Quartz, microcline 
(162.8) rich pelmatozoan thin-laminated 

grain stone 

BF-25 563 Limestone: brachiopod-, trilobite-, 19 .5 Quartz, microcline, chlorite 
(171.6) intraclast-, quartz-bearing peloid-, trace 

pelmatozoan-rich chert thin-
laminated packstone with stylolites 

BF-26 595 Limestone: trilobite-, bioclast-, 43.5 Quartz, microcline, plagioclase, 
(181.3) clay-, dolomite-rhomb-bearing chlorite 

quartz-rich pelmatozoan burrowed 
packstone with stylolites 

BF-27 624 Limestone: trilobite-, peloid- 24.2 Quartz, microcline 
(190.2) bearing quartz-. chert-rich 

pelmatozoan thin-laminated 
grainstone 

BF-28 654 Limestone: Nuia-, quartz-, peloid- 31.4 Quartz, microcline 
(199.3) bearing trilobite-rich intraclast 

pelmatozoan faintly-laminated graded 
grainstone with stylolites 

BF-29 647 Limestone: Facies A: Nuia-, trilobite-, 9.8 Quartz, microcline 
(197. 2) quartz-, peloid-, pelmatozoan-bearing 

intraclast bioturbated grainstone 
with stylolites Facies B: pelmatozoan-, 
quartz-bearing burrowed mudstone with 
stylolites Facies C: quartz-, 
trilobite-bearing, Nuia-, intraclast-
rich pelmatozoan peToid packstone with 

OJ stylol ites -....J 



Sample Feet Percent Insoluble Number (Meters) Rock Name Insoluble Residue Composition 

BF-30 684 Limestone: bioclast-, quartz- 30.0 Quartz, microcline, i 11 i te, (208.5) bearing clay-rich nodular kaolinite, chlorite trace 
mudstone with stylolites and 
laminated lenses 

BF-31 714 Limestone: brachiopod-, quartz-, 5.3 Quartz, microcline 
(217.6) trilobite-, intraclast-bearing 

peloid-rich pelmatozoan thin-
laminated hummocky cross stratified 
grainstone 

BF-32 744 Limestone: brachiopod-, quartz-, 11.9 Quartz, microcline 
(226.8) dolomite-bearing trilobite-, Nuia-

rich pelmatozoan burrowed packstone 
with stylolites 

BF-33 774 Limestone: quartz-, molluscan-, 11.6 Quartz, microcline 
(235.9) trilobite-bearing pelmatozoan-rich 

chert Nuia grainstone with stylolites 

BF-34 805 Limestone: trilobite-, pelmatozoan-, 13.5 Quartz, microcline, i 11 i te, (245.4) intraclast-, quartz-bearing Nuia-rich chl orite trace 
burrowed wackestone with styToTTtes 

BF-35 836 Limestone: quartz-, bioclast-, 21.8 Quartz, microcline 
(254.8) peloid-bearing chert burrowed 

wackestone with stylolites and 
laminated lenses 

BF-36 870 Cherty Dolostone: bioclast-bearing 21.8 Quartz, microcline 
(265.2) burrowed algal mat (?) laminated 

cherty dolostone 
00 
00 



Sample 
Number 

BF-37 

BF-38 

BF-39 

BF-40 

BF-41 

BF-42 

Feet 
(Meters) 

862 
(262.7) 

890 
(271.3) 

902 
(274.9) 

920 
(280.4) 

950 
(289.6) 

980 
( 298. 7) 

Percent Insoluble 
Rock Name Insoluble Residue Composition 

Limestone: molluscan-, ostracod-, 24.9 Quartz, microcline 
trilobite-, chert-, quartz-, 
intraclast-bearing burrowed 
bioturbated wackestone with stylolites 

Dolostone: bioclast-, quartz-bearing 21.1 Quartz, microcline 
chert-rich bioturbated burrowed with 
stylol ites 

Limestone: dolomite-rhomb-, quartz-, 12.1 Quartz, microcline 
peloid-, brachiopod-bearing intraclast 
pelmatozoan trilobite burrowed packstone 
with stylolites 

Limestone: peloid-. trilobite-. 7.6 Quartz, microcline 
pelmatozoan-, dolomite-bearing Nuia-, 
chert-rich intraclast burrowed packstone 
with stylolites 

Limestone: Facies A: trilobite- ., 17.9 
peloid-, quartz-, bioclast-bearing 
pelmatozoan-rich bioturbated wackestone 
with stylolites Facies B: brachiopod-, 
quartz-bearing, trilobite-, pelmatozoan-, 
Nuia-, intraclast-rich packstone with 
stylol ites 

Limestone: quartz-, dolomite-rhomb-, 
trilobite-, peloid-, intraclast-, 
pelmatozoan-bearing bioclast-rich 
bioturbated burrowed wackestone 
with stylol ites 

6.6 

Quartz, microcline, chlorite 
trace 

Quartz, microcline 

CX> 
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Sample Feet Percent Insoluble 
Number (Meters) Rock Name Insoluble Residue Composition 

BF-43 1010 Limestone: biocl ast-, quartz-, 22.6 Quartz, mi crocl ine, plagi_oclase 
(307.8) dolomite-rhomb-bearing burrowed trace 

bioturbated wackestone with stylolites 

BF-44 1040 Limestone: ostracod-, pelmatozoan-, 11.3 Quartz, mi croc 1 ine, i 11 i te 
(317.0) trilobite-, quartz-, bioclast-bearing trace 

intraclast-rich peloid dolomite 
burrowed burrowed bioturbated packstone 
with stylolite 

BF-46 1045 Limestone: trilobite-, bioclast-, 31.0 Quartz, microcline 
(318.5) peloid-bearing pelmatozoan-rich Nuia 

quartz pack stone with stylol ites--

BF-45 1047 Limestone: hematite-, peloid-, 29.1 Quartz, microcline 
(319.1) trilobite-, Nuia-bearing bioclast-, 

pelmatozoan-rTcn quartz wackestone 
with stylolites 



GREEN CANYON SECT(ON 2 

Sample Feet Percent Insoluble Name (Meters) Rock Name Insoluble Residue Composition 
GC-01 0.5 Dolostone: burrowed with stylolites 6.6 Quartz, microcl ine, i 11 i te (0.2) 

GC-02 3 Dolostone: silty 44.0 Quartz, microcline, i 11 i te ( 0. 9) 

GC-03 5 Limestone: clay-, quartz-, 15.0 Quartz, microcline, ill i te ( 1. 5) pelmatozoan-bearing brachiopod-, 
intraclast-rich bioclast bioturbated 
packstone with stylolites 

GC-05 55 Limestone: molluscan-, spicule-, 11.8 Quartz, microcline, chlorite ? (16.8) intraclast-, pelmatozoan-, bioclast-
bearing bored wackestone/packstone 
with stylolaminations 

GC-06 85 Limestone: bioclast-, molluscan-, 7.8 Quartz, microcline, ill i te, (25.9) pelmatozoan-bearing trilobite-rich kaolinite, chlorite 
intraclast grainstone with stylolites 

GC-07 123 Limestone: clay/limonite-, dolomite- 11.8 Quartz, microcline, plagioclase, (37.9) rhomb-bearing burrowed mudstone with kaolinite, illite, chlorite stylolites 

GC-08 145 Limestone: bioclast-, molluscan-, · 7.6 Quartz, plagioclase, microcline, (44.2) pelmatozoan-bearing intraclast kaolinite and chlorite traces burrowed grainstone with stylolites 
I.O ..... 



Sample 
Number 

GC-09 

GC-10 

GC-11 

GC-12 

GC-13 

GC-14 

Feet 
( Meters) 

175 
(53.3) 

205 
(62.5) 

227 
(69.2) 

256 
(78.0) 

286 
(87.2) 

310 
(94.5) 

Rock Name 

Limestone: Facies A: molluscan-, 
trilobite-, peloid-, pelmatozoan­
bearing intraclast packstone with 
stylolites Facies B: molluscan-, 
trilobite-, spicule-bearing Nuia-, 
intraclast-rich packstone/wackestone 
with stylolites Facies C: bioclast-, 
nautiloid-bearing Nuia grainstone with 
stylol ites --

Limestone: spicule-, pelmatozoan-, 
intraclast-, bioclast-bearing burrowed 
wackestone/packstone with stylolites 

Limestone: peloid-, brachiopod-, 
bioclast-bearing pelmatozoan-rich 
intraclast grainstone with stylolites 

Limestone: nodular burrowed mudstone 
with stylolites 

Limestone: clay-, trilobite-, 
bioclast-, spicule-bearing 
pelmatozoan-, peloid-, intraclast­
rich burrowed wackestone/packstone 
with stylolites 

Limestone: brachiopod-, trilobite-, 
bioclast-bearing pelmatozoan-, 
intraclast-rich burrowed packstone 

Percent Insoluble 
Insoluble Residue Composition 

6.9 Quartz, microcline, plagioclase, 
illite, chlorite trace · 

6.9 Quartz, microcline, plagioclase, 
illite, chlorite, kaolinite 

3.5 Quartz, plagioclase, microcline, 
chlorite, illite, kaolinite 

11.3 Quartz, microcline, illite, 
plagioclase, kaolinite, chlorite 

4.8 Quartz, microcline, plagioclase, 
illite, chlorite, kaolinite 

6.5 Quartz, microcline, plagioclase, 
kaolinite, chlorite, illite 

;,o 
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Sample 
Number 

GC-15 

GC-16 

GC-17 

GC- 18 

GC-19 

GC-20 

GC-21 

GC-22 

Feet 
(Meters) 

347 
(105.8) 

377 
(114.9) 

407 
(124.0) 

437 
(133.2) 

467 
(142.3) 

497 
(151.5) 

527 
(160.6) 

563 
(171.6) 

Percent Insoluble 
Insoluble Residue Composition 

Limestone: molluscan-, trilobite- 4.5 
bearing peloid-, pelmatozoan-rich 
intraclast planar-laminated grainstone 

Limestone: clay-, brachiopod-, Nuia-, 6.7 
peloid-bearing pelmatozoan-rich -­
grainstone/packstone with stylolites 

Limestone: peloid-, bioclast-bearing 5.2 
trilobite-, pelmatozoan-rich intraclast 
grainstone with stylolites 

Calcareous Shale 31.4 

Limestone: quartz-, bioclast-bearing 12.5 
pelmatozoan-rich intraclast grainstone 
with stylolites 

Limestone: molluscan-, trilobite-, 19.5 
pelmatozoan-bearing bioclast-rich 
burrowed (?) grainstone/packstone 
with styl ol ites 

Limestone: clay-rich burrowed 27.1 
mudstone with stylolites 

Limestone: bioclast-, pelmatozoan­
bearing intraclast grainstone/ 
packstone with stylolites 

8.7 

Quartz, plagioclase, microcline, 
chlorite, kaolinite 

Quartz, chlorite, plagioclase, 
microcline, kaolinite trace 

Quartz, plagioclase, microcline, 
i 11 i te trace 

Quartz, kaolinite, chlorite, 
plagioclase, illite 

Quartz, plagioclase, microcline, 
illite, mixed clay? 

Quartz, plagioclase, kaolinite, 
chlorite, microcline, illite 

Quartz, illite, unid. pk.@ 13, 
plagioclase, chlorite 

Quartz, plagioclase, chlorite, 
illite, microcline, kaolinite 



Sample Feet Percent Insoluble 
Number (Meters) Rock Name Insoluble Residue Composition 

GC-23 590 Limestone: dolomite-rhomb-, 8.5 Quartz, kaolinite, plagioclase, 
(179.8) trilobite-, molluscan-, peloid-, microcline 

bioclast-, pelmatozoan-bearing 
intraclast imbricated grainstone 
with stylol ites 

GC-25 617 Calcareous Shale: limy with 35.0 Quartz, kaolinite, illite, 
(188.1) stylolaminations plagioclase, chlorite, 

microcline trace 

GC-26 647 Limestone: chert-, trilobite-, 6.7 Quartz, plagioclase, microcline, 
(197.2) peloid-, bioclast-, molluscan-bearing ill ite 

pelmatozoan-rich intraclast 
grainstone with stylolites 

GC-27 677 Limestone: chert-, bioclast-, peloid- 13.7 Quartz, plagioclase, microcline, (206.3) bearing pelmatozoan-rich intraclast i 11 ite 
grainstone/packstone with stylolites 

GC-28 706 Limestone: bioclast-bearing Nuia- 10.4 Quartz, kaolinite, i 11 ite, (215.2) rich pelmatozoan intraclast -- microcline, chlorite trace 
packstone with stylolites 

GC-29 737 Limestone: trilobite-, quartz-, Nuia-, 7.1 Quartz, microcline, plagioclase, (224.6) biocl ast-, peloid-, molluscan-bear,ng i 11 i te, kaolinite, chlorite 
pelmatozoan intraclast grainstone/ 
packstone with stylolites 

GC-30 766 Limestone: Nuia-, molluscan-bearing 9.7 Quartz, plagioclase, microcline, (233.5) pelmatozoan-r1ch intraclast grainstone ill ite 
\'lith a burrowed fossiliferous 
wackestone upper with stylolites '° +:> 



Sample Feet Percent Insoluble 
Number (Meters) Rock Name Insoluble Residue Composition 

GC-31 807 Limestone: quartz-, brachiopod-, 23.1 Quartz, microcline, chlorite, 
(246.0) gastropod-, peloid-, pelmatozoan-, kaolinite, plagioclase, illite 

intraclast-bearing clay/shale-rich trace 
bioturbated burrowed packstone/ 
wackestone with stylolites 

