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ABSTRACT

Autonomous Highway Systems Safety and Security

by

Imran Sajjad, Master of Science

Utah State University, 2017

Major Professor: Rajnikant Sharma, Ph.D.
Department: Electrical and Computer Engineering

Automated vehicles are getting closer each day to large-scale deployment. It is expected

that self-driving cars will be able to alleviate traffic congestion by safely operating at dis-

tances closer than human drivers are capable of and will overall improve traffic throughput.

In these conditions, passenger safety and security is of utmost importance.

When multiple autonomous cars follow each other on a highway, they will form what

is known as a cyber-physical system. In a general setting, there are tools to assess the level

of influence a possible attacker can have on such a system, which then describes the level

of safety and security. An attacker might attempt to counter the benefits of automation by

causing collisions and/or decreasing highway throughput.

These strings (platoons) of automated vehicles will rely on control algorithms to main-

tain required distances from other cars and objects around them. The vehicle dynamics

themselves and the controllers used will form the cyber-physical system and its response to

an attacker can be assessed in the context of multiple interacting vehicles.

While the vehicle dynamics play a pivotal role in the security of this system, the choice

of controller can also be leveraged to enhance the safety of such a system. After knowledge

of some attacker capabilities, adversarial-aware controllers can be designed to react to the

presence of an attacker, adding an extra level of security.
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This work will attempt to address these issues in vehicular platooning. Firstly, a general

analysis concerning the capabilities of possible attacks in terms of control system theory

will be presented. Secondly, mitigation strategies to some of these attacks will be discussed.

Finally, the results of an experimental validation of these mitigation strategies and their

implications will be shown.

(89 pages)
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PUBLIC ABSTRACT

Autonomous Highway Systems Safety and Security

Imran Sajjad

This thesis aims to address question of safety and security in autonomous highway sys-

tems. Chains of multiple self-driving vehicles (platoons) give rise to inherent vulnerabilities

to attacks resulting from their control algorithms. These weaknesses can possibly result in

collisions or decreased traffic flow.

This work first provides an overview of these vulnerabilities analyzed from a control

systems perspective. The capabilities and extent of damage that an attack can cause are

analyzed. Then some possible mitigation strategies are presented that can defend against

these attacks.

Simulation results are provided to support the effectiveness of these controllers and an

experimental validation is performed. It is concluded that by appropriate controller design,

the objectives of platooning in a system under attack can be recovered by using a control

scheme designed to withstand attacks.
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CHAPTER 1

INTRODUCTION

1.1 The Importance and Safety of Autonomous Highway Systems

Highway congestion in the modern world is an ever growing concern. Vehicle population

in the world has been exceeding predictions [3,4]. Coupled with this, the current technology

employed in driving and traffic flow management leads to gross inefficiencies. A study by

Schrank and Lomax suggests that a single American driver in 1982 would spend 14 hours

per year stuck in traffic whereas in 2007, that number rose to 38 hours [5]. Furthermore, it

has been found that around three billion gallons of fuel was wasted in 2014 due to traffic

congestion [6]. This state of affairs has led to the recent interest in making the current

highway infrastructure more efficient and less congestion prone.

Additionally, traffic collisions and fatalities are also a cause for concern. In 2015,

the National Highway Traffic Safety Administration put the number of fatalities on U.S.

roadways at 35,092 [7]. As such, there is an active interest in making cars safer and highways

less dangerous.

This has spurred interest in the research of autonomous highway systems (AHS). The

California PATH program has been researching automated vehicles and their interactions

on highways since 1986 and has produced significant research [8]. The benefits in terms of

fuel economy and safety have been thoroughly analyzed [9].

Since the arrival of automated cars is imminent, protecting them from malicious ac-

tors and other threats that seek to disrupt desired operation is of extreme importance.

This thesis attempts a specific analysis of the vulnerabilities a string of automated vehicles

(platoon) might exhibit and, building upon these results, provides a countermeasure for a

specific attack scenario along with a generalized study of optimal attacks.
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1.2 Literature Review

AHS and self-driving cars are getting ever closer to real-world implementation. Multiple

automated vehicles following each other on a highway with technologies like adaptive cruise

control naturally give rise to strings or platoons [10]. In this setting, the vehicles use some

control law to adjust the distance between themselves and neighboring cars.

AHS is an area of extensive and ongoing research. In an AHS that uses platooning,

vehicles on the highway follow each other with very small inter-vehicle separations, sensing

the movements of other vehicles and reacting automatically according to some predefined

law. Platooning has been shown to have environmental, safety, and passenger comfort

benefits [11, 12]. It also helps to alleviate traffic congestion on highways and has shown to

be more fuel efficient than manually operated vehicles [13,14].

The safety and security of these systems is essential. Platooning falls under the broad

category of cyber-physical systems (CPS), where most security-centric work has focused on

attack detection and not mitigation [15–17]. Chen et al. use optimal control to find an attack

in constrained conditions [18]. Grimsman et al. attempt to find a generalized formulation of

attacks based on system vulnerabilities [19]. Ramasubramanian et al. investigate a system’s

resilience to attacks based on its structure [20].

For a platooning CPS, it has been shown that a single attacker can disrupt normal

operations simply and easily, and that such disruptions can cause catastrophic collisions [1].

It is shown that a platoon is vulnerable to attacks if an attacker applies a destabilizing

control input. This is achieved by the attacker modifying controller gains in order to cause

instability. Only the gains in one vehicle need to be modified to achieve this. This sort

of an attack is also presented by Dunn, where a group of colluding attackers cause string

instability and increase traffic congestion [21].

A large body of work can be found regarding homogeneous platoons, where every

car follows the same control low. Most of this work focuses on the stability and string

stability of the system [22–25]. The majority of prior research in platooning involves a

specific control law that is used to either regulate distance from the front (unidirectional)
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or from both front and back (bidirectional) [26]. Other work has highlighted some of the

limitations of the bidirectional structure [27,28]. Different inter-vehicle spacing policies have

also been considered [25]. It has been previously shown that the symmetric bidirectional

linear controller causes the bounds on the front and rear errors increase as the number of

vehicles increases [27]. There are also possibilities for inter-vehicle communication that add

an additional layer of abstraction.

Sliding Mode Control has been used previously in many scenarios. Platooning strategies

exist where sliding mode control has been used in a homogeneous platoon under normal

operation [29]. Graph theoretic approaches similar to the one presented here have been

used before in platooning [30,31]. They have also been used in general problems of multiple

vehicle target tracking in the presence of uncertainties [32].

Apart from platooning, much work has been done in interconnected dynamic CPS.

The security and robustness of these systems in the face of an attack or failure is crucial

and an active area of research [16]. Graph theory, information flow analysis have been used

to analyze such systems as well [30, 31]. Much of this work is focused on ensuring suitable

operating conditions for dynamic systems, mainly stability, controllability and observability.

Game theory has been used in the field of control systems for some time now. There

are classic problems in game theory such as pursuit evasion that have been adapted to

modern control problems [33]. The area has also been used in the area of system design and

disturbance rejection [34, 35]. Game theory is also used in communications and designing

data networks [36].

1.3 Physical Description

For the purposes of this thesis, the following system description will be used unless

otherwise stated [37]. Consider the platoon of n vehicles shown in Fig 1.1. The state vector

is
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1 2 3 . . . n

x1, xn+1 x2, xn+2 x3, xn+3 . . . xn, x2nVehicle States:

Cars:

σrefl

Direction of Travel

Fig. 1.1: A Platoon of n Vehicles. Each Car is l Meters Long and the Desired Separation
from Center of One Car to that of the Other is σref. Car n is the Leader.

x =

[
x1 x2 . . . xn xn+1 xn+2 . . . x2n

]T
,

u =

[
u1 u2 . . . un

]T (1.1)

and the complete linear time-invariant (LTI) system is given by

ẋ = Ax+Bu (1.2)

A =

0n×n In×n

0n×n 0n×n

 B =

0n×n

In×n


where car i has position and velocity xi, xn+i respectively and control input ui. In chapter 3,

the xn+i are replaced by vi. These positions are measured from the center of mass of all

the cars. Each car is essentially a double integrator in this setting.

With this description, the dynamics of the system itself can be expressed in a general

manner. Adding the controller closes the loop on the system by finding an expression for

u, and the system becomes autonomous [38].

The following chapter uses this description and a bidirectional controller to see what

sort of attack capabilities are achieved by one malicious car.
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CHAPTER 2

REACHABLE SET FOR AN ATTACKER

2.1 Introduction

Using the most general idea for an attack, the question of the capabilities of an attacker

can be asked. One such question, which this chapter attempts to answer, asks what state

configurations are achievable by an attacker in finite time with a bounded control input.

It should be noted that this question has been asked before for dynamical systems in

general. Pontryagin proved the maximum principle which results in a set of necessary condi-

tions for a optimality [39]. Bellman arrived at a similar result using a dynamic programming

approach [40]. Both these methods can be extended to provide a sufficient condition for

reachability, but finding this solution in the case of constraints such as bounded control can

be difficult1.

