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ABSTRACT 

 

Effect of Drought, Flooding, and Potassium Stress on the Quantity and Composition of  
 

Root Exudates in Axenic Culture 
 
 

by 
 
 

Amelia Henry, Master of Science 
 

Utah State University, 2003 
 
 

Major Professor: Dr. Bruce G. Bugbee 
Department: Plants, Soils, and Biometeorology 
 
 

Root exudates include important chelating compounds and can change the 

rhizosphere pH by several units.  These changes are essential for nutrient uptake and can 

also alter solubility of soil contaminants and increase plant uptake.  Mild root-zone stress 

may increase exudation and more severe stress can damage membranes and increase root 

turnover, all of which increase root-zone carbon.  Increased carbon from this 

rhizodeposition can increase microbial activity, which might help degrade contaminants.  

We studied the effect of three types of stress on root exudation of crested wheatgrass 

(Agropyron cristatum): low K+, drought, and flooding.  These stresses were compared to 

two types of controls: 100% NO3
- and high NH4

+: NO3
- ratio.  We developed an 

improved axenic system to keep plants microbe-free for 70 days while analyzing 

exudates for total organic carbon (TOC) and organic acids.  Axenic conditions were 

confirmed by plate counts of the leachate and microscopic observations of the leachate 
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and roots.  Optimal conditions for plant growth were maintained by monitoring 

temperature, light, humidity, water, O2, CO2, nutrient availability, and root-zone pH.  

Plants were grown in Ottawa sand that was layered by size to optimize water 

availability.  Total organic carbon released over the 70-day growth period in mg per 

gram dry plant was 2.6 in the control, 2.3 in the NH4
+ treatment, 3.7 in the flood and K+ 

stress treatments, and 4.4 in the drought treatment, which was the only treatment 

significantly higher than controls (p = 0.05).  TOC and organic acid levels in the 

exudates peaked before the end of the study.  The peak TOC levels, expressed as mg 

TOC per gram new dry plant mass, were 1.9 in the control, 3.0 in the NH4
+ treatment, 

2.9 in the flood, and 5.8 in the drought and K+ stress treatments.  Organic acids were 

measured by gas chromatography-mass spectrometry (GC-MS).  Malic acid was the 

predominant organic acid, and accounted for the majority of the TOC in the drought 

treatment.  Oxalic, succinic, fumaric, and malonic acids accounted for less than 10% of 

the TOC.  These data indicate that stress may enhance phytoremediation by changing 

root-zone exudate composition.  

         (184 pages) 
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CHAPTER 1 
 

INTRODUCTION 
 

OVERVIEW 
 

 
  Root Exudates in Phytoremediation 

 
 

Phytoremediation is the cleanup of contaminated soils using plants.  Root 

exudates play a role in phytoremediation due to their potential to assist in plant uptake of 

contaminants by mechanisms similar to nutrient uptake, to act as a substrate for 

microbes that could break down contaminants, or to change soil properties and affect the 

mobility of contaminants. 
 
 

Definition of “Root Exudate” 
 
 

The release of all forms of carbon from roots has been termed rhizodeposition 

(Marschner, 1995).  Rhizodeposition products, which are available for microbial 

metabolism in the rhizosphere (zone adjacent to the root) and on the rhizoplane (root 

surface), can be categorized as exudates, lysates, secretions, and gasses.  The difference 

between exudates and secretions is that exudates are passively released and secretions 

are actively released.  Secretions include polymeric carbohydrates and enzymes 

(Whipps, 1990).  The products of extensive cell degeneration have been termed “root 

lysate,” for example: sloughed-off root hairs or root cap, epidermal, and cortical cells 

(Liljeroth et al., 1990).  The most common definition of the term “root exudate” has 

been “substances which are released into the surrounding medium by healthy and intact 

plant roots” (Rovira, 1969) and is the definition used in this discussion. 
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  Root exudates include high and low molecular weight compounds.  High 

molecular weight compounds in root exudates include the mucilage, gelatinous material 

covering root surfaces, and ectoenzymes.  Phosphatase is an ectoenzyme that mobilizes 

organic P in the soil for plant use.  Low molecular weight root exudates are released in 

larger quantities and include organic acids, sugars, phenolics, amino acids, 

phytosiderophores, flavonoids (Marschner, 1995), and vitamins (Whipps, 1990).  

Phytosiderophores are natural chelating agents known to be important for plant iron 

nutrition.  The term “root exudate” is used in the literature to describe all organic 

compounds released from roots. 

An inclusive list of root exudate components found in the literature (Uren, 2001), 

which includes over 100 different compounds, is also representative of a list of potential 

cell chemical constituents.  The major source of the addition of cell contents to the 

rhizosphere is root border cells, formerly known as sloughed off root cells.  These cells 

are living when released from the root and act as an interface between the soil and root 

through protection of the root as it grows though the soil and interacts with soil microbes

(Hawes et al., 1998). 
 
 

Quantity and Composition of Root Exudates in the Literature 
 
 

Although quantitative comparisons of exudates vary widely, average estimates 

have been reported in the literature (Tables 1, 2, 3, and 4).   

Using axenic wheat, Prikryl and Vancura (1980) expressed root exudates as 50% 

root dry weight, or 12% whole plant dry weight over a growing season.  Based on a 
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Table 1.  Organic Acids detected in root exudates   (expressed in µg g dry root-1 

day-1 or % (w/w) of exudate). 

 Species 
 Triticum 

tugidum var. 
durum 
(wheat)5 

Linum 
usitatissiumum 
(flax)6 

Diplachne 
fusca (brown 
beetle grass) 

Lepidium. 
sativum 
(cress)1 

Zea mays 
(corn)6 

Compound      
2-Oxoglutarate     3.89 
Glyoxalate     0.0365 
Glycolate     0.0944 
Succinic Acid 0.964 0.032 110   
Fumaric Acid 0.18 0.05 140  0.008 
Malic Acid   7240   
Citric Acid   450   
Uronic acid    47.8%   
Malonic 0.260 0.097    
Oxalic 0.410     
Time 14 d 14 d 14 d 3d 12 d 
Growth Conditions Sterile,  

in solution 
Sterile,  
in solution 

Sterile,       
in solution 

germination 
box 

in solution 

Reference Szmigielska  
et al., 1995 

Szmigielska  
et al., 1995 

Kloss  
et al., 1984 

Ray et al., 
1988 

Petersen and 
Böttger, 1991 

                           

Table 2.  Miscellaneous compounds detected in root exudates (expressed in µg gdry 

root
-1   day-1 or % (w/w) of exudate) 

Compound  Time Species Growth Conditions Reference 
inositol 54.1 16 d Medicago sativa 

(alfalfa)2 
sterile, in sand Hamlen et al., 1972 

total protein 24.6%  3d Ledpidium 
sativum (cress)1 

germination box Ray et al., 1988 

phenolic cmpds 26 5d Glycine max 
(soybean)7 

sterile, in solution D'Arcy, 1982 

phenolic cmpds 92 5d Lens culinaris 
(D'Arcy, 1982)7 

sterile, in solution D'Arcy, 1982 

phenolic cmpds 261 4d Glycine max 
(soybean)7 

sterile, in sand D'Arcy, 1982 

 



                                                                                                                                         4

 

1.  expressed as percent of total carbohydrates, protein, and uronic acid detected  
2.  assuming an average root dry weight of 0.9 g (over the 16 day growth period) 
3.  assuming 0.1 g dry root per gram fresh root  
4.  expressed as percent of total amino acids detected 
5.  assuming average dry root weight of 0.75 g (over 14d) 
6.  assuming average dry root weight of 0.6 g (over 12d) 
7.  assuming  average dry root weight of 0.15 g (over 4-5d) 

 

 Table 3.  Carbohydrates detected in 
root exudates (expressed in µg 
gdry root

-1 day-1 or % (w/w) of 
exudate). 

 
Table 4.  Amino Acids detected in 

root exudates  (expressed in µg 
gdry root

-1 day-1 or % (moles/mole) 
of exudate). 

                        Species                    Species 
 Lepidium. 

sativum 
(cress)1 

Medicago 
sativa (alfalfa)2 

 Spinaceae 
oleraceae 
(spinach)3 

Lepidium 
sativum 
(cress)4 

Compound   Compound   
sucrose  45.6 Asp 0.75 10.5%  
ribose  0.76 Thr 0.25 5.7%  
fructose  25.69 Ser 0.5 7.3%  
maltose  202.8 Glu 0.75 15.3% 
rhamnose 5.8%  Pro 0.3 5.3%  
fucose 4%   Gly 1.4 8.9%  
arabinose 21.8%  52.8 Ala 3.5 7.2%  
xylose 13.8%  4.86 Val 0.3 6.3%  
mannose 5.7%  36.8 Met 0.5 1.7%  
galactose 33.3%   Ile 0.25 4.2%  
glucose 15.1%  482.6 Leu 0.5 7.2%  
Time 3d 16 d Tyr 0.25 2.6%  
Growth 
Conditions 

germination 
box  

sterile, in sand Phe 0.2 4.2%  

Reference (Ray et al., 
1988) 

(Hamlen et al., 
1972) 

His 0.4 2.4%  

   Lys 0.3 7.2%  
   Arg 0.2 38%  
   Trp 0.25  
   Asn 0.2  
   Cys 0.15  
   Hyp 0.25 Trace 
   Time 21 d 3d 
   Growth 

Conditions 
in soil germination 

box 
   

            

Reference Futamata et 
al., 1998 

Ray et al., 
1988 
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compilation from the literature, Lynch and Whipps (1990) described rhizodeposition as 

4-70% of carbon allocated to the roots, which is 30-60% of net photosynthetic carbon.  

Many other authors have summarized their results in terms of amount carbon exudates 

per gram plant, or as a percentage of  net photosynthetic productivity (NPP) (Table 5). 
 
 

Table 5.  Quanitative estimates of root exudation. 
 

Percentage fixed carbon 
released as exudate 

Notes Reference 

9 Hydroponic wheat Minchin and McNaughton, 
1984 

8-15 Crested wheatgrass, 
grown in clay 

Biondini et al., 1988 

7-13  Barber and Martin, 1976 
12 Maize Jones and Darrah, 1993 
0.9  Barber and Gunn, 1974 
2  Helal and Sauerbeck, 1989 

5-10 Wheat and barley grown 
in sterile soil 

Barber and Martin, 1976 

10 Includes root debris Uren, 2001 
19  Helal and Sauerbeck, 1989 
7 Corn Haller and Stolp, 1985 
5 Rape Shepherd and Davies, 1993 

mg organic C released 
plant-1 day-1 

  

0.2-1.2 Hydroponic maize, dry 
mass <1g 

Groleau-Renaud et al., 
1998 

0.04-0.1 Includes only sloughed-
off tissue, from peanut 

Griffin et al., 1975 

Miscellaneous   
7.3 mg/g root/ day 36 day old plants Kraffczyk et al., 1984 
94.2 mg/g dry root 5 day old plants Schönwitz and Ziegler, 

1982 
1.8% plant dry mass Cereals in solution Barber and Gunn, 1974 
3.5% plant dry mass Cereals in solution with 

glass beads 
Barber and Gunn, 1974 

<600 mg/ g root dry mass  Lynch and Whipps, 1990 
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ROOT EXUDATE STUDY SYSTEMS 
 
 

The type of system used in root exudate studies has differed depending on the 

goal of the study.  To quantify total amounts of carbon released by plant roots, 14C 

labeling (Barber and Martin, 1976; Whipps and Lynch, 1983; Minchin and 

McNaughton, 1984; Norton et al., 1990; Shepherd and Davies, 1993), estimations based 

on microbial activity (Barber and Martin, 1976; Haller and Stolp, 1985; Biondini et al., 

1988), or both (Helal and Sauerbeck, 1989), have been used in both soil and hydroponic 

systems.  To identify specific compounds in the root exudate, mist chambers (Smucker 

and Erickson, 1976; Timotiwu and Sakurai, 2002) and solution culture (Szmigielska et 

al., 1995; Fan et al., 1997) have most commonly been used.  Modifications have been 

made to these systems to observe the effects of certain treatments, such as addition of 

glass beads to solution culture to study the effects of mechanical impedance of roots on 

root exudates (Barber and Gunn, 1974; Groleau-Renaud et al., 1998), root-zone 

membranes to study the effects of microbial metabolites on axenic roots (Meharg and 

Killham, 1995), and changes in the nutrient solution (Ratnayake et al., 1978; Zhang et 

al., 1991), or soil type (Ström, 1997) to observe effects of nutrient stresses.  Most 

recently, bioluminescence genes have been inserted into bacteria which fluoresce in the 

presence of a certain exudate, for example galactose (Bringhurst et al., 2001).  This 

allows for identification of timing and specific site along the root of release of that 

compound. 
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MICROBIAL EFFECTS OF PLANT GROWTH AND ROOT EXUDATES 

 
 

Axenic (sterile) plant culture is required to study the quantity and composition of 

root exudates without their alteration by microbes.  The presence of microbes in the 

rhizosphere can change the quantity of root exudates through metabolism and the 

composition through partial degradation.   

Plant growth in the absence of rhizosphere microbes may be altered compared to 

non-axenic (normal) conditions, which may also affect the production and release of root 

exudates.  Though these factors may raise questions about the applicability axenic plant 

culture, the purpose of this study is to be able to identify root exudates of the plant with 

as little environmental and biotic influence as possible.   Most whole-plant exudate 

studies suggest that root exudates increase with microbial inoculation.  Many of these 

studies compare root exudates of plants grown under axenic and non-axenic conditions 

but lack specific detail on the materials and methods.  Microbe-based mechanisms that 

might increase carbon released by plant roots include consumption of exudates by 

microbes (thereby increasing the concentration gradient between the inner root and the 

soil), competition for nutrients (plants have been shown to respond to nutrient limitations 

by increasing the release of certain root exudates), and release of specific compounds 

that elicit a response by the root including phytohormones (Arshad and Frankenberger, 

1998), siderophores (Mozafar et al., 1992), and compounds that reduce the integrity of 

root cells and membranes (Collmer and Keen, 1986).   
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    It is difficult to compare plants grown under axenic and non-axenic conditions 

without affecting other aspects besides the presence or absence of microbes.  

Sterilization procedures may change the growth medium and affect plant health.  The 

microbes present in the non-axenic treatment may be contaminants that do not represent 

soil microbes.  Many other papers have also reported changes in root exudation when 

rhizospheric bacteria are present, but all have conclusions that are similarly uncertain 

(Prikryl and Vancura, 1980; Barber and Lynch, 1977; Lee and Gaskins, 1982; Biondini 

et al., 1988; Kraffczyk et al., 1984). 

Although microbes can affect root exudate production, it is not clear whether 

axenic culture will result in more, less, or even changed levels of exudates released by 

plant roots. 

In a 1977 study, Barber and Lynch grew hydroponic barley under axenic and 

non-axenic (inoculated) conditions.  The exudates from the axenic trial were analyzed 

for carbohydrate content.  A direct count was performed on the rhizosphere organisms 

from the non-axenic trial, and microbial biomass was estimated.  The observed number 

of bacteria was greater than the expected number of bacteria based on the carbohydrates 

collected under axenic conditions.  They concluded that microorganisms increased the 

release of root exudates.  

Their study makes several assumptions, particularly the amount of carbohydrate 

(0.35 mg bacteria per mg glucose consumed) used by the microbes on which the major 

conclusion is based.  Also, the inoculum was not necessarily rhizospheric microbes from 

soil, only microbes that grew in “non-axenic” treatments.  The biggest assumption is that 
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the plants in the axenic treatment actually remained free of microbes throughout the 16-

day study.  No mention was made that any check on the sterility was performed.  

Converting the data in this study from total mg carbohydrate over several periods of 

varying length to mg released per day reveals a steep drop-off in exudation rates 

following an exponential increase, indicating microbial metabolism of exudates due to 

contamination.  A similar decrease was not observed in the direct counts of microbes in 

the non-axenic trial, which leveled-off with time.  Contamination would have resulted in 

an underestimation in carbohydrate production in the non-axenic trial and therefore an 

overestimation of increased exudation due to inoculation.  

A brief communication by Merbach and Ruppel (1992) was written with the 

intention to help elucidate the effects of microbes on root exudation, but again the 

materials and methods section renders the conclusions questionable.  Plants were 

exposed to 14CO2 and grown in both axenic and non-axenic soil culture.  Increased 

exudation--3 to 12 times as much 14C--was observed under non-axenic (and inoculated 

with Serratia rubidea) treatments.  Higher carbon use efficiency was also observed 

under non-axenic conditions, along with higher CO2 uptake.  A preliminary check for 

sterility was performed by plating the surface-sterilized seeds.  The soil growth medium 

used in the axenic treatment, however, had been autoclaved four times.  An unintentional 

artifact in this experiment could have been reduced plant health in the axenic treatment 

since   autoclaving affects much more than the viability of microbes in a soil, including 

soil structure and nutrient availability.  The increase in root exudation that was 

concluded as a microbial effect may have actually been a plant-health issue: healthier 
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plants grow faster, and therefore have more carbon to release as root exudates.  

Increased carbon use efficiency in the non-axenic treatment of this study also may have 

been due to plant health, not microbes as suggested by the authors. 

The conflicting data in the papers presented above is likely due to several factors: 

1. metabolism of specific compounds would depend on the composition of 

the microbial populations 

2.  whether inoculated or just the “non-axenic” treatments (presumably due 

to unintentional contamination) were used 

3.  growth conditions (temperature, growth medium, etc.), which influence 
 
the composition of microbial populations.   
 
 

VERIFICATION OF AXENIC CONDITIONS 
 
 

 Many microbial species require specific conditions for growth and cannot be 

cultured under laboratory conditions.  Most studies use agar plates to detect microbial 

contamination.  Dilute nutrient concentrations, rather than standard media recipes, 

should be used with the agar to create hospitable growth conditions for contaminants.  

Since less than 1% of all soil microbes are capable of growing on agar plates, additional 

checks are required because contamination by certain species may go undetected (Brock, 

1987).  The most direct method for identifying the presence of microbes would be 

microscopic observations of the root surface at sites of highest exudation (i.e. the zone of 

elongation).  Analysis for the presence of signature compounds, such as phospholipid 

fatty acids, has also been used to detect and quantify microbes. 
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THE IMPORTANCE OF PLANT HEALTH IN ROOT EXUDATE STUDIES 
 
 

Plant health is an important consideration in root exudate studies as plant stress 

can alter root exudates.  Factors that have been documented to affect root exudates 

include nutrient stress (Ström et al., 1994; Hoffland et al., 1989; Römheld, 1991, drought 

(Whipps and Lynch, 1983), hypoxia (Grineva, 1961), light levels (Hodge et al., 1997), 

root-zone CO2 concentrations (Zhao et al., 2000), defoliation (Paterson and Sim, 2000), 

and root damage (Ayers and Thornton, 1968).  These factors should be taken into 

consideration when designing an axenic plant culture system and determining the 

methods for maintenance. 

OBJECTIVES 
 
 

The overall objective of this research was to characterize the quantity and 

composition of root exudates from crested wheatgrass.  Specifically, to: 1.  Develop 

procedures for growing axenic plants; 2. Grow healthy, unstressed axenic plants; 3.  

Determine the effects of nutrient stress on crested wheatgrass root exudates; 4.  

Determine the effects of drought and flooding stress on crested wheatgrass root 

exudates; 5.  Quantify the total organic carbon (TOC) of exudates and the organic acid 

composition by gas chromatography-mass spectrometry (GC-MS); 6. Predict plant 

growth from transpired water. 
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HYPOTHESES 
 
 
Hypothesis 1:  High NH4

+ and low K+ stress will increase TOC exuded from the roots.  

 

Hypothesis 2:  Low K+ will induce exudation of nutrient-sequestering compounds. 

 

Hypothesis 3: Periods of drought will result in a higher quantity of exudates. 

 

Hypothesis 4: Periods of flood-induced hypoxia will result in a higher quantity of 
exudates.  
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CHAPTER 2  

 DESIGN AND MAINTAINANCE OF AN AXENIC PLANT CULTURE SYSTEM 

TO FACILITATE OPTIMAL GROWTH IN LONG-TERM STUDIES1 

Abstract 

We developed a unique axenic system to grow crested wheatgrass 

(Agropyron cristatum) that promotes plant health and can be kept sterile for 70 

days.  Individual plants were grown in small, flow-through glass chambers that 

were positively pressured with filtered air.  These chambers were kept in a laminar 

flow hood modified to include high-pressure sodium lamps.  Plants were grown in 

Ottawa sand and watered with a sterile nutrient solution.  Excess nutrient solution 

leached from the system and was collected regularly for analysis.  System 

components were selected for their inert properties and treated to minimize TOC 

contamination of exudate samples.  Particular attention was paid to plant health by 

regulating temperature, light levels, CO2, humidity, and nutrients.   Planting and 

watering manipulations were adapted to maintain sterile conditions in the 

chambers.  Microbial contamination was monitored during the study by plating out 

aliquots of the leachate onto dilute nutrient agar and with microscopic observations 

of stained leachate.  These results were confirmed at the end of the study by direct 

microscopic observations of root samples.  Plants remained free of microbial 

contamination throughout a 70-day growth period. 

 1Coauthored by: Amelia Henry, Jeanette Norton, Scott Jones, and Bruce Bugbee.
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Introduction 

Axenic plant culture is the growth of plants in a controlled environment in the 

absence of microbes.  The term “axenic” refers to a system in which all biological 

populations are defined.  Other terms used to describe these types of systems include 

sterile, aseptic, and gnotobiotic.   

Most axenic plant culture systems have been designed for short-term plant 

growth.  Applications of nutrient stress or microbial inoculation have also been included 

in design of these systems.  The main challenge associated with long-term axenic plant 

culture is to maintain optimal plant growth conditions in a microbe-free environment.  

Optimal growth in the controls is imperative in order to apply stresses and assure that 

responses are due to those stresses alone, not artifacts from the growth conditions.   
 
 
Requirements for long-term axenic plant culture 

 An ideal axenic plant culture system should continuously provide the following: 

1)  CO2, temperature, humidity, and light control in the shoot zone 

These factors are necessary for optimum photosynthesis and growth rates. 