GC- 32 857 Li me stone: Facies A: trilobite- 14.4 Quartz, microcline, kaolinite, (261.2) Nuia-, molluscan-, brachiopod-bearing i 11 ite, chlorite 
peloid-, grastropod-rich 
pelmatozoan packstone with stylolites 
Facies B: clay-, intraclast-bearing 
molluscan-rich Nuia pelmatozoan burrowed 
bioturbated gra1nstone/packstone with 
styl ol ites 

GC-33 887 Limestone: spicule-, molluscan-, 30.0 Quartz, microcline, illite 
(270.4) gastropod-, intraclast-, bioclast- trace 

bearing peloid-, shale-rich burrowed 
bioturbated packstone with stylolites 

GC-34 918 Limestone: molluscan-, intraclast- 2.5 Quartz, microcline 
(279.8) bearing pelmatozoan-rich Nuia 

grainstone with stylolite_s_ 

GC-35 947 Limestone: spicule-, bioclast-, 9.7 Quartz, microcline, chl orite, (288.6) dolomite-rhomb-, clay-, peloid- i 11 ite trace 
bearing burrowed bioturbated 
wackestone with stylolites 

GC-36 958 Limestone: quartz-, limonite-, 19.5 Quartz, microcline 
(292.0) peloid-bearing bioclast-rich 

burrowed wackestone with stylolites 
I.O 
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Sample 
Number 

GC-37 

GC-38 

GC-39 

GC-40 

GC-41 

GC-42 

GC-43 

Feet 
(Meters) 

988 
( 301.1) 

1016 
( 309. 7) 

1036 
(315.8) 

1044 
(318.2) 

1074 
(327.3) 

1127 
(343.5) 

1157 
(352.6) 

Percent Insoluble 
Rock Name Insoluble Residue Composition 

Limestone: quartz-, spicule-, 
clay-, pelmatozoan-bearing bioclast 
burrowed stylobrecciated wackestone 

13.6 Quartz, microcline, chlorite, 
kaolinite 

Dolostone: burrowed cherty with 
stylol ites 

45.4 

Limestone: clay-, bioclast-, dolomite- 15.6 
bearing burrowed peloid packstone with 
stylol ites 

Limestone: Facies A: Nuia-, 22.8 
trilobite-, spicule-, peloid-bearing 
bioclast pelmatozoan-rich burrowed 
wackestone with stylolites Facies B: 
trilobite-bearing nautiloid (?) 
wackestone with stylolites 

Limestone: Nuia-, trilobite-, 10.7 
brachiopod-, quartz-, molluscan-, 
dolomite-, intraclast-, peloid-
bearing bioclast-, pelmatozoan-rich 
wackestone with stylolites 

Limestone: peloid-, trilobite-, 21.9 
spicule-, gastropod-, pelmatozoan-
bearing dolomite wackestone with 
stylolites 

Limestone: gastropod-, quartz, 
pelmatozoan-, bioclast-bearing clay­
rich burrowed bioturbated wackestone/ 
packstone with stylolites 

9.8 

Quartz, microcline, illite 

Quartz, microcline, chlorite 
trace 

Quartz, kaolinite, microcline, 
chl orite trace 

Quartz, microcline 

Quartz, microcline, illite 
trace 

Quartz, microcline, illite 



Sample Feet Percent Insoluble Number (Meters) Rock Name Insoluble Residue Composition 
GC-44 1187 Limestone: quartz-, pelmatozoan- 23.9 Quartz, mi croc line, ill ite ( 361.8) bearing bioclast dolomite burrowed trace 

bioturbated packstone/wackestone with 
stylolites 

GC-45 1194 Dolostone: chert-bearing bioclast 11.8 Quartz, microcline (363.9) crystalline with stylolites 

GC-46 1213 Limestone: quartz-, molluscan-, 8.2 Quartz, microcline (369.7) trilobite-, Nuia-, pelmatozoan-, 
bioclast-bearl"ng dolomite-rich 
burrowed wackestone with stylolites 

GC-47 1224 Limestone: Nuia-, pelmatozoan-, 7.8 Quart, microcl ine (373.1) bioclast-bearl"ng quartz-rich peloid 
burrowed bioturbated wackestone with 
styl ol ites 



HIGH CREEK SECTION 3 

Sample Feet Percent Insoluble 
Number (Meters) Rock Name Insoluble Residue Composition 

HC-01* 3 Dolostone: crystalline with relict 1.8 Quartz. microcline 
(0.9) intraclasts, wavy silty partings 

HC- 02* 4 Dolostone: quartz-bearing crystalline 29.4 Quartz, microcline, 
( 1. 2) thin-laminated i 11 i te. kaolinite trace 

HC-03* 04.5 Dolostone: quartz-bearing crystalline 12.1 Quartz, mi croc 1 ine, i 11 i te. 
( 1.4) thin-laminated to wavy silty partings chlorite 

burrowed with stylolites 

HC-04* 13 Limestone: Facies A: quartz-, dolomite- 25.7 Quartz, microcline, ill ite, 
( 4) rhomb-, clay-bearing thin-laminated chlorite, kaolinite 

mudstone with stylolites Facies B: 
quartz-. pelmatozoan-. trilobite-. 
dolomite-rhomb-bearing graded wackestone 
with stylolites 

HC-05* 16 Dolostone: clay-bearing bioclast-rich 5.2 Quartz, microcline, ill i te. 
(4.9) crystalline intraclastic with stylolites chlorite trace 

HC-06* 37 Limestone: bioclast-bearing peloid 11.1 Quartz, microcline, chl orite. 
(11.9) laminated burrowed wackestone kaolinite. i 11 ite 

HC-07* 67 Limestone: trilobite-bearing 3.5 Quartz, microcline, ill ite 
(20.4) pelmatozoan-rich intraclast grainstone 

with stylol ites 

HC-09 97 Limestone: peloid-, intraclast-bearing 2.2 Quartz, microcline, 
(29.6) trilobite-rich pelmatozoan faintly- kaolinite, chlorite, i 11 ite 

laminated grainstone with stylolites 
I.O 
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Sample 
Number 

HC-10* 

HC-11* 

HC-12 

HC-13 

HC-14 

HC-15* 

Feet 
(Meters) 

127 
( 38. 7) 

157 
(47.8) 

187 
(57.0) 

218 
(66.4) 

248 
(75.6) 

278* 
( 84. 7) 

Percent 
Rock Name Insoluble 

Limestone: quartz-, limonite-, 9.4 
dolomite-, bioclast-bearing burrowed 
wackestone with stylolites 

Limestone: Facies A: hematite-, 2.8 
peloid-, pelmatozoan-bearing quartz-
rich laminated packstone with 
stylolites Facies B: trilobite-, 
conodont/lingula-, peloid-, bioclast-, 
quartz-bearing faintly-laminated 
burrowed packstone with stylolites 

Limestone: lingula-, dolomite-, 13.8 
trilobite-, bioclast-, clay-, quartz-, 
intraclast-bearing peloid burrowed 
packstone with stylolites 

Limestone: conodont/lingu ,la-, 16.4 
quartz-, pelmatozoan-bearing bioclast-, 
peloid-, dolomite-rich clay burrowed 
wackestone with stylolaminations 

Limestone: conodont/lingula-, 17.0 
hematite-, pelmatozoan-, quartz-, 
dolomite-bearing bioclast clay 
burrowed wackestone with 
stylolaminations 

Limestone: clay-, bioclast-, 9.1 
dolomite-bearing burrowed wackestone 

Insoluble 
Residue Composition 

Quartz, microcline, chlorite, 
illite, unid. pk.@ 7.7 

Quartz, microcline, 
kaolinite, chlorite, 
plagioclase, illite, 
smectite? 

Quartz, kaolinite, 
microcline, chlorite, 
plagiocl ase 

Quartz. ,microcline, 
chlorite, kaolinite, 
plagioclase, illite 

Quartz, microcline 
kaolinite, illite and 
chlorite traces 

Quartz, chlorite, 
microcline, kaolinite, 
illite, plagioclase 



Sample 
Number 

HC-16 

HC-17* 

HC-18* 

HC-19* 

HC-20* 

Feet 
(Meters) 

308 
(93.9) 

338 
(103.0) 

368 
(112.2) 

386 
(117.6) 

398 
(121.3) 

Percent 
Rock Name Insoluble 

Limestone: clay-, bioclast-, peloid-, 6.9 
trilobite-bearing intraclast-, 
pelmatozoan-rich burrowed wackestone 
with lenses of fossiliferous packstone 
stylolaminated to stylonodular 

Limestone: clay-, peloid-, intraclast-, 4.1 
trilobite-, pelmatozoan-bearing 
bioclast-rich partially-laminated 
burrowed wackestone with stylolites 

Limestone: lenses of pelmatozoan- 28.3 
bearing packstone in kaolinite-, 
quartz-, dolomite-, spicule-
bearing burrowed wackestone with 
stylolaminations 

Limestone: dolomite-rhomb-, clay-, 3.5 
bioclast-, trilobite-, pelmatozoan-
bearing sparite packstone with few 
stylolites 

Limestone: lenses of pelmatozoan- 19.3 
bearing packstone in limonite-, 
dolomite-, peloid-, bioclast-, 
spicule-bearing burrowed wackestone 
with stylolaminations 

Insoluble 
Residue Composition 

Quartz, microcline, 
plagioclase, kaolinite, 
chlorite, illite trace 

Quartz, plagioclase, 
microcline, illite, chlorite, 
kaolinite 

Quartz, microcline, 
kaolinite, plagioclase, 
chlorite, illite 

Quartz, kaolinite, 
unid. pk.@ 7.7, chlorite, 
microcline and plagioclase 
traces 

Quartz, chlorite, 
kaolinite, plagioclase, 
microcline, illite 

..... 
C> 
C> 



Sample 
Number 

HC-21* 

HC-22* 

HC-24 

HC-25* 

HC-26 

Feet 
(Meters) 

428 
(130.4) 

458 
(139.6) 

488 
( 148. 7) 

518 
(157.0) 

548 
(167 .0) 

Percent 
Rock Name Insoluble 

Limestone: Facies A: burrowed 19.3 
mudstone Facies B: Nuia-, trilobite-, 
brachiopod-, peloid-bearing 
pelmatozoan-, intraclast-rich packstone 
Facies C: quartz-, dolomite-, peloid-, 
bioclast-, pelmatozoan-bearing clay-rich 
Nuia laminated bioturbated packstone 
with styl ol ites 

Limestone: bioclast-, peloid-, 5.6 
trilobite-, molluscan-bearing 
pelmatozoan-rich intraclast faintly 
imbricated grainstone with stylolites 

Limestone: quartz-, pelmatozoan- 24.8 
bearing kaolinite-rich bioclast 
stylolaminated wackestone with lenses 
of thin-laminated fossiliferous 
packs tone 

Limestone: molluscan-, trilobite- 12.3 
bioclast-, peloid-, chert-bearing 
pelmatozoan-rich intraclast 
bioturbated packstone with stylolites 

Limestone: dolomite-, peloid-, 27.8 
quartz-bearing bioclast-, clay-, 
pelmatozoan-rich laminated packstone 
with stylolaminations 

Insoluble 
Residue Composition 

Quartz, plagioclase, 
chlorite, illite, microcline, 
kaolinite 

Quartz, plagioclase, 
chlorite, kaolinite, illite 

Quartz, plagioclase, 
kaolinite, microcline, 
chlorite, illite 

Quartz, plagioclase, 
kaolinite, chlorite, 
microcline, illite 

Quartz, kaolinite, 
plagioclase, chlorite, 
microcline 



Sample 
Number 

HC- 27* 

HC-28 

HC-29* 

HC-30 

HC-31* 

HC-32 

Feet 
(Meters) 

579 
(176.5) 

608 
(185.3) 

638 
(194.5) 

667 
(203.3) 

698 
(212.7) 

728 
(221.9) 

Percent 
Rock Name Insoluble 

Limestone: molluscan-, bioclast-, 6.8 
gastropod-bearing pelmatozoan-rich 
intraclast grainstone with lenses of 
fossiliferous quartz stylolaminated 
wackestone 

Limestone: molluscan-, trilobite-, 18.5 
pelmatozoan-bearing intraclast laminated 
packstone with stylolites 

Limestone: Nuia-, molluscan-, 12.6 
bioclast-, clay-, peloid-, trilobite-, 
dolomite-rhomb-bearing pelmatozoan-rich 
intraclast grainstone with stylolites 

Limestone: peloid-, dolomite-rhomb-, 4.9 
trilobite-, Nuia-bearing pelmatozoan-
rich intraclast imbricated grainstone 
with stylolites 

Limestone: trilobite-, peloid-, 8.8 
pelmatozoan-bearing intraclastic 
burrowed stylolitic packstone with 
lower lense of stylolaminated 
fossiliferous wackestone 

Limestone: bioclast-, spiculite- 24.2 
bearing burrowed stylolaminated 
mud stone 

Insoluble 
Residue Composition 

Quartz, plagioclase 
chlorite, kaolinite, illite 
and microcline traces 

Quartz, plagioclase, 
chlorite, illite, kaolinite, 
microcline 

Quartz, plagioclase 
chlorite, illite, microcline 

Quartz, kaolinite, 
plagioclase, chlorite, 
illite, unid. pk.@ 4, 
microcline trace 

Quartz, plagioclase, 
chlorite, kaolinite, 
microcline, illite 

Quartz, kaolinite, 
plagioclase, chlorite, 
illite and microcline traces 



Sample Feet Percent Insoluble 
Number (Meters) Rock Name Insoluble Residue Composition 

HC-33 758 Limestone: dolomite-rhomb-, peloid-, 4.6 Quartz, plagioclase 
(231.0) trilobite-bearing pelmatozoan-rich kaolinite, microcline 

intraclastic packstone with stylolites illite, chlorite, unid. pk. 