Note that the system in (1.2) does not have a control architecture. For the purposes

of this chapter, the bidirectional controller given by Yanakiev and Kanellakopoulos will be

used [26]. It is restated here for clarity

ui = kp(xi+1 − xi − σref) + kp(xi−1 − xi + σref)+

kd(vi+1 − vi) + kd(vi−1 − vi) (2.1)

This imposes a structure on A that can be expressed as follows

1Under a well informed but somewhat idealized choice of functions, both these methods result in the
linear-quadratic regulator (LQR) [41,42].
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A =

 0n×n In×n

−kpLn×n −kdLn×n

 where Ln×n =



1 −1 0 . . . 0 0

−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 2 −1

0 0 0 . . . −1 2


(2.2)

As is noted by Barooah and Hespanha, this matrix structure is similar to the Laplacian

of the system from graph theory [27]. The last entry in L is different because the leader

has access to a reference trajectory.

But supposing that there is an attacker, the system can still be analyzed with the

remaining cars forming an autonomous system and the attacker has one control input. In

other words, all cars except the attacker have their respective ui set according to (2.1), and

the attacker has one control input which is denoted simply u. Without loss of generality,

the attacker can be at position j.

Thus, for the purposes of this chapter, the system can now be written as

ẋ = Ax+Bu (2.3)

A =

 0n×n In×n

−kpLn×n −kdLn×n

 B =

 0n×1

I (j)n×1
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and

Ln×n =



1 −1 0 . . . 0 0

−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 2 −1

0 0 0 . . . −1 2



(2.4)

and I (j)n×1 is one at the jth entry and zero elsewhere. Thus the jth row of L has been

zeroed out, which means the attacker is not following the regular control law. At this point,

there is no need to separate positions and velocities, so from now on n is redefined to be

the size of the state vector x.

Also one more very important consideration is that the attacker’s control input is

bounded in the infinity norm, which means

‖u‖∞ = max
t
|u(t)| ≤ c (2.5)

Thus, the attacker cannot apply infinite acceleration. The maximum allowed value in

each direction is set by choosing the value of c appropriately. This condition is extremely

important, since if infinite control input is allowed, then the controllable set would be the

entire state space [43]. Hence, the following sections deal with attempting to find what

state configurations are reachable in finite time, with bounded control input.

The notion of a controllable set in continuous time can also be somewhat illuminated

using the controllability matrix of an LTI state space model. For the given system, a test

of controllability does indicate all the states are controllable, but the condition number

of this matrix is not good, which means that some directions in the state space are more

controllable than others.
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2.2 Discrete-Time Case: For a Given Final State

Given a final time tf and a time increment dt, conversion to a discrete-time state-space

model is always possible with an LTI system,

x(t+ 1) = Ax(t) +Bu(t) (2.6)

where x ∈ Z+ → Rn, u ∈ Z+ → R A ∈ Rn×n, B ∈ Rn×1, then the solution (state) at any

final time index p can be written as

x(p) = Hn×pup×1 =

[
B AB A2B . . . Ap−1B

]


u(0)

u(1)

u(2)

...

u(p)


(2.7)

Thus, p and x(p) are given as requirements, and H can be computed using the system

data. So a vector u that satisfies (2.7) and the discrete-time equivalent (2.5) is required. In

other words, the problem can be expressed as

find u

s.t. x = Hu , ‖u‖∞ ≤ c
(2.8)

Because H is a flat matrix and has row rank n, there are many possible u’s. In fact,

the set of u’s form a vector space of their own, with dimension at least p − n. Note that

if p = n, the solution could be a unique point, and if that u is not realizable, then nothing

can be done. Higher p means more possible solutions. The important question is this:

does increasing p help to find a solution that meets the constraints, or is there a brick wall

somewhere?

Define x = x(p). If there is a constraint such as ‖u‖∞ ≤ c for some value of c, a

feasibility problem in some solver can be solved, but here a somewhat simpler method is
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proposed here. Forming the norm minimization problem as below

min
u
‖u‖∞

s.t. x = Hu

(2.9)

This can be recast as a linear programming problem

min
u,s

s

s.t. x = Hu

−s ≤ u ≤ s

(2.10)

The variable s bounds each value of u and the optimal value of this problem is the

minimum value of s. If s is greater than c, then it can be said that the pair (p, x) is not

reachable. This problem is a convex optimization, which means that strong duality should

hold in most cases (Slater’s condition for strong duality) [44]. If the unconstrained dual

problem is formed

min
λ1,λ2,ν

min
u,s

s+ λT1 (u− t) + λT2 (−u− t) + νT (x−Hu) (2.11)

an analytical solution might be possible. The superscript T denotes the vector or matrix

transpose. But before evaluating the vector u, the optimal value of (or at least a lower

bound on) s can be found, which if higher than c, will indicate that the given final time

and state (p, x) are not achievable.

2.2.1 The Least Squares Solution is not the Infinity Norm Solution

For the system in the previous section, x = Hu has many solutions and u = (HTH)−1HTx

is only one of them. This is a special solution that corresponds to minimum ‖u‖2. While it

is tempting, the least-squares solution and the infinity norm solution are not the same.
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Furthermore, if it is suggested that the two are close enough to each other, the only

norm identity for both is

‖u‖∞ ≤ ‖u‖2 ≤
√
p‖u‖∞ (2.12)

which essentially means that while the approximation might look good in two or three

dimensions, it does get worse with increasing p, and it is desired that p� n.

2.3 Discrete-Time Case: The Range of Final States

The u without a subscript is the control input. For the expression in (2.7), a singular

value decomposition can be used as

x = Hu

= UΣV Tu

=


...

...
...

u1 u2 . . . un
...

...
...


n×n



σ1 0 . . . 0 . . . 0

0 σ2 . . . 0 . . . 0

...
...

. . . 0 . . . 0

0 0 . . . σn . . . 0


n×p



. . . v1 . . .

. . . v2 . . .

...

. . . vp . . .


p×p

w

(2.13)

By definition, U has full rank and spans the entire space of x. So x can be written as

a linear combination of the ui vectors.

x =
∑

γiui

=


...

...
...

u1 u2 . . . un
...

...
...


n×n



γ1

γ2

...

γn


n×1

(2.14)
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If (2.13) is to be written as (2.14), the γ’s can be expressed as:

γi = σiv
T
i u (2.15)

An orthonormal basis for U and V is always possible, which leads to ‖vi‖2 = 1 ∀i.

Under the constraint ‖u‖∞ < c, it is possible to write

‖vTi u‖∞ ≤ ‖vi‖∞c

‖γi‖∞ ≤ σi‖vi‖∞c
(2.16)

and plugging this back into (2.14), gives the span of x in each of the directions given by

U . This would give an estimate on the set of achievable states for a given final time and

an acceleration constraint. While not an exact result, it motivates the fact that the left

eigenvector directions span something possibly close to the reachable set. The same question

as before of adjusting the final time p so that more states are achievable, might be reduced

to looking at the singular values of H.

2.4 Discrete-Time Case: Simulation

First off, the effect of increasing the final time has on the singular values of H is

investigated. Then the effect that singular values have on the reachable states is discussed.

For everything in this section, there is a single input from a lone attacker. The matrices for

the simulation were constructed with the following values from Table. 2.1

2.4.1 Effect of Final Time on Singular Values

The singular values of the transfer matrix H are plotted against final time values in

Fig. 2.1. It is observed that increasing the final time does not increase the singular values

of the transfer matrix after a point. In fact, what is seen is a sharp ceiling and very quick

convergence to a maximum value. For larger platoons, the singular values take longer to

converge, but they still follow the same bounded pattern.
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Table 2.1: Matrix Parameters

kp kd n

1 2 8

To see the effect of discretization, multiple sampling times were tried. Interestingly,

the infinity norm of H is invariant to the sampling time chosen.

Because of this hard-bounding trend, it might be possible to derive an analytical ex-

pression for the bound on the largest singular value over time. This would have to take into

account the structure of A and B, the final time and the discretization.

2.4.2 Reachable Sets for a Bounded Control Input

In order to find the reachable states for a given bound on u, the problem can be solved

backwards.

Choosing the final state as one of the left eigenvectors x = ui, there is a control input u

that optimally solves the problem (2.10) and achieves the desired state, and for this control

input, ‖u‖∞ = s∗i .

ui = Hu

c

s∗i
ui =

c

s∗i
Hu

c

s∗i
ui = H

c

s∗i
u

(2.17)

The input here is just scaled so that ‖ cs∗i u‖∞ ≤ c, with the associated achievable state

c
s∗i
ui. Again u without the subscript is a control input, while ui is a column of U . The

optimality of the solution in (2.17) is proved later in this chapter. Thus the maximum reach

in the ui direction is given by c
s∗i
ui with a ‖u‖∞ ≤ c.

Solving the optimization problem given by (2.10) for the following final states (u1, u2, . . . , un),

gives the minimum required power to get to each column of U . The solver CVX was used to

find the optimal controls [45]. It is to be noted that the problem gets very time-consuming

for larger platoons and longer final times. For a final time of 5 seconds and a platoon of
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Fig. 2.1: Singular Values of H with Increasing Final Time. Multiple Traces for Different
Sampling Times (dt).
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size 4, Fig. 2.2 shows the control effort and errors required to get to each state.