2)  Nutrients, water, oxygen and absence of light in the root zone 

Adequate aeration of the root zone is necessary for aerobic metabolism.  Dry 

conditions in the root zone can lead to stomatal closure and decreased cell water 

potential.  Root growth is inhibited in the presence of light. 

3)  Mechanical impedance to the roots  

Since plant morphology differs between solution culture and solid-substrate 

culture, a solid substrate is necessary for growth comparable to the field. 
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4)  Inert components  

It is important that system components do not adsorb or desorb compounds to or 

from the system, including organic substances and ions, which could interfere 

with analytical procedures or plant growth. 

5)  Maintenance of sterility  

Proper sterile techniques, such as autoclaving system components, enclosing the 

system to minimize exposure to the surrounding environment, and watering 

without introduction contaminants, are necessary to maintain axenic conditions. 

6)  Access to verify sterility 

Since microbes are strongly associated with plants and ubiquitous in the 

environment, it is likely that axenic plant culture systems will become 

contaminated even with significant efforts to minimize contamination.  It is 

therefore necessary to monitor for contamination throughout the study. 

7)  Access to apply treatments such as nutrient stress or inoculation 

Axenic plant culture can be used to determine responses to certain treatments of 

the plant alone, without any microbial influence.  Therefore it is of use to include 

a method in the design of the system for application of the treatments that allow 

for maintenance of sterility (i.e. a port for addition of certain compounds or 

design of nutrient and watering regimes). 

8)  Access for periodic collection of root-zone solution for analysis 

 Collection and analysis of the root-zone solution is a non-destructive means of 

monitoring plant responses to treatments, for example changes in root exudates, nutrient 
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uptake, or pH.  A method for extraction of the root-zone solution must also prevent 

introduction of microbial contaminants to the system or the root-zone solution sample 

for accurate analytical results. 
 
 
Previous studies  

Agar media 

Axenic plant cultures on agar plates (Heist et al., 2002) or with agar and 

Millipore membranes (Meharg and Killham, 1991) have been used to study the effects of 

specific microbes on plants.  Agar media allow continuous monitoring of sterility but do 

not facilitate long-term studies.  They do not allow for continuous root-zone solution 

analysis, or allow for uniform nutrient, water, or oxygen delivery to the root surfaces.  

Agar plates also provide growth conditions that make treatment responses difficult to 

extrapolate to the field.   
 
 
Solution culture 

Solution culture allows for periodic analysis of root-zone solution and checking 

for contamination but provide growth conditions quite different from the field and are 

difficult to keep sterile due to the necessity of frequent watering.  Axenic solution 

cultures have sealed root zone with cotton wool or a viscous material like Vaseline or 

wax (Mench and Martin, 1991; Groleau-Renaud et al., 1998).  Growth is significantly 

altered compared to the field due to increased nutrient availability and absence of root 

hairs when grown hydroponically.  The viability of specific microbes inoculated into a 

hydroponic system is limited without surfaces to grow on, as in soil.   
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Solid substrates 

Soil has been used as a growth medium for axenic plant culture in some early 

systems (Whipps and Lynch, 1983).  Due to the difficulties with sterilization and the 

structural and geochemical changes that occur from autoclaving or gamma irradiation, 

soil is an unsuitable growth medium for axenic plant culture.  Biondini et al. (1988) 

enclosed plant roots in pots of sterilized fritted clay with ports for solution input and 

output.  Microcosms containing sand as a growth medium with separate collection 

containers for nutrient solution leachate have been used for axenic plant culture (Ayers 

and Thornton, 1968; Lipton et al., 1987; Hodge et al., 1996).    

Glass beads provide optimal growth conditions and possibilities for an ideal 

axenic plant culture system.  Sand is similar to glass beads but less expensive, and has 

fewer reactive surfaces than soil or fritted clay.  Sand as a growth medium allows for 

complete removal of root-zone solution without sorption of any components.  Ottawa 

sand is 99.9% pure quartz sand originating from Ottawa, IL, that is inert and available in 

multiple grain sizes, which can be layered to form a size gradient for root growth.  Use 

of a single sand size leads to dry conditions at the top and waterlogged conditions at the 

bottom.  A more uniform water potential for optimal root growth can be achieved by 

having a finer grain size at the top of the column to retain water against the gravitational 

potential. 
 
 
Sterile techniques and verification of sterility 

  Most past studies have used a preliminary check for contamination by 

germinating surface-sterilized seeds on agar plates.  Many studies performed a 
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secondary check for contamination using only the plate count method by plating out 

samples of solution from the root zone, usually once at the end of the study (Mench and 

Martin, 1991; Basu et al., 1994; Groleau-Renaud et al., 1998).  Other studies did not 

indicate how axenic conditions were verified after planting (Barber and Lynch 1977; 

Hodge et al., 1996).   

Development of improved methods to facilitate long-term axenic plant culture 

was necessary, particularly techniques that maintained sterility while allowing for 

optimal growth.  Dilute nutrient concentrations in the agar are more similar to growth 

conditions in the rhizosphere.  Since less than 1% of all soil microbes are capable of 

growing on agar plates, additional checks such as microscopy are required because 

contamination by certain species may go undetected (Brock, 1987).   

Sterilization methods most commonly used include autoclaving of the system 

components, gamma irradiation or autoclaving of the growth medium, and surface 

sterilization of seeds by soaking in diluted solutions such as H2O2, NaOCl, or HgCl2. 
 
 
Long-term studies 

Most axenic plant studies have not been conducted over a long-term (more than 

40 days) due to difficulties keeping the systems microbe-free.  Microbial contamination 

is minimized in systems in which the entire plant is enclosed.  Hodge et al. (1996) 

developed a completely enclosed system that allowed for inoculation of microorganisms 

and the use of radio-labeled CO2 to track flow of assimilated carbon, with modifications 

made to these systems (Paterson and Sim, 1999 and 2000) to reduce carbon 

contamination by the system components and reinforce seals.  The system by Hodge et 
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al. (1996) consisted of 2 Kilner jars, the mouths of which were sealed together, 

surrounding an inverted reagent bottle (base removed) that contained sand as a growth 

medium.  Holes were drilled in the cap of the reagent bottle for drainage and a section of 

a syringe barrel was used to support the plant.  Four ports were drilled into Kilner jars 

that allowed for air and fluid exchange to and from the system. 

Our intent was to design a simpler system than those already developed with 

fewer joints, ports, and transfers of solution to be less prone to contamination over time 

so that longer studies could be maintained.  In this paper, specific sterile techniques for 

axenic plant culture are identified.  The plant-growth system discussed here is simple, 

reproducible, and relatively inexpensive.   
 
 
Materials and methods 
 
 
Plant growth container: root zone 

The root-zone container was a 22-cm long glass column (38-mm outside 

diameter, 35-mm inside diameter) with two ports at the top for addition of nutrient 

solution and air (Figure 1).  Five layers of Ottawa sand with different grain sizes were 

used to maintain a relatively uniform water potential from the bottom to the top of the 

container.  Grain size and layer thickness were determined using the van Genuchten 

(1980) water retention model (Figure 2).  The sand depths were, from top to bottom:  4.5 

cm fine (0.315-0.425 mm); 3.5 cm fine/medium mix (0.315-0.630 mm); 2.5 cm medium 

(0.425-0.630 mm); 2.5 cm medium/coarse mix (0.425-0.850 mm); 3 cm coarse (0.630-

0.850 mm), see Table 1 for size conversions.  The column was closed on the bottom with 
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a one-holed silicone stopper with a 9.5-cm long glass tube lined with a silanized glass 

wool wick to aid water flow out of the growth container.  The glass wool wick and 

surrounding tube were attached to a leachate collection vial via a two-holed silicone 

stopper (one hole filled with glass wool to allow air displacement while preventing 

contamination).    

The sand in the columns was pre-loaded with iron to increase plant iron availability 

during the trial since iron chelates would interfere with TOC analysis and were not used.  

A 200-µM solution of FeCl3 was poured through the columns.  When the pH of the 

solution leaching from the sand decreased to below 4, nutrient solution (pH=5.5) was 

poured through the sand to increase the pH within the column and precipitate the iron on 

the surface of the sand. 

 

 Fig. 1.  Glass-column system used for axenic plant culture and study of root exudates.  
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Fig. 2.  Relationship between volumetric water fraction and matric potential in each of 

the 5 sand layers of the column as predicted by the van Genuchten water 

retention model.   The volumetric water content of each layer is at least 40% but 

not more than 90%. 

 

Plant growth container: shoot zone  

The top section of the container was made from a second 22-cm long glass 

column connected to the root-zone column by a ground glass joint.  The column was 

sealed at the top with an open-cell foam plug to prevent contamination. 

Plant culture 

One pre-germinated crested wheatgrass seed was planted in each root-zone 
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column, except the unplanted columns.  All columns were maintained for 70 d in a 

laminar flow hood (Contamination Control, Inc.).  The hood was modified for plant 

growth by fitting with two high-pressure sodium lamps that supplied a PPF of 550 µmol 

m-2 s-1 during a 16-h photoperiod (Figure 3).  The air temperature was maintained at 

25oC.  Plants were watered to excess every 1 to 4 d with filtered and autoclaved nutrient 

solution, the composition of which was predetermined under non-axenic conditions to 

obtain optimal growth (Appendix A) to obtain at least 25 ml of leachate and maintain 

healthy plants.  Airflow through the upper columns was supplied during the light period 

and maintained at 65 ml/min to 1 liter/min based on plant size and the air flow necessary 

to eliminate condensation inside the upper columns.  Increasing the airflow successfully 

controlled condensation.  

 Columns were supported in racks made of Plexiglas and angled aluminum 

edging, which could be easily cleaned and surface sterilized with 70% ethanol.  These 

racks reduced possible contamination because they could easily be cleaned and allowed 

laminar flow of sterile air.  Root zones were protected from light by wrapping columns 

with aluminum foil. 

Collection of leachate 

Amber vials containing nutrient solution leachate and root exudates were 

replaced with sterilized, empty vials after each watering.  Leachate samples were capped 

and stored at 4oC until analysis within 24 h. 
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Fig. 3.  Plants growing in the laminar flow hood. 

Procedures to minimize microbial contamination  

1.  Surface sterilization of seed 

Crested wheatgrass seeds were agitated on a shaker for 60 min in a solution with 20% 

Clorox and 0.1% Tween 80 as a wetting agent.  After 60 min, seeds were rinsed with 

sterilized deionized water and placed on petri plates with 1/10 strength Difco nutrient 

broth and Bacto agar (1.5%) in a 25oC incubator for 3 d to test for residual microbial 

activity on the seed surface.  After 3 d the radicles were about 15 mm long.  On average, 

one seed out of 50 had residual contamination.  Seed vigor was not significantly reduced 

by the treatment (see Appendix B). 
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 2.  Sand cleaning and sterilization  

It is necessary to remove organic carbon from the sand to minimize background carbon 

levels.  Sand was washed with deionized water, dried at 90oC, washed with 30% H2O2, 

and baked overnight at 90oC to increase the reaction of organic carbon with H2O2.  The 

H2O2 treatment was repeated and the sand was given a final rinse with filtered (0.45 µm) 

deionized water.  The sand was then poured into the glass columns and autoclaved twice, 

one day apart, for one hour at 21 psi, 121oC to allow any remaining endospores to 

germinate between autoclavings. 

3.  Cleaning and sterilization of components 

All components were rinsed with methanol, dried at 80oC to remove trace organic 

carbon, and autoclaved for 45 min at 21 psi, 121oC. 

4.  Transfer of germinated seeds from petri dishes to root-zone columns 

Plant-growth containers were assembled and seedlings were transplanted to the sand in a 

laminar flow hood.  Forceps and column lips were flamed before use.  All manipulations 

were done using sterile gloves.  

5. Filtration of column air 

Air was pumped through the upper part of the glass plant-growth columns to supply CO2 

and remove water vapor.  This air was filtered through glass wool and foam plugs before 

and after the pump, and through a sterilized, bacterial air filter (Pall Gelman®, aerosol 

retention = 0.3 µm) before entering each column. 
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6.  Sterilization of the nutrient solution 

Nutrient solution was filtered through a 0.45 µm membrane, then autoclaved at 21 psi 

and 121oC for at least 45 min.  After autoclaving, the nutrient solution was allowed to 

cool completely before using it to water the plants. 

7.  Syringe injection of nutrient solution to replace transpired water 

Separate flasks of nutrient solution and sterile syringes were used for each group of 5 

plants.  Septa were cleaned with 70% ethanol before each injection.  A new sterile 

needle was used for each plant.  A syringe was discarded immediately if it touched 

anything other than the nutrient solution. 

8.  HEPA filter in laminar flow hood  

The High Efficiency Particulate Air (HEPA) filter in the laminar flow hood was replaced 

at the start of the first trial and was tested and certified. 

9.  Autoclaving 

A calibrated pressure gauge was used to monitor the autoclave and ensure that 

appropriate pressure (at least 15 psi) was maintained during the entire cycle. 

Checking for contamination 

Aliquots of leachate (20 µl) from each plant were pipetted onto plates of 1/10 

strength Difco nutrient broth and 1.5% Bacto agar.  Plates were incubated for at least 3 d 

at 25oC before visual examination for microbial growth (Figure 4).  Repeated sampling 

of the solution in the leachate vials provided the ability to distinguish between a truly 

contaminated plant and contamination that was introduced after a sample had 
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Fig. 4.  Microbial growth from the leachate on day 47 of a preliminary trial.  

Numbers refer to individual plants.  NS refers to autoclaved nutrient solution.  

Plants 1, 8, 10, and the nutrient solution have no microbial growth on these 

plates, thus suggesting no contamination.  The microbial growth from plants 2, 

3, 4, 7, 11, 12, 16, 17, 20 is apparent, but microbial growth from plants 5, 18, 19 

is not visible in this picture. 

 

been collected (a false positive).  Identification of false positives occurred when 

subsequent platings of leachate from the same column were clean. 

In addition to plating, a direct total microbial count was used to double-check 

sterility.  The Epifluorescent Microscopic Method (Clesceri et al., 1998) was used: 5 ml 

of leachate was stained with acridine orange, filtered through a 0.2-µm non-fluorescent 

membrane, mounted on a microscope slide, and observed at 100x under a UV light.  

Microbes could be seen in the leachate of plants that were identified as contaminated on 

the plates (Figure 5).  A rhizoplane stain using phenolic aniline blue (Rovira et al., 1974) 

was also performed on root samples at the end of the study (see Appendix F).  Small 
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sections of root were excised and soaked in phenolic aniline blue solution (Schmidt and 

Paul, 1982) for 3 min.  Roots were then rinsed in sterile filtered water, mounted in water 

on a microscope slide and observed under 100x (Figure 6).  This confirmed the visual 

observations in the petri dishes. 

Harvest 

Plants were harvested in a laminar flow hood using sterile techniques.  The plant 

growth columns were disconnected from the airflow and removed from the storage rack.  

After the upper glass column was removed, the plant was pulled from the root-zone 

column, which removed much of the sand as it was attached to the roots.  Sand that 

immediately fell off the root or out of the column was labeled “bulk sand” and saved in a 

sterile container for analysis.  The roots were then separated to remove the remaining 

sand, which was labeled “rhizosphere sand” and stored in a sterile container.  A small 

segment of root was then excised for microscopic observation.  The shoot was cut off 

and dried in an 80oC oven.  The root and remaining attached sand was stored in a sterile 

container.  All root and sand samples were stored at –20oC. 

Plant nutrient analysis 

 Inductively coupled plasma emission spectrophotometry (ICP-ES) was 

performed to determine nutrient content of shoots at the Utah State University Plant and 

Soil Analysis Laboratory.  The digest was performed using 1 gram of dried, ground 

shoots with 8 ml HNO3 and heated to 95.1 oC for 2 h.  Two ml H2O2 was then added, and 

the sample was heated again four times for 30 min.  Four ml H2O2 was added, the sample 
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heated for 30 min, and the volume brought up to 50 ml with deionized water.  Samples 

were then run on the ICP, in which the sample as an aerosol was put into a plasma.  The 

heat of the plasma excites the elements in the sample and detects the elements present 

and their concentrations based on the wavelength and intensity of light emitted as the 

elements drop down from their excited states.  Detection limits ranged from 1.5 - 25 

mg/kg and 0.001 - 0.005 % plant dry mass. 

Trials 

Axenic plant culture was conducted through six separate trials during which the 

percent of non-contaminated plants was recorded.  After each successive trial, changes 

were made in the materials and methods of the next to decrease contamination.  The 

most successful was Trial 6, which is described in the materials and methods.   

 

 

  

Fig. 5.  (A) Acridine orange stain of bacteria in the leachate from a contaminated 

column.  (B) Leachate from a non-contaminated column.  Only root debris is 

visible. 

A 
B 
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Fig. 6.  Root segments with root hairs stained with phenolic aniline blue.  There was no 

evidence of microbial contamination around the top segment (A), but bacterial cells 

were observed around the roots of root segment B. 
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Results 

Plant health 

 Plants appeared green and healthy throughout the trial.  The tops of leaves 

touching the foam plug curled when leaf length exceeded the length of the upper 

column.  This eventually occurred in all planted columns.   

  ICP analysis of plant shoots showed all nutrients to be present in normal amounts 

(Table 6).    

Table 6.  Average nutrient content of plant shoots in Trial 6 detected using ICP. 

 

 

Maintenance of axenic conditions 

Contamination at the end of the study was reduced by up to 85% compared to 

previous trials by growing the plants in a laminar flow hood and enclosing the shoot in a 

glass column (Figure 7).  Several improvements in sterile technique were made in Trial 

6: 

1. Exposure time of the growth columns and germinated seeds to the surrounding 

air during planting was minimized by preassembling components before 

sterilizing.   

2. Sterile gloves were used for all manipulations. 

P K S Ca Mg Fe B Mn Cu Zn Ni Al 

--------------------%----------------- -----------------------mg/kg------------------------- 

0.3 3.04 0.2 0.23 0.09 50.4 51.8 49.4 11.2 51.2 -- 0.57 
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3. Extra sand was autoclaved separately to pour on top of seedlings during planting.  

This eliminated the need for burying the seedling with a spatula, thereby 

reducing the number of manipulations and length of time the column was 

exposed to the surrounding air.  The appropriate amount of sand needed to 

adequately cover the seedling was predetermined under nonsterile conditions. 

4. Airflow manifolds were mounted directly to the racks holding the columns, 

which improved laminar flow of sterile air through the workspace.  
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Fig. 7.  Effect of time on contamination in four cultural conditions.  At the end of Trial 

6, 2 out of 15 columns were contaminated. 



                                                                                                                                         38

Discussion 

Axenic plant culture requires much preliminary practice of the sterile techniques.  

The manipulations associated with planting result in a significant potential for 

contaminations.  Planting is also the stage at which plant survival rates are lowest due to 

desiccation or root damage.  Rapid transfer of the germinated seed from the agar plate to 

the moistened sand is necessary.  It is not necessary that the entire seedling be covered 

by sand, just the seed coat.  Additional time spent burying the seedling during planting 

results in more exposure time and higher possibility of microbial contamination. 

In the most successful trial, 85% or 12 out of 14 plants remained free of microbes 

for 70 days, after which the trial was terminated due to plant size.  In both of the two 

contaminated plants, roots grew through the glass wool and out the bottom of the drain 

tube.  Because a rhizoplane stain of roots from within the system was free of microbial 

growth, it is likely that only the emerging root segment was contaminated.  Although 

plants were kept in the laminar flow hood and sterile gloves were always worn when 

watering and replacing vials, direct exposure of the plant to the surrounding air 

frequently resulted in contamination.  This implies that attempts at long-term axenic 

plant culture would be less successful in a growth chamber that was not enclosed in a 

laminar flow hood. 

 The leachate and rhizoplane stain methods had limitations.  Since acridine orange 

stains DNA, any living material in the leachate, including root cells, was stained.  Little 

material, however, was seen fluorescing in the microscopic observations of leachate 

stained with acridine orange.  This may be due to low levels of contamination since no 
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microbial multiplication occurs using this method and leachate stain often captures 

single cells at a time, compared to agar plates in which growth makes the microbes more 

visible. The sand and glass wool could have filtered the microbial cells in the leachate.  

Contaminating microbes would be also most likely attached or in close association to the 

root and resistant to being washed into the leachate.  The acridine orange method did 

work well for visualizing the leachate from plants with emerging roots, probably because 

the contaminating microbes were protruding from the system and more free to be 

washed into the leachate, not filtered by sand and glass wool.   

Young root segments and root tips, where microbial symbiosis or infection is 

most likely to occur (Curl and Truelove, 1986), were excised for staining with phenolic 

aniline blue and mounted on slides.  One slide was made for each plant, which may have 

limited the contamination check since only a small part of the root zone was represented 

on each slide. 

Procedures for cleaning the system components probably reduced microbial 

contamination.  The 20% H2O2 treatment used to reduce residual TOC on the sand was 

powerful enough to kill many microbial cells, and the deionized water washes of all 

components also removed microbial cells and spores.  All water used for cleaning was 

filtered since any debris would interfere with microscopic observations. 

 The exudates in this study were mixed in with leached nutrient solution upon 

collection.  This presented some difficulty since the salts from the nutrient solution 

interfered with certain qualitative analyses of the exudates (e.g. HPLC, anthrone test for 

sugar content).  Therefore it is necessary to select or develop the appropriate qualitative 
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analysis that will not be affected by salt content of the exudate sample. 

Some short-term solution culture studies have removed the roots from the 

nutrient solution and soaked them in deionized water to collect root exudates (Fan et al., 

1997; Ratnayake et al., 1978; Ström et al., 1994).  This procedure would reduce salt 

interference with analyses but may bias results since the amount and composition of root 

exudates can reflect the nutritional status of the plant and deionized water contains no 

mineral nutrients.  Nutrient deficiencies may change the composition or induce increased 

amounts of exudates, for example, phosphatases, phytosiderophores, or other nutrient 

chelating compounds such as organic acids (Kraffczyk et al., 1984; Römheld, 1991; 

Ratnayake et al., 1978).  Wang et al. (2002) have shown that genes associated with P, K, 

and Fe deficiencies can be induced within 1 h after withholding these nutrients from the 

plant.  Since this response was localized to the root, a rapid response in root exudate 

composition to nutrient deficiency is also likely.  In the root exudate studies using 

deionized water as the exudate collection medium, plant roots were immersed in 

deionized water for exudate collection from 1 h up to 24 h.  The high water potential of 

deionized water compared to nutrient solution may also cause cell lysis, releasing the 

root-cell contents that would then be counted as exudate.  Aulakh et al. (2001) found 

0.01M CaSO4 to be a good leachate collection medium that did not interfere with TOC 

or HPLC analyses and did not increase TOC or the proportion of sugars exuded, as 

observed with deionized water. 