HC-34* 788 Limestone: quartz-, lingula-, 11.6 Quartz, kaolinite 
(240.2) intraclast-, clay-, bioclast-, plagioclase, chlorite, ill i te 

trilobite-, peloid-, Nuia-, 
pelmatozoan-bearing laiii"fnated burrowed 
grainstone/packstone with stylolites 

HC-35 818 L irnestone: quartz-, trilobite-, 19.9 Quartz, kaolinite, 
(249.3) kaolinite/limonite-, pelmatozoan- chlorite, mixed clays, 

bearing peloid planar-laminated plagioclase, microcline 
packstone with stylolites 

HC-36A* 848 Limestone: clay/limonite-, dolomite-, 8.8 Quartz, plagioclase, 
(258.5) biocl ast-, spicule-bearing burrowed mi croc l ine, kaolinite, 

wackestone with stylolites illite, chlorite, mixed clays 

HC-37* 878 Limestone: dasycladacean algae-, 9.1 Quartz, microcline, 
(267.6) Nuia-, peloid-, trilobite-, plagioclase, kaolinite, 

pelmatozoan-bearing intraclastic chlorite, mixed clays 
burrowed grainstone with stylolites 

HC-38* 908 Limestone: conodont/lingula-, 17. 4 Quartz, kaolinite, microcline, 
( 276. 7) dolomite-rhomb-, trilobite-, quartz-, pl agiocl ase, chlorite 

bioclast-bearing clay-, pelmatozoan-, 
Nuia-rich burrowed bioturbated 
packstone with stylolites ...... 

0 
w 



Sdmple 
Number 

HC-39 

HC-40* 

HC-41* 

HC-42* 

HC-43A 

HC-44* 

Feet 
(Meters) 

938 
(285.9) 

968 
(295.0) 

998 
(304.2) 

1028 
(313.3) 

1058 
(322.5) 

1088 
(331.6) 

Percent 
Rock Name Insoluble 

Limestone: dolomite-, spiculite, 15.9 
bioclast-, clay-, intraclast-bearing 
burrowed wackestone with stylolites 

Limestone: dolomite-rhomb-, Nuia-, 16.5 
bioclast-, chert-, clay-, peloTcl=", 
brachiopod-, trilobite-bearing 
intraclast-, pelmatozoan-rich packstone 
with stylolites 

Limestone: limonite-rhomb-, Nuia-, 24.3 
peloid-, trilobite-bearing intraclast-, 
pelmatozoan-rich cherty burrowed 
packstone with stylolites 

Limestone: chert-, dolomite-, 30.3 
pelmatozoan-, trilobite-, peloid-, 
bioclast-bearing packstone lenses in 
clay-rich burrowed stylolaminated 
wackes tone 

Limestone: peloid-, pelmatozoan-, 27.7 
dolomite-, bioclast-, quartz-bearing 
planar-laminated graded grainstone 
lenses in clay-rich wackestone with 
stylol ites 

Limestone: hematite-, Nuia-, 
trilobite-, quartz-bear~peloid­
rich pelmatozoan planar-laminated 
grainstone with stylolites 

4.5 

Insoluble 
Residue Composition 

Quartz, kaolinite, mixed clay 
microcline, plagioclase, . 
chlorite 

Quartz, plagioclase, 
microcline, kaolinite, chlorite, 
i 11 i te trace 

Quartz, plagioclase, 
microcline, kaolinite, chlorite 

Quartz, kaolinite, microcline, 
chl ori te, i 11 ite 

Quartz, kaolinite, microcline, 
chlorite, illite, mixed clay 

Quartz, microcline, kaolinite, 
chlorite, illite, mixed clay 

...... 
0 _.,,. 



Sample Feet Percent Insoluble Number (Meters) Rock Name Insoluble Residue Composition 

HC-45 1118 Limestone: pelmatozoan-, bioclast-, 22.4 Quartz, microcline, kaolinite, (340.8) clay-, quartz-bearing graded planar- chlorite, plagioclase 
laminated burrowed wackestone with 
stylolaminations 

HC-46* 1125 Limestone: gastropod-, trilobite-, 5.2 Quartz, microcline, kao 1 i ni te. (342.9) peloid-, bioclast-, dolomite-rhomb-, chlorite, i 11 i te 
intraclast-bearing Nuia-rich 
pelmatozoan burrowedJ)ackstone with 
stylolites 

HC-47 1155 Limestone: trilobite-, bioclast- 7.8 Quartz, microcline, kaolinite, (352.0) bearing recrystallized bioclast-rich chlorite 
intraclast packstone with stylolites 

HC-48* 1185 Limestone: quartz-, peloid-, 10.5 Quartz, microcline, kaolinite, (361.2) trilobite-, calcite-rhomb-, clay-, chlorite 
dolomite-rhomb-, intraclast-bearing 
Nuia burrowed packstone with stylolites 

HC-49 1197 Limestone: pelmatozoan-, clay-, 14.4 Quartz, microcline, kaolinite, (364.8) trilobite-, quartz-bearing sponge- chlorite, illite, mixed clay 
rich dasycladacean algae burrowed 
packstone with stylolites 

HC-50* 1215 Limestone: pelmatozoan-, dolomite-, 8.1 Quartz, microcl ine, chlorite, (370.3) trilobite- recrystallized bioclast-, i 11 ite, kaolinite 
quartz-, spicule-bearing dolomite-
rhomb laminated burrowed wackestone 
with stylolites ..... 

,:::> 
u, 



Sample 
Number 

HC-51* 

HC-52* 

HC-53 

HC-54 

HC-55* 

HC-56* 

Feet 
(Meters) 

1257 
(383.1) 

1287 
(392.3) 

1323 
(403.2) 

1353 
(412.4) 

1380 
(420.6) 

i406 
(428.5) 

Percent 
Rock Name Insoluble 

Limestone: Facies A: quartz-. 23.0 
peloid-, brachiopod-, intraclast-, 
pelmatozoan-, bioclast-, Nuia-, 
trilobite-, dolomite-bear~cherty 
burrowed grainstone Facies B: 
trilobite-, bioclast-, dolomite-, 
quartz-bearing chert-rich burrowed 
wackestone with stylolites 

Limestone: ostracod-, peloid-, 9.4 
quartz-, pelmatozoan-, calcite-
rhomb-, spicule-, bioclast-
bearing burrowed partially-
laminated packstone with stylolites 

Limestone: trilobite-, pelmatozoan-, 21.0 
bioclast-, quartz-, ostracod-bearing 
peloid-, chert-rich burrowed 
packs tone 

Chert: dolomite-, calcite-bearing 78.2 
spicule-rich laminated mega, 
chalcedony and microcrystalline chert 

Dolomitic Calcareous Chert: lenses of 72.2 
bioclast-, peloid-bearing packstone 
in limonite-bearing dolomite-, spicule­
rich chert with stylolites 

Limestone: ostracod-, bioclast-, 
pelmatozoan-, spicule-, limonite-, 
trilobite-, peloid-bearing dolomite­
rhomb burrowed partially-laminated 
packstone with stylolites 

7.5 

Insoluble 
Residue Composition 

Quartz, microcline, trace of 
chlorite 

Quartz, microcline, chlorite, 
kaolinite, illite 

Quartz, microcline, chlorite 
and illite and kaolinite traces 

Quartz, microcline, illite, 
mixed clay 

Quartz, microcline 

Quartz, microcline, illite 
and kaolinite traces 



Sample Feet Percent Insoluble 
Number (Meters) Rock Name Insoluble Residue Composition 

HC-57 1414 Limestone: quartz-, bioclast-, 13.0 Quartz, microcline, chlorite, 
(431.0) pelmatozoan-, peloid-, spicule-, kaolinite, illite trace 

calcite-rhomb-, clay-bearing 
burrowed wackestone with stylolites 

HC-58* 1444 Limestone: quartz-, pelmatozoan-, 29.5 Quartz, microcline 
(440.1) ostracod-, limonite-, bioclast-, 

spicule-, peloid-bearing dolomite-
rich cherty burrowed packstone with 
stylolites 

HC-59* 1474 Limestone: clay-, trilobite-, 16.4 Quartz, microcline, chlorite 
(449.3) spicule-, dolomite-rhomb-, Nuia-, 

pyrite-, pelmatozoan-, bioclast-
bearing quartz-rich burrowed 
wackestone with stylolites 

HC-60 1504 Limestone: clay-, quartz-, 14.9 Quartz, microcline, chlorite 
(458.4) intraclast-, peloid-, ostracod-, 

trilobite-, spicule-bearing burrowed 
wackestone with stylolites 

HC-61* 1534 Limestone: brachiopod-, clay-, 10.0 Quartz, microcline, chlorite 
(467.6) trilobite-, pelmatozoan-, calcite- and kaolinite traces 

rhomb-, quartz-, ostracod-bearing 
bioclast-, spicule-rich burrowed 
bioturbated wackestone 

HC-62 1565 Dolostone: chert, quartz-bearing 7.6 Quartz, microcline 
(477.0) burrowed crystalline with stylolites 

HC-63 1582 Dolostone: chert-, quartz-, 7.9 Quartz, microcline, kaolinite, 
(482.2) sparite-bearing micrite-rich i 11 ite ...... 

0 fossiliferous burrowed with stylolites -...J 



Sample 
Number 

HC-64 

HC-65 

HC-66* 

Feet 
(Meters) 

1612 
(491.3) 

1631 
(497.2) 

1633 
(497.7) 

Percent Insoluble 
Rock Name Insoluble Residue Composition 

Dolostone: chert-, sparite-, quartz-, 6.6 Quartz, microcline, illite 
bearing burrowed bioturbated with trace 
stylolites 

Siliceous Dolostone: quartz 22.7 Quartz, microcline, chlorite 
burrowed bioturbated with stylolites and illite traces 

Siliceous Limestone: brachiopod-, 38.7 Quartz, microcline, illite 
pelmatozoan-, Nuia-, bioclast-, 
dolomite-bearing quartz burrowed 
wackestone 

..... 
0 
co 



MANTUA SECTION 4 

Sample Feet Percent Insoluble 
Number (Meters) Rock Name Insoluble Residue Composition 

M-01 2 Dolostone: bioclast-, intraclast- 8.8 Quartz, i 11 i te, kaolinite, 
(0.6) bearing crystalline with stylolites microcline 

M-02 10 Dolostone: stromatolitic chert ------
(3.0) crystalline 

M-03 40 Limestone: bioclast-, spicule- 15.7 Quartz, microcline, il 1 i te 
(12.2) bearing chert-rich graded burrowed 

wackestone with stylolites 

M-04 70 Limestone: molluscan-, peloid- 7.7 Microcline, quartz, ill ite 
(21.3) bearing trilobite-, intraclast-rich 

pelmatozoan grainstone with stylolites 
and laminated lenses 

M-05 100 Limestone: pelmatozoan-, molluscan-, 8.6 Quartz, microcline, i 11 i te 
(30.5) trilobite-, quartz-, dolomite-rhomb- chl orite. kaolinite 

bearing intraclast packstone with 
lenses of nodular stylolitic wackestone 

M-06 131 Limestone: Nuia-, trilobite-. 3.5 Quartz, microcline, chlorite, 
(39.9) pelmatozoan- b1oclast-bearing peloid- i 11 i te, kaolinite 

rich intraclast burrowed packstone with 
stylolites 

M-07 150 Limestone: pelmatozoan-, quartz-. 9.5 Quartz, microcline, kaolinite, 
( 45. 7) molluscan-bearing bioclast grainstone chlorite, illite trace 

in quartz-, clay-, bioclast-bearing 
nodular packstone with stylolites ....... 

0 
I.O 



Sample Feet Percent Insoluble 
Number (Meters) Rock Name Insoluble Residue Composition 

M-00 152 Limestone: trilobite-, pel matozoan-, 4.6 Quartz, microcline, plagioclase, (46.3) clay-bearing intraclast grainstone illite and chlorite traces 
with stylolites 

M-11 180 Limestone: pelmatozoan-, bioclast-, 6.5 Quartz, microcline, chlorite 
(54.9) spicule-bearing sponge (?)-rich trace 

wackestone with stylolites 

M-09 182 Limestone: clay-, hematite-, 16.0 Quartz, microcline, plagioclase, 
(55.5) bioclast-, quartz-bearing nodular kaolinite, illite, chlorite 

wackes tone with stylolites trace 

M- 10 212 Limestone: peloid-bearing nodular 6.4 Quartz, microcline, i 11 i te, 
(64.6) wackestone with stylolites chlorite trace 

M-13 241 Limestone: Facies A: clay-bearing 7.5 Quartz, microcline, i 11 ite, (73.5) burrowed mudstone with stylolites kaolinite 
Facies B: molluscan-, peloid-, 
dolomite-rhomb-, trilobite-, 
pelmatozoan-bearing bioclast-rich 
burrowed packstone with stylolites 
Facies C: peloid-, Nuia-, hematite-, 
dolomite-rhomb-, molluscan-, 
pelmatozoan-bearing bioclast-, 
trilobite-, gastropod-rich packstone 
with stylolites 

M-12 242 Limestone: hematite-, peloid-, 11.3 Quartz, microcline, kaolinite, 
(73.0) molluscan, trilobite-, pelmatozoan-, chlorite, i 11 ite 

clay-bearing nodular wackestone 
with stylolites 

...... 