The singular values are always ordered from largest to smallest and it can be seen

that the direction with the first singular value is most easily achievable. For the last three,

the solver gives up. It is a characteristic of infinity-norm-minimization problems that the

solutions look like bang-bang principles [43].

Given these values, it was attempted to compare the inverse of the required powers

(s∗i ’s) to the singular values of the matrix.

From Fig. 2.3, it is seen that after some scaling, the singular values follow the same

trend as the inverse of required power. Thus the singular values tend to correlate with a

bound on the achievable states in the directions of U . This sufficiently implies that

x = (1 + ε)Cσiui is unachievable for

‖u‖∞ < c, ε > 0, ∀ i, C = C(c)

(2.18)

where C should monotonically increase with c and be independent of p or the sampling

time.

Putting all of this together with the proofs in the next section, the following holds.

The reachable set with ‖u‖∞ < c is contained within the following set for some mono-

tonically increasing function C(c).

{x : x =
n∑
i=1

Cεiσiwi, |εi| ≤ 1 ∀ i} (2.19)

where each wi is the normal vector to a supporting hyperplane between the convex hull

conv(Cσiui) and (1 + ε)Cσiui.

This region is defined by a rotated hypercube with the length in each direction ui given

by Cσi. These values are easily computed using the singular value decomposition of H.

It requires a lot of imagination to visualize this in eight dimensions. However for the

(unrealistic for platooning) case of three dimensions, Fig. 2.4 shows a shape of this type.
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Fig. 2.2: Control Effort and States for each Column of U (n = 8, tf = 5, dt = 0.01)
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Fig. 2.3: Singular Values of H Compared to the Inverse of Required Powers for each Column
ui.

2.5 Proofs

Most of these properties also follow from the geometry of the reachable set established

in [43]. The set is convex and symmetric, even for bounded control inputs.

2.5.1 Reachable Set Bounded by Hyperplanes

The reachable set is convex. It has been established that (1+ε)Cσiui is an unreachable

set. Hence by the supporting hyperplane theorem, there must exist a plane that bounds

the reachable set that touches the point Cσiui in the state space. This is true for all i. The

reachable set is symmetric as well, so there is another hyperplane on the exact opposite

side (also called a slab). Hence the reachable set is an intersection of n slabs. This can be

visualized with the picture in Fig. 2.5.
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Fig. 2.4: Reachable Set Boundary in Three (Unrealistic) Dimensions.

2.5.2 Lower Bounds on Control Input

Given ui = Hu = UΣV Tu, and expressing the optimal u with V as a basis, u = V a,

with a ∈ Rp a vector of optimal coefficients, with ε close to zero.

(1 + ε)ui = (1 + ε)UΣV TV a

= (1 + ε)UΣa

= (1 + ε)uiσiai

= σiui(1 + ε)ai

(2.20)

Note that for a desired (1+ε)ui, only the ai entry has to be scaled by the same amount.

The other ai’s up till n have to remain the same (zeros in this case). The second last step
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Fig. 2.5: Supporting Hyperplanes Shown in Blue. The Green Vectors are Optimally Reach-
able in the State Space, While the Red Areas are Not. The Reachable Set has to Exist
Between Planes of This Sort.

above is necessary because U is orthonormal.

So it can be concluded that since V is orthonormal, no change in any other a can offset

the change caused by ai in the infinity norm. This indicates that at least with x in the

direction of the left eigenvectors, optimal solutions of the problem (2.10) for different values

of c simply scale.

2.5.3 Note on Possible Solutions

For any given final state and using V as a basis for the control input, the following

relation holds

x = UΣV TV a = UΣa = UΣ1:na1:n

a1:n = Σ−1
1:nU

Tx

(2.21)

This means that the first n out of p values for a are constrained by the terminal state,

while the remaining p − n values have no effect on the final state. This is true no mat-
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ter what sort of minimization is done, infinity-norm, least-squares etc. The remaining a’s

have a role in minimizing whatever objective function is chosen. Furthermore, observe that

V = [Hd | Hn], which is the concatenation of the domain and nullspace of H (easily veri-

fied). Hence u = Hda1:n +Hnan+1:p. Hence, by choosing the basis functions appropriately,

traversing along Hnan+1:p minimizes any chosen cost while keeping x fixed.

This can be further elucidated; consider minimizing over the 2-norm. Then

u = V a =⇒ ‖u‖2 = ‖V a‖2 = ‖a‖2 (2.22)

because V is unitary and 2-norm preserving. Hence the solution to this is just to set

an+1:p = 0. For example, in Fig. 2.6.
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Fig. 2.6: Analytic Solution (Left), Solver Solution (Right) to 2-norm Minimizing Problem.
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Perhaps this choice of basis can be used to solve the continuous time problem as well,

with additional terms included for norm minimization.

Since a1:n is given, the optimization problem can be rewritten as follows.

min
an+1:p

‖Hda1:n +Hnan+1:p‖∞ (2.23)

2.5.4 Lower Bounds from Dual Problem

An alternate way to establish these properties is to form the dual optimization problem

[44]. The dual of the LP given by (2.10) is

max
λ1,λ2,ν

(1 + ε)νTx

s.t. (1− λT1 1− λT2 1) = 0

(λ1 − λ2 −HT ν) = 0

(2.24)

From duality, the optimal value of this function lower bounds the optimal value of the

primal problem (‖u‖∞). By setting ε = 0, the original problem is obtained. So for any

solution (1 + ε)x, the lower bound on ‖u‖∞ increases with (1 + ε). This means that optimal

solutions scale up with the magnitude of the final state.

Thus if (c/s∗i )ui is at the boundary of what is achievable, any state directly above that

will not be achievable. For x = ui + εuj with i 6= j and s∗i the optimal value for ui,

max
λ1,λ2,ν

νTui + ενTuj

s.t. (1− λT1 1− λT2 1) = 0

(λ1 − λ2 −HT ν) = 0

(2.25)

is also maximized with a value greater than that of νTui. Hence the lower bound increases

and a vector with a projection on ui greater than the limit set by σiui is not reachable.
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CHAPTER 3

ATTACK MITIGATION USING DETECTION-BASED SLIDING MODE CONTROL

3.1 Introduction

The content of this chapter is a reproduction of previous work by Sajjad et al. which

presents the same approach and results [37].

This chapter proposes a sliding mode controller coupled with an attack detection

scheme that ensures that deviations from desired inter-vehicle separations remain low. Com-

pared to existing control laws, the proposed controller is able to almost completely eliminate

collisions when the attacking vehicle is as strong as regular vehicles; even in the presence of

a more powerful attackers the damage caused by collisions is greatly reduced. This control

law and attack detection scheme are decentralized and rely on only the local sensors the

platooned vehicle is already equipped with for decision making and reaction purposes.

The approach employed here builds upon previous works and tries to solve the safety

problem in an adversarial environment. While the system analyzed is linear, the choice of a

sliding mode controller follows naturally when some limitations on the attacker capabilities

are known. Also, maximum performance constraints are incorporated in order to measure

the efficacy of this approach by measuring the severity of any collisions that take place.

Firstly, a threat model in the context of a vehicular platoon is established. Secondly, a

sliding-mode controller and an attack detection scheme is shown. Lastly, simulation results

which show the efficacy of this approach are presented.

3.2 Threat Model

For the purposes of this study, a platoon of n members is considered, each equipped

with front-and rear-facing sensors that measure relative distance and velocity. Aside from

the attacker, the vehicles adhere to the same control law and have the same capabilities, as
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Fig. 3.1: Oscillatory Behavior Brought on by an Attacker, Resulting in a High Speed
Crash [1]. Each Line Represents the Trajectory of a Vehicle in a Ten Vehicle Platoon with
an Attacker at the Rear.

described in the next section. The last member is indexed as 1 and the leader is at index

n. The bidirectional platoon scheme [26] is considered, where every car gathers information

about (e.g. range and relative velocity), and reacts to the movements of, both the vehicle

preceding and following it. The leader tries to maintain a separation with its follower and

has access to a reference trajectory. The last car only tracks the car immediately in front

of it.

A single attacker in control of a car at an arbitrary position in the platoon is considered.

The attack car is possibly more powerful than the regular cars, i.e. it may have greater

acceleration capabilities. The goal of the attacker is to cause multiple collisions in time.

To accomplish this the attacker follows a modified control law that induces oscillations in

the platoon (Fig. 3.1). It has been shown that an attacker can leverage oscillatory behavior

to cause more accumulated damage, and more collisions over time, than one that simply

accelerates in one direction and that this can be achieved simply by changing the some

controller gains [1]. The attack always starts in a steady state configuration, when the cars
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are traveling at their desired separations, which is chosen to be one car length of separation

in the tests presented.

3.3 Rationale and System Overview

1 2 3 . . . n

x1, v1 x2, v2 x3, v3 . . . xn, vnVehicle States:

Cars:

σrefl

Direction of Travel

(a) Platoon with a Bidirectional Law Under Normal Operation. Information Flow in Green. Each
Car is l Meters Long and the Desired Separation from Center of one Car to that of the Other is σref.