To improve the system, taller and wider upper columns for the plant-growth 

container could allow longer studies provided that contamination or space in the laminar 
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flow hood was not a limiting factor.  Many plants had grown to the top of the container 

by day 70.  The crowed leaves resulted in pockets of reduced airflow and therefore 

higher humidity and a reduced gradient for transpiration.  The size of the root zone was 

less of a concern since nutrients and water were being replenished regularly and the sand 

medium provided ample pore space for oxygen to reach the roots.   

 The system for long-term axenic plant culture for the study of root exudates 

described here is suitable for many other types of root exudate studies, including the 

effects of inoculation with pure microbial cultures on root exudates and the effects of 

abiotic stresses such as heavy metals.  Regardless of the purpose of the study, this 

system provides a method for healthy plant culture that can provide interesting insight to 

the dynamics of root exudation. 
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CHAPTER 3 
 

CHANGES IN ROOT EXUDATION UNDER 
 

   FLOOD, DROUGHT, AND NUTRIENT STRESS2 

 
 

ABSTRACT 
 
 Root-zone stress may increase the production of root exudates and enhance 

phytoremediation.  Increased TOC in the rhizosphere can support higher levels of 

organic contaminant-metabolizing microorganisms.  Root exudates can also chelate 

inorganic contaminants and change soil pH, which can alter solubility and plant 

uptake.  We studied the effects of low K+, high NH4
+/NO3

- ratio, drought, and 

flooding on root exudates.  Crested wheatgrass was grown under sterile conditions 

for 70 days.  Treatments were induced beginning on day 35 by altering the 

composition and frequency of application of the nutrient solution.  Exudates were 

quantified using a Total Organic Carbon analyzer.   Drought stress significantly 

increased TOC exuded per g dry plant by 70% compared to the control (p = 0.05) 

The K+ stress and flood treatments increased by 44% and 45%, respectively, 

although these changes were not statistically significant based on the two replicates 

used in this study.  Malic acid was the most predominant of the organic acids, 

which were identified and quantified using a GC-MS.  These results indicate that 

cultural manipulations may enhance phytoremediation.  

2 Coauthored by: Amelia Henry, William Doucette, Jeanette Norton, and Bruce Bugbee. 
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INTRODUCTION 
 
 

The characterization of compounds exuded by plant roots may be useful for 

phytoremediation.  Root exudates are substrates for microbial growth and co-metabolism 

of organic soil contaminants.  Exudates can influence inorganic contaminant mobility 

and bioavailability in soil.  Nutrient, water, and oxygen status of a plant can be altered to 

influence both exudate composition and quantities.  In addition to soil remediation, root 

exudates have also been studied for allelopathy, carbon partitioning within a plant, and 

rhizosphere microbial signaling to soil-borne pathogens or nitrogen-fixing bacteria.  The 

information obtained from this study is intended for use by the Idaho National 

Engineering and Environmental Laboratories (INEEL) and the Department of Energy 

(DOE ) to improve phytoremediation of metals and organics-contaminated soil.  Because 

of their chelating properties that can be useful for phytoremediation and their ubiquitous 

presence in previous root exudate studies, organic acids were selected as the class of 

compounds that were characterized in this study. 

Factors That Affect Root Exudates 
 
 

Factors that can influence root exudation include the presence of microbes, plant 

nutrient status, plant water status, oxygen availability, species, growth medium, and 

other environmental conditions. 
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Microbes 
 
 

Microorganisms metabolize root exudates, thereby modifying exudate 

composition and quantity.  Many types of compounds released by microorganisms have 

the potential to affect the release of root exudates, including pectic enzymes (Collmer 

and Keen, 1986), phytohormones (Arshad and Frankenberger, 1998), and siderophores 

(Mozafar et al., 1992).  Axenic (sterile) conditions are necessary for analyzing the 

unmodified composition of exudates.  Some studies have concluded that microorganisms 

can increase the efflux of exudates, up to double the amount (Prikryl and Vancura, 1980; 

Merbach and Ruppel, 1992).  Mechanisms proposed to cause this increase include an 

increased concentration gradient of exudates between the root surface and the 

rhizosphere with microbial degradation, or increased permeability of root cell 

membranes and stimulation of exudate release by microbial metabolites.  Effects of 

microbes on root exudates is dependent on microbe species (Lee and Gaskins, 1982; 

Meharg and Killham, 1995). 

Microorganisms can change the composition of exudates that have been released 

into the soil, including C:N ratio and relative concentrations of compounds in the 

exudates (Kraffczyk et al., 1984; Biondini et al., 1988).  Microbial metabolism of 

exudates can affect the nutritional status of a plant by metabolizing exudates.  Inoculated 

plants have shown decreased amounts of phytosiderophores in exudates and displayed 

more iron deficiency (Von Wirén et al., 1993).  Plants may reduce microbial 

phytosiderophore degradation by spatially separating phytosiderophore release along the 

root from microorganisms (Römheld, 1991), or by timing the release of 
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phytosiderophores (Marschner et al., 1986).  Since not all microbes affect root exudates 

in the same way, the least confounded mode of studying root exudates is in the complete 

absence of microbes. 

Plant Nutrient Status 
 
 

 Iron deficiency is known to increase phytosiderophore release, but the 

availability of other plant nutrients can also affect root exudates.  Phosphorous 

deficiency is well characterized to increase exudation of phosphatase (Ratnayake et al., 

1978; Hoffland et al., 1989; Gilbert et al., 1999).  In our study, nitrogen and potassium 

treatments were used since they could be easily applied in the field for 

phytoremediation, and because of the similarities between potassium and cesium, a 

contaminant of INEEL soil: root exudates released to solubilize K+ could solubilize Cs+ 

and increase plant uptake of Cs+.   Kraffczyk et al. (1984) reported an increase in 

exudation of sugars, organic acids, and amino acids when grown in K+-deficient 

conditions, as well as higher levels of glutamic and aspartic acids when NO3
- was used 

as a nitrogen source as opposed to NH4
+.  Several studies have observed increased 

exudates with higher N (Liljeroth et al., 1990; Paterson and Sim 2000), which could be 

due to the larger size of the high-N plants rather than stimulation of exudate production 

by N. 
 
 

Drought 
 
 

 Plant water status can be an important component when manipulating root 

exudates since it is easily controlled in the field.  Increased amounts of water-soluble 
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compounds and mucilaginous material have been observed around drought-stressed 

roots (Whipps and Lynch, 1983; Barber and Martin, 1976).  Whipps and Lynch (1983) 

hypothesized that water stress resulted in an excess amount of carbon within the plant 

that was subsequently released by the root, or that the water stress caused root death that 

was detected as exudate. 

Since water stress reduces growth, inducing drought stress to increase exudation 

can be challenging.  Crested wheatgrass in the field shows a growth pattern of rapid 

increase in dry matter accumulation, then utilization of all available soil water, and 

finally avoids drought by going dormant. Frank and Bauer (1991) reported that crested 

wheatgrass evapotranspiration is more a function of plant development stage than 

calendar date.  When exposed to treatments of 50, 100, and 150% of rainfall, crested 

wheatgrass water use efficiency decreased with increasing water treatment, indicating 

that crested wheatgrass did not use high amounts of water efficiently.  Crested 

wheatgrass was also observed to extract soil water to lower soil water potentials than 

western wheatgrass (Pascopyrum smithii), another rangeland species. 
 
 

Flooding 
 
 

Excess water in the root zone can lead to hypoxia.  Grineva (1961) examined 

hypoxia by growing plants in a solution bubbled with N2 gas to eliminate O2.  No plant 

tissue injury was observed, but more exudates were collected from the hypoxic plants 

than from plants grown in aerated solution. 
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Mechanical Impedance 
 
 

 Mechanical impedance within the root zone has been shown to increase root 

exudation, change exudate composition, and change root morphology (Groleau-Renaud 

et al., 1998; Barber and Gunn, 1974; Schönwitz and Ziegler, 1982).  These studies 

compared plants grown in solution culture with and without glass beads.   Soil controls 

were not used.  Hypothesized mechanisms for changes in root exudates from mechanical 

impedance include changes in root structure since different types of roots have different 

exudate patterns, and increased abrasion to damage root cells. 
 

 
Adsorption and Re-absorption 

 
 

Adsorption of root exudates to the growth medium can occur.  In studies using 

glass beads, rinsing the beads was included in methods to collect root exudates (Barber 

and Gunn, 1974; Groleau-Renaud et al., 1998).   

Re-absorption of exudates by the plant roots has also been reported.  Jones and 

Darrah (1993) observed that plants grown in solution that was replaced daily 

accumulated about 9 times more carbon exuded from the roots than plants in static and 

non-sterile solutions.  Jones and Darrah (1993) also claimed that the greater the volume 

of solution, the greater amount of carbon collected, and that re-absorption in static 

cultures will always occur irrespective of solution volume.  They attributed the lower 

amounts of exudation in static solution to re-absorption of the exudate.  However, the 

change in osmotic potential that might have been induced by changing the nutrient 
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solution may have caused more exudates to be released from the plants, thereby creating 

the difference between the two treatments. 

 Jones and Darrah (1993) hypothesized that re-absorption in the roots occurs via a 

concentration-dependent active-uptake mechanism energized by the plasmalemma 

membrane, where the H+ gradient is the driving force for solute transport.  The authors 

also suggest that the increased exudation under K+ deficiency observed by Kraffczyk et 

al. (1984) is actually decreased absorption since K+ stimulates H-ATPase. 

Organic Acids in Root Exudates 
 
 

The release of organic acids to the rhizosphere contributes to plant health in 

several ways, including aluminum immobilization and solubilization of inorganic 

phosphorous.  A charge gradient is maintained in all healthy cells by H+ATPase which 

pumps out H+ ions while concurrently drawing anions out of the cells, particularly 

organic acids in the dissociated form. Therefore a slow release of organic acids from 

roots is likely to be always occurring (Jones, 1998).  Increased levels of dicarboxilic and 

tricarboxilic acids are released from the roots of plants that are able to grow in 

calcareous soils compared to those that cannot, possibly because of the ability of these 

acids to solubilize certain nutrients from the soil, such as Fe, Mn and P (Ström, 1997).  

The acidification of the rhizosphere, however, is due more to proton secretion, not the 

presence of organic acids (Petersen and Böttger, 1991).   

In a 28-day test tube study, Kloss et al. (1984) compared axenic plants with those 

inoculated with a N-fixing bacterium and showed that bacteria metabolized 95% of the 
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organic acids exuded, assuming the amount exuded was the same in the axenic plants 

and the inoculated plants.  These results also supported the observation that oxalic acid 

has not been detected in the root exudate of C-4 plants, whereas C-3 plants do exude 

oxalic acid.   
 
 

Root exudates in phytoremediation 
 
 
 Studies of in vitro addition of root exudates to organic compounds suggest 

increased degradation in the presence of root exudates, including phenanthrene by oat 

exudates (Miya and Firestone, 2001), pyrene by corn exudates (Yoshitomi and Shann, 

2001), atrazine by poplar exudates (Burken and Schnoor, 1996), and 2-chlorobenzoic 

acid by wild rye exudates (Siciliano et al., 1998). 

Root exudates can contribute to phytoremediation of inorganic compounds by 

mobilizing the contaminants in the soil (Mench et al., 1988) and increasing plant uptake 

of metals in the rhizosphere, i.e. root exudates from Nicotiana spp. have increased the 

bioavailability and uptake of cadmium and other cations (Mench and Martin, 1991).  

However, Zhao et al. (2001) reported that root exudates are not associated with 

hyperaccumulation of Zn, Cd, or Cu in Thlaspi caerulescens, a well known Zn 

hyperaccumulator. 

 Organic and inorganic compounds are often present in the soil.  Root exudates 

could enhance degradation of organic contaminants by providing nutrients that increase 

microbial activity, increasing the bioavailability of contaminants by promoting 

desorption from soil surfaces, and by providing substrates for co-metabolism, which is 
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the microbial breakdown of organic soil contaminants when supplied with a more 

accessible carbon source (Miya and Firestone, 2001).  Root exudates may also have 

enzymatic properties that can break down contaminants (Siciliano et al., 1998).  

Increasing the proportion of organic acids in the rhizosphere could increase the amount 

of chelation and plant uptake of inorganic contaminants.  Other changes in exudate 

composition could change the rhizosphere pH, thereby immobilizing or mobilizing 

contaminants in the soil. 

  This study sought to determine if stress can alter the quantity and composition 

of root exudates, which has the potential to increase the effectiveness of 

phytoremediation of both organic and inorganic contaminants. 
 
 

MATERIALS AND METHODS 
 
 

Crested wheatgrass (Agropyron cristatum), a rangeland species, was chosen for 

this study because of its ability to grow in regions with low rainfall.  Cultivar CD-II, 

which was developed at the USDA-ARS facility on the Utah State University campus, 

was chosen for its increased vigor and stress resistance.  
 
 

Plant Growth 
 
 

Plants were grown under axenic conditions.  All maintenance and manipulations 

were carried out in a laminar flow hood using sterile technique to avoid contamination.  

Sterile technique includes the use of 70% ethanol and flaming for tools and surfaces, and 

autoclaving to sterilize all sand, solutions, and growth containers.  
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 Ottawa sand was used as a growth medium to provide mechanical impedance.  

The impedance to root growth was similar to that of a sandy soil since the columns were 

close to their maximum packing density.  Ottawa sand is a relatively inert medium that 

does not significantly bind negatively-charged compounds (see Appendix C).  A 22-cm 

long glass column (38-mm outside diameter, 35-mm inside diameter) was used as the 

growth container (Figure 1) for axenic culture. A range of sand sizes was used to 

maintain uniform water content throughout the growth container.  Grain size and layer 

thickness were determined using the van Genuchten (1980) water retention model.  The 

sand layers were, from top to bottom:  4.5 cm fine (40-50 grit); 3.5 cm fine/medium mix 

(30-50 grit); 2.5 cm medium (30-40 grit); 2.5 cm medium/coarse mix (20-40 grit); 3 cm 

coarse (20-30 grit).  The top of the container was closed with a second 22-cm long glass 

column (connected by a ground glass joint) and an open-cell foam plug to prevent 

contamination and reduce water loss by the system.  The tube was closed on the bottom 

with a one-holed silicone stopper lined with a silanized glass wool wick to aid water 

flow out of the growth container.  This glass wool wick was enclosed in a small glass 

tube attached to a leachate collection vial by a two-holed silicone stopper (one hole filled 

with glass wool to allow air displacement while preventing contamination).    

   Glass columns were washed with methanol and heated at 175oC to remove 

residual carbon.  Sand was washed with 30% H2O2 and rinsed with deionized water.  All 

components were given a final rinse with filtered deionized water (0.45 µm Pall Gelman 

membrane).  After partial assembly, columns were autoclaved twice on two separate 

days and fully assembled in a laminar flow hood (see Chapter 2 for more details). 
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Seeds from recently grown crested wheat grass plants (cv. CD-II) were soaked in 

tap water for 30 minutes.  About 40% of the seeds sunk in the water and 60% floated.  

The germination of the seeds that sunk was 90% (Appendix B). Germination of those 

that floated was 65%.  The denser, sinking seeds were selected and used in all studies. 

Seeds were surface sterilized in a sterile beaker with a 20% Clorox and 0.1% Tween 80 

solution for 60 minutes on a shaker at 100 rpm.  Seeds were then rinsed with deionized 

water and placed on petri plates containing dilute (0.8 g/L) nutrient broth (Difco) and 

Bacto agar (1.5%) in an incubator.  This aggressive treatment did not significantly 

reduce seedling vigor (germination rate = 75%, see Appendix B).   

One pre-germinated seed was removed from the petri plate in a laminar flow 

hood and planted in each column, except the unplanted column.  The sterilized upper 

columns and foam plugs were then connected to the planted lower columns.  All 

columns were saturated with sterile filtered nutrient solution and collection vials were 

attached. 

All columns were maintained in a laminar flow hood (Contamination Control, 

Inc.).  The hood was modified for plant growth by fitting with two high-pressure sodium 

lamps to supply light (500 µmols m-2 s-1, 16 hr photoperiod) and a ductwork system to 

maintain temperature at 25oC. 

Plants were watered periodically with filtered nutrient solution (for composition 

see Appendix A) to obtain 25 ml of leachate and maintain healthy plants.  Double-

strength nutrient solution was used for the first 35 days of the trial to help the seedlings 

become established.  Single strength nutrient solution was used in all treatments after 
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day 35, when the induction of treatments began.  No iron chelate was used in the nutrient 

solution to minimize non-plant sources of carbon, which would interfere with the TOC 

analysis.  A new syringe needle was used for each column, and septa were surface 

sterilized with 70% ethanol before watering.  Leachate bottles were replaced at each 

watering.  Plant water use was monitored from volumes of nutrient solution added and 

recovered.  It was assumed that the contents of each leachate vial contained a 

representative sample of the root exudates in the rhizosphere.   

Plants in four columns did not become established after planting and were 

replanted during the first week.  These columns were assigned to the control treatment so 

as to avoid biasing the treatments, which had only two reps each. 
 
 

Root-zone Stress Treatments 
 
 

Nutrient solutions and watering volumes were manipulated to induce treatments 

of low K+, increased NH4
+, drought and flooding.  Two plants were assigned to each 

treatment beginning on day 35, with 6 control plants watered with the same frequency 

and nutrient solution as previous, with the exception of reducing the strength of the 

nutrient solution to reduce the buildup of salts.  K+ stress was induced by decreasing the 

concentration of K+ in the nutrient solution from 5.5 mM to 0.5 mM.  For the NH4
+ 

treatment, the NH4
+: NO3

- ratio was changed from 0:7 to 2:6.  This ratio was increased to 

4:3 on day 57.  Drought was induced by watering with 75% less volume than the 

controls, with waterings every 2 to 4 days of an adequate volume of nutrient solution to 
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obtain leachates.  A stopper was placed in the drain tube of the flood treatment to induce 

flooding.  

Detection of Microbial Contamination 
 
 

Microbial contamination was assessed weekly by pipetting 20-µl samples of 

leachate onto petri dishes containing 1/10 strength nutrient agar (1.5% agar).  Plates 

were stored in a 26oC incubator for two weeks and assessed for microbial growth.  

Leachate samples were further examined for contamination at the end of each study by 

direct count using acridine orange , which stains DNA (Clesceri et al., 1998).  A 

rhizoplane stain was performed on select root samples using phenolic aniline blue, a 

compound that stains the carbohydrate callose (Schmidt and Paul, 1982).  

Harvest 
 
 

Plants were harvested on Day 70.  Roots and sand were stored in sterile 

containers at -20oC until extraction and analysis by TOC or GC-MS.  Plant shoots were 

rinsed with deionized water, then dried and analyzed for mineral nutrient content by 

digestion and ICP at the Utah State University Plant Analysis Lab (see Chapter 2).  TOC 

content of the sand was determined by analyzing a 0.1N NaOH extract of a 5-g 

subsample that was agitated for 45 minutes at 100 rpm. 
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TOC Analysis 
 
 

A sub-sample of each leachate was diluted and used to determine the Total 

Organic Carbon (TOC) in the sample.  This analysis was performed on a Tekmar-

Dohrman, Pheonix-8000 TOC analyzer that operates using a UV-persulfate reaction (see 

Appendix F).  Leachate analyses were performed when collected and re-run together at 

the end of the study using the same standard curve.  The values obtained at the end of the 

study were slightly lower and were reported here. 

To determine the percent soluble TOC in each leachate sample, the TOC of a 5-

ml subsample filtered aseptically with a low-retention syringe tip filter (Pall Gelman 

acrodisc, Supor membrane) and diluted with sterile filtered water was determined.  TOC 

that passed through the 0.45-µm filter was assumed to be soluble.  A 1 ml aliquot of 

leachate was also aseptically removed from each sample to measure pH. 

GC-MS Analysis 
 

 The analyses of dicarboxylic acids were performed by: 1) extracting the acids 

from the media (roots or sand), 2) esterifying the acids to increase their volatility, and 3) 

analyzing the methyl esters using gas chromatography with mass spectrometry (GC-

MS).  

The roots and attached sand were separated and sub-sampled into approximate 5-

gram and 1-gram samples, respectively.  Three ml of 0.1 N NaOH solution was added to 

each subsample.  The sample solutions were intermittently mixed for one hour at room 
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temperature and then separated from the sand or root matrix.  The sodium hydroxide 

extraction was not performed on leachate samples, which were treated directly.  Samples 

were then esterified; 1-ml aliquots of each extract or leachate were added to 3 ml of 

methanol and acidified with 0.6 ml of 50% sulfuric acid. The acidic methanol mixture 

was heated for one hour at 50oC, then cooled and diluted with an additional 3 ml of 

water.  One ml of chloroform was added, the sample vigorously shaken then incubated 

about 30 minutes. The chloroform layer was removed and its components in the 

chloroform were quantitated using GC-MS (Agilent models 6890N/5973).  

Chromatography conditions were: 1 microliter injection, column flow rate, 0.6 ml/min, 

split/ratio = 3.6, column – DB-624, 30m x 0.25mm x 1.4µm, temperature program, start 

at 50oC, 5 degrees per minute to 200oC and hold 5 minutes. Methyl esters of the 

dicarboxylic acids were quantitated using pure compounds (Aldrich, Milwaukee, WI). A 

concentration range of 0.5 ppm to 10 ppm showed good linearity for calibration of each 

organic acid (r2 = 0.997 to 0.999). 