...... 
0 



Sample 
Number 

M-14 

M-15 

M-16 

M-17 

M-18 

M-19 

M-20 

M-21 

Feet 
(Meters) 

272 
(82.9) 

302 
(92.0) 

332 
(101.2) 

362 
(110.3) 

392 
(119.5) 

422 
(128.6) 

452 
(137.8) 

482 
(146.9) 

Percent 
Rock Name Insoluble 

Limestone: Nuia-, trilobite-, 5.9 
molluscan-, peloid-bearing gastropod 
packstone with stylolites 

Limestone: pelmatozoan-, bioclast- 58.0 
bearing peloid-, clay-rich thin-
laminated grainstone with mud cracked 
(?) burrowed clay seams with stylolites 

Limestone: pelmatozoan-, bioclast- 31.0 
bearing Nuia-rich clay burrowed nodular 
wackestone with stylolites 

Limestone: clay/limonite-, dolomite- 3.8 
rhomb-, molluscan-, peloid-, 
brachiopod-, intraclast-, trilobite-, 
gastropod-, Nuia-bearing pelmatozoan-rich 
grainstone/packstone 

Shale: bioclast-bearing quartz-rich 65.5 
planar-laminated grainstone (limestone) 
lenses in shale 

Limestone: shaly burrowed nodular 
mud stone 

Limestone: shaly burrowed nodular 
mudstone with stylolites 

Limestone: bioclast-bearing shaly 
burrowed thin-laminated mudstone with 
stylolites 

32.1 

37.2 

22.2 

Insoluble 
Residue Composition 

Quartz, microcline, plagioclase, 
kaolinite, chlorite and illite 
traces 

Quartz, chlorite, plagioclase, 
illite, microcline, kaolinite 

Quartz, kaolinite, chlorite, 
microcline, plagioclase, illite 

Quartz, microcline, kaolinite, 
illite, chlorite, plagioclase 

Quartz, illite, kaolinite, 
chlorite, microcline, 
plagioclase 

Quartz, kaolinite, illite, 
chlorite, plagioclase, 
microcline trace 

Quartz, illite, kaolinite, 
plagioclase, microcline 

Quartz, illite, plagioclase, 
microcline, kaolinite, chlorite 



Sample 
Number 

M-22 

M-23 

M-24 

M-25 

M-26 

M-27 

Feet 
(Meters) 

512 
(156.1) 

542 
(165.2) 

572 
(174.3) 

602 
(183.5) 

632 
( 192.6) 

662 
( 201.8) 

Percent 
Rock Name Insoluble 

Limestone: trilobite-, peloid-, 4.6 
bioclast-bearing pelmatozoan 
intraclast imbricated grainstone 
with stylolites 

Limestone: trilobite-, quartz-, 15.8 
pelmatozoan-, peloid-, molluscan-
bearing shale-rich intraclast 
grainstone/packstone 

Limestone: quartz-, clay-, bioclast- 37.1 
bearing intraclast planar-laminated and 
nodular wackestone with stylolites 

Limestone: trilobite-, peloid-, 25.0 
brachiopod-, bioclast-, Nuia-bearing 
intraclast grainstone with lenses 
of planar-laminated shale-, bioclast­
bearing packstone with stylolites 

Limestone: bioclast-, pelmatozoan-, 42.5 
molluscan-, trilobite-, quartz-bearing 
shaly planar-laminated nodular 
wackestone with lenses of fossiliferous 
grainstone with stylolites 

Shale: clay-, trilobite-, quartz-, 
pelmatozoan-, bioclast-bearing 
packstone lenses in faintly-laminated 
shale 

59.8 

Insoluble 
Residue Composition 

Quartz, plagioclase, illite, 
microcline, kaolinite, c~lorite 

Quartz, plagioclase, microcline, 
kaolinite, illite, chlorite 

Quartz, illite, plagioclase, 
kaolinite, microcline, chlorite 

Quartz, plagioclase, illite, 
kaolinite, chlorite 

Quartz, plagioclase, microcline, 
illite, kaolinite, chlorite 

Quartz, kaolinite, illite, 
chlorite, plagioclase, 
microcline 

....... 

....... 
N 



Sample 
Number 

M-28 

M-29 

M-30 

M-31 

M-32 

M-33 

Feet 
(Meters) 

692 
(210.9) 

722 
(220.1) 

752 
(229.2) 

782 
{238.4) 

812 
(247.5) 

842 
(256.6) 

Percent 
Rock Name Insoluble 

Limestone: trilobite-, pelmatozoan-, 28.7 
molluscan-, quartz-, bioclast-bearing 
intraclast-rich shaly bioturbated 
packstone with stylolites 

Limestone: trilobite-, molluscan-, 37.8 
quartz-bearing bioclast-, shale-rich 
planar thin-laminated nodular 
mudcracked(?) burrowed(?) wackestone 
with stylolites 

Limestone: peloid-, Nuia-, molluscan-, 10.6 
trilobite-bearing pelmatozoan-rich 
intraclast grainstone with stylolites 

Limestone: trilobite-, quartz-, clay-, 14.0 
molluscan-, intraclast-, pelmatozoan-
bearing bioclast-rich burrowed 
bioturbated packstone/wackestone with 
stylolites 

Limestone: bioclast-, molluscan-, 5.9 
spicule-, trilobite-, peloid-, 
gastropod-bearing pelmatozoan-, intraclast-
rich burrowed packstone/wackestone with 
stylolites 

Limestone: gastropod-, peloid-, 9.3 
intraclast-, molluscan-, Nuia-bearing 
bioclast-, pelmatozoan-ricng"rainstone 
with stylolites 

Insoluble 
Residue Composition 

Quartz, plagioclase, kaolinite, 
microcline, chlorite, illite 

Quartz, chlorite, kaolinite, 
illite, microcline, plagioclase 

Quartz, microcline, illite, 
kaolinite and chlorite traces 

Quartz, microcline, chlorite, 
i 11 i te, kaolinite 

Quartz, microcl ine, kaolinite, 
i 11 i te, chlorite 

Quartz, microcline, kaolinite, 
illite and chlorite traces 

...... ...... 
w 



Sample 
Number 

M-34 

M-35 

M-36 

M-37 

M-38 

M-39 

Feet 
(Meters) 

872 
(265.8) 

902 
(274.9) 

932 
(284.1) 

958 
(292.0) 

982 
(299.3) 

1012 
(308.5) 

Percent 
Rock Name Insoluble 

Limestone: quartz-, bioclast-bearing 24.5 
shaly nodular bedded wackestone with 
quartz-, pelmatozoan-bearing peloid-
rich hummocky cross-stratified lenses 
of packstone 

Limestone: pelmatozoan-, quartz- 33.9 
bearing shaly nodular bedded rippled 
(?) laminated wackestone with stylolites 

Limestone: trilobite-, quartz-, 2.9 
spicule-bearing pelmatozoan-, peloid-
rich intraclast burrowed packstone/ 
grainstone with stylolites 

Limestone: quartz-, dolomite-rhomb-, 13.2 
brachiopod-, molluscan-, peloid-, 
intraclast-bearing trilobite-, bioclast~. 
pelmatozoan-rich burrowed grainstone/ 
packstone with stylolites 

Limestone: quartz-, dolomite-rhomb-, 5.9 
Nuia-, intraclast-, peloid-, brachiopod-, 
trilobite-bearing molluscan-rich 
pelmatozoan burrowed grainstone with 
stylolites 

Limestone: Nuia-, clay-, trilobite-, 15.8 
dolomite-rhomb-, gastropod-, molluscan­
bearing intraclast-rich pelmatozoan 
burrowed packstone with stylolites 

Insoluble 
Residue Composition 

Quartz, microcline, illite, 
chlorite, kaolinite 

Quartz, microcline, chlorite, 
illite, kaolinite, plagioclase 

Quartz, microcline, kaolinite, 
illite, chlorite 

Quartz, microcline 

Quartz, microcline 

Quartz, microcline, kaolinite 



Sample 
Number 

M-40 

M-41 

M-42 

M-43 

M-44 

M-45 

M-46 

Feet 
(Meters) 

1042 
(317.6) 

1072 
(326.7) 

1102 
(335.9) 

1128 
(343.8) 

1158 
(353.0) 

1188 
(362.1) 

1218 
( 371. 2) 

Percent 
Rock Name Insoluble 

Limestone: clay-bearing Nuia burrowed 7.9 
grainstone with stylolite_s_ 

Limestone: clay-, quartz-, molluscan-, 18.2 
bioclast-, peloid-, pelmatozoan-bearing 
Nuia-rich burrowed bioturbated 
wackestone/packstone with stylolites 

Limestone: ostracod-, clay-, dolomite- 8.9 
rhomb-, peloid-, molluscan-, 
pelmatozoan-, spicule-bearing 
bioclast-rich burrowed bioturbated 
wackestone with stylolites 

Limestone: trilobite-, gastropod-, 22.4 
pelmatozoan-, spicule-, quartz-
bearing chert bioturbated burrowed 
wackestone/packstone with stylolites 

Limestone: quartz-, spicule-, 11.6 
bioclast-, peloid-, chert-bearing 
burrowed wackestone 

Chert: quartz-bearing peloid- 63.3 
rich packstone limestone lenses in 
chert with stylolites 

Limestone: clay-, shale-, quartz-, 
molluscan-, pelmatozoan-, spicule­
bearing bioclast-rich burrowed 
bioturbated wackestone with 
stylolites 

17.1 

In soluble 
Residue Composition 

Quartz, microcline, illite, 
chlorite trace 

Quartz, microcline, illite 

Quartz, microcline, illite 

Quartz, microcline 

Quartz, microcline 

Quartz, microcline, mixed clay 
(?) 

Quartz, microcline, illite 
trace 



Sample Feet Percent In soluble Number ( Meters) Rock Name Insoluble Residue Composition 

M-47 1227 Limestone: pelmatozoan-, ostracod-, 30.9 Quartz, microcline, ill i te (374.0) shale-, quartz-, spicule-bearing 
bioclast-rich bioturbated burrowed 
wackestone with stylolites 

M-48 1247 Limestone: quartz-, shale-, bioclast-, 30.9 Quartz, microcline, i 11 i te (380.1) bearing Nuia-, chert-rich burrowed 
bioturba~wackestone/packstone 
with stylolites 

M-49 1257 Limestone: trilobite-, spicule-, 17.5 Quartz, microcline, ill i te (383.1) shale-, pelmatozoan-, peloid-, quartz-, 
Nuia-bearing bioclast-rich burrowed 
DToturbated wackestone with stylolites 

M-50 1287 Dolostone: hematite-, quartz-bearing 20.5 Quartz, microcline, chlorite (392.3) bioclast-rich burrowed bioturbated trace 
crystalline with stylolites 

M-51 1307 Dolostone: shale-bearing quartz-rich 7.7 Quartz, microcline, ill i te (398.4) with stylolites 

M-52 1347 Dolostone 22.4 Quartz, microcline (410.5) 

M-53 1377 Dolostone: quartz-, calcite-bearing, 4.1 Quartz, microcline, ill i te (419.7) crystalline with wavy horizontal trace 
void fillings (stromatactis ?) and 
stylolites 

M-54 1407 Dolostone: quartz-rich crystalline 6.3 Quartz, mi croc l ine, i 11 i te (428.8) trace ...... 
...... 
O'l 



Sample 
Number 

i-1-01 

W-02 

W-03 

W-04 

W-05 

H-06 

Feet 
(Meters) 

1 
( 0. 3) 

21 
(6.4) 

48 
(14.6) 

78 
(23.8} 

108 
(32.9} 

137 
(41.8} 

WELLSVILLE SECTION 5 

Percent 
Rock Name Insoluble 

Dolostone: calcite-bearing intraclast 4.5 
er ysta 11 i ne with stylolites 

Dolostone: intraclast crystalline 8.1 
with stylolites 

Limestone: clay-, trilobite-, quartz-, 5.4 
molluscan-, spicule-bearing bioclast-
rich burrowed bioturbated wackestone 
with a lower thin-laminated pelmatozoan-
rich packstone with stylolites 

Limestone: pelmatozoan-, spicule-, 19.3 
shale-bearing clay-, bioclast-rich 
nodular wackestone with stylolites 

Limestone: clay-, spicule-, quartz-, 18.7 
dolomite/calcite-rhomb-, hematite-, 
peloid-, bioclast-, pelmatozoan-bearing _ 
intraclast burrowed planar-laminated 
packstone/wackestone with stylolites 

Limestone: quartz-, molluscan-, 
trilobite-, spicule-, bioclast-, 
peloid-, pelmatozoan-bearing graded 
faintly-laminated wackestone/packstone 
with stylolites 

8.3 

Insoluble 
Residue Composition 

Quartz, microcline 

Quartz, microcline, il 1 i te, 
trace 

Quartz, microcline, chlorite, 
i 11 i te, kaolinite 

Quartz, microcline, kaolinite, 
chlorite, illite 

Quartz, microcline, illite, 
kaolinite 

Quartz, microcline, illite, 
chlorite, kaolinite, 
plagioclase ? 