High Level

Controller

Low Level

Controller

Vehicle

Model

ui Fi

Range-Rate

Sensors
Other Car

States

States

vi
er, ef

(b) Controllers of a single vehicle.

Traditional

Controller

Attack

Controller

Attack De-

tector

MUX

ui

ui

er, ef

er, ef

er, ef

ui

(c) Inside high level controller: attack detection
and controller selection based on attack state.

Fig. 3.2: Overview of Platoon. Each Vehicle Knows its own Velocity and Measures a
Relative Distance and Velocity from Rear and Front (er, ef ). These same Measurements
are used in the High Level Controller to Switch Between Rear or Front Tracking if an Attack
is Detected.

The bidirectional platoon structure (Fig. 3.2a) has two principle benefits over the uni-

directional approach: 1) it offers the added safety advantage of avoiding collisions from

the rear, and 2) also allows for constant spacing between vehicles, provided the size of the

platoon is known and used to tune controller gains, without vehicle-to-vehicle communi-

cation [26]. It can be shown that this structure is especially vulnerable to attack, but to

retain its benefits, a scheme of altering the structure can be used during times of attack

that ensures that collisions are at least minimized, if not avoided altogether. Technologies
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such as cooperative adaptive cruise control (CACC) that use V2V communication are sen-

sitive to jamming attacks and thus safety has to be guaranteed without reliable external

information. Even these systems are vulnerable to instability attacks caused by attacker

motion [1, 26].

3.3.1 Platooning Goals in Adversarial Conditions

An attacker vehicle cannot be assumed to be following the control scheme of the other

vehicles. They have free reign to do whatever they want, and the other cars do not have

any assurance of its cooperation. The possible combinations of such attacks are virtually

limitless. To investigate operation in the presence of attackers, revised platooning goals are

defined in the presence of an attack that ensure safety at the expense of other desirable

platooning properties:

1. The instantaneous and total mean square error from reference should be as tightly

bounded as possible.

2. The instantaneous and total damage from collisions should be minimal.

From the point of view of the attacker(s), the aim is to defeat these goals. Both these goals

are interlinked as well, in the sense that there has to be some error in relative positions

before a collision takes place.

For the first goal, how errors propagate in the system in the presence of attackers

needs to be investigated. This largely depends on the number of attackers and what they

are doing, but general statements can be made using concepts such as string stability and

Lyapunov Stability [22,24,38]. Such an analysis would have to be global and the interaction

between each member of the platoon with every other one would have to be investigated.

Priority is given to the second goal because that one seems more imperative if there

will be human passengers in the platooning vehicles. Incidentally, it is easier to analyze as

well, since the number of interactions is smaller, and the analysis is not entirely removed

from that of the first goal.
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For this purpose, a global analysis is not required as such but would be beneficial

for a more complete understanding. All that needs to be ensured is that each car does

not collide with its neighbors. To achieve this, a decentralized controller is designed in

section 3.4 for a single car using a concept from Lyapunov Stability called uniform ultimate

boundedness, which ensures that once an error is restricted to an interval, it will never

leave that interval [38]. In other words, when the uniform ultimate boundedness property

is ensured with an appropriate controller, the inter-vehicle distance between a car and its

neighbor never deviates from the required separation enough to cause a collision.

Since total or instantaneous damage is not formally defined, this work proposes to use a

metric that depends on two things; whether an impact takes place and the relative velocity

of the colliding vehicles. This choice of measuring damage is motivated by previous work

done on automated vehicle and platooning safety [46, 47]. To measure the accumulation of

damage, the following rate of change to a state D can be used:

Ḋ = cT vrel (3.1)

where c is an n− 1 length vector whose entries are 0 normally, but 1 if there is a collision.

vrel is a vector containing the absolute values of n− 1 relative velocities at time of collision.

3.3.2 Bidirectional Platooning Control

In keeping with the current literature [27,48], each vehicle is analyzed as a double inte-

grator system, where the control input is a desired acceleration. For an n-vehicle platoon,

the state vector x ∈ R2n is made up of positions and velocities and the input vector u ∈ Rn

consists of control inputs. The state and input vectors can be expressed as

x =

[
x1 x2 . . . xn v1 v2 . . . vn

]T
,

u =

[
u1 u2 . . . un

]T (3.2)
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and the state space system becomes

ẋ =

0n×n In×n

0n×n 0n×n

x+

0n×n

In×n

u (3.3)

where car i has position and velocity xi, vi respectively and control input ui. These positions

are measured from the center of mass of all the cars. In the bidirectional scheme

ui = fi(xi−1 − xi, vi−1 − vi, xi+1 − xi, vi+1 − vi) (3.4)

which means each vehicle’s control input can only use relative distance and velocity mea-

surements from its immediate neighbors. This function fi constitutes a high level controller

that is meant to be independent of a vehicle’s dynamics (Fig. 3.2b); as such the control

input ui serves as the vehicles desired acceleration.

As the rearmost and leader vehicle lack a follower and predecessor, respectively, they

follow a slightly modified version of (3.4) wherein the rearmost car uses a unidirectional

law, and the leader follows a reference trajectory while maintaining a follower separation

u1 = f1(xi+1 − xi, vi+1 − vi) (3.5)

un = fn(xi−1 − xi, vi−1 − vi, xref − xi, vref − vi) (3.6)

3.3.3 Vehicle Model

The previous section assumes that a desired acceleration can be achieved and applied

directly to the system. A realistic model of a vehicle has a throttle input or some other

type of actuator. The purpose of this section is to find how a desired acceleration can be

achieved based on the possessed knowledge of the vehicle. A model of the vehicle’s dynamics

is required in this case. This can be specific to different vehicles, but the general idea is to

find an expression for the control input required for a desired acceleration. This constitutes

the low level controller of Fig. 3.2b.

The vehicle model used is a 2nd order plant with a linear friction/drag coefficient.
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Such models are easy to analyze while capturing the major dynamics of the system. Similar

models have been used in other control systems literature to analyze fundamental properties

of single vehicles and platoons [22,23,28].

ẋi = vi

v̇i = αFi − βvi
(3.7)

where Fi ∈ [F−, F+] is a variable to set the actuator (throttle) and α, β are the model’s

parameters which can be chosen based on the vehicle’s internal design values or through

system modeling [22,48].

For the high level controller described in (3.4) to work, the internal dynamics of the

vehicle need to be compensated. Feedback linearization is to compensate for terms in the

model described by (3.7) [22,48]. This gives

Fi =
1

α
(ui + βvi) (3.8)

Note that this controller does require a velocity measurement of vehicle i. A sensor which

provides this reading will be required, but this is just car sensing its internal data and does

not violate the decentralized condition.

The reason for including this model is to emphasize that there are bounds F−, F+ on

Fi which lead to saturation. Simulations are done with these saturation limits in order

to demonstrate the controller on a realistic system where the desired acceleration cannot

always be achieved. A favorable consequence of this is that the model cannot achieve infinite

acceleration.

Substituting (3.8) into (3.7) gives the required double integrator type system for each

vehicle

ẋi = vi

v̇i = ui

(3.9)
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as long as the condition 1
α (ui + βvi) ∈ [F−, F+] holds true. These saturation constraints

apply to the attacker as well and ensure that it does not have unrealistic capabilities.

Additionally, another constraint on this controller which prohibits reverse motion is

applied. This is to maintain relevance with the real application of AHS. It can be expressed

as Fi > F−i if (vi > 0) and Fi > 0 otherwise, which means that if a vehicle’s speed is zero

or below, it cannot apply negative actuator input.

3.3.4 The Vulnerability of Bidirectional Control

Both bidirectional and unidirectional platooning require consensus for proper oper-

ation. For example, a predecessor unidirectional law maintains the separation between

vehicles by having each car respond to the movements of the vehicle in front of it only. In a

three-member platoon there is consensus when the vehicle at the lead of the platoon slows

down and so do the two followers. Consensus, however, cannot be guaranteed. If the car

at the rear does not move back (or wants to accelerate into its predecessor), then the car

in the middle will not be able to defend against it.

The bidirectional system, owing to the fact that the middle vehicle reacts to what

is happening both in front and behind it, may seem to but, in fact, does not solve this

problem. A symmetric bidirectional law does not control both the rear and front separations

simultaneously. Rather, it tries to place the current car in the middle of the two neighboring

cars. Assuming again the three vehicle platoon with an attacker in the rear who decides

to accelerate, it can be seen that, due to its length, the middle vehicle that tries to place

itself equidistant to the attacker and leader, when the space between is diminishing, would

inevitably collide with the leader. In fact, as shown in the next subsection, the bidirectional

system formed around a single car is locally uncontrollable and that at least one cooperating

neighbor is required for stable operation.

If the discussion is limited to a single attacker, this work proposes to use the consensus

condition that is required in both cases anyway. This thesis recommends a secondary con-

troller that tries to keep a constant distance from the more dangerous and uncooperative

car (in front or behind) and relies on the other car to move and make room. Under normal
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circumstances a traditional bidirectional law is followed; however, upon detect of anomalous

behavior, indicating the onset of an attack, this secondary controller is engaged to mitigate

the attack (Fig. 3.2c). This approach is shown to allow a straightforward, ultimate bound-

edness analysis and simulation results show that it greatly reduces total damage compared

to a traditional bidirectional scheme.