 Treatments were compared on SigmaStat using one-way ANOVA and a Tukey 

Test or Dunn’s Method as follow-up analyses when applicable (Appendix H).  Exudates 

were expressed in terms of µg TOC per gram new plant by dividing µg TOC per gram 

plant per day by the relative growth rate throughout the study.  ANOVA was performed 

on the 4 dates after the treatments were applied (days 42, 51, 57, and 63) in which a full 

data set was present; exudates were not collected at intermediate dates for the drought 

and flood plants because the mode of treatment application involved intervals with no 

leachate collection.    
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RESULTS 

Plant Health 
 

 Plants were green and healthy throughout the trial.  Some yellowing was 

observed on the shoots of the flooded treatment, which was likely caused by the 

induction of anaerobic conditions in the root zone.  Leaves at the top of the tube curled 

under the foam plug when leaf length exceeded the length of the upper tube.  This 

occurred in all plants by the end of the study.   

  The ammonium treatment was effective in lowering the rhizosphere pH.  The pH 

of the leachates on day 68 ranged from pH = 4.2 in the NH4
+ treatment to pH = 8 in the 

control and water stress treatments (Figure 8).   
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Fig. 8.  pH of leachate from all treatments.  Nutrient solution used for watering is 

also shown.  Cation exchange resulted in the low pH of the NH4
+ treatment. 
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Plants were watered every 2-3 days so that no more than 35 of the 49 ml field 

capacity volume were transpired.  This maintained a minimum gravimetric water content 

of 0.047.  Transpiration was determined by subtracting 25% of the water lost by the 

unplanted column from the water lost by each column (Figure 9); the water lost due to 

evaporation from the sand was expected to be greater in the unplanted column due to a 

higher vapor pressure deficit between the sand and the air, whereas the air in the planted 

columns was more humid due to transpiration.  The 25% unplanted water loss was not 

subtracted from plants in the drought treatment, in which the air contained a low relative  
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Fig. 9. Plant mass over the study estimated from transpiration rate.  Each curve 

represents one plant.  Dashed lines indicate initiation of treatments.  

Transpiration curves are identical but on a scale of 0 to 20 ml day-1. 

Evaporation was subtracted from all treatments. 
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humidity, or from the first 15 days of plant 35, after which a blocked air filter was 

replaced.  Average shoot dry mass ranged from 1.50 g from the drought treatment to 

2.50 g in the NH4
+ treatment (Table 7).  The average shoot mass of the 4 replanted 

controls was 1.42 ± 0.25 grams.  Root mass was not determined since a GC-MS analysis 

was performed on direct extract of the roots, requiring the roots to remain sterile, and  

because of the difficulty of completely separating roots and sand.  A preliminary axenic 

trial in which the plants eventually became contaminated showed between 14% roots on 

average in the flood treatment and 35% in the NH4
+ treatment (see Appendix D).  These 

root percentages were not significantly different (P = 0.211) and a root mass of 25% 

total plant mass was assumed for all calculations.  

Plant mass is highly correlated with transpiration rate (r2 = 0.96, see Appendix 

E).  The transpiration rate at the end of the study and final dry plant mass were used to 

calculate a proportion to convert transpiration rates to approximate plant mass 

throughout the study.  Fitting a sigmoidal curve to the data points allowed for  

Table 7.  Shoot dry mass at harvest for each treatment.  Plants were not identical 

sizes when treatments were started. 

 

 

 

 

Treatment n Average (g) Standard 
Deviation 

Control without small plants 2 2.51 ± 0.28 
NH4

+ stress 2 2.50 ± 0.06 
K+ stress 2 2.00 ± 0.19 
Drought 2 1.50 ± 0.17 

Flood 2 2.42 ± 0.81 
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approximate plant mass to be determined at any point in time for each plant.  Since 

transpiration data wasn’t available for the flood treatment, points were estimated based 

on final plant size and initial transpiration before treatments.   

Plant digest and ICP was performed on plant shoots to determine mineral nutrient 

content (Table 8).   The potassium content of the plants in the K+ stress treatment was 

about 50% of K+ content of the controls.  All other nutrients were present in normal 

amounts.  
 
 

Total Organic Carbon 
 
 

TOC in the leachates was monitored throughout the trial (Figure 10).  Amounts 

of TOC released were increased compared to the control in the K+ stress, drought, and 

flooding treatments, but the high NH4
+ TOC decreased compared to the control.  When 

 

Table 8.  Nutrient content of all treatments (n = 2)  using ICP.  Nutrients are 

present in normal amounts, except low K+ levels in the K+ stress treatment.  See 

Appendix D for standard deviations. 

 P K Ca Mg S Fe B Zn Mn Cu 
 --------------------%----------------- ---------------------mg/kg-------------------
Control 0.30 3.19 0.22 0.09 0.17 53.70 47.03 48.80 44.37 9.09 
High NH4

+  0.34 3.07 0.22 0.09 0.34 41.70 52.35 73.35 72.10 18.00 
K+ stress 0.25 1.26 0.48 0.15 0.13 193.25 51.15 39.95 35.10 8.78 
Drought 0.33 3.45 0.24 0.12 0.21 47.40 81.80 50.85 53.65 12.22 
Flood 0.23 2.17 0.23 0.07 0.13 52.20 35.60 36.60 37.55 9.59 
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Fig. 10.  Exudation rates per plant per day over the duration of the study.  Four of 

the six control plants were smaller because they were replanted.  A) 

Treatments compared to average of all 6 control plants.  B) Treatments 

compared to the 2 oldest control plants only.  C) Comparison of the biggest 

controls are the smaller replanted controls. 



                                                                                                                                         65

analyzed over four time intervals during the treatments (days 35-42, 45-51, 53-57, and 

59-63), the flood plants released significantly greater amounts of TOC than the control 

from days 45-51.  Shoot dry mass was measured and used to express exudates as 

cumulative TOC exuded per gram dry shoot (Table 9). Exudation rates observed here 

were lower than those reported in the literature (Table 10).   

Only the amount of TOC released per gram dry plant by the drought treatment was 

significantly higher than the control and high NH4
+ based on a one-way analysis of 

variance (ANOVA) and Tukey test (P = 0.013), but the K+ stress and flood treatments 

also exuded higher amounts of TOC than the control.  The high NH4
+ treatment on an 

average per gram dry plant basis released less TOC then the control plants.   The amount  

 

Table 9.  Cumulative TOC (since 11 days after planting) collected as exudate on a 

per gram dry plant basis (estimating 25% roots).   Two control plants and 

all treatments were grown from the start of the study, and four additional 

control plants were planted on day 10 (‘replanted controls’).  

 

 

 

 

 

 

 

mg C exuded 
 per g dry plant ± std. 

 Average 
Percent of 

control 
Control: all 6 2.5 ± 0.41 100 

Controls: 2 biggest 2.7 ± 0.35 108 
Controls: 4 replanted 2.4 ± 0.46 96 

High NH4
+  2.2 ± 0.10 90 

K+ stress 3.6 ± 0.56 144 
drought 4.2 ± 0.50 171 

flood 3.6 ± 0.90 145 
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Table 10.  Seven ways to express exudation, based on measured shoot dry mass and 

assuming 25% roots based on preliminary trials (see Appendix C), and that C 

accounts for 40% of exudate mass, based on the assumption that exudate 

composition is CH2O.  Data are from the 6 control plants. 

 

 

 

 

 

 

1. compared to Barber and Gunn, 1974. 
2. compared to Groleau-Renaud et al., 1998. 
3. compared to Kraffczyk et al., 1984. 
4. compared to Schönwitz and Ziegler, 1982. 

 

of TOC in the exudates was also highest in the drought and K+ stress treatments when 

expressed as µg TOC per gram dry plant per day, calculated by estimating plant mass 

from transpiration rates (Figure 11).   

The percent soluble TOC in the leachates ranged from 75 to 100%.  A comparison 

of the percent soluble TOC over time revealed no treatment effect (Figure 12).  TOC 

remaining on the sand at the end of the study was minimal (Table 11).  The average 

plant-derived TOC distribution in the rhizosphere was: rhizosphere sand 17%; bulk sand 

9%; soluble in leachate 69%; insoluble in leachate 11%. 

 

Unit 
Average 

value 
% of Published 

value 
g C in exudate per total plant dry mass x 100 0.25 ± 0.04  

g exudate per g dry mass x 100 0.62 ± 0.1 361 
µg C per g dry root mass * day 185 ± 31  

mg C per plant * day 0.10 ± .04 502 
mg exudate per g dry root * day 0.57 ± 0.09 83 

mg exudate per g dry plant 6.44 ± 1.1  
mg exudate per g dry root 33 ± 5.0 354 
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Fig. 11.  TOC exuded per gram dry plant mass per day.  These values were 

calculated with the TOC release rates from Fig. 10 divided by plant mass 

estimated from transpiration in Fig. 9.  A graph for µg C per gram dry root 

per day would be identical but on a scale of 0 to 2500. 

 

Relative growth rate (RGR: grams new plant per gram plant per day) was determined 

before and after the application of treatments using final plant mass, mass at day 35, and 

initial (seed) mass (see Appendix D).  The RGRs between treatments were not 

significantly different before (P = 0.414) or after (P = 0.113) treatments were applied, 

although drought plants were lowest during the treatment period.  Dry plant mass at day 

35 was determined by calculating the area under a quadratic curve fitted to transpiration  
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Fig. 12.  Percent soluble TOC in leachate samples measured by comparing filtered 

(0.45 µm) and unfiltered samples of leachate.  The majority of TOC was 

soluble, and no difference between treatments was observed. 

 

Table 11.  Percentages of plant-derived TOC remaining in sand.  The majority of 

TOC was in the leachate. 

 

 

 

 

 Bulk sand Rhizosphere sand 
Plant 31 7.84 18.4 
Plant 32 2.83 24.8 
Plant 33 20.4 17.5 
Plant 34 6.63 8.07 
Plant 35 5.34 19.5 
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data of each plant up to day 35, which was a better estimate for initial transpiration 

before the treatments than the sigmoidal curve, and water use requirement (WUR: ml 

transpired per gram dry plant, see Appendix D).  WUR was determined for each plant 

over the entire study by dividing cumulative transpiration by the calculated total plant 

mass and ranged from 148 ml/g in the drought treatment to 183 ml/g in the K+ stress.   

The K+ stress treatment had the highest amounts of TOC exuded per gram new 

plant on Day 51 (P=0.047), although this was not isolated by Dunn’s Method of all 

pairwise multiple comparisons (Figure 13).  On Day 63 the drought treatment  
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Fig. 13.  TOC in exudates per gram new dry plant.  New plant dry mass was 

estimated from transpiration rates and the calculated relative growth rates. 
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exuded significantly more TOC per gram new plant than the K+ stress, NH4
+, and control 

treatments and the flood treatment exuded significantly more TOC than the control and 

NH4
+ treatments as defined by a Tukey Test (p <0.001). 

 
 

GC-MS 
 

The dicarboxylic acid concentrations in the leachates of preliminary trials was 

very dilute (less than 1 ppm).  The methyl esters of oxalic acid and succinic acid were  

detected in some samples while those of the other acids were below the detection limit.  

Due to the low concentrations of dicarboxylic acid in the leachates, root tissue and sand 

from the rhizosphere were examined.  As expected, more acids were detected in the root 

extracts (Table 12) than in the leachate samples.  The cumulative amounts (mg/kg root) 

of malonate, oxalate, succinate, malate, and methyl 2-methyl-butanoate in the root 

extractions from drought-stressed plants were significantly higher than the controls  

(p<0.05).  Organic acids detected in the rhizosphere sand were minimal, ranging from 0 

to ~20% of concentrations in roots, with the highest sand concentrations in the flooded 

treatment.   

Detection limits of the dissolved acids was about 0.4 mg/L for the leachates 

using 5 ml samples, about 0.6 mg/kg for the sand using about 5 grams, and about 5 

mg/kg of root using about 0.5-gram samples. 
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Table 12.  Derivatized compounds in root samples at harvest(mg/kg) detected using  

GC-MS. 

*estimates only, no standard 

 

The esterification procedure worked poorly for hydroxy-diacids since it was not 

designed for these compounds.  It is possible that other hydroxyacids than those detected 

were present in the exudates.  Organic acids were corrected for recovery rates, which 

were: oxalic acid  22% ± 3% n=10, malonic acid 50% ±  6% n=10, fumaric acid 51% ± 

6% n=10, succinic acid 56 % ± 4% n=10 malic acid 15% ± 7 n=8.  Similar to the rates of 

TOC release, the rates of organic acid release in the exudates also peaked before the end 

of the study (Figure 14).  The exudates from the drought treatment contained the highest 

concentrations of fumaric and succinic acids at any point in time.  Oxalic, malonic and 

malic acids were also quantified.  As a percentage of TOC in the leachate samples, malic 

acid was represented in highest amounts in all treatments, and the drought treatment 

contained the highest percentages of organic acids (Figure 15).  

 

 control K+ stress NH4
+ drought flood 

Compound ave s.d. ave s.d. ave s.d. ave s.d. ave s.d.
methyl 2-methyl-propanoate* 26 14 8 11 9 13 48 8 9 1 

3,3-dimethyl-2-butanone* 30 18 14 6 16 8 55 2 11 1 
methyl 2-methyl-butanoate* 24 11 10 14 9 13 55 6 12 4 

dimethyl oxalate 31 13 8 1 14 0 65 13 13 7 
methyl caproate* 6 10 13 6 5 6 0 0 11 1 

dimethyl malonate 29 11 16 6 20 4 55 0 14 3 
dimethyl fumarate 128 78 80 71 46 52 625 446 100 64 
dimethyl succinate 71 45 23 11 19 14 209 71 50 17 
dimethyl malate* 177 96 62 26 60 58 617 301 125 111
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Fig. 14.  Release rates of four organic acids detected in leachate samples.  All values 

are corrected for recovery eficiencies.  Note the different scales of the y-axes. 
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Fig. 15.  Organic acids as a percent of total organic TOC, shown by acid and by 

treatment.
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Organic acids ranged on average from < 1% of the TOC for malonic acid,  <2% 

oxalic acid, <4% fumaric and succinic acids, and up to 100% malic acid.  Malic acid 

showed the largest peaks in the chromatograms (Figure 16), which has two carboxyl 

groups and one hydroxyl group (Figure 17).  The drought treatment had significantly 

higher cumulative amounts of succinic acid in the exudates than the other treatments    

(P = 0.004).  The exudates of the high NH4
+ treatment often contained lower 

concentrations of organic acids than the controls.  Compared to the concentrations in the 

root extracts, the cumulative amounts organic acid collected in the exudate were 

significantly correlated for fumaric and succinic acid, but not for malonic or oxalic acid 

(Figure 18). 

 

 

Fig. 16.  GC chromatogram from exudate analysis.  The sample shown is from 

Plant 28 (drought), day 51.  The largest peak was for malic acid. 
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Fig. 17.  Structures of organic acids in root exudates.  All acids shown were 

detected in the root exudates of this study, except citric acid. 
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Fig. 18.  Comparison of organic acids concentrations of roots with cumulative 

amounts of organic acid detected from the leachate (exudate). 

Oxalic Acid

Root (mg/kg)
0 50 100 150 200 250 300 350 400

Ex
ud

at
e 

(m
g/

L)

0
2
4
6
8

10
12

Malonic Acid

Root (mg/kg)
0 20 40 60 80 100 120

Ex
ud

at
e 

(m
g/

L)

0

1

2

3
4

5

6

r2 = ns r2 = ns

Succinic Acid

Root (mg/kg)
0 100 200 300 400 500

Ex
ud

at
e 

(m
g/

L)

0
2
4
6
8

10
12
14

r2 = 0.55

Fumaric Acid

Root (mg/kg)
0 500 1000 1500 2000

Ex
ud

at
e 

(m
g/

L)

0

2
4

6

8

10

12

r2 = 0.54

Malic Acid

Root (mg/kg)
0 1000 2000 3000 4000 5000 6000

Ex
ud

at
e 

(m
g/

L)

0

100
200

300
400

500

600

r2 = 0.66



                                                                                                                                         77

DISCUSSION 

Effects of stress on growth 
 

Due to the difficulties in maintaining axenic plants, past root exudate studies 

have not emphasized plant health even though it is one of the major factors in 

determining root exudate composition.   

Plants in the high NH4
+ treatment decreased rhizosphere pH but were similar to 

the controls, as evidenced by the high RGR and low amounts of root exudate.  Therefore 

the high NH4
+ treatment can be considered a second control.  The reduced plant size (60- 

95% of the controls) in all stressed plants shows that the treatments affected plant 

growth.   

Whipps and Lynch (1983) hypothesized that drought stress reduces growth more 

than it impairs photosynthesis.  This may apply if growth is defined as root and shoot 

expansion, but our results indicate that growth, when defined as gain in dry mass, was 

reduced equally compared to photosynthesis: transpiration rates of the drought-stressed 

plants were 22 % less than the control, indicating proportionally reduced photosynthesis 

rates, and shoot mass was decreased 22% on average compared to the controls.  The 

average RGR was similarly reduced by 26% compared to the control.  The lower 

average WUR of the drought plants indicates the ability to continue photosynthesis 

while adapting to drier conditions.  Whipps and Lynch concluded that the discrepancy in 

impairment between growth and photosynthesis may have resulted in excess carbon 

within the plant that is subsequently released as root exudates.  Since it would be 
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extremely inefficient for a stressed plant to dispose of fixed carbon through exudation, 

increased TOC released from the roots of drought-stressed plants is more likely due to 

cell damage induced by the treatment.   

Total Organic Carbon 
 
 

Total organic carbon (TOC), expressed as µg TOC released per day, peaked at 

about day 55 of the 70-day trial.  Since this peak was seen in the controls, and since 

transpiration rates leveled-off at the end of the study, it is likely that other factors besides 

the intended stresses reduced growth rate.  The decrease in TOC could be a response due 

to volume limitation in the growth containers.  A decrease in growth rate that results in 

less TOC released as exudate could also be a response to the imposed nutrient 

treatments, but is probably not the case in this study since the ICP analysis revealed 

adequate plant nutrition aside from the imposed stresses.  Other possibilities of low-level 

stress include drought between waterings and salt buildup, although plants were 

continuously monitored for transpiration and watered frequently enough to maintain a 

volumetric water content above 28% of field capacity, and a preliminary monitoring of 

the EC of leachates indicated that there was no significant salt buildup (average nutrient 

solution in EC = 1.14 ± 0.3 mS cm-1, average leachate EC = 1.43 ± 0.4 mS cm-1, see 

Appendix C).  Plant age and stage in the life cycle could influence growth rate and root 

exudation patterns.  The peaking trend was least evident in the smallest controls, but was 

observed in the largest controls.   Therefore the restricting size of the column was most 

likely the cause of reduced growth and exudation rate. 
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Plant roots in the K+ stress, drought, and flooding treatments showed increased 

trends in the amounts of TOC per gram plant compared to the controls and the NH4
+ 

treatment.  This was expected for the K+ stress conditions.  Plant roots release 

compounds to sequester nutrients (Marschner, 1995), and decreasing the availability of 

those nutrients (for example by modifying the nutrient solution or decreasing the amount 

of nutrient solution added as in the K+ stress and drought treatments) can increase the 

production and release of nutrient sequestering compounds (Hoffland et al., 1989; Ström 

et al., 1994; Ström, 1997).  The potassium stress induced in this study may have 

increased the release of K+-sequestering compounds. 

Roots also release carbon in the form of mucilage and border cells as lubrication 

and a medium for root growth through the soil.  The need for more lubrication in dry soil 

coupled with the discharge of dying roots due to decreased water availability in the 

drought treatment could explain the increased amounts of TOC released into the sand. 

 Flooding the columns decreased oxygen availability to the roots.  Without 

adequate oxygen, roots would be no longer able to perform normal metabolic functions.  

The increased TOC trends in the flooding treatment may have been caused by root death, 

which was detected in the leachate as increased exudate TOC.  The low root: shoot ratios 

observed in the flooding treatment during preliminary trials (controls = 27 ± 9% roots, 

flood = 13 ± 4% roots, see Appendix C) supports this.  The ponding of water and 

subsequent soaking of lower parts of the shoots as well as the roots may also have 

contributed to TOC in the leachate by increasing contact time and solubility of plant-

derived TOC in the flooding treatment.   
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The slightly lower amounts of TOC released by the NH4
+ treatment compared to 

the control may be due to the decreased need of these plants to produce NO3
--reducing 

compounds (see discussion on GC-MS data).  

The drought and flooding treatments, which had the least frequent replacement of 

exudate-containing root-zone solution, show an increased amount of TOC released by 

roots.  This is in contrast to the conclusions of Jones and Darrah (1993), who reported 

that re-absorption occurs at the highest levels when the exudates are exposed to the roots 

for longer periods of time.  Re-absorption is likely occurring in all treatments, but it is 

possible that some TOC counted as root exudates in this study was not re-absorbable, 

like border cells or remains of root die-off, and that the re-absorption concluded by Jones 

and Darrah was of compounds that are more readily absorbed by the roots.  Exudates 

would not be reabsorbed in damaged tissue, which may explain lower re-absorption in 

the drought and flooding treatments. 

Site of Microbial Contamination 
 

 TOC released as exudate continued to show exponential increases despite the 

presence of microbes in the leachate of contaminated columns.  A spatial separation 

between the microbes and the site of exudate production is probable.  Microbes were 

observed on the roots protruding from the system, but not within the column.  Although 

microbes were detected in the leachate of these columns, the plants were included in the 

results as non-contaminated plants since all leachate samples were analyzed immediately  
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after collection and would be minimally affected by the brief contact with microbes 

before analysis. 

Expression of Results 
 

The unit used to describe exudate production in the literature varies among 

studies.  Some early studies reported results in amount of exudate per plant.  Radiolabel 

studies commonly express exudates as percent carbon fixed by the plant.   Other studies 

expressed exudates per unit mass, e.g. per gram plant or per gram root.   

The lower amounts of exudate in this study compared to the literature may be 

due to species difference, age (plants in the literature were all younger than those in our 

study), or growth conditions (most plants in the literature were grown hydroponically).  

Average exudation rates in this study would be higher if the study was terminated earlier 

since exudation rates decreased with time.  This study was continued as long as possible 

due to the success with keeping the plants free of microbes.  It should also be noted that 

it has been suggested that roots of non-sterile plants release more carbon than those of 

sterile plants (Barber and Lynch, 1977; Prikryl and Vancura, 1980).  Studies in which 

complete axenic conditions were not accomplished could overestimate the quantity of 

root exudates released by plants grown under axenic conditions. 