...... ...... 
-...J 



Sample Feet Percent Insoluble Number (Meters) Rock Name Insoluble Residue Composition 
W-07 140 Limestone: Nuia-, trilobite-, 5.8 Quartz, microcl ine, ill i te ( 42. 7) spicule-, intraclast-, pelmatozoan-, 

bioclast-, peloid-bearing burrowed-
clotted fabric wackestone with 
stylol ites 

W-08 169 Limestone: pelmatozoan-, spicule-, 6.3 Quartz, microcline, i 11 ite, (51.5) bioclast-, trilobite-bearing peloid- chlorite, kaolinite trace 
rich intraclast burrowed packstone/ 
wackestone with stylolites 

W-09 180 Limestone: brachiopod-, quartz-, 7.6 Quartz, microcline, chl orite, (23.5) trilobite-, molluscan-bearing kaolinite, i 11 i te 
intraclast-, peloid-rich pelmatozoan 
planar-laminated grainstone with 
stylol ites 

W-10 210 Limestone: quartz-, clay-bearing 16.1 Quartz, microcline, i 11 ite, (64.0) bioclast-rich stylonodular burrowed kaolinite, chlorite wackestone/packstone 

W-12 237 Limestone: pelmatozoan-, bioclast- 12.8 Quartz, i 11 i te, kaolinite, (72.2) bearing sponge(?) wackestone with microcline 
stylol ites 

W-11 240 Limestone: spicule-, hematite-, 8.9 Quartz, microcline, chl orite, (73.1) clay-, peloid-, bioclast-bearing i 11 ite, kaolinite 
burrowed stylonodular wackestone 

W-13 270 Limestone: trilobite-, molluscan- 5.1 Quartz, microcline, i 11 ite, (82.3) bearing pelmatozoan-, peloid-rich kaolinite f--' intraclast grainstone/packstone f--' 
00 



Sample 
Number 

W-14 

W-16 

H-17 

W-18 

W-19 

H-20 

Feet 
(Meters) 

300 
(91.4) 

327 
( 99. 7) 

360 
( 109. 7) 

390 
( 118. 9) 

425 
(129. 5) 

437 
(133.2) 

Percent 
Rock Name Insoluble 

Limestone: spicule-, peloid-, 10.5 
trilobite-, pelmatozoan-, chert-, 
bioclast-bearing intraclast-rich 
burrowed bioturbated wackestone/ 
packstone with stylolites 

Limestone: bioclast-, peloid-, 5.3 
trilobite-, molluscan-bearing 
gastropod-, pelmatozoan-rich 
intraclast shell-cast grainstone/ 
packstone with stylolites 

Limestone: intraclast-, clay-, 16.9 
bioclast-, dolomite-rhomb-bearing 
pelmatozoan-rich Nuia bioturbated 
packstone with styloTites 

Limestone: spicule-, bioclast-, 18.3 
clay-bearing stylolaminated burrowed 
wackes tone 

Limestone: Facies A: bioclast- 4.2 
bearing pelmatozoan-, peloid-rich 
intraclast burrowed grainstone/ 
packstone with stylolites Facies B: 
chert-, peloid-, brachiopod-bearing 
pelmatozoan grainstone 

Shale: quartz-, trilobite-, bioclast- 66.2 
pelmatozoan-bearing graded faintly-
laminated lenses of packstone in shale 

Insoluble 
Residue Composition 

Quartz, microcline, illite, 
kaolinite, chlorite trace 

Quartz, microcline, kaolinite, 
illite, chlorite trace 

Quartz, illite, microcline 

Quartz, illite, microcline, 
chlorite 

Quartz, microcline, kaolinite, 
illite, chlorite trace 

Quartz, kaolinite, illite, 
chlorite, microcline 



Sample Feet Percent Insoluble 
Number (Meters) Rock Name Insoluble Residue Composition 

W-37 455 Limestone: spicule-, dolomite- 20.5 Quartz, plagioclase, microcline, 
( 138. 7) rhomb-, clay-, peloid-, pelmatozoan-, i 11 ite, chlorite trace 

bioclast-bearing intraclast-rich 
burrowed bioturbated faintly planar-
laminated grainstone/wackestone with 
stylol ites 

W-36 485 Limestone: molluscan-, peloid-, clay-, 9.5 Quartz, microcline, kaolinite, 
(147.8) trilobite-, pelmatozoan-bearing i 11 i te, chl orite 

intraclast faulted grainstone with 
stylolites 

W-35 516 Limestone: pelmatozoan-, peloid-, 39.1 Quartz, microcline, i 11 i te, 
(157.3) molluscan-, clay-, bioclast-, shale- plagioclase, kaolinite 

bearing wackestone/packstone with 
stylolites 

W-34 545 Limestone: spicule-, quartz-, 28 .1 Quartz, plagioclase, i 11 i te, 
(166.1) pelmatozoan-, bioclast-bearing shale-, mi crocl ine, kaolinite 

clay-rich burrowed nodular wackestone 
with stylolites 

W-33 575 Limestone: hematite-, spicule-, 20.7 Quartz, microcline, illite, 
(175.3) tiolobite-, peloid-, clay-, brachiopod- plagioclase, mixed clay? 

bearing bioclast-, pelmatozoan-, shale-
rich burrowed bioturbated stylonodular 
pack stone 

W-32 605 Limestone: trilobite-, brachiopod-, 11.2 Quartz, microcline, i 11 i te, 
(184.4) quartz-. clay-, bioclast-, pelmatozoan- chlorite trace 

bearing intraclast planar-laminated 
packstone with stylolites ...... 

N 
0 



Sample 
Number 

H-31 

W-30 

W-29 

W-28 

W-27 

Feet 
(Meters) 

635 
(193.5) 

665 
( 202. 7) 

695 
( 211.8) 

725 
(221.0) 

755 
(230.1) 

Percent 
Rock Name Insoluble 

Limestone: trilobite-, clay-, 8.2 
bioclast-, brachiopod-, molluscan-, 
shell-cast-, pelmatozoan-bearing 
intraclast grainstone with stylolites 
with a lower and upper micrite-clay 
mudstone with stylolites 

Limestone: dolomite-rhomb-, trilobite-, 10.9 
brachiopod-, molluscan-, bioclast-, 
pelmatozoan- bearing intraclast 
burrowed packstone/wackestone with 
stylolites 

Limestone: clay-, trilobite-, 19.7 
molluscan-, peloid-, pelmatozoan-
bearing intraclast bioturbated 
packstone with stylolites with a 
lower bioclast-bearing faintly-
laminated wackestone with stylolites 

Limestone: molluscan-, spicule-, 6.3 
trilobite-, gastropod-, dolomite-
rhomb-, pelmatozoan-bearing 
intraclast-, Nuia-rich packstone 
with stylolit~ 

Limestone: clay-, pelmatozoan- 15.8 
bearing spicule-rich peloid burrowed 
bioturbated packstone with stylolites 

Insoluble 
Residue Composition 

Quartz, microcline, illit~, 
chl orite trace 

Quartz, microcline, illite 

Quartz, illite, microcline, 
pl agiocl ase 

Quartz, microcline, illite 

Quartz, microcline, illite 

...... 
N ...... 



Sample Feet Percent Insoluble 
Number (Meters) Rock Name Insoluble Residue Composition 

\l-26 785 Limestone: clay-, chert-, quartz-, 15.6 Quartz, microcline, i 11 i te, 
(239.3) calcite-rhomb-, Nuia-, peloid-, chl orite trace 

bioclast-, pelmatozoan-bearing 
intraclast packstone with stylolites 

W-25 815 Limestone: molluscan-bearing peloid-, 24.4 Quartz, microcline 
(248.4) pelmatozoan-, bioclast-rich shaly 

bioturbated burrowed packstone 

H-24 845 Limestone: quartz-, molluscan-, 36.1 Quartz, microcline, illite 
(257.6) peloid-bearing bioclast-, pelmatozoan-

rich shaly burrowed bioturbated 
packstone with stylolites 

W-23 875 Limestone: molluscan-, bioclast-, 9.3 Quartz, microcline, ill ite, 
( 266. 7) peloid-, shale-, pelmatozoan-bearing kaolinite trace 

intraclast inbricated grainstone 
with stylolites 

H-22 905 Limestone: molluscan-, shale-, 8.6 Quartz, microcline, ill i te 
(275.8) trilobite-, peloid-bearing pelmatozoan- and kaolinite and chlorite 

rich intracalst imbricated grainstone/ traces 
packstone with stylolites 

H-59 912 Limestone: clay-, molluscan-, 9.2 Quartz, kaolinite, chlorite, 
(278.0) trilobite-bearing pelmatozoan-rich mi croc line, i 11 ite 

Nuia burrowed grainstone with stylolites 

W-21 913 Limestone: peloid-, bioclast-, 7.4 Quartz, microcline, i 11 ite 
(278.3) trilobite-bearing pelmatozoan-rich 

intraclast imbricated grainstone with 
stylolites ...... 

N 
N 



Sample Feet Percent Insoluble Number (Meters) Rock Name Insoluble Residue Composition 

W- 58 942 Limestone: shaly mudstone with 37.1 Quartz, kaolinite, microcline, (287.1) stylolites chl orite, i 11 ite 
W-57 972 Limestone: trilobite-, bioclast-, 5.4 Quartz, microcline, kaolinite, (296.3) peloid-, gastropod-, pelmatozoan- chl orite, i 11 ite trace 

bearing clay-rich planar-laminated 
packstone with stylolites 

W-56 984 Limestone: bioclast-, dolomite-bearing 25.9 Quartz, microcline, kao 1 i ni te, (300.0) Nuia-, pelmatozoan-rich clay burrowed chlorite, ill ite 
grafnstone/packstone with stylolites 

H-55 1015 Limestone: bioclast-, dolomite-bearing 8.5 Quartz, microcline, kaolinite, (309.1) Nuia burrowed grainstone with stylolites chlorite 
H-54 1043 Limestone: quartz-. pelmatozoan-, 10.5 Quartz, microcline, kaolinite, (317.9) bioclast-bearing peloid-rich Nuia chlorite 

planar-laminated grainstone/packstone 
with stylolites 

W-53 1044 Limestone: clay-, molluscan-, 3.9 Quartz, microcline 
(318.2) gastropod-, pelmatozoan-, bioclast-

bearing Nuia burrowed grainstone/ 
packstone with stylolites 

W-52 1074 Limestone: trilobite-, spicule-, 7.2 Quartz, microcline, ill i te (327.3) gastropod-, pelmatozoan-, Nuia-, trace 
dolomite-, peloid-, clay-, b1oclast-
bearing burrowed bioturbated 
wackestone with stylolites 

....... 
N 
w 



Sample 
Number 

W-51 

W-50 

W-49 

W-48 

W-47 

W-46 

Feet 
(Meters) 

1104 
(336.5) 

1123 
(342.3) 

1153 
(351.4) 

1183 
(360.6) 

1203 
( 366. 7) 

1233 
(375.8) 

Percent 
Rock Name Insoluble 

Limestone: clay-, brachiopod-, 9.8 
gastropod-, spicule-, dasycladacean-, 
bioclast-bearing burrowed bioturbated 
wackestone with stylolites 

Limestone: pelmatozoan-, clay-, 
peloid-, gastropod-, bioclast­
bearing spicule-rich burrowed 
bioturbated wackestone/packstone with 
stylol ites 

9.7 

Chert: with ostracod-, quartz-bearing 55.0 
peloid-rich grainstone lenses with 
stylol ites 

Limestone: molluscan-, gastropod-, 12.8 
spicule-, trilobite-, peloid-, 
pelmatozoan-, bioclast-bearing 
burrowed bioturbated wackestone with 
stylol ites 

Limestone: trilobite-, clay-, 16.1 
ostracod-, quartz-, gastropod-, 
brachiopod-, pelmatozoan-, peloid-, 
molluscan-, spicule-, bioclast-
bearing burrowed bioturbated wackestone 
with stylolites 

Limestone: clay-, molluscan-, bioclast- 34.6 
bearing peloid-rich cherty burrowed 
wackestone with stylolites 

Insoluble 
Residue Composition 

Quartz, microcline 

Quartz, microcline, kaolinite, 
chlorite, ill ite 

Quartz, microcline, illite 
trace 

Quartz, microcline, illite, 
kaolinite trace 

Quartz, microcline, kaolinite 
trace 

Quartz, kaolinite, microcline 



Sample Feet Percent Insoluble 
Number (Meters) Rock Name Insoluble Residue Composition 

H-45 1248 Limestone: clay-, brachiopod-, 18. 5 Quartz, microcline, ill ite 
(380.4) quartz, molluscan-, chert-, and kaolinite traces 

pelmatozoan-, intraclast-, peloid- · 
bearing Nuia-rich burrowed 
bioturba~packstone/wackestone 
with stylolites 

W-44 1266 Dolostone: stromatactis (?) 7.4 Quartz, microcl ine 
(385.9) cavities, crystalline 

W-43 1296 Dolostone: burrowed crystalline 
(395.0) with stylolites 

22.7 Quartz, microcl ine 

W-42 1326 Dolostone: bioclast-bearing burrowed 10 .1 Quartz, microcl ine 
(404.2) bioturbated crystalline with styl ol i tes 

W-41 1356 Dolostone: bioclast-bearing burrowed 16.8 Quartz, microcline, ill i te 
(413.3) bioturbated crystalline with stylolites 

W-40 1367 Dolostone: Facies A: clay-, quartz- 45.7 Quartz, microcline, chlorite 
(416.8) bearing brachiopod-rich burrowed with and illite traces 

stylolites Facies B: dolomite-, 
hematite-bearing stylolaminated chert 
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Appendix_!! 