3.3.5 Consensus Requirement in a Bidirectional System

For the purposes of this section, the complete bidirectional system can be expressed as

follows. Allowing e be the error states:



e1

e2

e3

e4


=



xi−1 − xi + σref

xi+1 − xi − σref

ẋi−1 − ẋi
ẋi+1 − ẋi


(3.10)

and for each car using the high-low level controller, there is a computed acceleration as an

input (ẍi = ai). Then

˙

e1

e2

e3

e4


=



e3

e4

ẍi−1 − ui
ẍi+1 − ui


(3.11)

which can be written in matrix form as

˙

e1

e2

e3

e4


=



0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0





e1

e2

e3

e4


+



0

0

−1

−1


ui +



0

0

ẍi−1

ẍi+1


(3.12)
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which can then be rewritten as:

ė = Ae+Bui + [0 0 ẍi−1 0]T + [0 0 0 ẍi+1]T (3.13)

The terms on the right could include inputs from the attackers, which cannot be influenced.

They can be regarded as external disturbances. Only ai is accessible.

Controllability is independent of the feedback controller (or lack thereof) applied. A

necessary and sufficient condition for controllability for a linear n-dimensional system ẋ =

Ax+Bu is

rank([B AB A2B . . . An−1B]) = n (3.14)

For the 4-dimensional system (3.13), the rank is only 2. Thus the system is not fully

controllable. Only two linear combinations of the four possible states are controllable.

Using the controllability staircase form, it can be shown that these controllable modes are

e1 + e2

e3 + e4

 (3.15)

which is the difference between the front and rear separations and its corresponding relative

velocity (e1 is in opposite direction to e2 and so are e3 and e4). Thus, a car can only place

itself anywhere in between the two neighboring cars using its own controller.

The system is stable only if the uncontrollable modes follow the desired trajectory

without control effort. If only one of (ẍi−1, ẍi+1) is also following the platooning protocol,

then the system is stabilizable.
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If this is the case, then one of these terms can be considered an input to the system

and B becomes:



0 0

0 0

−1 1

−1 0


(3.16)

and rank([B AB A2B . . . An−1B]) = 4. Hence, in the bidirectional system, each car

(except for the last one) relies on at least one good neighbor to ensure platooning. For the

leader, the reference cannot be considered working to stabilize the system. This consensus

condition is required in all regular platooning scenarios.

Thus, even the bidirectional structure relies on the other cars cooperating, just as in the

unidirectional case. And the actual quantity being controlled, with a symmetric controller,

is just the position and velocity in between the two neighboring cars, which is driven to

the mid point within that space. It should be noted that the unidirectional case is also a

special case of bidirectional system where the rear controller is turned off.

3.4 Attack Controller

For the secondary controller that governs vehicle response when under attack, this sec-

tion proposes the use of sliding mode control (SMC) because the nature of the problem

lends itself naturally to SMC. Firstly, the demands of the system require the fewest col-

lisions (preferably none at all) in the face of an attacker. Secondly, the attack is limited

in what it can do by its (perhaps heightened) acceleration and velocity constraints. Slid-

ing mode controller techniques can use these constraints directly and guarantee ultimate

boundedness of the tracking error, which implies no collisions. Lastly, SMC is a robust,

well-understood method of nonlinear control and straight-forward tools exist to design and

analyze its performance.

The controller incorporates uncertainties and bounds on acceleration and velocity based
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on the model in the previous section and derived is a suitable sliding mode controller. Then

its continuous approximation is used that enables the defending cars to maintain the desired

distance from the attacker within some error bound. Separate front and rear controllers, to

control response to an attack originating to the front and rear of the vehicle, respectively,

are designed and then combined later in this section to give a single, unified high level

controller for platooning operations while under attack.

3.4.1 Mathematical Preliminaries

To demonstrate the efficacy of the sliding mode controller, some mathematical prelim-

inaries from control systems theory are required. For a system with state x ∈ Rn, the point

x = 0 is stable if the quantity ‖x‖ remains bounded for all future time, if it was initially

bounded. It is asymptotically stable if ‖x‖ → 0 as t→∞ (Def. 4.1, [38]).

The stability test involves finding a function V (x) which has the some desirable prop-

erties (continuously differentiable, V (0) = 0, V (x) 6= 0 ∀x 6= 0) and demonstrating that its

derivative V̇ (x) is always negative (Thm. 4.1, [38]). Such functions are sometimes referred

to as Lyapunov Candidate functions. Usually (and as in the next section) the control input

u should appear in the expression for V̇ (the derivative of V ). If V̇ is not negative, it can

be forced to be negative by applying an appropriate u.

In the case of sliding mode control, u is chosen in such a way that u is only dependent

on one variable s =
∑
kixi. This sliding manifold s is chosen to be stable and the controller

is used to drive the system onto this manifold. The variable s can be controlled by a bang-

bang type of controller, but a continuous controller is desired in most real-life situations to

avoid chattering. A function sat(s/ε)1 can be used with the variable ε chosen for a given

ultimate bound (Thm. 14.1, [38]). Thus, a bound is possible on the maximum deviation

of position error such that it is less than the distance to the next car. This will ensure no

collisions.

The process followed in the next section is to design a single sliding mode controller

that ensures constant spacing for one direction, and then combine two of these for rear and

1sat(x) = x if ‖x‖ < 1 and sgn(x) otherwise
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front separation to mitigate attacks from either direction.

3.4.2 Single Controller Design

The design of a front error controller follows. The next car’s acceleration is not assumed

to be known. This car could very well be an attacker so only the bounds on this quantity

are used to derive the controller. Defining error coordinates in the frame of car i with the

desired separation σref in meters

e1

e2

 =

xi+1 − xi − σref

vi+1 − vi

 (3.17)

where e1 and e2 are the front separation error and relative velocity error respectively. If

σref does not change with time, or changes slowly enough, the following state space model

can be used.

˙e1

e2

 =

 e2

ẍi+1 − ui

 (3.18)

If a sliding manifold is defined as s = k1e1+e2, s = 0 is naturally stable if k1 > 0, which

is to say that so long as e2 = −k1e1, both e1 and e2 go to zero. To show this mathematically,

Vs =
1

2
e2

1 (3.19)

V̇s = e1ė1 = e1e2 = −k1e
2
1 (3.20)

which implies asymptotic stability (Thm. 4.1 [38]). Outside of this manifold, the Lyapunov

Candidate V = 1
2s

2 is used to check if the system reaches the line s = 0, and

V̇ = sṡ

= s(k1e2 + ẍi+1 − ui)

≤ ‖s‖ (k1‖e2‖+ ‖ẍi+1‖)− s(ui)

(3.21)
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Now the attacker’s constraints can be plugged in. With ‖e2‖ ≤ 2vmax and ẍi+1 ≤ amax

2 the controller becomes

ui = sat
(s
ε

)
[2k1vmax + amax + ε] (3.22)

For ‖s‖ > ε > 0,

V̇ ≤ ‖s‖ [k1‖e2‖+ ‖ẍi+1‖]− s(sgn(s) [2k1vmax + amax + ε])

= ‖s‖[k1(‖e2‖ − 2vmax) + (‖ẍi+1‖ − amax)− ε]

≤ −‖s‖ε

(3.23)

Hence choosing ε will give an ultimate bound on the error (Thm. 14.1, [38]). Given a choice

of k1 and the requirement that ‖e1‖ < (σref − l), where l is the length of a car and e2 = 0,

the quantity ε is chosen such that

‖s‖ > ε

k1‖e1‖+ ‖e2‖ > ε

k1(σref − l) > ε

(3.24)

This is a controller with two parameters (k1, ε) that has a range of acceptable values.

The separate controllers for the rear systems can be derived in a similar manner and are

combined in the next section. Combining (3.22) and (3.8) appropriately will give the full

controller. Also, n does not appear in any of these expressions. If the controller is applied

as is (in only one direction), the error bounds will essentially be independent of the number

of vehicles.

3.4.3 Unified Attack Controller

The front and rear controllers are combined in the graph theoretic manner presented

in [32]. Let G = (V,E) be the directed graph representing the interconnectivity of the

2The maximum velocities and accelerations can be easily derived from the given model in the previous
section and saturation levels on the input Fi.
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system. V is the set of nodes (same as the number cars) present in the graph and E the set

of directed edges. An edge (i, j) ∈ E (drawn from j to i in the figures) means that car i can

sense information about car j. If a car can sense information about another car (directed

edge exists), it is said to be its neighbor. A useful way to denote this is the adjacency

matrix.

The adjacency matrix of a directed graph G is denoted Aadj ∈ Rn×n where aii = 0 ,

aij = 0 if there is no edge (i, j) and aij = c where c > 0 represents the weight of the edge

(i, j). For the bidirectional system this becomes:

Aadj =



0 1 0 . . . 0 0

1 0 1 . . . 0 0

0 1 0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 0 1

0 0 0 . . . 1 0


(3.25)

The controllers combined for the front and rear are the sum of the controllers weighted

with the rows of the adjacency matrix,

ui =

n∑
j=1

aijui,j

= ui,r + ui,f

(3.26)

which is simply the linear combination of the two high level controllers from front and back

error systems. The leader’s front controller is based on the reference trajectory.