For purposes of scaling these results to the field to be applied to 

phytoremediation, a more specific mode of expressing results than “g C per plant” or “g 

C per g root” is necessary since growth conditions are so different between the axenic 

plant culture tube and the field and because the treatments affected plant mass as well as 
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exudate release.  A more scale-able mode of expressing quantitative exudate results is in 

micrograms TOC exuded per gram new growth.  This was accomplished in this study by 

calculating plant relative growth rate based on changes in transpiration rate.  Plant mass 

could also be determined throughout the study by destructive harvests.  Besides the 

difference in growth conditions, expressing exudates on a RGR basis is important since 

the majority of both exudation and new root growth occurs at the root tip. 

Combining the RGR data with root:shoot ratios to obtain root growth could allow 

exudates to be expressed as per gram new root.  We chose to express exudates on a 

whole plant basis since the shoot is equally important as the root in exudation as the 

source of carbon to be exuded (through photosynthesis).  A treatment that reduces root 

growth is likely to reduce shoot growth as well.  Plants were not equal sizes when 

treatments were started despite being planted on the same day. The difference in time to 

establishment for each plant is another reason why exudates are more accurately 

compared based on relative growth rate. 

The unbalanced design (6 control plants, 2 plants of each treatment) and the low 

number of reps, which made the standard deviation of the average exudate amounts 

equal to the range, limited the statistically significant conclusions made in this study.  

The conclusions made on these results were from the most conservative statistical 

analyses available.   

Soluble Total Organic Carbon 
 

The points above 100% in Figure 12 represent trace variability due to small 
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amounts of TOC added by filter and its magnification in dilution calculations.  Since 

most of the TOC released by the roots was in the form of soluble TOC in the leachate, 

the majority of root exudates in this study was in the form of compounds released 

directly by the root or from damaged cells, not whole entire cells from which the 

cellulose cell walls would contribute high amounts of insoluble TOC.  The 17% of TOC 

found in the rhizosphere (sand immediately adjacent to the root) is likely an overestimate 

due to small root pieces that were contaminating sources of TOC in the sand samples. 

Since preliminary results indicate a slightly low percentage of roots in the 

flooding treatment, root die-off may have contributed to the increases in TOC released 

by the flood roots compared to the control.  The percent soluble TOC was not measured 

during the period when the flood treatment had the highest amount of TOC released per 

plant.  A lower percent soluble TOC would be expected during this period from the 

increased leaching of cells walls due to root die-off.  Microscopic observations at the end 

of the study revealed few root hairs on plants in the flood treatment. Loss of root hairs 

upon induction of flooding could also have contributed to increased release of TOC by 

this treatment.  

Organic Acid Composition 
 

 Several of the organic acids identified from the root extractions play important 

roles in plant function.  Malate is used as a counter-ion for cations to maintain charge 

balance across membranes.  Malate also plays an important role in nitrate reduction in 

the shoot and is the most common organic acid re-translocated to the root and used for 
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charge balance in nitrate uptake (Marschner, 1995).  Oxalate is another organic acid used 

for charge compensation in nitrate reduction.  Oxalic acid is also used in the 

precipitation of excess solutes within a plant as calcium oxalate. 

 The drought treatment was the only treatment that varied significantly in 

concentrations of compounds detected from the GC-MS, indicating that there was an 

increased need for production of organic acids in the drought-stressed plants.  This may 

be due to an excess of ions within the plant as a result of roots dying off and the need for 

organic acids to precipitate with those ions to maintain adequate soluble concentrations 

within the plant.  A very low water potential of the root cells induced by the drought 

treatment in order to survive the low water potential of the root zone could have resulted 

in cell lysis upon watering and subsequent detection of cell contents as exudates. 

 Other non-significant differences in concentrations detected with the GC-MS 

were decreased levels in most organic acids compared to the control in treatments other 

than drought and flood stress.  Despite an increase in TOC in the exudates of the K+-

stressed plants, no increase in organic acids was observed, indicating that potential K+ 

sequestering compounds are not among the organic acids detected by the GC-MS.  Since 

some of the compounds detected are important for nitrate reduction, these compounds 

were, as observed, expected to decrease in the NH4
+ treatment due to decreased need to 

reduce nitrate.   

 There were several difficulties associated with the organic acid analysis.  Acids 

were present in low concentrations in the leachate, and sample volumes were too low to 

be concentrated, for example by lyophilization.  The most difficulty was in derivatizing 
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the acids to methyl esters for analysis, especially acids that contain a hydroxy group in 

their structure, like malic acid.  The presence of the hydroxy group on a neighboring 

carbon atom changes the reactivity of the carboxyl group making the esterfication 

reaction less likely to go to completion and leaving of some acid in the sample 

unreacted.  Low concentrations coupled with low derivatization rates may have reduced 

the number of acids detected if they were present below detection limits.  For example, 

citric acid has been reported as a common acid found in root exudates and serves in 

phosphate mobilization as well as chelating Fe and Al in the rhizosphere, but was not 

detected in this study.  Citric acid is also a hydroxy acid, thus its decreased ability to be 

esterified and presence in low concentrations may have contributed to it not being 

detected in this study.  The absence of citric acid may also be due to adequate Fe 

supplied to the plants, thus reducing the need to exude Fe-sequestering compounds. 

Kraffczyk et al. (1984) also saw an increase in exudation of organic acids under K+ 

stress.  A large reduction in plant mass with K+ stress was seen in the Kraffczyk study 

that was not seen in our study.  This reduction may be associated with the different 

growth medium (solution culture with no mechanical impedance) and the fact that the 

solution was not aerated throughout the 23-28 day studies, which even though tested as 

aerobic throughout the study may have contained anaerobic microsites that reduced 

growth and nutrient uptake more strongly under K+ stress. 

 The percentages of organic acids detected out of the total carbon released by the 

roots indicates that compounds other than organic acids were present (see Uren, 2001), 

although not all organic acids detected were quantified and percentages may be an 
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underestimate due to low recovery rates during the GC-MS analysis. Organic acids 

reached the highest percent of TOC in the drought and flood treatments, with peaks also 

in the K+ stress plants.  The peaking trend in the proportion of organic acids in the 

exudates indicates the changing composition of the exudates with time.  This suggests an 

exudate response to age or increased stress levels. 

Malic acid was present in higher concentrations than any other acid detected in 

the exudates.  Malic acid has also been observed as the predominant organic acid in 

hydroponic rice, accounting for up to 87% of organic acids in the exudate depending on 

cultivar and growth stage (Aulakh et al., 2001).  Malic acid in the exudates of 4-6 day 

old wheat grown in solution can reach up to 82% of organic acids in Al-tolerant cultivars 

exposed to Al (Delhaize et al., 1993).  Phosphorous deficiency can increase exudation of 

malic acid in Brassica napus L., which helps the plants solublize rock phosphate 

(Hoffland et al., 1992). Based on ICP analyses of shoots and nutrient solution, neither P-

deficiency nor exposure to Al were factors in this study (see Appendix D).  

Aside from the organic acids identified here, the remainder of the exudate 

composition is unknown.  Other compounds in the exudates, such as sugars and amino 

acids, may have different properties but could serve as a substrate for microbial co-

metabolism of soil contaminants and be useful for phytoremediation. 

The analytical methods used in this study were the same as the methods used by 

Kloss et al. (1984): the form of the acids was changed (derivatized) for analysis, with 

capillary gas chromatography used to obtain quantitative information about the organic 

acids and gas chromatography-mass spectrometry used to identify them. 
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Other studies have also used gas chromatography for exudate analysis, which is 

reportedly more sensitivity than HPLC or ion chromatography, in which it is more 

difficult to separate the different acids (Szmigielska et al., 1995).  A more detailed 

method was used by (Fan et al., 1997) with NMR and GC-MS for de novo identification 

of exudate components, which is currently the best method for characterizing root 

exudates that include unknown compounds.   

Correlation of Organic Acid Concentrations in Roots and Exudates  
 

The concentrations of organic acids found in living root tissue correlates 

somewhat with concentration in the leachate.  The existence of some correlation implies 

that with refined detection methods it may be possible to know the concentration of 

certain exudate components by extracting from the root, which is a less difficult process 

than analyzing leachates due to the higher concentrations found in the root.  Organic 

acids detected in the rhizosphere would correlate with those found in the root if the 

source of exudate was whole cells, dying roots, or leaky membranes.  Concentrations of 

certain compounds in the exudates might not correlate with the concentrations found in 

the root for several reasons.  The structure of some root exudates, such as 

phytosiderophores and exoenzymes, is complex and energetically expensive for the plant 

to manufacture.  These compounds are produced for purposes outside the plant, such as 

nutrient sequestration, and it would be of little use to the plant to store these compounds 

inside the root.  Exudates are often produced as a response to certain stresses and change 

with time as the status of the plant changes.  Root-extract analysis represents just one 
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point in time, in this case the end of study, and is therefore unrepresentative of the plant 

status earlier in the study.  Furthermore, not all root cell constituents are actively exuded; 

there may be many compounds in the root that are not detected in the exudates and 

therefore have no correlation to the exudate.  Conversely, since our quantification of 

exudates was based on compounds that were identified in the root due to the low 

detectability of dilute compounds in the exudates, some compounds present only in the 

exudates may be inadvertently omitted if they were produced more as exudates than 

stored in the root. 

This low correlation also emphasizes the importance of axenic plant culture for 

root exudates studies.  Simpler methods such as analysis of non-sterile root extracts or 

C14 labeling reveal only certain aspects of root exudation.  Axenic plant culture studies 

simultaneously portray the total amounts of exudates released, patterns of exudation with 

time, and patterns of specific compounds with time and change in plant status.  With 

refinement of the qualitative analysis methods, the study of root exudates through axenic 

plant culture can continue to increase in importance for providing an unbiased view of 

basic plant function. 

Organic Acid Function in Phytoremediation 
 

Besides serving as a substrate for microbial metabolism of organic contaminants, 

organic acids in root exudates may chelate and thus increase plant uptake of inorganic 

contaminants.  The chelating power of an organic acid depends on the number of 
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carboxyl groups and other charged groups as well as their position and the size of the 

molecule in relation to the contaminant (Figure 17).   

Of all common organic acids detected in root exudates, citric and malic acids 

have strong chelating abilities of inorganic contaminants.  Citric acid, which contains 

three carboxyl groups and one hydroxyl group, was not detected in this study but has 

been observed to increase the solubility of Cd, Pb, U (Wu et al., 2003; Chen et al., 2003; 

Shahandeh and Hossner, 2002).  

Wu et al. (2003) found that malic acid, which contains two carboxyl groups and 

one hydroxyl group, has shown higher chelating abilities than citric acid for Zn and Cd.  

Malic acid also appears to have higher levels of chelation of Al than succinic acid 

(Delhaize et al., 1993).  Oxalic acid was not observed to increase the solubility of Cu, 

Zn, Cd, or Pb (Wu et al., 2003), but Shahandeh and Hossner (2002) reported that oxalic 

acid can increase plant uptake of U. 

Extrapolation to the Field 
 

Exudate values reported here must be scaled to the field.  Root exudates in this 

study are expressed on a per gram new growth basis calculated from relative growth rate.  

These values can apply to the field where growth rates can differ greatly compared to 

laboratory conditions. 

Plant response to stress in terms of exudate release is not proportionally related to 

phytoremediation effectiveness.  Drought, flooding, and nutrient stress have the potential 

to reduce soil microbe viability.  Organic acid levels were increased with the application 



                                                                                                                                         90

of drought stress, which could increase mobility of organic contaminants.  Drought 

stress could also reduce transpiration and therefore decrease mass flow of exudates to 

root surfaces.  

Continuous vs. Phasic Stress 
 

These responses suggest that phasic application of stress may be useful for 

phytoremediation.  Continuous stress reduces plant growth.  Stressing the plants 

periodically during the life cycle allows a recovery period between stresses and 

promotes continued growth.  Furthermore, phasic stress allows for microbial activity 

during favorable (non-stress) conditions compared to constant stress.  Although sudden 

rewetting can of soil can decrease bacterial biomass, soil bacteria can recover from 

drought stress (Kieft et al., 1987), and the diversity of bacterial communities in grass 

soils is relatively resistant to change with drying-rewetting cycles (Fierer et al., 2003). 

Estimating Root Exudates in the Field 
 

Controls released about 1 mg TOC per gram new growth.  Assuming crested 

wheatgrass produces 1 kg dry mass of per m2 per season, 100 mg TOC per m2 per season 

would be released as exudates to the soil.  

Drought and K+-stressed plants reached a peak of about 5.5 mg TOC per gram 

new growth.  Flooding stress achieved half the increase in TOC release of these stresses 

and is less likely to be successful in the field because of the difficulty of flooding a field.  

Drought or K+ stresses could be applied 5 times during the season, with half the season 



                                                                                                                                         91

stress phase, the other time recovery.  Therefore a baseline of 50 mg TOC per m2 per 

season for the recovery periods plus an additional 137.5 mg based on half the potential 

exudate release if the stresses could sustain a similar exudation peak as in this study 

would equal 187.5 mg TOC per m2 per season when K+ or drought stress was applied.  

This value could reach as high as 275 mg TOC per m2 per season if no lag time between 

peaks occurred. 

Applying Plant Stress in the Field 
 

Although the K+ and drought stressed plants reached the same rate of exudation, 

K+ stress reached this rate faster and plant size was not reduced compared to control.  

This exudation rate decreased rapidly, but it could potentially be repeated with the 

application of phasic stresses. 

A cesium-contaminated soil, however, may not produce plants with the same 

exudate response to K+ stress since Cs can be taken up by the plant in place of K+ (Zhu 

and Smolders, 2000; see Appendix G).   In this case the plant may not detect a nutrient 

deficiency or release K+-sequestering exudates to remedy the deficiency.  

 Soil remediation efforts in dry climates makes drought stressing the most 

practical mode manipulating crested wheatgrass plants for phytoremediation.  Recovery 

periods could be induced through irrigation, which would lengthen the current growth 

period for crested wheatgrass and result in increasing levels of TOC released as root 

exudates. 
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CHAPTER 4  

CONCLUSIONS 
 

 A simple system was designed for the long-term axenic culture of crested 

wheatgrass.  Microbial contamination occurred in only two out of 15 plants and was 

isolated to sites outside the root zone.  Contamination of these two columns did not 

affect exudate concentration compared to the other replications, so sterility was 

essentially maintained at 100% throughout the 70-day study.  The system designed here 

can be applied to many other types of plant studies, including the effects of inoculation 

or abiotic stresses. 

The quantity of root exudates appears to reflect the plant’s health status.  Drought 

stress significantly increased TOC exuded per g dry plant by 70 % compared to the 

control (p = 0.05).  TOC in the exudate of the high NH4
+ plants was slightly lower than 

the control  (10% lower mg C per g dry plant) and increased 44% and 45% in the K+ 

stress and flood treatments, respectively, although these changes were not statistically 

significant based on the two replicates used in this study.   

The exact source of the exudates is unknown.  Although the percent soluble TOC 

in the exudates was consistently 80-95 % of the total, it is not clear whether the 

compounds were released directly from the root, from whole cells, or from dying roots.   

For future research, it would be useful to distinguish among compounds released directly 

from the root, whole cells released from the root, or dying roots.  

Exudate composition was also affected by stress.  Organic acid content was 

highest in the exudates of the drought-stressed plants, and malic acid was present in 
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highest levels in all treatments.  The organic acids accounted for changing percentages 

of exudate TOC with time.  Future research should emphasize identification and 

quantification of other components of the exudates besides organic acids. 

Stress could be used to enhance phytoremediation.  The stresses applied in this 

study could all be applied in the field.  Increased levels of TOC in the exudates could 

support increased levels of microbes, which could increase co-metabolism of organic 

contaminants.    Ammonium as the form of N supplied to the plants can decrease 

rhizosphere pH, which could solublize inorganic contaminants.  Increased levels of 

organic acids in root exudates during stress can increase the chelation of inorganic soil 

contaminants and potentially increase plant uptake.  Results from this study could be 

scaled to the field using plant relative growth rate to estimate the contribution of stress-

induced root exudates to phytoremediation. 
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APPENDIX A.  Nutrient Solutions 

Nutrient Solution for sand culture of Crested Wheatgrass 

 

       Double Strength                 Single Strength 

 
SALT 

 

 
STOCK 
CONC. 

 

 
ml per 
 20 L 

 

 
FINAL 
CONC. 

 

 
ml per 
 20 L 

 

 
FINAL 
CONC. 

 
 
Ca(NO3)2 

 
1M 

 
40 

 
2 mM 

 
20 

 
1 mM 

 
K(NO3) 

 
2M 

 
80 

 
8 mM 

 
40 

 
4 mM 

 
KH2PO4 

 
0.5M 

 
40 

 
1 mM 

 
20 

 
0.5 mM 

 
MgSO4 

 
1M 

 
20 

 
1 mM 

 
10 

 
0.5 mM 

 
FeCl3 

 
50 mM 

 
8 

 
20 µM 

 
4 

 
10 µM 

 
Fe-HEDTA  
 & FeCl3 

 
100 mM 

 
0 

 
0 µM 

 
0 

 
0 µM 

 
MnCl2  

 
 60 mM 

 
4 

 
12 µM 

 
2 

 
6 µM 

 
ZnCl2  

 
20 mM 

 
8 

 
8 µM 

 
4 

 
4 µM 

 
H3BO3 

 
40 mM 

 
1 

 
2 µM 

 
0.5 

 
1 µM 

 
CuCl2 

 
 20 mM 

 
4 

 
4 µM 

 
2 

 
2 µM 

 
Na2MoO4  

 
1 mM 

 
2 

 
1 µM 

 
1 

 
0.5 µM 

 
 

 
 

 
 

 
HNO3 

 
1M 

 
1 

 
50µM 

 
1 

 
50µM 
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Nutrient Solution for K+ stress test of Crested Wheatgrass 

 
 Double Strength       Single Strength 
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20 µM 

 
4 

 
10 µM 

 
Fe-HEDTA  
 & FeCl3 

 
100 mM 

 
0 

 
0 µM 

 
0 
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8 µM 
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4 µM 
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2 µM 

 
0.5 

 
1 µM 

 
CuCl2 
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4 

 
4 µM 

 
2 

 
2 µM 

 
Na2MoO4  

 
1 mM 

 
2 

 
1 µM 

 
1 

 
0.5 µM 

 
 

 
 

 
 

 
HNO3 

 
1M 

 
1 

 
50µM 

 
1 

 
50µM 
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Nutrient Solution for high NH4
+ treatment of Crested Wheatgrass 

       
 
       Double Strength      Single Strength 
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20 L 

 

 
FINAL 
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6 µM 

 
ZnCl2 
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8 µM 

 
4 

 
4 µM 

 
H3BO3 

 
40 mM 
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2 µM 

 
0.5 

 
1 µM 

 
CuCl2 

 
20 mM 

 
4 

 
4 µM 

 
2 

 
2 µM 

 
Na2MoO4 

 
1 mM 

 
2 

 
1 µM 

 
1 

 
0.5 µM 

 
 

 
 

 
 

 
 

 
 

 
 

 
HNO3 

 
1M 

 
1 

 
50µM 

 
1 

 
50µM 
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APPENDIX B.   Germination Tests 

Germination tests were conducted using seeds of crested wheatgrass cv. CD-II in 

germination boxes.  The germination box was a transparent plastic box containing two 

layers of germination (blotter) paper and was watered with tap water.  In the first test, a 

control was kept on a lab bench at 23oC, while another control and water stress 

treatments were kept in a 25oC incubator.  All treatments reached a germination rate 

above 80% (Figure 19).  The lab bench control showed the highest germination rates.  

Over and under-watering treatments had similarly low germination rates as compared to 

the controls.  It was determined that seed water status has a much greater effect on 

germination rate than small (<5oC) temperature changes. 

Another germination test was conducted to compare germination rates of seeds 

that sink and seeds that float in solution.  Seeds were soaked in tap water for 30 minutes. 

About 40% of the seeds sunk in the water and 60% floated.  The germination of the 

seeds that sunk was 90% and germination of the floaters was 65% (Fig. 20).   The 

denser, sinking seeds will be selected and sterilized for the exudate studies.  

  Seeds were immersed in solutions of 1, 5, and 10% Clorox for 10 and 30 

minutes (Figure 20).  Increasing Clorox concentration and/ or duration of soak did not 

significantly decrease germination (Fig. 21).  Large amounts of these seeds (>50%) still 

showed bacterial and fungal contamination so a more aggressive treatment was tested.  

Approximately 75% of seeds soaked in 20% Clorox for one hour germinated within 6 

days (Fig. 22).  Sinking and floating seeds had not been separated for this test, 

suggesting a higher germination rate for this treatment may be possible.  Biondini, Klein, 
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and Redente (1988) found that high Clorox concentrations and long treatment periods 

were necessary to obtain sterile seedlings of crested wheatgrass. 

Seeds were sterilized using Clorox as in the germination tests mentioned above, 

with the addition of 0.1% Tween 80 in the solution to act as a dispersing agent.  No 

reduction in germination was noticed with the Tween 80.  Additionally, deionized water 

was determined to be as effective as dilute acid or deionized water with Tween 80 as a 

seed rinse.  Following sterilization, seeds were placed on petri plates with dilute (10%) 

nutrient broth (Difco) and Bacto agar (Difco) in an incubator.  Agar concentrations of 

1.5 and 2% were tested.  The seedlings germinated faster on the 1.5% agar plates due to 

the higher water potential of these plates.  Germination and any contamination were 

observed 
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Fig. 19.  Germination rates of crested wheatgrass at different water levels.  
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Fig. 20.  Germination rates of crested wheatgrass seeds that sink or float in water. 

 

within four days at 26oC.  Bacterial or fungal growth on the agar plates indicated 

residual microbial contamination.  The only Clorox treatment in which plates were not 

significantly contaminated within four days was 20% Clorox for one hour. 
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Fig. 21.  Germination rates of crested wheatgrass seeds soaked in increasing 

amounts of Clorox for 10 and 30 minutes.  
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 Fig. 22.  Germination rates of crested wheatgrass seeds soaked in 20% Clorox and 

0.1% Tween 80 for 1 hour.
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APPENDIX C.  Preliminary Trials 

Stresses in non-sterile systems 

 Trial 1:  Four types of root-zone stress: low potassium (K+), high ammonium 

(NH4
+), low water (drought) and high water (hypoxia) were induced.  The stresses were 

applied continuously to established plants growing in the sand columns by reducing 

potassium in the nutrient solution, increasing ammonium in the nutrient solution, 

watering less frequently, and replacing the stopper in the bottom of the column with a 

solid stopper to induce water logging.  The most prominent stress symptom in all 

treatments was browning from drought due to under-watering.  Other symptoms 

included reddish, wide leaves of the hypoxic plants.  Once the plants were put on a daily 

watering regimen, drought symptoms disappeared. 