Measured Stratigraphic Sections 
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Explanation 

~ Limestone 

~ Nodular and sedimentary boudinage 1 imestone 
with some shale interbeds 

s Dolostone 

~ Covered Slope, float present 

• Mud mounds 

• Chert 

@ Stromato 1 ite 
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Swan Peak Formation 

Abrupt c.ontact 

Garden City Limestone 

Irregular contact to blocky dolostone with 

Thickness in feet 
and (meters) 

129 

some thin-bedded, silty, fine-grained limestone • 17 (5.2) 

Fine-grained limestone mixed with coarse-grained 
fossiliferous lenses, silty wavy partings, fractures 
filled with white calcite ••••••••••.•••• 105 

Thin- to thick-bedded, fossiliferous limestone, fine­
grained to coarse-grained with small amounts of silt, 
small (2.5 by 30 cm) lenses of intraformational 
conglomerate, -15% black chert in scattered 
nodules . . . . . . . . . ...... . 

Banded and anastomosing black chert, makes up -50% 
of the rock with fine- to medium-grained, 

38 

(32.0) 

(11.6) 

fossiliferous li~estone in between • • • • • 39 (11.9) 

Mixed, fine- to coarse-grained, fossiliferous limestone 
with some intraclasts, -15% grey to black banded 
to nodular chert • • • • • • • • • • • • • • • • • • • 34 (10.4) 

Thin- to thick-bedded, fine-grained to coarse-grained, 
fossiliferous limestone with irregular small 
intraclasts, interbedded with a few bladed large 
intraclast intraformational conglomerate beds, 2 
to 20 cm thick, erosional to gradational contacts, 
silty wavy partings, very burrowed • . • • • • 144 (43.9) 

Intraformational conglomerate limestone layers and 
lenses, large bladed to small irregular to rounded 
intraclasts set in a fossiliferous groundmass, 
interbedded with fine-grained, nodular silty layers 
from 30 cm to 1.5 m thick and planar-laminated coarse­
grained layers from 5 to 20 cm thick, abrupt, erosional 
to gradational contacts, light grey chert nodules, 
occasional ripple marks, trace fossils and burrows 380 (115.8) 

Covered slope • • • • • • • • • • • • . • • • • • • 69 (21.0) 

Coarse-grained, fossiliferous (fossil hash) limestone 
with some intraclasts, interbedded w1th 4 to 14 cm thick 
lenses of intraformational conglomerate with bladed 
to rounded intraclasts, and nodular to planar-laminated 
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Thickness in feet 
and (meters) 

limestone with varying amounts of silt, mud mounds 
covered by fossil hash at 58.8 meters. 

Covered slope •••••• 

Mixed, fine- to coarse-grained limestone with silty 
wavy partings, interbedded with intraformational 
conglomerate with large bladed to rounded intraclasts 
with silty partings, occasional nodules and stringers 
of white and black chert, abrupt to erosional contacts, 
interbedded with some nodular silty fine-grained 

89 

7 

limestone • • • • • • • • • • • • • • . • • • • • • . • 75 

Mud mound draped with fine- to coarse-grained planar-
laminated limestone, trace fossils 5 

Mixed, fine- to coarse-grained limestone, massive 
with wavy silty partings, scattered fossils • • • 7 

Mixed, fine- to coarse-grained limestone with silty 
wavy partings, interbedded with intraformational 
conglomerate lenses and layers, erosional contacts 31 

Crystalline dolostone, thin-laminated with some 
intraformational conglomerate in thin beds 17 

(27.1) 

(2.1) 

(22.9) 

(1.5) 

(2.1) 

(9.5) 

(5.1) 

Total 1057 (322.1) 

Disconformity 

Saint Charles Formation 
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GREEN CANYON 
SECTION 2 

Location: One mile from the mouth of Green Canyon, measured on a 
north-facing slope, NE 1/4, Sec 19, T. 12 N., R. 2 E. 
(Smithfield 7 1/2 minute quadrangle). · 
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Swan Peak Formation 

Abrupt contact 

Garden City Formation 

Thickness in feet 
and (meters) 

Covered, sandy mudstone limestone float, dug to 
contact with sandy shale • • • • • • • • • • • • 6 (1.8) 

Fine- to coarse-grained, fossiliferous limestone, 
silty wavy partings, burrowed, laterally irregularly 
alternating to dolostone, horizontal calcite veins 
(stromatactics ?) • • • • • • • • • • • • • • • 15 (4.6) 

Crystalline dolostone with some calcite nodules and 
veins (stromatactics ?) • • • • • • • • • • • 15 (4.6) 

Mixed, fine- to coarse-grained limestone with scattered 
fossils and silty wavy partings, some calcite veins 89 (27.1) 

Fine-grained limestone with scattered fossils, 
burrowed, black chert in nodules and stringers 
decreasing in amount upwards, few silty partings 64 (19.6) 

Black banded and anastomosing chert, comprises 
-40% of the rock, limestone between the chert is 
fine-grained with some fossil fragments • • • • • 27 (8.3) 

Fossiliferous, fine-grained limestone with silty wavy 
partings between banded black chert, chert comprises 
-15% of the rock • • • • • • • • • • . • • • • • • . • 52 (15.8) 

Thin-bedded, very fossiliferous limestone, very 
fossiliferous • • • • • • • • • • • • 49 (14.9) 

Covered slope • 

Fine-grained, nodular silty limestone with trace 
fossils ............... . 

Covered slope • 

Intraformational conglomerate limestone with large 
bladed intraclasts in a fossil groundmass, some 
imbrication, erosional surfaces, interbedded with 
nodular silty 1 imestone with some burrows and trace 
fossils........ . . . . . . . . .. 

Covered slope . . . . ~ . . ' . . . . 

21 

2 

5 

7 

8 

(6.4) 

(0.6) 

( 1. 5) 

(2.1) 

( 2 .4) 
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Thickness in feet 
and (meters) 

Mixed, fine-grained and fossiliferous limestone with 
some scattered intraclasts, thin-bedded, silty 
partings, burrowed, grades to nodular fine-grained 
silty limestone •••••••• 

Covered slope ••••• 

Thin-bedded, fossiliferous limestone with some 
intraclasts, wavy silty partings, very burrowed, 
grades to fine-grained nodular silty limestone 

Covered slope •••••••••••••••••• 

Intraformational conglomerate layers and lenses, 
interbedded with thick-bedded, mixed, fine- to 
coarse-grained limestone with some lenses of 
fossil hash and small intraclasts, burrowed, 
interbedded with fine-grained nodular to planar­
laminated limestone with trace fossils and some 
possible ripple marks, scattered black chert nodules 

Fine-grained, nodular silty limestone interbedded 
with fossil hash and intraformational conglomerate, 
some green shale in layers from 1 to 3 cm thick, 
burrowed, trace fossils and some possible ripple 
marks, scattered grey chert in nodules and 
stringers • • • • • ••••••.•••.•••• 

Low angle bedding plane fault, covered slope 

Thin- to thick-bedded intraformational conglomerate 
with large and small intraclasts in a fossiliferous 
groundmass, interbedded with nodular to planar­
laminated, fine- to course-grained limestone. 
Mud mounds covered by fossil hash appear at 76.2 
meters, gastropods common at 87.2 meters •••• 

Fine-grained, nodular silty limestone, thin- to 
thick-bedded with trace fossils and possible ripple 
marks, interbedded with intraformational conglomerate 
layers and lenses 30.5 to 254 cm thick, gradational 
to abrupt and erosional contacts, scattered chert 
nodules and stringers ••••••• 

Covered slope •••••• 

Mixed, fine- to coarse-grained limestone with 
intraformational conglomerate layers and small lenses, 
scattered fossils, banded black chert at 27.9 meters 

11 

41 

6 

40 

366 

76 

15 

83 

104 

20 

42 

(3.4) 

(12.5) 

(1.8) 

(12.2) 

(111.6) 

(23.2) 

(4.6) 

(25.3) 

(31.7) 

(6.1) 

(12.8) 



Thickness in feet 
and (meters) 

Fine-grained, nodular silty to coarse-grained, planar­
laminated limestone, interbedded with intraformational 
conglomerate in a fossiliferous groundmass in lenses, 
some burrows, trace fossils, scattered black chert 
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nodules, 5 cm of green shale at 14.3 meters. • • • • • 43 (13.1) 

Very thin- to thin-bedded, coarse-crystalline 
dolostone with greyish pink chert nodules and 
bands, interbedded with nodular silty limestone with 
fossiliferous lenses • • • • • • • • • • • • • • 8 (2.4) 

Fine- to coarse-grained limestone with scattered 
fossils alternating irregularly laterally with 
dolostone. Few lenses of intraformational 
conglomerate with large, bladed intraclasts, abrupt 
and erosional contacts • • • • • • • • • • • • • • 6 (1.8) 

Laminated to thin-bedded silty dolostone, black 
chert in elongated nodules, basal, very thin calcareous 
shaly limestone layer • • • . • • • • • • • • . • • 4 (1.2) 

Total 1225 (373.4) 

Disconformity 

Saint Charles Formation 



a: 
w 

~ SECTION 
:::, 
z 
w 2 
....J 
a.. 
~ 
c( 
(/) 

281------JL......:;;=-......L~ ........ :.,_-

21t-,__--,r--L~~,--,1,_~-j 

261--,----''---r~,__------
2s ....... ...._,.....~ ........ .--~~---.. 
24 

231--~,__'"""'T"---JL------

221--......--'-~-.-~....._----,1 
21.,_.......,,....._.~ ........... ~......, 

201----,~-L---,.~-L.~-' 
19;--___.1...-..,......-J--.,.~...-L~ 

18t----,r--'-~--.~'----.--J., 

111 -

16 
1--~-r-,__~_,......._~-

1 s i--..;;.,...-'--=;;_._1,.....;..;;;;.......'--- ....... 

141---'-~..--~..L-~...--..L..,,-
13 

1-- ........ ~ ....... --~~,l,_-'-
12 ........ ...,,,,........--_.__,.,,......__..__--f 

111--......;:::........_ __ -=--'~---I 

101-- ........ ~.....--r..~-.----.-,, 

9 

81-1---::::,..........._.....:::;:::.......ai...._1--,_ 

1 ........ .-- ........ ~-,-,''--~-'-~ 

6~~=~~:::i 

~ 
w 
....J 
< u 
U) 

200 

100 

CHARACTERISTIC 

z I-
Q w 

~ 
U) ....J 
Q 

~ 
....J 

:::, 0 w 
u a:i Cl.. 

:I: 0 ~ < a: 

ii 
a: :::, 

9 ....J I- b < CJ) w 
u 0 iij Cl.. 

137 

FEATURES 

S::2 
,.._ 

a: U) 
U) a:i I- I-

c( U) u ~ u. < < Cl) 

Q ....J ~ ~ ~ w u 
I- < ~ 

....J 0 
I- < a: 
g a: g a: 

I-z ti> 
:::, 

u < a:i 



CHARACTERISTIC FEATURES 

a: 

~ w S::2 "'-
co SECTION I- a: (./) 

~ z (./) 

0 w a:, 
I- I-::::, (./) ..J ~ ~ z ~ a 

~ 
..J (./) u 

::::, 0 w < < (/) 

w 2 u Cl.. a ..J ~ ~ ~ 
..J :c a: 0 w u 0 
0.. 

w ~ < I- < ~ 
..J 

..J 

ii 
a: :::::, 

9 I- < a: 
~ < ..J I- b 9 

a: g a: 
I-< u < (/) w z In :::::, 

(/) CJ) u 0 ffi Cl.. u < Ill 

47 
46 
45 

44 
43 

42 

41 

40 • 39 
38 
37 300 
36 

35 



Location: 

HIGH CREEK 
SECTION 3 

Four miles up High Creek trail, 
southwest-facing slopes (Naomi 

139 

composite section measured on 
Peak 7 1/2 minute quadrangle). 
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Swan Peak Formation 

Abrupt contact 

Garden City Formation 

Thickness in feet 
and {meters) 

Fine-grained, arenaceous limestone with fossil 
fragments, laterally irregular contact to dolostone 3 

Thin- to thick-bedded, crystalline dolostone with fossil 
fragments, some burrowing and wavy silty partings, 
scattered black chert nodules •••• , • • • • • • • • 48 

Fine-grained limestone with coarse-grained lenses, 
scattered fossils, laterally and vertically irregular 
contact with dolostone • • • • • • • • • • • • • 3 

Thin- to thick-bedded, crystalline dolostone with fossil 
fragments, wavy silty partings, some burrowing • , • • 14 

Covered slope ••••• 

Massive to thick-bedded beds of fine- to coarse­
grained limestone, silt blebs and partings, scattered 
fossils, gastropod-rich lense at 441.6 meters 

Covered slope ••••• 

Thin- to thick-bedded, fine- to coarse-grained 
limestone with scattered fossils, silty wavy partings 
with a gradational decrease of silt upwards. 