This structure is shown in Fig. 3.3. If there is consensus in the system, all the cars

1 2 3 4 5

Fig. 3.3: Interaction of a 5-Member Platoon. The Leader also Follows a Reference. The
Arrows Denote Information Flow; an Arrow From 3 to 4 Means 4 Senses some Information
About 3, for Example Relative Distance.
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will try to maintain the same inter-vehicle spacing and the platooning goals will be met.

However if some car is not cooperating, platooning goals might not be met, as in the case of

an attacker. Furthermore, this controller combining can be seen as an external disturbance

which one of the two sliding mode controllers is not meant to deal with. ui,r can be seen

as an external disturbance to ui,f and vice versa. Hence the ultimate boundedness analysis

might not hold.

3.4.4 Adjusting the Graph in Case of an Attacker

Consider the case where an attacker is at position three in a five member platoon. The

attacker cannot be assumed to be looking at any other members (possible worst case) so

row three is zero. The adjacency matrix is then

Aadj =



0 1 0 0 0

1 0 1 0 0

0 0 0 0 0

0 0 1 0 1

0 0 0 1 0


(3.27)

and this scheme is shown in Fig. 3.4. From simulation results, it is possible that cars

around the attacker, while trying to maintain their distance from the other cars, fail to keep

their spacing from the attacker, as the controllers are given equal weight. The proposed

solution to this problem is to use an attack detection method, and change the weights in

the adjacency graph so that the controller in the direction of the attack is prioritized.

Since a car can only change its own rows of Aadj, the detection and adjustment scheme

has to be decentralized and without inter-vehicle communication as well. Attack detection

filters are implemented in the following subsection as discussed in [16]. Such filters, which

1 2 3 4 5

Fig. 3.4: Interaction of a Five Member Platoon with Attacker at Position 3. Note that
Attacker is Assumed to be Indifferent.
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each car is equipped with, have two outputs, one for an attack somewhere in front, the

other for anywhere behind. This is a detection scheme and not an identification method.

But, as will be demonstrated, even this helps greatly with damage mitigation.

A rule for adjusting the weights of the controller is used. This rule, in practice, could

be a continuous mapping of the attack detection output, or perhaps just a decision rule. A

simple scheme for this is outlined as follows (Fig. 3.5): The rear and front attack detection

filters give outputs rr, rf respectively. These values should be zero if there is no attack

and more and more positive if there is one. The threshold εr can be chosen to ignore false

positives due to sensor noise. Additionally, it can also be set to achieve a tolerance level;

cars might have to deviate a certain amount before they are detected as attackers by their

neighbors.

input: (rr, rf ) %results from attack detection
(rear and front)
if ‖rf − rr‖ < εr % epsilon r is some threshold

aadj,i,i−1 ← 0.5 ; aadj,i,i+1 ← 0.5 % look front
and back
else
if rf − rr > 0
aadj,i,i−1 ← 0 ; aadj,i,i+1 ← 1 % only look front
if rf − rr < 0
aadj,i,i−1 ← 1 ; aadj,i,i+1 ← 0 % only look back

Fig. 3.5: Decision Rule for Adjusting Adjacency Matrix. Each Car Adjusts only its own
Row, Based on Local Information.
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If implemented correctly, the system should obtain the structure outlined in Fig. 3.6

and the following adjacency matrix

Aadj =



0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0


(3.28)

In this setting the ultimate boundedness analysis from the previous section should hold, as

there is only one control objective for each car. It should be noted that, say for this case,

car number two moves back to avoid car three and can only at best hope that car one moves

back as well3. Additionally, the error bounds are independent of the number of vehicles if

the controller is in this state.

Thus, this detection scheme switches the bidirectional controller to a unidirectional

one in certain cases, with the direction (rear or front), dependent on the position of the

attacker. The leader follows a different version of this rule because in front of it, there is

a reference trajectory and not another car. A threshold is only applied to the rear attack

detection filter output to decide whether to ignore the reference or not. The last car does

not follow this rule at all since it has only one control objective.

3.4.5 Attack Detection Filter Design

The attack detection filters used here are essentially low pass filters that act on mea-

surement residuals. Low pass filtering is essential because an attack detection filter should

not change its result with the same frequency at which the attacker is oscillating. An-

other convenience is that the measurement residual depends only on the error coordinates

e = [e1 e2]T , which are used for the controller in section 3.4.2. The error coordinates are

3This fact should not be surprising, since even under normal platooning, consensus is required for
operation. For example, no car can arbitrarily assign front and rear desired distances for itself if either of
the other cars does not want that spacing.
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1 2 3 4 5

Fig. 3.6: Interaction of a 5-Member Platoon with Attacker at Position 3 with Adjacency
Adjusted.

then passed through a squaring function with gains l1, l2 and then low pass filtered. The

time and frequency domain representations are given as

r(t) = hlp(t) ∗ e(t)T
l1 0

0 l2

 e(t) (3.29)

where hlp(t) is the impulse response of the low pass filter and for the simulation presented,

this is chosen to be a 2nd order Butterworth filter with cutoff frequency fcutoff. Standard

filter design techniques can be used to choose the parameters when certain characteristics

are desired from the response, such as rise time and damping.

In general, the filter parameters can be chosen to be very high for a quick response, but

there is a trade off between speed and accuracy that is mostly set by the cutoff frequency.

One of the caveats of this type of filter is that it loses detection of an attack as quickly

as it detects it. But it is also important to note that the choice of filter does not play an

essential role in the global picture and that parameters can be chosen with some degree of

freedom in searching for optimal performance.

Because it is known that errors propagate in interconnected platoons [22, 23, 27, 28],

these filters will be able to detect an attack even if the attacking vehicle is far down or

up in the platoon. In other words if the attacker is at position three and car two reacts

accordingly, then it too will deviate from the desired spacing. Car one will sense this

deviation from car two and will then react accordingly and so on. It is emphasized again

that this constitutes an attack detection scheme, not one for identification.

As mentioned before, there are two of these filters, one for the rear error system, and

one for the front. The results of these two rr, rf are compared to figure out the change

in connectivity. Since they work on information already available, they do not require any

extra sensors or communication. The system is still completely decentralized.
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3.5 Simulation and Results

To demonstrate the effectiveness of the proposed approach, a five vehicle platoon is

considered with the attacker at position three. The attacker vehicle follows a square-wave

acceleration pattern, where the attacker applies maximum control effort and then minimum

with a given frequency fatt. The chosen platooning goals stipulate σref = 9 m and vref = 25

ms-1, where each car length l = 4.5 m (one car length of separation between cars). The

parameters in the dynamic model of the cars, controller and detection filter are given in

Table 3.1. In order to increase the attacker power, αatt is chosen to be greater than α. This

is equivalent to having a more powerful engine. Consequently the maximum acceleration

and velocity of the attacker will be equal or higher than the normal vehicles.

Table 3.1: Simulation Parameters

Vehicle Dynamics
Controller Detection Filter

normal attacker

F+
i = 1 F+

i = 1 k1 = 0.1 l1 = 200
β = 0.1 β = 0.1 ε = 0.025 l2 = 600
α = 5 αatt ≥ 5 fcutoff = 0.01 Hz

Simulation results using an attack of a single frequency and attacker power equal to that

of normal vehicles (αatt) are shown in Fig. 3.7 with a sliding mode controller without attack

detection. For the same parameters, a simulation was performed with attack detection and

its results are shown in Fig. 3.8.

3.5.1 Evaluating Attack Efficacy

To calculate the effect of an attack, a damage state to the platoon is assigned along the

lines of (3.1). This damage state starts with a value of zero and all the collisions’ relative

velocities are accumulated as the simulation progresses and cars collide.

A collision line is defined as follows: given an attacking and a defending vehicle along

with some initial conditions, with both applying maximum actuator effort, it is possible to

find the time they collide (tcol) using the solution to xi+1(t) − xi(t) = 0. Then fcol = 1
2tcol
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Fig. 3.7: Sliding Mode Controller Without Detection. Separations, Positions and Damage
Data, Single Attacker at 3.

is a function of relative attacker power and initial conditions.

The value of fcol gives a cutoff frequency for each value of relative attacker power. Below

this frequency (T/2 > tcol, enough time to collide in any case), there will be unavoidable

collisions. Above this frequency, collisions can be avoided if a suitable control scheme is

adopted.

In other words, for Fig. 3.9, Fig. 3.10 and Fig. 3.11, all damage that outside the

green line should be avoidable. The attacker is oscillating too fast to have enough position

deviation to hit the other vehicle that is moving away from it.

3.5.2 Results Comparison

In all of the plots against time presented below, the attacker is of equal power (αatt = α)

as the other vehicles. Total simulation time was 120 seconds.
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Fig. 3.8: Sliding Mode Controller with Detection. With Detection, There are a few Colli-
sions Where the Filters Detect a False Negative and are not Quick Enough to Register the
Attack Again.