 Trial 2: Nutrient solutions were adjusted for lower K in the low potassium 

treatment and a higher proportion of NH4
+ in the high ammonium treatment.  The water 

stress treatment was induced by watering on a schedule of reduced water (~50% less 

than control plants) for 3 days, then 100% of the control for one day.  Placing a solid 

stopper at the bottom of the column and watering equal amounts to the control induced 

flooding.  The control and high NH4
+ treatments showed the highest amounts of 

transpiration and healthiest plant appearance (Figs. 23 and 24). 
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Fig. 23.  Stressed plant ratings.  Greenness rating: 10 is dark, 1 is yellow.  Overall 

vigor: plants are ranked from 1 to 14, 14 is most vigorous.  Error bars 

represent one standard deviation from the mean for each treatment. 
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Fig. 24.  Average daily water use by plants exposed to low potassium (K+), high 

ammonium (NH4
+), low water (drought) stresses. 
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Preliminary Axenic Trials 

Trial 1 

Plant growth and leachate collection in this trial was affected by poor water flow 

due to scotch brite pads being used as the interface between the sand and the drain tube.  

Three sand sizes, fine medium and coarse, were used.   Samples of leachate were 

streaked onto agar plates to occasionally monitor microbial contamination which 

occurred in all plants within the first 20 days.  TOC was monitored (Figure 25), which 

leveled-off with time due to microbial contamination.  Plants were grown in a growth 

chamber, where watering and other manipulations were also conducted. 
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Fig. 25.  Cumulative TOC detected from plants 1-18 (Trial 1). 
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Trial 2  

 

The water flow in Trial 2 was improved due to the use of sand layers, the sizes and 

depths calculated by Dr. Scott Jones.  A very high background TOC was discovered  

in the unplanted columns of this trial (Figure 26).  Further investigation revealed that  

components contributed TOC in the unplanted columns (Figure 27).  Plants were 

transported from the growth chamber for watering. 

 

Fig. 26.  Trial 2: Average amounts of TOC collected from planted and unplanted 

columns  
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Fig. 27.  TOC associated with column components.  0.3 grams glass wool was used.  

Deionized rinse water was analyzed for TOC content. 

 
Trial 3  

The background TOC was significantly reduced in Trial 3 (Figure 28).  This was 

accomplished by washing all components with DI water and methanol, in which any 

residual TOC would be soluble.  The rubber stoppers used in previous trials were 

changed to silicon.  Silanized glass wool was used, which is more inert than regular glass 

wool has less possibility of binding charged exudates.  Sand was muffled at 600 C for 10 

hours.  After muffling, the sand turned pink from oxidizing trace amounts of hematite in 

the sand.  It was decided that muffling was impractical for large volumes of sand and 

another method to rid the sand of residual carbon should be used.  All columns in trial 3 

tested as contaminated immediately.  This was hypothesized to be due incomplete 
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sealing of the containers that were exposed during transport and storage after 

autoclaving.  Both leachate and sand from the top of the column were plated to test for 

microbial contamination. 

Trial 4 

This trial was conducted in the laminar flow hood.  Residual TOC was low in 

trial 4 and finally a distinction in TOC levels of the exudate could be seen between the 

sterile plants and the non-sterile and unplanted columns (Figure 29).  Only the leachate 

was plated out to test for contamination since it was hypothesized that testing the sand 

was an additional manipulation that exposed the system to potential microbial 

contamination.  The root zone sealed from contamination by a foam plug with the shoots 

uncovered.  
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 Fig. 28.  Trial 3: TOC collected from planted and unplanted columns. 



 

 

115

 

 

 

 

 

Fig. 29.   TOC collected on 4 dates from unplanted (black), large plants (light gray), 

and contaminated plants (dark gray) during Trial 4. 
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Trial 5 

New columns were developed to enclose the entire plant within two glass tubes 

connected by a ground-glass joint.  An additional port on the lower column was added 

for airflow through a filter to each plant, which ranged up to 1 SCFH per plant by the 

end of the study.  Nutrient solution concentration was doubled since the covered plants 

were watered less often.  Plants were grown for 70 days.  Two plants were harvested 

early because of their large size.     

Increased amounts of TOC were collected in the exudates of Trial 5, even from 

contaminated plants.  Different types of microbial growth were detected from each 

contaminated column.  Our results indicate that microbes in the contaminated columns 

did not metabolize all of the exudates.  This may be due to spatial separation of the 

contaminant and the exudate within the column, making the exudate inaccessible.  Based 

on the Ca levels in this analysis (Table 14), it was decided to reduce the amount of K+ in 

the nutrient solution from 11 mM to 9 mM. 
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Fig. 30.  TOC data from trial 5. 
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Fig. 31.  TOC results from trial 5.  Arrows indicate date microbial contamination 

was detected on agar plates. 
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Table 13.  Shoot dry mass of plants from trial 5. 

 

 

 

 

 

 

 

 

 

Table 14.  Nutrient analysis of the shoots of four plants from trial 5. 

 

 

 

 

Plant 
Number 

Shoot dry mass 
(grams) 

1 1.61 
2 0.81 
5 1.39 
6 1.29 
7 1.22 
8 1.02 
11 1.5 
12 1.38 
14 1.43 
15 1.12 
17 1.54 
18 1.2 
19 1.17 
20 1.62 

Plant 
number    Mo Na Ni P Pb S Se Sr Zn 

 mg/kg % mg/kg % ------------------mg/kg----------------- 
          
1 < 47.1 < 0.26 < 0.21 < < 83.2 
2 < 146 < 0.37 6.76 0.24 < < 137 
6 < 94.5 < 0.29 < 0.21 < < 86.2 

11 < 44.9 < 0.22 2.52 0.20 < < 53.3 

Plant 
number Al As B Ba Ca Cd Co Cr Cu Fe K Mg Mn 

 -------------mg/kg----------- % ----------------------mg/kg------------------- % % mg/kg 
              

1 30.1 < 9.12 < 0.24 < < < 8.66 88.7 3.56 0.13 56.6 
2 55.2 < 14.6 < 0.23 < < < 12.5 101 4.33 0.12 63.3 
6 27.6 < 7.27 < 0.21 < < < 12.9 102 4.12 0.12 48.1 
11 25.2 < 18.7 < 0.26 < < < 11.0 61.1 4.61 0.12 46.9 



 

 

120

Trial 7: 

Plants were grown under a 24-hour photoperiod for 40 days, at which time all 

planted columns had become contaminated.  The plants had experienced two days of 

high temperatures at the beginning of the study.  By day 40 the leaves were tall and thin 

unlike the broader leaves of previous trials.  The TOC in the exudates of Trial 7 

increased at first and then leveled off in most plants.  No exponential increases were 

seen as in previous trials.  Percent soluble TOC values were very erratic. 

Since the onset of contamination was delayed in this trial, the source of most 

contamination was probably from transporting the nutrient solution flasks from the 

sterilizer to the freezer to cool.  This was not done in Trial 6 because of better planning 

that allowed time for the nutrient solution to cool in the sterilizer.  The contamination 

that occurred in this trial and the subsequent lack of exponential increase in exudate 

TOC confirmed the sterility of Trial 6.  

Root mass was determined by the following process: 

1) Remove sand from roots by rinsing roots in water.  Smaller root pieces 

float in water.  

2) Filter the rinse water to capture small root pieces on a pre-weighed, 

oven-dried filter. 

3) Dry all root parts and filter in a pre-weighed, oven-dried bag. 

4) Weigh after 2 days in 80oC oven to determine root dry mass. 
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Fig. 32.  Trial 7 root percentages of total plant mass 
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Fig. 33.  Electrical Conductivity of leachates – fraction of nutrient solution 

added.  
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Fig. 34.  Trial 7: TOC collected per day.  Dashed lines indicated when treatments 

began.  Arrows indicate when contamination was first detected. 
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Fig. 35.  TOC added by various steps in the watering process.   

 

It was decided based on this study to allow ethanol to dry fully from the septum 

before inserting the needle to water. 

 

Iron Loading of Sand in Columns 

Beginning with Trial 5, columns were loaded with 200µM FeCl3 after packing 

with sand (see Materials and Methods of Chapter 2).  Based on tests of pH and electrical 

conductivity leaching from the columns (Figure 36), the treatment used was effective in 

getting the sand to retain iron.  Plants grown in non-sterile columns loaded with FeCl3 

showed slightly higher SPAD-meter readings than those loaded with only nutrient 

solution, indicating that the Fe-loading treatment was beneficial to plant health. 
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Fig. 36.  EC and pH of leachate during Fe-loading of columns. 
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Fig. 37.  Recoveries of inorganic (KCl) and organic (oxalic acid) compounds 

through sand columns, based on electrical conductivities.
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APPENDIX D.  Additional data from Trial 6 

Table 15.  Nutrient content of shoots including standard deviations. 

 

Table 16.  Trial 6 shoot dry mass.

  Table 17.  Average nutrient  

  content of nutrient solution (mg/L). 

Al 0.07 Mn 11 
B 0 Mo 0.26 

Ca 35 Ni 0.43 
Co 0 P 0 
Cu 0.07 S 0 
Fe 0 Se 15 
K 127 Si 0 

Mg 15 Zn 0.18 

 P K Ca Mg S Fe B Zn Mn Cu 
 --------------------%------------------- ---------------------mg/kg------------------- 
Control 
Average 0.30 3.19 0.22 0.09 0.17 53.70 47.03 48.80 44.37 9.09 
Std. Dev. 0.02 0.36 0.05 0.01 0.02 8.74 5.38 10.98 9.10 0.64 
K+ stress 
Average 0.25 1.26 0.48 0.15 0.13 33.5 51.15 39.95 35.10 8.78 
Std. Dev. 0.04 0.11 0.13 0.05 0.02  19.02 2.05 7.35 2.30 
NH4+ treatment 
Average 0.34 3.07 0.22 0.09 0.34 41.70 52.35 73.35 72.10 18.00 
Std. Dev. 0.06 0.51 0.06 0.02 0.10 9.33 20.15 9.26 10.18 8.20 
Drought 
Average 0.33 3.45 0.24 0.12 0.21 47.40 81.80 50.85 53.65 12.22 
Std. Dev. 0.08 0.64 0.04 0.02 0.03 3.96 19.37 8.70 15.77 3.23 
Flood 
Average 0.23 2.17 0.23 0.07 0.13 52.20 35.60 36.60 37.55 9.59 
Std. Dev. 0.01 0.08 0.04 0.01 0.02 8.63 2.83 1.70 3.75 0.58 

Plant dry mass 
21 2.14 
22  
23 1.62 
24 2.54 
25 2.99 
26 2.45 
27 2.31 
28 1.37 
29 2.7 
30 1.41 
31 1.85 
32 1.65 
33 1.08 
34 1.87 
35 1.54 
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Fig. 38. TOC release rates for each plant in all treatments. 
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Fig. 39.  TOC release rates for control plants and collected from the unplanted 

column. 
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Table 18.  Relative Growth Rates before treatments (days 0-35), after 

treatments (days 35-70) and Water Use Requirements. 

 

RGR 
before 

treatments
RGR after 
treatments WUR (ml/g) 

Control 
Average 0.118 0.066 164 
Std. Dev. 0.017 0.010 30 
Control without small plant 
Average 0.139 0.055 133 
Std. Dev. 0.003 0.0003 8 
K+ stress 
Average 0.132 0.056 183 
Std. Dev. 0.001 0.001 6 
NH4

+ treatment 
Average 0.139 0.056 137 
Std. Dev. 0.002 0.001 15 
Drought 
Average 0.132 0.048 148 
Std. Dev. 0.004 0.000 6 
Flood 
Average 0.129 0.064 162 
Std. Dev. 0.015 0.006 40 

 

An attempt was made to classify chemical compounds exuded based on their 

retention on strong acid or strong base ion exchange resins and subtracting the remaining 

TOC from the measured TOC of the sample.  These resins, however, added TOC to the 

sample and in some cases resulted in final TOC concentrations higher than measured 

TOC.  Therefore, no results were obtained on classification of the exudates using this 

method. 
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APPENDIX E.  A Hydroponic Study of Relative Growth Rate and Water Use 

Efficiency of Crested Wheatgrass (Agropyron cristatum) 

Crop Physiology Lab Project 

Plant Science 6210 

 

Abstract 

Plant water use varies among species and with stage of life cycle.  This study was 

conducted to correlate plant growth with water use in crested wheatgrass  (Agropyron 

cristatum).  A hydroponic study was conducted in a growth chamber on the relative 

growth rate and water use efficiency of crested wheatgrass.  A relative growth rate of 0.2 

g fresh mass gained per gram plant per day was observed, along with a water use 

efficiency of 0.1 g fresh mass gained per gram water transpired per day.  Plant mass and 

transpiration correlated linearly (R2 = 0.96).  Plant mass grew exponentially with plant 

height (R2  = 0.75).  It was therefore concluded that water use could be visually 

estimated by plant height. 

Introduction 

Hydroponic plant culture provides a non-destructive means of monitoring plant 

mass and water use; plants and bottles can be periodically weighed throughout the study 

and plants can continue to grow after weighing and nutrient solution is refilled.  

The information obtained from a hydroponic study can be applied to other types 

of plant culture and can be very useful in knowing how much water a plant needs 
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depending on its size and how big a plant is.  For example, the Root Exudate Project 

at the Crop Physiology Lab requires sterile sand culture of plants with nutrient solution 

lacking iron chelate for exudate analysis purposes.  The plants are required to be watered 

as little as possible due to risk of bacterial contamination while watering.  Over-watering 

also leads to the leaching of important nutrient-sequestering compounds exuded from the 

roots.  

 Relative growth rate (RGR) is the amount of new plant tissue per gram existing 

plant per day.  Water use efficiency (WUE) is the amount of new plant growth (Pnet) per 

gram water transpired.  These two parameters can be determined from the hydroponic 

study because plant weight can be monitored throughout the plant’s lifetime, and they 

offer the opportunity to compare the effects of different treatments on RGR and WUE.    

 

Materials and Methods 

 Seeds of crested wheatgrass (Agropyron cristatum) were germinated either on a 

slant board or in a germination box.  The germination box was a transparent plastic box 

containing two layers of germination (blotter) paper and was watered with tap water in a 

26oC incubator.  The slant board was made of Plexiglas lined with paper towels, 

immersed in tap water, and covered on a lab bench.  Seeds were germinated on a slant 

board only after the seedlings from the germination box failed to grow well (see below). 

 The contents of all experimental bottles are shown in Table 19.  Five 2-liter 

hydroponic bottles were planted; 2 with germination box seedlings and 3 with slant 

board seedlings.  Germination box seedlings were started 2 weeks before planting, and 
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the nutrient solution used included all essential nutrients, plus Si, 100mM Fe-EDTA 

(a chelating agent), and 1 mM MES buffer according to the nutrient solution criteria 

discussed by Bugbee (1995).  Plants were supported in the bottles with foam plugs that 

were cut in half with a cross-sectional wedge removed.  Foam plugs were dried in a 

drying oven for at least 24 hours before use.  An air pump was used to aerate the root 

zones via tubes of uniform length running to the bottom of the hydroponic bottles at 0.1 

L/min.  All joints on the manifold were sealed with silicon caulk to prevent leaks and 

assure uniform airflow.  

Unplanted controls included 2 2-liter bottles filled with tap water and bubbled 

with the same flow of air as the planted bottles, 1 2-liter bottle of tap water that was not 

bubbled, and 2 1-liter bottles of tap water that were not bubbled.  All control bottles 

were plugged with the same foam plugs used in the planted bottles.   All bottles were 

kept in a growth chamber (24oC, 24% RH) and periodically rotated in terms of position 

and bubbling tube. 
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Table 19.  Contents of the bottles used in the RGR experiment. 

Bottle Contents 
1 plant germinated on slant board 
2 plant germinated in a germination box 
3 plant germinated in a germination box 
4 plant germinated on a slant board 
5 plant germinated on a slant board 
a* 2L tap water, bubbled 
b 2L tap water, bubbled 
c 1L tap water, not bubbled 
d 1L tap water, not bubbled 
f* 2L tap water, not bubbled 

*treatments for bottles a and f were switched during the last 2 days of the study to verify 

evaporation data 

 

 At the beginning of the study, all seedlings were from the germination box.  

However, the combination of low light (due to inadequate lighting), inadequate bubbling 

(due to leaks in the manifold), and the small roots caused the plants to become stressed.  

Therefore, on days 20 and 24, three plants were replaced with seedlings that were 

germinated on a slant board.  On day 28, FeEDTA and NH4Cl added to all planted 

bottles to reduce chlorosis.  Plants became fully green again within two days. 

Once the seedlings had been transplanted into the hydroponic bottles and 

appeared to be well established, plant fresh weights were measured periodically.  Before 

weighing, roots were blotted on an absorbent pad to remove as much excess water as 

possible.  Each entire hydroponic bottle was also weighed, and nutrient solution lost 

through evaporation and transpiration was replaced accordingly. 
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Transpiration was obtained by subtracting the average water lost by the control 

bottles from the amount of water lost by each planted bottle. 

Results 

Water loss due to bubbling was predicted to be 0.288 g/day using the following 

calculations: 

absolute humidity of chamber: 5 g per L air 
absolute humidity of bubble (100% RH): 23 g per L air 
gradient: 18 g/L 
flow rate per bottle: (0.1 L/min)/ 9 tubes = .01 L/min 
18g  x .01 L x  1440 min   =    0.288 g 
  L min    day       day 

 

Water loss by the planted and unplanted bottles were plotted against time and are 

shown in Figure 1.  The unplanted bottles averaged about 1.8 g/day, whereas the planted 

bottles lost increasing amounts of water through time. 

 Relative growth rate is shown plotted against plant fresh mass in Figure 40 and 

was calculated using the formula (ln (M1/M2))/∆t where M is fresh mass and t is time.  

Plant 2, which was the biggest plant, showed a slightly decreasing RGR with time, but 

had an average RGR of 0.2 g fresh mass gained per gram plant per day.  

 Water use efficiency is plotted against plant fresh mass and is shown in Figure 

41.  To obtain WUE, the daily gain in fresh mass was divided by daily transpiration.  

The WUE values for plant 2 were relatively constant, averaging about 0.1 g fresh mass 

gained per gram water transpired per day. 

To be able to visually estimate plant water use, correlations were made between 

transpiration and plant mass and between plant mass and plant height.  These graphs are 
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shown in Figures 42 and 43.  Plant mass and transpiration correlated completely 

linearly (r2 = 0.96).  Plant mass grew exponentially with plant height (r 2 =  0.75). 
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Fig. 40.  Relative growth rate (RGR) of hydroponic crested wheatgrass. 
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Fig. 41.  Water use efficiency (WUE) of hydroponic crested wheatgrass. 
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Fig. 42.  Plant fresh mass is highly correlated with transpiration rate. 
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Fig. 43.  Plant fresh mass increased exponentially with plant height. 

 

Discussion 

 The slant board provided much better germination than the germination box 

because the roots and leaves were straight, making its shape more conducive to growing 

in the hydroponic setup.  Consequently, the seedlings germinated on the slant board 

adapted well to growing hydroponically and quickly caught up with the size of the 

earlier planted seedlings. 
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 One problem encountered early in the study was wetting of the foam plugs 

supporting the plants.  Since the plants were very small at first, the plugs were pushed 

down into the neck of the bottle to ensure root hydration.  However, this caused water to 

be easily wicked by the plug and evaporated, giving unreliable evaporation data.  When 

the plants grew to an adequate size, plugs were dried and then placed further up the 

bottle neck.  Data taken from when the plugs were wet was not included in the growth 

and water use analysis. 

 Another problem was that the initial lighting in the growth chamber was quite 

low (about 300 µmoles/m2*s).  Therefore, the lights were kept on for 24 hours a day.  On 

day 24, lights were replaced to give a PPF of 615 µmoles/m2*s and the photoperiod was 

subsequently set at 16 hours.  

It was expected that the bubbled controls would exhibit some water loss and that 

water lost from the unbubbled controls would be negligible.  A side experiment with 

bottles left on the lab bench showed that evaporation does occur through the foam plugs, 

and that splashing the foam plugs, as in when the bottles are transported to be weighed, 

increases evaporation (data not shown). This could also be due to bottles heating up 

(they were dark brown), and a temperature (and therefore humidity) gradient forming 

between the nutrient solution and the surrounding air.  Water loss from the unplanted 

bottles was fairly consistent, regardless of the bottle size or the presence of aeration.  

One exception was control bottle (a), which exhibited consistently high evaporation 

rates, even when treatments were switched with bottle (f) to being unbubbled.  This was 
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probably due to some holes in the bottle that were inadequately sealed, and therefore 

the data from bottle (a) was omitted from the growth and water use analysis. 

In Figures 40 and 41, the data from plant 2 is the most indicative of any trends 

since it was by far the largest plant.  Figure 40 indicated that RGR would decrease 

slightly as the plant gets bigger.  This is what was expected because as the plant gets 

older, it becomes less efficient in photosynthesis.  It is expected that the other plants will 

show a similar trend when they get bigger.  During the last few measurements, some 

symptoms of Pythium, a fungal disease, were observed in plants 1 and 2 (sparse roots at 

the base of the plant and root browning).  Therefore, growth rate may have been 

compromised due to this disease.  For future studies, Jenkins et al. (2000) recommend 

inoculating the hydroponic system with a highly complex microbial community to out-

compete the Pythium. 

 Figure 41 indicates that water use efficiency stays the same throughout the plant 

life.  This is because water use efficiency changes more with diffusion rates of water and 

CO2 due to gradients and stomatal aperture, as opposed to RGR which changes due to 

less efficient biological functioning with age.  Frank and Bauer (1991) observed a 

decrease in water use efficiency with increased water available to crested wheatgrass.  