Covered slope •••••• 

Thin-bedded, mixed, fine- to coarse-grained limestone 
with scattered fossils, wavy silty partings and 

16 

5 

19 

25 

23 

-5% nodular black chert • • • • • • 10 

Covered slope • • 7 

Mixed, coarse- to fine-grained fossiliferous limestone, 
burrowed with lenses of nodular to coarse-grained, 
planar-laminated limestone, nodular and banded black 
chert comprises -30% of the rock • • • • • 69 

Nodular to planar-laminated limestone and dolostone 
with lenses of intraformational conglomerate, 
scattered fossils, burrowed, nodular and banded black 
chert comprises -20% of the rock • • • • • • • • • • • 11 

(0.9) 

(14.6) 

(0.9) 

(4.3) 

(4.9) 

(1.5) 

(5.8) 

(7.6) 

(7.0) 

(3.1) 

(2.1) 

(21.0) 

(3.3) 



Banded and anastomosing white chert which comprises 
-so% of the rock with dolostone, planar-
laminated, silty limestone with fossils and 

Thickness in feet 
and (meters) 

141 

intraformational conglomerate in between • • • • • 10 (3.1) 

Fine- to coarse-grained, planar-laminated limestone with 
fossils and some intraformational conglomerate layers 
between varying amounts (30-60%) of white and 
black nodular to banded and anastomosting chert. • • • 74 (22.5) 

Thin- to thick-bedded, fossiliferous, mixed, fine- to 
coarse-grained limestone with varying amounts 
(5-20%) of nodular and banded black chert, few 
dasycladacean fossils seen • • • • • • • • • • • • • • 66 (20.1) 

Fine-grained with some coarse-grained lenses, 
fossiliferous, thin-bedded, silty limestone, burrowed • 30 (9.1) 

Thick-bedded, fine-grained, fossiliferous limestone, 
wavy silty partings, burrowed, dasycladacean algae 
is predominate fossil • • • • • • • • • • • . • 10 (3.1) 

Thin-bedded limestone fossil hash with some 
intraclasts and lenses of coarse-grained, planar-
laminated limestone, interbedded with 
intraformational conglomerate in a fossiliferous 
groundmass, silty wavy partings, burrowed, 
gradational to abrupt contacts, gastropod-rich at 
362.7 meters • • • • • • • • • • • • • • 65 (19.8) 

Silty, nodular to coarse-grained, planar-
laminated, sometimes burrowed limestone with trace 
fossils, from 15 cm to 2.7 m thick, interbedded with 
intraformational conglomerate, rounded to occasional 
bladed intraclasts in a fossiliferous groundmass, 
interbedded with thick-bedded beds of fine-grained 
limestone with scattered fossils, burrowed, silty wavy 
partings. Occasional black chert nodules found 
throughout, contacts are abrupt and erosional with a 
few gradational. Green calcareous shale layers from 
2 to 30 cm thick at 174.9, 158.5, 148.1, 146.3, 
140.2, and 135.0 meters •••••••••••••••• 685 (208.8) 

Coarse-grained, very fossiliferous (fossil hash) 
limestone with some intraclasts, burrowed, interbedded 
with some fine-grained, silty, nodular to planar­
laminated limestone and layers of intraformational 
conglomerate, contacts are abrupt to erosional. 
Mud mounds with channels eroded in them appear at 



117.3 meters. Mud mounds draped by nodular to 
planar-laminated limestone or fossil hash at 88.4, 

Thickness in feet 
and (meters) 

142 

86.7, and 75.3 meters. • • • • • • • • . • • • • • 228 (69.6) 

Intraformational conglomerate layers and lenses 
are interbedded with nodular to planar-laminated 
limestone, some fossil hash in layers and lenses, 
occasional grey chert nodules, many erosional 
contacts, some burrowing • • • • • • • • • • • • • 72 (21.9) 

Intraformational conglomerate limestone layers 
with large bladed intraclasts set in a fossiliferous 
groundmass with many erosional contacts, interbedded 
with nodular silty limestone with some fossil hash 
lenses, and thin fossil hash layers . • • • • • • 31 (9.5) 

Fine-grained, silty, nodular limestone with trace 
fossils, interbedded with few intraformational 
conglomerate layers and lenses • • • • • • • • • 14 (4.4) 

Nodular to planar-laminated limestone layers with 
some trace fossils, interbedded with intraformational 
conglomerate lenses with large bladed intraclasts 
set in a fossiliferous groundmass, many erosional 
contacts, interbedded with fossil hash and mixed 
fossil hash and fine-grained limestone 49 (14.9) 

Covered slope • • • • • • • • • • • • • • 9 (2.7) 

Thin-bedded, planar-laminated limestone with coarse-
grained and fossiliferous lenses, wavy silty partings. 20 (6.1) 

Intraformational conglomerate with large bladed 
intraclasts which changes laterally irregularly 
to dolostone • • • • • • • • • • • • • • • • • • 2 (0.6) 

Silty, nodular limestone with lense of fossil hash 7 (2.1) 

Crystalline, laminated dolostone interbedded with 
some intraformational conglomerate, silty partings, 
white to grey chert nodules and stringers, basal, 
thin (4 cm) calcareous shaly limestone layer • • • 8 (2.4) 

Total 1633 (494.7) 

Disconformity 

Saint Charles Formation 
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MANTUA 
SECTION 4 

145 

Location: Gold Mine Hill and the hill northwest of Gold mine Hill, 
composite section measured on southwest-facing slopes, Sec 10, 
T. 9 N., R. 1 W. {Mount Pisgah 7 1/2 minute quadrangle). 
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Swan Peak Formation 

Abrupt contact 

Garden City Formation 

Thickness in feet 
and (meters) 

Crystalline dolostone, scattered fossil fragments, 
mottled. silty wavy partings, coarse-grained lenses, 
occasional black chert nodules, gradational variation 
in the amount of silt, horizontal calcite veins 
(stromatactis ?) at 419.1 meters recurring upwards 141 

Laterally irregular contact to fine-grained, 
fossiliferous, burrowed limestone with coarse­
grained lenses, silty wavy partings, erosional 
contacts, -2% nodular black chert, gastropod-rich 
layers, possible peloid layer at 379.5 meters •• 

Fine- to coarse-grained, burrowed limestone with scattered 
fossils and silty blebs, erosional to abrupt contacts, 
varying amounts of banded and nodular black chert 

45 

(43.0) 

(13.7) 

comprising -20-30% of the rock • • • • • • • • • 29 (8.8) 

Fine- to coarse-grained, burrowed limestone with 
scattered fossils and silt blebs with banded 
to anastomosing black chert which comprises -40% of 
the rock • • • • • • • • • • • • • • • • • • • • • 26 (7.9) 

Fine- to coarse-grained, fossiliferous limestone 
burrowed, wavy silty partings, varying amounts (5-10%) 
of black banded and nodular chert. • • • • • • • • • • 50 (15.2) 

Thin- to thick-bedded, fine- to coarse-grained, fossil­
rich, burrowed limestone, silty blebs and wavy partings, 
erosional to abrupt contacts • • • • • • • • • • • • • 45 (13.7) 

Thin-bedded, very fossiliferous (fossil hash), burrowed 
limestone, wavy silty partings, lenses of planar-
laminated to hummocky cross-stratified limestone. 
Fossil hash has some intraclasts, cross-bedding, 
numerous dasycladacean fossils and gastropods, contacts 
abrupt and erosional • • • • • • • • • • • • • • • • • 125 

Fine-grained, nodular to planar-laminated, silty 
limestone, burrowed, trace fossils, scattered fossil 
fragments, interbedded with intraformational 
conglomerate layers and lenses with small, round 
intraclasts set in a fossil groundmass, some are 
burrowed, abrupt, erosional to gradational 

(38.1) 
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Thickness in feet 
and (meters) 

contacts, varying amounts of silt, occasional 
black chert nodules •.••••••••••• 

Intraformational conglomerate limestone layers and 
lenses, rounded to some bladed intraclasts in a 
fossil groundmass, interbedded with nodular to 
planar-laminated limestone. from 15 cm to 2.7 m 
thick, burrowed, varying amounts of silt, some 
cross-bedding, rare possible mudcracks (?), abrupt 
to erosional contacts, calcareous shale, from 
4 to 30.5 cm thick at 179.8, 120.4, and 117.0 
meters . . . . . . . . . . . . . . . . . . . . . . . . . 
Very fossiliferous (fossil hash), burrowed limestone, 
interbedded with intraformational conglomerate lenses 
and layers, interbedded with silty, planar-, thin­
bedded, coarse-grained limestone, contacts are 
abrupt and erosional. Mud mounds covered with 
fossil hash appear at 67.1, 65.5, 57.9, and 56.4 
meters . . . . . . . . . . . . . . . . . . . 

Fine- to coarse-grained limestone, burrowed, 
scattered fossils, lenses of planar-bedded limestone, 
interbedded with silty, nodular limestone. Mud 
mounds draped by silty, planar to nodular limestone 
appear at 54.9 meters ••••••••••••••• 

Intraformational conglomerate lenses and layers with 
large bladed intraclasts, in some lenses intraclasts 
are imbricated, cross-bedding, many abrupt and 
erosional contacts, especially within conglomerate 
layers, interbedded with coarse-grained, planar-, 
very thin-bedded silty limestone ••••• 

Covered slope 

Coarse-crystalline dolostone alternating irregularly 
with fine-grained limestone, some intraformational 
conglomerate, greyish pink chert in nodules and 
stringers ••••••••••••••••••• 

Very thin-bedded crystalline dolostone, irregularly 
changing to fine-grained limestone, -10-20% banded 
greyish orange chert ••••••••••••••••• 

135 ( 41. 2) 

540 (164.7) 

85 (25.9) 

20 (6.1) 

139 (42.4) 

3 (0.9) 

11 (3.3) 

7 ( 2 .1) 



Coarse-crystalline dolostone with greyish pink 
banded chert, basal 8 cm layer of very silty 
l i me stone • • • • • • • • • • • • 

Disconformity 

Saint Charles Formation 

Thickness in feet 
and (meters) 

5 ( 1. 5) 

Total 1406 (428.5) 
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Mouth of Cottonwood Canyon, east of Honeyville, 
Wellsville Mountain, composite section measured on 
southwest-facing slopes, NE 1/4, sec. 3, T. 10 N., R. 2 W. 
(Honeyville 7 1/2 minute quadrangle). 
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Swan Peak Formation 

Abrupt contact 

Garden City Formation 

Thickness in feet 
and (meters) 

Coarse- to medium-crystalline dolostone, faintly 
mottled and burrowed, wavy silty partings, few small 
intraformational conglomerate lenses, scattered 
grey chert nodules, recurring horizontal calcite 
veins (stromatactis ?) • • • • • • • • • • • 66 (20.1) 

Fine- to medium-crystalline limestone with silty wavy 
partings, few burrows • • • • • • • • • • • • • 5 (1.5) 

Coarse- to medium-crystalline dolostone, faintly mottled 
and burrowed, wavy silty partings, few small 
intraformational conglomerate lenses, scattered black 
chert nodules, recurring horizontal calcite veins 
(stromatactis ?) • • • • • • • • • • • • • • • • • • • 46 (14.0) 

Thin- to thick-bedded limestone, scattered fossils 
and small intraclasts, fine-grained with coarse-grained 
lenses, burrowed, silty wavy partings with varying 
amounts (1-10%) of black banded and nodular chert 63 (19.2) 

Fine-grained, nodular to coarse-grained planar­
laminated limestone with thin very fossiliferous, 
burrowed layers. • • • • • • • • • • • 9 (2.7) 

Banded and anastomosing black chert, makes up -40% 
of the rock with mixed, fine- to .medium-grained, 
fossiliferous limestone between chert • • • • 31 (9.4) 

Mixed, medium- to coarse-grained limestone with 
fossiliferous lenses, silty wavy partings increasing 
towards the bottom, -5% nodular to banded black chert, 
many erosional contacts • • • • • • • • • • • • • • • • 34 (10.4) 

Coarse- to fine-grained limestone with fossiliferous 
lenses, some silty blebs, erosional contacts, burrowed 
with rare black chert nodules, interbedded with very 
silty, planar-laminated, burrowed limestone, with trace 
fossils. • • • • • • • • • • • • • • • • • • • • • • • 94 (28.7) 

Thin-bedded, very fossiliferous, coarse-grained 
limestone with some planar-laminated, very burrowed 
lenses, silty wavy partings, few dasycladacean fossils • 37 (11.3) 
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Thickness in feet 
and (meters) 

Thin-bedded, mixed, fine-grained and fossil-rich with 
small intraclast intraformational conglomerate 
limestone, silty blebs and partings, gradational to 
abrupt and erosional contacts, interbedded with thin 
lenses of coarse-grained, planar-laminated to hummocky 
cross-stratified limestone with some burrowing 215 (65.5) 

Intraformational conglomerate limestone layers and 
lenses, from 15 cm to 46 cm thick, with large bladed to 
small, irregular shaped intraclasts in a fossil 
background, interbedded with 15 cm to 3 m thick, nodular 
to coarse- to fine-grained, planar-laminated limestone, 
burrowed with varying amounts of silt, interbedded with 
olive green limy shale, from 30 cm to 1.2 m thick. 
Some gradational but mostly abrupt and erosional 
contacts, some hummocky cross-stratification and 
burrowing in conglomerate and fossiliferous layers. 
Increasing amounts of banded and nodular black chert 
near top ••••••••••.•••.•••••••. 348 (106.1) 

Thin- to thick-bedded beds of fossil hash with lenses 
of intraformational conglomerate, some burrowing and 
silty partings, abrupt to gradational contacts to 
nodular to planar-laminated, silty limestone, 
interbedded with massive, fine- to coarse-grained, 
burrowed limestone with wavy silty partings, mud 
mounds covered with fossil hash at 120.7, 87.8, 
and 68.9 meters, there are scattered rare nodules 
of black chert throughout. • • • • • • • • • 249 (75.9) 