From a comparison at a single frequency of attack (Fig. 3.7, Fig. 3.8), it is shown find

that damage is reduced significantly by applying the attack detection approach. Below

are accumulated damage comparisons across a range of frequencies and a range of relative

attacker power (Fig. 3.10, Fig. 3.11). The numbers on the y-axis correspond to the ratio of

attacker power over normal vehicle power. For a reference, the total damage measurement

using a linear bidirectional control law is also presented in Fig. 3.9. The high level controller

for this was

ui = kp(xi+1 − xi − σref) + kp(xi−1 − xi + σref)+

kd(vi+1 − vi) + kd(vi−1 − vi) (3.30)



43

10−2 10−1 100 101
1

1.05

1.1

1.15

1.2

1.25

1.3

fatt (Hz)

α
at
t/
α

10−2

10−1
100

101 1

1.1

1.2

1.3

0

500

1,000

1,500

2,000

fatt (Hz)

αatt/α

D
am

ag
e
A
cc
u
m
u
la
te
d

Fig. 3.9: Linear Controller Without Attack Detection. Total Damage Across Relative
Attacker Power and Frequencies. Collision Line in Green.
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Fig. 3.10: Sliding Mode Controller Without Attack Detection. Outside the Collision line,
There are Still Collisions, Especially when Attacker is as Strong as the Normal Vehicles.
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Fig. 3.11: Sliding Mode Controller with Attack Detection. Outside the Collision line, There
is very Little Damage with Detection.
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with kp = 1 and kd = 3. The attacker breaks the platoon into two sections and for five

vehicles, these gains are string stable [1].

The collision line bounds a region in which whatever controller is designed, there will

be collisions based on the saturation limits of the defending vehicles, with respect to those

of the attacker. Outside of this region, collisions are avoidable. It is observed that with

detection, the number of collisions outside this region can be effectively eliminated, whereas

damage is still seen with normal bidirectional control.

The little damage that occurs in the low frequency region with relative attacker power

of 1 is small. It is surmised that the attack detection filters may at times register false

negatives, where the error goes down enough that the detection filters unregister an attack.

After that, it might take time for the filters to detect the attack again. This drawback

should be negated using a more robust or intelligent filter design. Even if there are false

positives, they should be short lived and the attack detection should correct itself before

any significant damage has taken place, as is the case with the proposed controller.

Across this landscape, it is observed that damage is greatly reduced using attack de-

tection in many cases, most notably low frequency attacks with attacker power equal to

normal vehicle power.

There are also characteristic similarities between the two curves, namely that there is

a frequency above which there is no damage for every possible attacker power level. This

is expected given the attacking vehicle has some constraints from saturation.

One more thing to note is that the leader gives up the reference trajectory when it

detects an attack behind it. This is equivalent to giving up platooning and following the

attacker. Thus control of all the vehicles is given to the attacker, which acts like a new

reference. This undesirable effect might be avoidable in the future by using a less aggressive

adjustment law, where control in one direction is not fully turned off. It might be possible

to start a different platooning protocol after a certain amount of time spent defending this

way, such as to increase separations or to disband the platoon. Further investigation does

seem warranted in this direction.
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3.6 Conclusion and Future Work

In this chapter, a sliding mode control scheme’s effectiveness at stopping collisions in

adversarial platooning environment was examined. Two independent sliding mode con-

trollers, to thwart attacks coming from the front and rear of the vehicle, were devised and

then combined using an adjacency matrix. While some of the assumptions of sliding-mode

control are not met when controllers are combined in this way, with certain detection mea-

sures these deficiencies are negated and the amount of damage taken reduced by switching

the interconnection of the system. The approach was tested on a realistic model of a vehicle

and presented the methodology for developing a controller based on this model. Through

simulation results, it was observed that damage is greatly reduced when the proposed con-

troller and detection method are employed, and that most, if not all, avoidable collisions

are protected against.

The primary goal of this work was to preserve the safety of platoons at the expense of

other platooning goals (e.g. string stability). Consequently, every car follows the actions of

the attacker to ensure that no collisions result from their actions. Future work will consider

how a hybrid approach, which takes both safety and string stability into account, may be

developed. Secondly, a drastic change was not observed between the linear and sliding mode

controllers in the absence of adjusting the adjacency matrix to accommodate the direction

from which the attack originated; i.e. a pure sliding mode control approach for bidirectional

platooning would not provide inherent protection. Finally, the case of multiple attackers

remains to be investigated. An analysis on controllability and consensus will have to be

carried out with more than one attacking car and tests will have to include parameters like

attacker positions, level of collusion and attack observability will have to be included.
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CHAPTER 4

GAME THEORETIC ATTACK

4.1 Introduction

In this chapter, an attack on a string of automated vehicles, or platoons, is considered

from a game-theoretic standpoint. Game theory enables asking the question of optimality in

an adversarial environment; what is the optimal strategy that an attacker can use to disrupt

the operation of automated vehicles, considering that the defenders are also optimally trying

to maintain normal operation. A zero-sum game is formulated and optimal controllers for

different game parameters are found. A platoon is then simulated and its closed loop

stability is then evaluated in the presence of an optimal attack. It is shown that with the

constraint of optimality, the attacker cannot significantly degrade the stability of a vehicle

platoon in nominal cases.

It is a common theme in CPS work that a threat model is proposed and any reactionary

measures such as detection or mitigation are then formulated around the characteristics of

that attack. The game-theoretic approach provides an alternate setting more related to

optimal control that can be used to find an attack that optimizes certain criteria in an

adversarial setting. While optimal control tries to find a minimizing solution to a problem,

game theory similarly involves finding a saddle-point or Nash Solution to a problem, which

is, in a sense, optimal for both the players [49].

Game theory has been used in the field of control systems for some time now. There

are classic problems in game theory such as pursuit-evasion that have been adapted to

modern control problems [33]. The area has also been used in the area of system design and

disturbance rejection [34, 35]. Game theory is also used in communications and designing

data networks [36].

The main contribution of this chapter is that it applies methods from game theory to
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the problem of vehicular platooning and illustrates the behavior of an attacker employing

an optimal strategy (in a game-theoretic sense). The proposition is motivated that in a

realistic setting where the attacker is also a real world actor, it is very hard to achieve

an optimal solution in which the attacker is actually causing catastrophic collisions and/or

destabilization.

This chapter is organized as follows. A brief introduction to certain concepts from game

theory and a quick formulation of the zero-sum case is given in section 4.2. In section 4.3,

a problem formulation specific to the platooning system is presented, with the necessary

assumptions and simplifications elucidated. Section 4.4 and 4.5 provide some numerical

and simulation results. Section 4.6 discusses these results and section 4.7 concludes this

chapter.

4.1.1 Assumptions and Attacker Capabilities

In order to permit a real-world solution, all assumptions are stated prior to problem

formulation. In section 4.3, an infinite-horizon zero-sum differential game is formulated

, which naturally leads to static gains and requires full-state feedback. This can be ac-

complished through inter-vehicle communication. Each vehicle can apply an acceleration

input.

The discussion is limited to one attacker. One of the imposed conditions on the method

used to solve Riccati equations is that the resulting system be stable. This then leads to

the restriction that the attacker can only degrade stability and not cause instability.

4.2 Game Theory Preliminaries

Game theory provides a setting in which two or more players influence their respective

scores by choosing different strategies [50]. Naturally, there are constraints on how different

strategies affect the scores of each player, which are referred to as rules of the game. These

three items–score, strategies and rules–are found in every well-formulated game. There

are other extensions of this idea such as mixed-strategy and stochastic games but for the

purposes of this discussion, the above three ideas are sufficient.
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There is also a distinction between static and dynamic games, which differ in the fol-

lowing sense: if a player is able to react after another player’s decision as the game proceeds,

the game is dynamic, otherwise it is static. Dynamic games have a sense of successive moves

and thus a sense of progression. When extended to continuous-time systems, this naturally

extends to the idea of time.

In most cases of game theory, the approach is centered on the Nash and saddle-point

solutions [50] and the strategies which produce them. These solutions have the property

where one player cannot surely gain anything by deviating from this strategy. Suppose two

players are at a Nash equilibrium and have their respective scores. If one player decides

to chance a move away from this point in order to gain some score, there exists a move

(strategy) for the other player to make the first one lose more than his initial score. Hence

it is in the best interests of the first player to stay at the Nash equilibrium.

Game theory applied to continuous-time control systems results in what are known as

differential games [50]. In this case, the players have access to their specific control inputs

(strategies) and the system dynamics form the constraints to the system (rules). When the

question of control or optimality arises, naturally there is some notion of cost (scores).

Consider the system defined by the following state space description.

ẋ = f(t, x, u) (4.1)

where x ∈ Rrn is the state vector, u ∈ Rp is the input vector. In the state vector, n is

the number of agents, while r is the system order for each agent1. Usually the inputs are

partitioned along respective players. Each player then chooses his or her control input from

a space of allowable control inputs. Limiting the discussion to two players and considering

1This choice of state vector size is one which applies to the real system dealt with in the next section.
It is presented now to avoid providing two conflicting formulations and avoiding confusion in vector sizes.
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the following formulation,

J1 =

∫ T

0
L1(x, u, t)dt+ Φ1(x(T ))

J2 =

∫ T

0
L2(x, u, t)dt+ Φ2(x(T ))

ẋ = f(t, x, u)

(4.2)

where Ji is the total cost of player i, Li is an instantaneous cost and Φi is a terminal cost at

time T . If the vector u is partitioned into two vectors u1 and u2 (not the individual elements

of u) each of which contains the control inputs for each player, the effects of these two inputs

can be dealt with separately, that is they can be weighted in the cost functions separately.