Therefore, watering crested wheatgrass as little as possible will not only minimize 

chances of contamination and nutrient leaching, but also maximize water use efficiency. 

 The largest source of error seemed to occur when the smallest plants were 

weighed on the microgram balance.  Since it was impossible to blot all of the water off 

the roots before weighing, a larger proportion of the total weight of the smallest roots is 
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residual water.  This overestimation of plant weight could cause RGR and WUE to 

be underestimated. 

 Another possible error is the underestimation of transpiration; evaporation could 

be higher in the planted bottles since the stems open the wedge in the foam plug, 

allowing more water vapor to escape from the bottle than in the unplanted controls. 

 Figure 42 shows a linear relationship between plant fresh mass and transpiration. 

It was expected that this would be a nonlinear relationship because as the plant gets 

bigger, more shading occurs and therefore the plant cannot maintain as steep an increase 

in transpiration with mass.  A more non-linear relationship would probably have been 

observed if the plants were allowed enough time to grow to a larger size.  Figure 43 

shows that a relationship exists between plant height and plant fresh mass.  Therefore, 

this data and the data presented in Figure 39 can be used to visually estimate plant water 

use based on plant height, can therefore be useful in studies like the Root Exudate 

Project.  It is not yet clear, however, that the amount of water used by plants grown 

hydroponically is the same as water use by plants grown in sand or soil media.   

 Suggestions for future studies include correlating information obtained from this 

study with transpiration of plants grown in sand and soil, and comparing RGR and WUE 

values with plants grown under different treatments (i.e. nutrient stress). 
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APPENDIX F.  Cesium uptake by crested wheatgrass (Agropyron cristatum) 

December 11, 2001 

 

Abstract 

Cesium is not an essential plant nutrient but is taken up by plants due to its 

similarity to K.  Potassium is taken up rapidly by a K+ transporter or more slowly by a 

K+ channel.  Crested wheatgrass (Agropyron cristatum) was grown in 1) an equimolar K 

and Cs solution [250 µM], 2) high Cs [1000 µM], 3) low K [100 µM] and 4) a control 

[4.7 mM K, 0 Cs].  Cesium uptake reduced the relative growth rate (RGR) but did not 

affect K uptake in shoots.  The levels of Cs taken up among treatments suggested a rapid 

turnover of ion uptake mechanisms.    

Introduction 

Radiocesium contamination in soil is of concern due to the mutagenetic effects of 

Cs in the human body and the long half-life of Cs in soil (Nishita et al. 1962).  Crested 

wheatgrass is found growing in Cs contaminated soils.  Cesium uptake by plants can be 

beneficial for the phytoremediation of Cs-contaminated soil.  

 Cesium uptake into plants has been shown to be similar to K uptake.  Both 

elements have a +1 charge as alkali metals, and have similar atomic radii (237.6 pm for 

K and 237.1 pm for Cs).  Disturbance of K uptake will deleteriously affect many plant 

functions: K plays a major role in plant function as a macronutrient, including enzyme 

activation, stomatal movement, and osmoregulation (Marschner, 1995).   
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Understanding K uptake by the plant began with interpreting the shapes of 

kinetic curves (Kochian and Lucas, 1982).  Today, the field has progressed to the stage 

of cloning specific K+ channels.  Two major mechanisms have been attributed to K 

uptake by the plant: a K+ transporter and a K+ channel.  The K+ transporter, or ‘high 

affinity’ uptake mechanism, is used by the plant at low rhizospheric K concentrations.  

This mechanism has shown little discrimination against Cs uptake.  The K+ channel, or 

‘low affinity’ mechanism, is used at high K+ concentration and shows high 

discrimination against Cs uptake (Zhu and Smolders, 2000).   

Although Cs is taken up at much lower rates than K, Smolders and Kiebooms 

(1996) observed that highest 137Cs uptake occurs at lowest concentrations of K.  Since 

K+ strongly suppresses Cs uptake, it has been concluded that Cs must be absorbed by the 

K+ uptake system of the root.  The largest effects of K concentration on Cs uptake have 

been observed at concentrations of 10 µM to 250 µM K, above which no further effects 

are seen.  This suggests a separate and as yet unidentified means of Cs uptake, since Cs 

uptake at K concentrations above 250 µM remains constant but greater than 0. 

 Cs has been observed to accumulate more in plant roots than in shoots (Zhu and 

Smolders, 2000).  Genotypic differences have also been observed.  Buysse et al. (1996) 

reported greatest genotypic differences in Cs uptake at lowest concentrations of K in 

solution.  A Cs-K distribution factor (DF = Cs:K in plant/ Cs:K in substrate) has been 

observed at values of 0.01-0.8 in most species tested, verifying the lower efficiency of 

Cs uptake compared to K. 
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 In this study, the effects of Cs added to low concentration of K in the nutrient 

solution are determined in terms of relative growth rate (RGR) and shoot Cs and K 

concentrations. 

 

Materials and Methods 

Seeds of crested wheatgrass (Agropyron cristatum) were germinated on a slant 

board made of Plexiglas lined with paper towels, immersed in tap water, and covered on 

a lab bench.  Eight 2-liter hydroponic bottles were planted; the nutrient solution used 

included all essential nutrients, plus Si, 100mM HEDTA (a chelating agent), and 1 mM 

MES buffer according to the nutrient solution criteria discussed by Bugbee (1995).  

Plants were supported in the bottles with foam plugs that were cut in half with a cross-

sectional wedge removed.  An air pump was used to aerate the root zones via tubes of 

uniform length running to the bottom of the hydroponic bottles.  Tubes were tightly 

fitted to the manifold to prevent leaks.  All bottles were kept in a growth chamber (25oC) 

and periodically rotated in terms of position and bubbling tube. Once the seedlings had 

been transplanted into the hydroponic bottles and were well established (after 25 days), 

plant fresh mass was measured on a microgram balance.  Before weighing, roots were 

blotted on an absorbent pad to remove as much excess water as possible.   

Three Cs treatments were induced on 2 replicate plants immediately following 

plant fresh mass measurements:  

1. Treatment 1 (equimolar Cs and K): 250 µM K+ and 250 µM Cs+;  

2. Treatment 2 (high Cs): 250 µM K+ and 1 mM Cs; 
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3. Treatment 3 (low K): 100 µM K+ and 250 µM Cs+; 

4. Control:  4.7 µM K+ and 0 Cs+   

Cesium was added as CsCl.  Treatment nutrient solutions were replaced daily to 

maintain the low K+ concentrations in the 3 treatments.  Plant fresh mass was measured 

again after 4 days immediately before harvest.  The average of the relative growth rates 

for each treatment was calculated using the formula (ln (M1/M2))/∆t where M is fresh 

mass and t is time. After treatment for 4 days, the shoots for all plants were harvested, 

dried, and analyzed for Cs and K concentrations using an ICP-MS. 

Results 

No symptoms of K stress, such as wilting and yellowing, were observed and 

shoots appeared healthy (Fig. 44).  The appearance of brown roots was attributed to  

 

Fig. 44.  One replicate of each treatment  immediately before harvest. 

1:1 K: Cscontrol high Cs low K 
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stress experienced before treatment as the newest roots were growing well.  Figure 

45 shows the relative growth rate for each treatment.  RGR was significantly lower than 

control for plants grown in the high Cs (Treatment 2) and low K (Treatment 3) solutions.   

 Concentrations of K and Cs in µg/g dry weight of the plant shoots were 

determined for each treatment (Figures 46 and 47).  The K content was lower than the 

control in all treatments.  Cs content was highest in 1 mM Cs solution (Treatment 2) and 

second highest in the low K+ solution (Treatment 3).  

 

 

 

 

 

 

 

 

 

Fig. 45.  Relative growth rate (RGR) for each treatment over the 4-day treatment 

period. 
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Fig. 46.  Effect of decreasing nutrient solution K on shoot K and Cs concentrations. 
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Fig. 47.  Effects of increasing nutrient solution Cs on shoot K and Cs 

concentrations. 
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Discussion 

Plants were supplied with excess K for the first 25 days.  Thus, the primary 

uptake mechanism would have been K+ channels.  Cs uptake was higher than expected 

for a plant relying on channels for K uptake which discriminate against Cs.  The high Cs 

uptake observed suggested that the plants were relying on high affinity transporters 

which discriminate less against Cs.  Since the treatments were only applied for 4 days, 

the uptake of Cs suggests a rapid turnover of K uptake mechanisms from low affinity to 

high affinity, depending on solution K concentration. 

Based on the shoot concentrations, Cs uptake did not inhibit growth by reducing 

K uptake.  All shoot treatments contained about the same K concentration but varying Cs 

concentrations.   Although shoot K concentrations in all treatments were lower than the 

control, this appears to be more of a function of lower K in solution (250 µM vs. 4.7 

mM) than increased Cs uptake.  Whole plant concentrations of Cs and K may reveal a 

different interaction between the two elements, particularly if K concentrations in roots 

were affected by increased Cs uptake.  Higher Cs in the shoots corresponded with lower 

RGRs (Figs. 45-47).  It is possible that Cs interrupts plant function after being taken up 

rather than by interfering with K uptake.  This interference could be competition with K 

inside the plant, for example insufficient enzyme activation by a Cs replacement.  Pfeffer 

et al. (1992) used NMR spectroscopy to show that transport of Cs into the vacuole 

through the tonoplast is slower than transport into the cytoplasm through the plasma 

membrane.  Furthermore, this study reported that vacuolar Cs does not exchange readily 

with K, whereas cytoplasmic Cs does, and concluded that Cs is prevented from moving 
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back into the cytoplasm.  This reduced mobility of Cs as compared to K could affect 

cation-anion exchange within a plant and, in turn, functions like osmoregulation. 
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APPENDIX G.  Standard Operating Procedures 

Sterile Plant Trial Setup 

Wear gloves (sterile gloves for planting) 
Sand 

• For 20 columns: 1200 ml fine, 800 ml medium, 800 ml coarse 
• Wash sand with DI water (in a beaker until water is no longer cloudy) 
• Filter DI water 
• Rinse sand with concentrated H2O2 twice (leave overnight in 90 C drying oven) 
• Rinse sand with filtered DI water 
 

Glassware (columns, vials, nutrient solution flasks, dilution water bottles, drain tubes) 
• Wash all glassware with DI water and methanol (see protocol) 
• Rinse with filtered DI 
• Bake in 170 C drying oven overnight 
 

Non-glassware (caps, stoppers, glass wool) 
• Rinse with DI water and methanol 
• Rinse with filtered water 
• Bake 45 minutes in 80 C oven 
 

Column packing 
• Insert glass wool into drain tubes 
• Insert stoppers into columns 

Measure and mix sand (through sieve) for corresponding layers 
• Fill columns with sand 
• Load with 250 µM Fe solution until solution coming out is same color (make 

solution with filtered DI water) 
• Raise pH by rinsing column with nutrient solution 
• Attach air hose 

 
Sterilizing components 

• Columns: 2 x 1 hour, 24 hours apart.  Dry cycle. 
• Column tops (with foam plugs in top):  45 min, dry cycle 
• Vials: do first set in sterilizer with 2-holed stoppers, next overnight in 170 C 

oven 
• Vials of planting sand: 2 x overnight in 170 C oven, 24 hours apart 
• Caps, nutrient solution, dilution water:  1 hour in sterilizer at pressure 
• Air filters: with middle hose attached, in sterilizer 45 min at pressure 

Seed sterilization 
• Soak seeds in tap water 30 min, discard floaters  

}on campus 
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• Soak 1 hour in 20% Clorox, .01% Tween 80 solution.  On shaker. 
• Plate ~30 seeds on 1/10th strength nutrient agar (1.5% agar), 3 plates 
• Germinate in 25 C incubator 

 
Laminar Flow Hood 

• Clean interior with 70% ethanol 
• Test airflow with anemometer (should be about 29 meters/min) 
• Clean racks with ethanol, store in hood 

Sterilizer 
• Clean out interior 
• Re-apply vacuum grease to lip 

Nutrient solution 
• Prepare according to recipe (control and treatments) 
• Filter 
• Store in clean amber jugs 

Planting 
• Turn on airflow (very low, <5 ml/min per column) 
• Take column out of sterilizing container 
• Wrap foil around column, put in sterilized rack 
• Attach filter 
• Saturate with nutrient solution though flamed lip 
• Add seed with flamed forceps 
• Bury with vial of planting sand 
• Attach upper column 

 
TOC analyzer 

• Remake standards 
• Calibrate 
• Needle, new range 
 

Buy Supplies 
• Needles 
• Syringes 
• Gloves 
• Air & syringe-tip filters 
• 70% ethanol 
• methanol 
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Phoenix 8000 Total Organic Carbon Analyzer Instructions for Use 

 
Prepared by Julie Chard 
Before Starting, do the following: 

1. Empty waste bucket. 
2. Fill DI bottle at rear of instrument with fresh DI. 
3. Make new persulfate reagent (blue line tube - if more than one week old). 
4. Make new phosphoric acid solution (red line tube - if more than one month old). 
5. Make new standards (if more than one month old).  Store in refridgerator. 
6. restart the computer after every 100 samples 

 
STARTUP 
1. Open Phoenix 8000 software from desktop. 
2. Under “Setup” select “Instrument”. 
3. Click on the circle next to “Ready” to take instrument out of standby mode. 
4. Exit to main screen. 
5. Check to make sure that the UV lamp turned on. 
6. Under “Results” select “Sample Blanks Review”. 
7. Highlight the row entitled “TC Blanks Range 2” and click on the “Clear” button. 
8. Exit to main screen. 
9. Click on “Run” to open the Run Screen.  This screen has 3 windows: 

a. Sample Analysis – shows what sample is running and has Start, Exit, etc. 
buttons. 

b. Strip Chart – shows instrument response graphically. 
c. Analysis Results – shows results from the most recent analyses. 

10. Click on the “Sample Setup” button. 
11. Under “File” select “New”.  You should get a blank Sample Setup screen. 
12. Begin filling in your sample setup: 

a. ALWAYS start with 6 Cleans followed by 5 or 6 Blanks. 
** NEVER run more than six reps of a single Clean  (sample gets too 
hot)** 

b. Run a plain DI water sample at the beginning and end of your samples. 
c. Run a sample of one of your standards at least at the beginning and end of 

your samples. 
d. Use the down arrow key to get a new row.  Use the Insert and Delete 

buttons to insert and delete rows. 
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Example sample setup: 
Pos Sample ID Sample Type Method ID Reps 

1001 Clean Sample Cleaning Procedure 6 
1002 Blank Blank TC Range 2 Blank TC Range 2 3 
1 DI-1 Sample Simult TOC Range 0.1 – 20 ppm C 2 
2 5 ppm standard Sample Simult TOC Range 0.1 – 20 ppm C 2 
3 20 7/8 1:4 Sample Simult TOC Range 0.1 – 20 ppm C 1 
4 20 7/10 1:3 Sample Simult TOC Range 0.1 – 20 ppm C 1 
5 20 7/12 1:3 Sample Simult TOC Range 0.1 – 20 ppm C 1 
6 DI-2 Sample Simult TOC Range 0.1 – 20 ppm C 2 
7 5 ppm standard Sample Simult TOC Range 0.1 – 20 ppm C 2 
1001 Clean Sample Cleaning Procedure 6 
1003 No sample Sample Simult TOC Range 0.1 – 20 ppm C 3 

NOTE:  25 ml is the minimum sample volume for 1 rep.  37 ml needed for 3 reps. 
 
13. Check that your samples in the autosampler match the position number in the setup 

file.  Position #1 is the back left-hand corner.  Position #7 is the front left-hand 
corner.  Position #8 is in the back, to the right of Position #1. 

14. When done filling in the sample setup, click on the “Save/Use” button.  Save the file 
as your initials and the date (for example, ah073101 for Amelia Henry, July 31, 
2001). 

15. You should be back to the Run Screen now.  Press the “Start” button to begin 
running. 
16. Stay and watch the first few Cleans to be sure the instrument is working properly. 
17. When the run is complete, the results will print out automatically. 
 
 
REAGENT PREPARATION 
Prepare fresh acid reagent once per month: 

• 188 mL DI water + 37 mL concentrated (85%) phosphoric acid 
Prepare fresh persulfate reagent once per week: 

• 213 mL DI water + 25 g sodium persulfate (Na2S2O8) + 9 mL concentrated (85%) 
phosphoric acid 
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STANDARD PREPARATION 
Make 1, 5, 10, and 20 ppm standards from 1000 ppm stock solution in amber vial with 
green cap.   
Use your DI water for the 0 ppm standard. 
 
 
 
 Standard Concentration 

Reagent to add 1 ppm 5 ppm 10 ppm 20 ppm 

1000 ppm stock 0 mL 1.25 mL 2.5 mL 5 mL 

20 ppm standard 12.5 mL 0 mL 0 mL 0 mL 

water 237.5 mL 248.75 mL 247.5 mL 245 mL 
 
 
CREATING A NEW STANDARD CURVE 
 
1. Under “Setup” select “Calibration ”.  Select “Standards...”. 
2. In the Standards screen, click on “Save As” and enter the name of the new 

calibration curve you are about to create (for example, ah073101).  Click on the 
“OK” button. 

3. Under “Setup” select “Calibration ”.  Select “Set Active”.  Set your new curve 
as the active curve for all analytical ranges. 

4. Click on “Run”. 
5. Click on the “Sample Setup” button. 
6. Under “File” select “New”.  You should get a blank Sample Setup screen. 
7. Fill in your sample setup for the calibration curve: 

a. Run 6 cleans  at the beginning and at the end of the run. 
b. Under “Sample Type” when you select “TOC Standard” another screen 

will come up.  Select the “0.1 - 20 ppm C” range.  Another screen will 
come up.  Select the standard from the list (highlight the row) that 
corresponds to the concentration of the standard you are running.  Click 
the “Exit” button.  You will have to repeat this for each standard 
concentration. 

c. Once you have completed the previous step, “TOC Range 0.1 – 20 ppm 
C” should automatically appear in the “Method ID” column of that row. 

d. Fill each vial up to the shoulder so that you can run two reps of each 
standard. 
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Sample standard curve sample setup: 
Pos Sample ID Sample Type Method ID Reps 

1001 Clean Sample Cleaning Procedure 6 
1 0 ppm TOC Standard TOC Range 0.1 – 20 ppm C 2 
2 1 ppm TOC Standard TOC Range 0.1 – 20 ppm C 2 
3 5 ppm TOC Standard TOC Range 0.1 – 20 ppm C 2 
4 10 ppm TOC Standard TOC Range 0.1 – 20 ppm C 2 
5 20 ppm TOC Standard TOC Range 0.1 – 20 ppm C 2 
1001 Clean Sample Cleaning Procedure 6 

 
8. When the run is complete, under “Results” click on “Calibration”.  You will now see 

a screen that shows a graph in the upper part of the screen and lists results in the 
lower part of the screen. 

9. Verify that the Calibration Curve ID is the same as the one you entered in step 2. 
10. Mark the samples you want to use in your calibration curve by clicking on the boxes 

next to them in the “Use” column (left-hand side of the results table). 
11. Click on the “Recalc” button. 
12. Verify that the r2 value for your curve is 0.998 or greater.  If your r2 value is too low, 

make new standards and start over. 
13. Click on the ”OK” button.   
14. You should now be ready to run samples using your new curve. 
 
 
MISCELLANEOUS 
To print out the results of a run that is currently running: 

1. Under “Results” select “Multiple Analyses”. 
2. Under “File” select “Print Detailed Report”. 

To print out the results of a previous run: 
1. Under “Results” select “Multiple Analyses”. 
2. Under “File” select “Open” 
3. Scroll down until you reach the desired .prn file.  The filenames begin with the 

date of the run and end with the time the run was completed (for example: 
08131043.prn is the run started August 18 at 10:43 am).  Select the desired file 
and open it. 

4. Under “File” select “Print Detailed Report”. 
 
To adjust the baseline: 

1. Remove the front panel on the TOC analyzer.  This will require a flat-head 
screwdriver and the removal of four screws. 

2. Adjust the baseline up or down by turning the Zero screw.  DO NOT adjust the 
Span screw. 

3. Replace the front panel. 
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Washing Glassware and Plastics for use in Total Organic Carbon Analysis 

 
Prepared by Julie Chard 
 
For glass items (e.g. vials or columns): 
1. Remove labeling. 

2. Empty contents of glassware. 

3. Fill glassware to 1/3 volume with deionized water (DI). 

4. Shake glassware with DI to remove organic matter adhered to glassware walls. 

5. Dump out DI. 

6. Fill glassware to 1/3 volume with methanol (MeOH). 

7. Shake glassware with MeOH. 

8. Dump MeOH into an approved waste container. 

9. Fill glassware to 1/3 volume with deionized water (DI). 

10. Shake glassware with DI to remove MeOH. 

11. Dump out DI and re-rinse with DI. 

12. Bake glassware in 170oC oven for a minimum of two hours. 

 

For non-glass items (e.g. caps or lids): 
1. Rinse with DI water. 

2. Rinse with MeOH. 

3. Rinse twice more with DI water. 

4. Place rinsed plasticware in a paper bag. 

5. Heat at 80oC for 30 minutes or until dry (DO NOT heat longer than a few hours). 
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Phenolic Aniline Blue for Rhizoplane Stain 

 
1. Prepare 5% aqueous phenol:  add 11.5 ml of 100% phenol to 188.5 ml DI H2O.  

Store bottle in room 133. 
 
2. Prepare Phenolic Aniline Blue:  In fume hood, mix 1 ml 6% aqueous aniline blue 

with 15 ml aqueous phenol.  Add 4 ml glacial acetic acid.  Store bottle in room 
133. 

 
3. Stain root:  excise a small root segment (near root tip) with a sterile razor in the 

laminar flow hood.  Place root segment in a covered beaker containing ~50 ml 
phenolic aniline blue for 3 minutes.  Remove root segment with sterile forceps 
and rinse with sterile filtered water. 

 
4. Prepare microscope slide: mount root segment in sterile filtered water and cover 

with #1 cover slip.  Seal edges with clear nail polish. 
 