Large intraclast, bladed, intraformational 
conglomerate limestone lenses and layers with 
numerous erosional surfaces, gradational to abrupt 
contacts, interbedded with massive, fine- to coarse­
grained limestone, interbedded with nodular to planar­
laminated, silty limestone, some burrowing, hummocky 
cross-stratification, graded bedding, some scattered 
banded to nodular grey chert ••••.•••••• 153 (46.7) 

Coarse-crystalline dolostone with irregular 
contacts to limestone • • • • • • ••• 

Covered slope •••• 

Coarse-crystalline dolostone with pink chert nodules 
and silty partings •••••••••••••••••• 

Large intraclast intraformational conglomerate lenses 

3 

5 

3 

(0.9) 

( 1. 5) 

(0.9) 
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Thickness in feet 
and (meters) 

in mixed, coarse- to fine-grained limestone with pink 
chert nodules ••••••••••••••••.• 

Coarse-crystalline, laminated dolostone with pink 
chert, irregular contacts to limestone, basal 
1 cm layer of very silty limestone •••••• 

Total 

Di sconformi ty 

Saint Charles Formation 

10 (3.1) 

2 (0.6) 

1373 (418.5) 
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Appendix~ 

Point Count Data 

15 7 



Explanation 

Thin section numbers followed by an asterisk(*) were point 

counted with a minimum of 300 points. All other thin sections were 

estimated using estimation charts from Flugel (1982). The data are 

listed as percentages. The term bioclast refers to unidentified 

fossil fragments. 
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ALLOCHEMS THIN SECTION 

HC-01* HC-02* HC-03* HC-04A* HC-04C* HC-05* HC-06* 

Conodonts 00 00 00 01 00 00 00 

Brachiopods 00 00 00 00 02 00 00 

Pelmatozoans 05 00 00 04 25 00 04 

Gastropods 00 00 00 00 00 00 00 

Lingula 00 01 00 01 01 00 01 

Bioclasts 00 01 00 01 04 11 02 

Trilobites 06 00 00 06 06 00 03 

Ostracods 00 00 00 00 00 00 00 

Nuia 00 00 00 00 00 00 00 

Moll uses 00 00 00 00 05 00 06 

Sponge Spicules 00 00 00 00 00 00 00 

Calathium 00 00 00 00 00 00 00 

Peloids 00 00 00 00 10 00 06 

Intraclasts 10 00 00 00 00 47 04 

Quartz Silt 02 02 03 02 00 00 01 

Chert 01 00 07 00 00 00 00 

Clay /Limoni te 02 03 01 00 01 01 01 

Sparite 01 00 00 03 20 01 12 

Micrite 00 00 00 82 15 00 59 

Pyrite/Hematite 01 00 00 00 01 00 00 

Dolomite 72 93 89 00 10 40 01 



ALLOCHEMS THIN SECTION 

HC-07* HC-09 HC-10* HC-11* HC-12 HC-13 HC-14 

Conodonts 00 00 00 05 01 01 01 

Brachiopods 02 00 00 06 00 00 00 

Pelmatozoans 11 42 00 10 05 02 05 

Gastropods 00 00 00 00 00 00 00 

Lingula 01 01 01 05 01 01 02 

Bioclasts 02 01 04 11 02 10 20 

Trilobites 03 11 00 00 02 02 00 

Ostracods 00 00 00 00 00 00 00 

Nuia 00 00 00 00 00 00 00 

Moll uses 03 02 00 01 02 05 00 

Sponge Spicules 00 00 02 01 02 03 05 

Calathium 00 00 00 00 00 00 00 

Peloids 00 05 01 11 40 10 00 

Intraclasts 50 05 00 00 08 00 00 

Quartz Silt 01 01 07 17 06 06 06 

Chert 00 00 01 00 00 00 00 

Clay/Limonite 01 01 02 03 05 10 10 

Spa rite 23 26 05 20 18 10 09 

Mi crite 02 04 76 07 07 38 41 

Pyrite/Hematite 01 01 01 03 01 02 01 

Dolomite 00 00 00 00 00 00 00 



ALL OCH EMS THIN SECTION 

HC-15* HC-16 HC-17* HC-18* HC-19* HC-20* HC-21* 

Conodonts 00 00 00 01 00 00 01 

Brae hiopod s 00 01 00 00 01 00 02 

Pelmatozoans 00 12 06 08 06 05 08 

Gastropods 00 00 00 00 01 00 00 

Lingula 00 00 01 01 00 00 00 

Biocl asts 04 06 06 06 04 09 04 

Trilobites 00 06 03 01 05 01 03 

Ostracods 00 00 00 00 00 00 00 

Nuia 00 00 00 00 01 00 14 

Moll uses 00 01 02 00 02 00 01 

Sponge Spicules 02 02 04 02 00 05 02 

Calathium 00 00 00 00 00 00 00 

Peloids 01 05 02 02 00 02 05 

Intraclasts 00 11 02 00 08 00 04 

Quartz si 1 t 01 00 01 02 00 02 02 

Chert 00 00 00 00 01 00 00 

Clay/Limonite 03 02 02 03 01 04 05 

Sparite 05 25 14 21 60 09 22 

Micrite 79 28 56 52 07 62 25 

Pyrite/Hematite 01 01 01 00 00 01 00 

Dolomite 04 00 00 01 03 00 02 



ALL OCH EMS THIN SECTION 

HC-22* HC-24 HC-25* HC-26 HC-27* HC-28 HC-29* 

Conodont 00 00 00 00 00 00 00 

Brachiopods 03 00 02 00 01 01 02 

Pelmatozoans 15 05 13 15 10 08 13 

Gastropods 00 00 00 00 06 00 00 

Lingula 00 01 00 01 01 00 01 

Bioclasts 02 18 05 09 02 01 03 

Triolobites 03 00 03 01 02 02 06 

Ostracods 00 00 00 00 00 00 00 

Nuia 01 00 00 00 01 01 01 

Molluscs 04 00 02 01 02 02 02 

Sponge Spicules 00 05 00 02 00 01 00 

Calathium 00 00 00 00 00 00 00 

Peloids 02 00 02 02 01 00 04 

Intraclasts 42 00 36 00 48 60 32 

Quartz Silt 01 06 02 12 00 01 01 

Chert 00 00 06 00 01 00 01 

Cl ay/Limonite 00 05 01 06 00 00 03 

Sparite 27 05 24 05 19 12 17 

Micrite 00 55 04 46 05 12 11 

Pyrite/Hematite 00 00 00 00 01 00 00 

Dolomite 00 00 00 00 00 00 03 



AL LOCH EMS THIN SECTION 

HC-30 HC-31* HC-32 HC-33 HC-34* HC-35 HC-36* 

Conodonts 00 01 00 00 00 00 00 

Brachiopods 01 01 00 01 00 00 00 

Pelmatozoans 12 04 00 11 09 07 01 

Gastropods 00 00 00 00 00 00 00 

L ingul a 00 00 00 00 01 00 00 

Bioclasts 00 01 05 00 11 00 03 

Trilobites 06 02 00 05 02 02 01 

Ostracods 00 00 00 00 00 00 00 

Nuia 07 00 00 00 07 00 00 

Moll uses 01 01 00 00 00 00 00 

Sponge Spicules 00 00 01 00 00 00 03 

Calathium 00 00 00 00 00 00 00 

Peloids 03 03 00 03 05 25 00 

Intraclasts 50 48 00 55 01 00 00 

Quartz Silt 01 00 00 00 01 04 01 

Chert 00 01 00 01 01 00 01 

Clay I Li moni te 01 01 02 00 03 03 02 

Sparite 12 07 00 10 47 25 01 

Micrite 02 28 92 12 11 34 82 

Pyrite/Hematite 00 01 00 01 00 00 00 

Dolomite 05 01 00 01 01 00 05 



AL LO CHEMS THIN SECTION 

HC-37* HC-38* HC-39 HC-40* HC-41 HC-42 HC-43A 

Conodonts 00 01 00 00 00 00 00 

Brachiopods 01 01 00 04 01 01 00 

Pelmatozoans 09 14 00 13 14 02 02 

Gastropods 00 00 00 00 01 00 00 

Li ngul a 00 00 00 00 00 00 00 

Bioclasts 00 05 04 01 00 06 06 

Trilobites 03 01 01 06 04 03 00 

Ostracods 00 00 00 00 00 00 00 

Nuia 02 14 00 02 02 00 00 

Moll uses 01 00 00 02 01 00 00 

Sponge Spicules 00 00 04 00 00 01 01 

Calathium 00 00 00 00 00 00 00 

Peloids 02 06 00 03 03 04 02 

Intraclasts 50 00 05 12 13 00 00 

Quartz Silt 00 04 01 03 00 05 06 

Chert 00 00 01 03 20 02 00 

Clay/Limonite 00 12 05 04 00 12 11 

Spa rite 29 35 02 34 24 11 . 08 

Micrite 02 03 76 11 14 50 62 

Pyrite/Hematite 00 00 01 01 01 01 00 

Dolomite 01 04 00 01 02 02 02 



ALL OCH EMS THIN SECTION 

HC-44* HC-45 HC-46* HC-47 HC-48* HC-49 HC-50* 

Conodont 00 00 00 00 00 00 00 

Brachiopods 01 00 01 01 01 00 01 

Pelmatozoans 19 02 22 13 09 02 02 

Gastropods 00 00 02 01 01 00 00 

Lingula 00 00 00 00 00 00 00 

Bioclasts 01 04 04 14 14 11 00 

Trilobites 03 01 03 02 03 03 02 

Ostracods 00 00 00 00 00 00 00 

Nuia 03 00 11 01 22 00 00 

Molluscs 01 00 01 01 01 00 01 

Sponge Spicules 00 00 00 00 00 00 04 

Calathium 00 00 00 00 00 70 00 

Peloids 13 01 03 01 03 00 00 

Intraclasts 00 00 09 30 09 00 00 

Quartz Silt 04 09 00 00 02 05 04 

Chert 00 00 01 01 00 01 00 

Clay/Limonite 00 03 01 00 03 02 01 

Sparite 51 04 27 30 17 03 19 

Micrite 01 75 09 04 14 02 47 

Pyrite/Hematite 02 01 00 01 01 01 01 

Dolomite 01 00 06 00 00 00 18 



ALL OCH EMS THIN SECTION 

HC-51* HC-52* HC-53 HC-54 HC-55* HC-56* HC-578 

Conodonts 00 00 00 00 00 00 00 

Brachiopods 00 00 01 00 00 00 00 

Pelmatozoans 01 04 04 00 00 03 02 

Gastropods 00 01 00 00 00 00 00 

L ingul a 00 00 00 00 00 00 00 

Bioclasts 06 07 07 00 00 02 04 

Trilobites 01 01 03 00 00 04 00 

Ostracods 00 03 05 04 02 02 00 

Nuia 00 01 00 00 00 01 00 

Moll uses 00 01 00 00 00 00 00 

Sponge Spicules 00 07 00 10 21 04 03 

Calathium 00 00 00 00 00 00 00 

Peloids 00 05 10 03 03 09 01 

Intraclasts 00 00 00 00 00 00 00 

Quartz Silt 09 04 05 02 02 01 01 

Chert 12 01 15 78 42 00 02 

Clay/Limonite 00 00 00 00 00 04 08 

Spa rite 02 36 30 00 15 34 09 

Micrite 63 25 17 00 02 14 66 

Pyrite/Hematite 00 01 02 01 01 01 01 

Dolomite 06 03 01 02 12 21 03 



ALLOCHEMS THIN SECTION 

HC-58* HC-59* HC-60 HC-61* HC-62 HC-63 HC-64 

Conodonts 00 00 00 00 00 00 00 

Brachiopods 00 00 01 02 00 00 00 

Pelmatozoans 02 07 01 02 00 00 00 

Gastropods 00 00 00 01 00 00 00 

Lingula 00 00 00 00 00 00 00 

Bioclasts 04 08 06 10 00 10 00 

Trilobites 01 01 03 02 00 00 00 

Ostracods 02 01 03 04 00 00 00 

Nuia 00 06 00 00 00 02 00 

Moll uses 00 00 01 01 00 01 00 

Sponge Spicules 03 04 04 12 00 02 00 

Calathium 00 00 00 00 00 00 00 

Peloids 09 01 03 01 00 03 00 

Intraclasts 01 01 03 00 00 00 00 

Quartz Silt 02 11 02 04 02 03 04 

Chert 23 01 01 01 02 02 02 

Clay/Limonite 04 02 06 01 00 00 00 

Sparite 21 01 05 06 00 00 03 

Micrite 15 44 60 47 00 16 00 

Pyrite/Hematite 01 07 01 01 01 01 01 

Dolomite 12 05 00 05 95 60 90 



AL LOCH EMS THIN SECTION 

HC-65 HC-66* BF-23* 

Conodonts 00 00 00 

Brachiopods 00 02 00 

Pelmatozoans 00 04 01 

Gastropods 00 00 00 

Lingula 00 00 00 

Biocl asts 00 04 01 

Trilobites 00 01 00 

Ostracods 00 01 00 

Nuia 00 04 01 

Moll uses 00 00 00 

Sponge Spicules 00 00 13 

Calathium 00 00 00 

Peloids 00 00 00 

Intraclasts 00 00 00 

Quartz Si 1 t 25 50 04 

Chert 00 00 00 

Cl ay/L imoni te 00 05 01 

Sparite 00 05 18 

Mi crite 00 20 61 

Pyrite/Hematite 02 01 00 

Dolomite 73 03 00 
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