5. Waste: pour used phenolic aniline blue in the labeled waste container in fume 
hood (room 144). 
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APPENDIX H.  Statistical Analyses 
 

Shoot dry mass (g) 
One Way Analysis of Variance  
Normality Test: Passed (P > 0.200) 
Equal Variance Test: Passed (P = 0.346) 
 
Group Name  N  Missing Mean Std Dev SEM  
control  6 0  1.782 0.605  0.247  
K+  2 0  2.005 0.191  0.135  
NH4+  2 0  2.495 0.0636  0.0450  
drought  2 0  1.495 0.177  0.125  
flood  2 0  2.420 0.806  0.570  
 
Source of Variation  DF   SS   MS    F    P   
Between Groups 4 1.623 0.406 1.431 0.300  
Residual  9 2.550 0.283    
Total   13 4.173     
 
The differences in the mean values among the treatment groups are not great enough to exclude the 
possibility that the difference is due to random sampling variability; there is not a statistically significant 
difference  (P = 0.300). 
Power of performed test with alpha = 0.050: 0.110 
The power of the performed test (0.110) is below the desired power of 0.800. 
You should interpret the negative findings cautiously. 
 

Cumulative TOC exuded from day 11 - day 32 (before treatments applied) 
One Way Analysis of Variance  
Normality Test: Passed (P > 0.200) 
Equal Variance Test: Passed (P = 0.036) 
 
Group Name  N  Missing Mean     Std Dev SEM  
control  6 0  795.899   173.030 70.639  
K+  2 0  1030.730  2.827 1.999  
NH4

+  2 0  1112.621  135.730 95.976  
drought  2 0  984.028    27.866 19.705  
flood  2 0  978.494    246.257 174.130  
 
Source of Variation  DF   SS      MS     F    P   
Between Groups  4 205356.067 51339.017 2.013 0.176  
Residual   9 229546.803 25505.200    
Total   13 434902.870     
 
The differences in the mean values among the treatment groups are not great enough to exclude the 
possibility that the difference is due to random sampling variability; there is not a statistically significant 
difference  (P = 0.176). 
 
Power of performed test with alpha = 0.050: 0.206 
The power of the performed test (0.206) is below the desired power of 0.800. 
You should interpret the negative findings cautiously. 
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Cumulative TOC from day 35-day 68 (after treatments applied) 

 
One Way Analysis of Variance  
 
Normality Test: Passed (P = 0.131) 
 
Equal Variance Test: Passed (P = 0.255) 
 
Group Name  N  Missing Mean  Std Dev SEM  
control  6 0  4868.705 2404.471 981.621  
K+  2 0  7992.298 2261.047 1598.802  
NH4

+  2 0  5862.814 346.102 244.731  
drought 2 0  6853.750 25.645  18.134  
flood  2 0  9481.087 597.284 422.344  
 
Source of Variation  DF   SS      MS     F    P   
Between Groups 4 39115111.255   9778777.814 2.551 0.112  
Residual  9 34496922.499   3832991.389    
Total   13 73612033.754     
 
The differences in the mean values among the treatment groups are not great enough to 
exclude the possibility that the difference is due to random sampling variability; there is 
not a statistically significant difference  (P = 0.112). 
 
Power of performed test with alpha = 0.050: 0.304 
 
The power of the performed test (0.304) is below the desired power of 0.800. 
You should interpret the negative findings cautiously. 
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Cumulative mg C exuded per gram dry shoot 

 
One Way Analysis of Variance  
 
Normality Test: Passed (P > 0.200) 
 
Equal Variance Test: Passed (P = 0.280) 
 
Group Name  N  Missing Mean Std Dev SEM  
control  6 0  2.624 0.620  0.253  
K+  2 0  3.950 0.752  0.531  
NH4

+  2 0  2.349 0.0788  0.0557  
drought  2 0  4.618 0.563  0.398  
flood  2 0  4.104 1.120  0.792  
 
Source of Variation  DF   SS     MS    F    P   
Between Groups 4 10.151   2.538   5.616   0.015  
Residual  9 4.067   0.452    
Total   13 14.217     
 
The differences in the mean values among the treatment groups are greater than would be expected by 
chance; there is a statistically significant difference  (P = 0.015). 
 
Power of performed test with alpha = 0.050: 0.766 
 
The power of the performed test (0.766) is below the desired power of 0.800. 
You should interpret the negative findings cautiously. 
 
 
All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparisons for factor:  
Comparison Diff of Means p q P P<0.050  
drought vs. NH4

+  2.269 5 4.773 0.049 Yes  
drought vs. control 1.994 5 5.137 0.034 Yes  
drought vs. K+  0.667 5 1.404 0.852 No  
drought vs. flood  0.513 5 1.080 0.935 Do Not Test  
flood vs. NH4

+  1.756 5 3.693 0.149 No  
flood vs. control  1.480 5 3.814 0.132 Do Not Test  
flood vs. K+  0.154 5 0.324 0.999 Do Not Test  
K+ vs. NH4

+  1.602 5 3.369 0.205 Do Not Test  
K+ vs. control  1.326 5 3.417 0.195 Do Not Test  
control vs. NH4

+  0.275 5 0.710 0.985 Do Not Test  
 
 
A result of "Do Not Test" occurs for a comparison when no significant difference is found between two 
means that enclose that comparison.  For example, if you had four means sorted in order, and found no 
difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 
1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1).  Note that not testing the enclosed means is a 
procedural rule, and a result of Do Not Test should be treated as if there is no significant difference 
between the means, even though one may appear to exist. 
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Cumulative TOC days 35-42 

 
One Way Analysis of Variance  
 
Normality Test: Passed (P > 0.200) 
 
Equal Variance Test: Passed (P = 0.715) 
 
Group Name  N  Missing Mean  Std Dev SEM  
Control 6 0  624.428 429.700 175.424  
K+  2 0  848.137 107.487 76.005  
NH4

+  2 0  1221.136 317.199 224.294  
drought 2 0  483.716 19.191  13.570  
flood  2 0  1518.176 349.935 247.441  
 
Source of Variation  DF   SS    MS     F    P   
Between Groups 4 1742022.963 435505.741 3.384 0.060  
Residual  9 1158201.512 128689.057    
Total   13 2900224.476     
 
The differences in the mean values among the treatment groups are not great enough to 
exclude the possibility that the difference is due to random sampling variability; there is 
not a statistically significant difference  (P = 0.060). 
 
Power of performed test with alpha = 0.050: 0.454 
 
The power of the performed test (0.454) is below the desired power of 0.800. 
You should interpret the negative findings cautiously. 
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Cumulative TOC days 45-51 

One Way Analysis of Variance  
 
Normality Test: Passed (P > 0.200) 
 
Equal Variance Test: Passed (P = 0.381) 
 
Group Name  N  Missing Mean  Std Dev SEM  
control  6 0  938.757 587.228 239.735  
K+  2 0  2101.923 959.907 678.757  
NH4

+  2 0  1456.631 189.662 134.111  
drought 2 0  2079.419 85.660  60.571  
flood  2 0  3019.052 467.258 330.402  
 
Source of Variation  DF   SS    MS     F    P   
Between Groups 4 7634177.916 1908544.479 5.908 0.013  
Residual  9 2907243.798 323027.089    
Total   13 10541421.713     
 
The differences in the mean values among the treatment groups are greater than would 
be expected by chance; there is a statistically significant difference  (P = 0.013). 
 
Power of performed test with alpha = 0.050: 0.794 
 
The power of the performed test (0.794) is below the desired power of 0.800. 
You should interpret the negative findings cautiously. 
 
 
All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparisons for factor:  
Comparison Diff of Means p q P P<0.050  
flood  vs. control 2080.295 5 6.340 0.010 Yes  
flood  vs. NH4

+ 1562.421 5 3.888 0.122 No  
flood  vs. drought 939.633 5 2.338 0.504 Do Not Test  
flood  vs. K+  917.129 5 2.282 0.525 Do Not Test  
K+  vs. control  1163.166 5 3.545 0.172 No  
K+  vs. NH4

+  645.292 5 1.606 0.785 Do Not Test  
K+  vs. drought 22.504  5 0.0560 1.000 Do Not Test  
drought  vs. control 1140.662 5 3.476 0.184 Do Not Test  
drought  vs. NH4

+ 622.788 5 1.550 0.805 Do Not Test  
NH4

+  vs. control 517.874 5 1.578 0.795 Do Not Test  
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Cumulative TOC days 53-57 

One Way Analysis of Variance  
Normality Test: Passed (P > 0.200) 
Equal Variance Test: Passed (P = 0.417) 
 
Group Name  N  Missing Mean Std Dev SEM  
Control  6 0 1388.098 813.269 332.016  
K+   2 0 2668.283 781.371 552.513  
NH4

+   2 0 1868.612 501.685 354.745  
drought   2 0 2733.357 377.902 267.217  
flood   2 0 2740.067 90.243 63.811  
 
Source of Variation  DF   SS    MS     F    P   
Between Groups 4 5336584.342 1334146.086 2.779 0.093  
Residual  9 4320217.919 480024.213    
Total   13 9656802.262     
 
The differences in the mean values among the treatment groups are not great enough to exclude the 
possibility that the difference is due to random sampling variability; there is not a statistically significant 
difference  (P = 0.093). 
Power of performed test with alpha = 0.050: 0.346 
The power of the performed test (0.346) is below the desired power of 0.800. 
You should interpret the negative findings cautiously. 

 
Cumulative TOC days 59-63 

One Way Analysis of Variance  
Normality Test: Passed (P > 0.200) 
Equal Variance Test: Passed (P = 0.811) 
 
Group Name  N  Missing Mean  Std Dev SEM  
control   6 0  1176.595 472.035 192.707  
K+  2 0  1386.317 268.574 189.911  
NH4

+   2 0  825.876 141.180 99.829  
drought   2 0  1557.259 247.405 174.942  
flood   2 0  2203.792 389.718 275.572  
 
Source of Variation  DF   SS    MS     F    P   
Between Groups  4 2275494.325 568873.581 3.607 0.051  
Residual   9 1419237.894 157693.099    
Total   13 3694732.220     
 
The differences in the mean values among the treatment groups are not great enough to exclude the 
possibility that the difference is due to random sampling variability; there is not a statistically significant 
difference  (P = 0.051). 
Power of performed test with alpha = 0.050: 0.493 
The power of the performed test (0.493) is below the desired power of 0.800. 
You should interpret the negative findings cautiously. 
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RGR before stress (days 0-35) 

 
One Way Analysis of Variance  
 
Normality Test: Passed (P = 0.082) 
 
Equal Variance Test: Passed (P = 0.300) 
 
Group Name  N  Missing Mean Std Dev SEM  
Control 6 0  0.118 0.0174  0.00711  
K+  2 0  0.132 0.00172 0.00121  
NH4

+  2 0  0.138 0.00195 0.00138  
drought 2 0  0.131 0.00358 0.00253  
flood  2 0  0.128 0.0152  0.0108  
 
Source of Variation  DF   SS    MS     F    P   
Between Groups 4 0.000863 0.000216 1.099 0.414  
Residual  9 0.00177 0.000196    
Total   13 0.00263     
 
The differences in the mean values among the treatment groups are not great enough to exclude the 
possibility that the difference is due to random sampling variability; there is not a statistically significant 
difference  (P = 0.414). 
 
Power of performed test with alpha = 0.050: 0.063 
 
The power of the performed test (0.063) is below the desired power of 0.800. 
You should interpret the negative findings cautiously. 

 
RGR after stress (days 35-70) 

 
One Way Analysis of Variance  
 
Normality Test: Failed (P = <0.001) 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks  
Group N  Missing  Median    25%      75%     
control 6 0  0.0893  0.0612  0.0999  
K+ 2 0  0.0587  0.0576  0.0599  
NH4

+ 2 0  0.0590  0.0560  0.0620  
drought2 0  0.0549  0.0542  0.0556  
flood 2 0  0.0659  0.0594  0.0725  
 
H = 8.895 with 4 degrees of freedom.  (P = 0.064) 
 
The differences in the median values among the treatment groups are not great enough to exclude the 
possibility that the difference is due to random sampling variability; there is not a statistically significant 
difference    (P = 0.064) 
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Day 42 µg C per gram new plant 

 
One Way Analysis of Variance  
 
Normality Test: Passed (P > 0.200) 
 
Equal Variance Test: Passed (P = 0.580) 
 
Group Name  N  Missing Mean  Std Dev SEM  
control  6 0  1770.017 1446.295 590.447  
K+   2 0  1317.723 65.517  46.328  
NH4

+   2 0  1938.460 1068.312 755.411  
drought 1 2 0  999.500 154.660 109.361  
flood   2 0  2616.160 2014.686 1424.598  
 
Source of Variation  DF   SS    MS     F    P   
Between Groups 4 3072808.685 768202.171 0.441 0.777  
Residual  9 15687304.142 1743033.794    
Total   13 18760112.827     
 
The differences in the mean values among the treatment groups are not great enough to 
exclude the possibility that the difference is due to random sampling variability; there is 
not a statistically significant difference  (P = 0.777). 
 
Power of performed test with alpha = 0.050: 0.050 
 
The power of the performed test (0.050) is below the desired power of 0.800. 
You should interpret the negative findings cautiously. 
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Day 51 µg C per gram new plant 

 
One Way Analysis of Variance  
 
Normality Test: Passed (P > 0.200) 
 
Equal Variance Test: Failed (P = <0.001) 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks  
 
 
Group N  Missing  Median    25%      75%     
control 6 0  1099.930 955.751 1237.150  
K+ 2 0  4376.509 3374.921 5378.098  
NH4

+ 2 0  1604.869 891.510 2318.228  
drought2 0  3439.480 3138.878 3740.082  
flood 2 0  2763.765 2162.377 3365.153  
 
H = 9.638 with 4 degrees of freedom.  (P = 0.047) 
 
The differences in the median values among the treatment groups are greater than would 
be expected by chance; there is a statistically significant difference  (P = 0.047) 
 
To isolate the group or groups that differ from the others use a multiple comparison 
procedure. 
 
All Pairwise Multiple Comparison Procedures (Dunn's Method) : 
 
Comparison  Diff of Ranks Q P<0.05   
K+  vs control  8.667 2.537 No   
K+  vs NH4

+  7.500 1.793 Do Not Test   
K+  vs flood  3.500 0.837 Do Not Test   
K+  vs drought  1.500 0.359 Do Not Test   
drought  vs control 7.167 2.098 Do Not Test   
drought  vs NH4

+ 6.000 1.434 Do Not Test   
drought  vs flood 2.000 0.478 Do Not Test   
flood  vs control 5.167 1.513 Do Not Test   
flood  vs NH4

+  4.000 0.956 Do Not Test   
NH4

+  vs control 1.167 0.342 Do Not Test   
 
Note: The multiple comparisons on ranks do not include an adjustment for ties. 
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Day 57 µg C per gram new plant 

 
One Way Analysis of Variance  
 
 
Normality Test: Passed (P > 0.200) 
 
Equal Variance Test: Failed (P = <0.001) 
 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks  
 
 
Group N  Missing  Median    25%      75%     
control 6 0  1727.917 1523.392 1842.263  
K+ 2 0  2106.583 2030.660 2182.505  
NH4

+ 2 0  1300.660 859.222 1742.099  
drought2 0  5658.274 4545.963 6770.586  
flood  2 0  2926.775 2244.969 3608.580  
 
H = 9.314 with 4 degrees of freedom.  (P = 0.054) 
 
The differences in the median values among the treatment groups are not great enough to 
exclude the possibility that the difference is due to random sampling variability; there is 
not a statistically significant difference    (P = 0.054) 
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Day 63 µg C per gram new plant 

 
 One Way Analysis of Variance  
 
Normality Test: Passed (P > 0.200) 
 
Equal Variance Test: Passed (P = 0.514) 
 
Group Name  N  Missing Mean  Std Dev SEM  
Control 6 0  1430.436 251.137 102.526  
K+  2 0  1478.409 208.529 147.452  
NH4

+  2 0  827.016 98.212  69.447  
drought 2 0  2947.433 101.897 72.052  
flood  2 0  2036.566 235.730 166.686  
 
Source of Variation  DF   SS    MS     F    P   
Between Groups 4 5368005.066 1342001.267 27.802 <0.001  
Residual  9 434431.172 48270.130    
Total   13 5802436.239     
 
The differences in the mean values among the treatment groups are greater than would 
be expected by chance; there is a statistically significant difference  (P = <0.001). 
 
Power of performed test with alpha = 0.050: 1.000 
 
 
All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparisons for factor:  
Comparison  Diff of Means p q P P<0.050  
drought  vs. NH4

+ 2120.417 5 13.649 <0.001 Yes  
drought  vs. control 1516.998 5 11.959 <0.001 Yes  
drought  vs. K+ 1469.024 5 9.456 <0.001 Yes  
drought  vs. flood 910.867 5 5.863 0.016 Yes  
flood  vs. NH4

+ 1209.550 5 7.786 0.003 Yes  
flood  vs. control 606.130 5 4.778 0.049 Yes  
flood  vs. K+  558.157 5 3.593 0.164 No  
K+ vs. NH4

+  651.393 5 4.193 0.090 No  
K+ vs. control  47.973  5 0.378 0.999 Do Not Test  
control  vs. NH4

+ 603.419 5 4.757 0.050 Do Not Test  
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Trial 7 percent root 

One Way Analysis of Variance  
Normality Test: Passed (P > 0.200) 
Equal Variance Test: Passed (P = 0.100) 
 
Group Name  N  Missing Mean  Std Dev SEM  
control  4 0  26.870  9.407  4.704  
K+  2 0  25.643  0.184  0.130  
NH4

+  2 0  35.116  12.760  9.022  
drought 3 0  22.181  6.769  3.908  
flood  2 0  13.658  4.254  3.008  
 
Source of Variation  DF   SS    MS     F    P   
Between Groups 4 500.229 125.057 1.859 0.211  
Residual  8 538.061 67.258    
Total   12 1038.290     
 
The differences in the mean values among the treatment groups are not great enough to exclude the 
possibility that the difference is due to random sampling variability; there is not a statistically significant 
difference  (P = 0.211). 
Power of performed test with alpha = 0.050: 0.172 
The power of the performed test (0.172) is below the desired power of 0.800. 
You should interpret the negative findings cautiously. 
 

Cumulative µg oxalic acid 

 
One Way Analysis of Variance  
Normality Test: Passed (P = 0.032) 
Equal Variance Test: Passed (P = 0.946) 
 
Group Name  N  Missing Mean  Std Dev SEM  
control  6 0  77.918  131.442 53.661  
K+  2 0  64.050  75.717  53.540  
NH4

+  2 0  14.259  20.165  14.259  
drought 2 0  139.930 64.523  45.625  
flood  2 0  194.266 97.912  69.234  
 
Source of Variation  DF   SS    MS     F    P   
Between Groups 4 40349.398 10087.350 0.854 0.526  
Residual  9 106274.526 11808.281    
Total   13 146623.925     
 
The differences in the mean values among the treatment groups are not great enough to exclude the 
possibility that the difference is due to random sampling variability; there is not a statistically significant 
difference  (P = 0.526). 
 
Power of performed test with alpha = 0.050: 0.050 
 
The power of the performed test (0.050) is below the desired power of 0.800. 
You should interpret the negative findings cautiously. 
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Cumulative µg malonic acid 

 
One Way Analysis of Variance  
Normality Test: Failed (P = <0.001) 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks  
 
Group N  Missing  Median    25%      75%     
control 6 0  0.000  0.000  12.565  
K+ 2 0  15.363  14.359  16.368  
NH4

+ 2 0  0.000  0.000  0.000  
drought2 0  67.487  55.872  79.102  
flood 2 0  99.051  96.380  101.722  
 
H = 7.346 with 4 degrees of freedom.  (P = 0.119) 
 
The differences in the median values among the treatment groups are not great enough to 
exclude the possibility that the difference is due to random sampling variability; there is 
not a statistically significant difference    (P = 0.119) 
 

Cumulative µg fumaric acid 

 
One Way Analysis of Variance  
Normality Test: Failed (P = 0.004) 
Test execution ended by user request, ANOVA on Ranks begun 
 
Kruskal-Wallis One Way Analysis of Variance on Ranks  
 
Group N  Missing  Median    25%      75%     
control 6 0  8.676  0.000  21.032  
K+ 2 0  29.572  28.581  30.562  
NH4

+ 2 0  10.735  0.000  21.470  
drought2 0  307.521 295.404 319.637  
flood 2 0  6.351  5.775  6.927  
 
H = 7.157 with 4 degrees of freedom.  (P = 0.128) 
 
The differences in the median values among the treatment groups are not great enough to 
exclude the possibility that the difference is due to random sampling variability; there is 
not a statistically significant difference    (P = 0.128) 
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Cumulative µg succinic acid 

 
One Way Analysis of Variance  
 
Normality Test: Passed (P > 0.200) 
 
Equal Variance Test: Passed (P = 0.653) 
 
Group Name  N  Missing Mean  Std Dev SEM  
control  6 0  73.759  69.394  28.330  
K+  2 0  124.290 17.912  12.666  
NH4

+  2 0  50.568  28.678  20.278  
drought 2 0  356.308 90.125  63.728  
flood  2 0  83.364  43.926  31.061  
 
Source of Variation  DF   SS    MS     F    P   
Between Groups 4 136870.031 34217.508 8.731 0.004  
Residual  9 35272.867 3919.207    
Total   13 172142.898     
 
The differences in the mean values among the treatment groups are greater than would 
be expected by chance; there is a statistically significant difference  (P = 0.004). 
 
Power of performed test with alpha = 0.050: 0.947 
 
 
All Pairwise Multiple Comparison Procedures (Tukey Test): 
 
Comparisons for factor:  
Comparison  Diff of Means p q P P<0.050  
drought vs. NH4

+ 305.740 5 6.907 0.006 Yes  
drought vs. control 282.549 5 7.817 0.003 Yes  
drought vs. flood 272.944 5 6.166 0.012 Yes  
drought vs. K+  232.018 5 5.241 0.030 Yes  
K+ vs. NH4

+  73.722  5 1.665 0.764 No  
K+ vs. control  50.531  5 1.398 0.854 Do Not Test  
K+ vs. flood  40.926  5 0.925 0.962 Do Not Test  
flood vs. NH4

+  32.796  5 0.741 0.983 Do Not Test  
flood vs. control 9.605  5 0.266 1.000 Do Not Test  
control vs. NH4

+ 23.191  5 0.642 0.990 Do Not Test  
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