Both players want to minimize their respective costs J1 and J2. In the platooning case, all

the defending cars can be thought of as one player with multiple different control inputs,

and all the attackers can be thought of as the other player2.

One very useful simplification made here is that the game is restricted to be zero sum.

This means that the equality J1 +J2 = 0 always holds. Zero-sum games are a good starting

point in many game-theoretic approaches since they imply that the players are completely

non cooperative. This imposes some important restrictions on the formulation and implies

certain properties of the solution itself. For example, all solutions to non-cooperative zero-

sum games will be saddle points [50].

Another very useful class of games are linear quadratic games. This sort of a formula-

tion is similar to the linear quadratic regulator (LQR) and the construction of its solution

also follows a similar process [51]. The functions Li are replaced with the quadratic forms

2“Teams” might be a better word here, but “player” is used throughout the literature.
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and the system is restricted to be LTI as shown in (4.3).

J1 =
1

2

∫ T

0
xTQ1x+ uT1 R11u1 + uT2 R12u2dt+

1

2
xT (T )STx(T )

J2 =
1

2

∫ T

0
xTQ2x+ uT1 R21u1 + uT2 R22u2dt−

1

2
xT (T )STx(T )

Q1 +Q2 = 0, R11 +R21 = 0, R12 +R22 = 0

ẋ = Ax+B1u1 +B2u2

(4.3)

It is interesting to note at this point that the two cost functions are opposing each

other. This captures the noncooperation and is absolutely necessary, since if both players

have their goals aligned, a saddle point solution will not exist [50]. Also note that the values

of R12 and R21 can be chosen to weight the other player’s control input.

Without going into the details of constructing the solution, which can be found in

[50,51], the optimal control inputs u∗1 and u∗2 are given by

u∗1 = −R−1
11 B

T
1 Px

u∗2 = R−1
22 B

T
2 Px

(4.4)

where P is the solution to the following Ricatti Equation

Ṗ = −PA−ATP −Q1 + P (B1R
−1
11 B

T
1 −B2R

−1
22 B

T
2 )P T (4.5)

One further simplification which applies in this case of platooning is that a terminal

time of infinity (infinite horizon) is used and, consequently, the solution to (4.5) is evaluated

by setting the left hand side to zero.

4.3 Problem Formulation

A platoon of n vehicles is shown in Fig. 4.1. The state vector is
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1 2 3 . . . n

x1, xn+1 x2, xn+2 x3, xn+3 . . . xn, x2n
Vehicle
States:

Cars:

σrefl

Direction of Travel

Fig. 4.1: A Platoon of n Vehicles. Each Car is l Meters Long and the Desired Separation
from Center of one Car to that of the Other is σref. Car n is the Leader.

x =

[
x1 x2 . . . xn xn+1 xn+2 . . . x2n

]T
,

u =

[
u1 u2 . . . un

]T (4.6)

and the complete LTI system is given by

ẋ = Ax+Bu (4.7)

A =

0n×n In×n

0n×n 0n×n

 B =

0n×n

In×n


where car i has position and velocity xi, xn+i respectively and control input ui. These

positions are measured from the center of mass of all the cars. Each car is essentially a

double integrator in this setting. This choice is motivated by [48] where a split level control

architecture is presented so that a higher level controller commands an acceleration and a

lower level controller realizes it. A good portion of literature also assumes acceleration is

commanded directly [26,27].
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In order to have the system track a reference and have the cars maintain a separation,

a state vector z of error coordinates can be used as follows

z1 = x2 − x1 − σref

z2 = x3 − x2 − σref

...

zn = xref − xn

zn+1 = xn+2 − xn+1

zn+2 = xn+3 − xn+2

...

z2n = ẋref − x2n

(4.8)

where xref, ẋref are the position and velocity of a reference trajectory for the leader. Under

this transformation, the A matrix remains the same, but the B matrix becomes

B′ =



0n×n

−1 1 0 . . . 0

0 −1 1 . . . 0

0 0 −1 . . . 0

...
...

...
. . .

...

0 0 0 . . . −1


(4.9)

1 2 3 4 5

Direction of Travel

Fig. 4.2: A Platoon of 5 Vehicles with the Attacker at 3.

Considering the case where there is one attacker at position 3 in a 5 vehicle platoon

(Fig. 4.2), the following parameters for the cost matrices are used for the game formulation.

Q1 = diag[1 1 q3 1 1 2 2 q8 2 2]

R11 = diag[1 1 1 1]

R22 = r2

(4.10)

where q3, q8 and r2 are parameters which will be varied in the next section. In Q1 the
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first half of the parameters weight position error and the second half velocity error. As

mentioned before, the four cars except the attacker will constitute one player (the defender)

and the single attacking car will be the other player.

Since the game is zero sum, it is not needed to define the other three cost matrices

explicitly. Also, since the problem is formulated in error coordinates which the platoon

directly has to minimize, diagonal cost matrices are a good starting point. The defenders

want to minimize their own error states so their entries in the cost matrix are positive. In

turn, the attacker would then want to maximize these error states. The variables q3 and q4

signify how much the attacker is willing to move in order to cause the other cars to move.

When solved with these values set, the result is two gain matrices (for the defenders

and attackers) that use full state feedback for each control input. This was expected because

of the choice of infinite time horizon. But even with these gains, the closed loop stability

of the system can be evaluated by looking at the pole locations and how they change with

varying parameters.

As mentioned before, some form of inter-vehicle communication will probably be re-

quired to realize full state feedback. Local sensing will probably prove to be insufficient.

But readers might be interested in decentralized cooperative localization where individual

agents estimate a full system state based on locally observed data and possibly intermittent

global data. [52, 53] provide some solutions on whether a full state estimator is possible or

not only using local sensing.

4.4 Game Parameters and Stability Margins

In Fig. 4.3, the attacker with half the control cost of the defenders (r22 = 0.5) i.e. the

attacker’s input is half as expensive as that of the other cars. This is equivalent to saying

the attacker can apply double the control input of the regular cars. It is observed that by

choosing just the negative of standard parameters (q3 = −1, q8 = −2), the first pole pair in

the first plot is achieved, which is very well damped. In attempting to move more towards

instability, q8 changes sign before it gets close to the imaginary axis.
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are Close to Being Unstable.

In Fig. 4.4, where q3 is varied, q8 needs to be zero in order to produce any instability

at all. However, when it is set to zero, instability is quickly brought on.

Finally, Fig. 4.5 r22 is varied to make the attacker’s control almost twenty times as

cheap as the defenders’. Only then does instability ensue. Again this is an unrealistic

scenario and it is noted that just buy applying more control input, instability is not easily

achieved.

It is worth mentioning at this point that these parameters are not varied by the attacker.

They are in fact means to set up a situation in which to find the optimal control law. Another

way of saying this is that if these parameters are set and then the attacker tries to cause

oscillations or collisions in the platoon by choosing some unstable gains, it will not be an

optimal saddle-point solution. Hence the attacker will end up losing out in terms of the

game itself.

The purpose of this section was to illustrate that a game would have to be set up
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dramatically different from any usual setup to produce a situation where the attacker would

benefit by causing instability. The following section shows two sets of simulation data which

also highlight one more aspect of the pole locations–their frequency.

4.5 Simulation Results

Though it is assumed that acceleration can be commanded directly, a realistic model

of the cars is still used in this section and the split level architecture proposed by [48] is

employed. The low level controller realizes the acceleration command by compensating for

the effects of drag and air resistance, but saturates whenever the car reaches its maximum

power. This model lends itself naturally to a top speed vmax and a maximum standstill

acceleration amax, which can be adjusted to match those of a real automobile.

The data in table 4.1 is used for the subsequent simulations. There are 5 cars in total

and the attacker is at position 3.
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Table 4.1: Platooning Data used in Simulation.

Parameter Value

σref 9 m
l 4.5 m
ẋref 25 m s−1

vmax 50 m s−1

amax 5 m s−2

Since the overshoot and damping properties needed to be visualized, the cars are started

at their desired separations but with an initial velocity of zero.

In Fig. 4.6, it is observed that the nominal parameters used in the start produce a very

stable solution as expected. The cars speed up from zero and catch up to the reference

trajectory. At the start (since they get an instantaneous command to speed up to 25 m s−1)

the accelerations saturate and reduce as the speed increases. This is an effect of using a

realistic car model.

In Fig. 4.7, it is seen that choosing the parameters as such does produce some oscillatory
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behavior. However, the amplitude is not nearly enough to cause any car to collide into

another. The reason is simply that most physical systems (like automobiles) act as low pass

filters and in order to produce a higher amplitude, a lower frequency is needed.

At this point, the reader is referred back to Figs. 4.3, 4.4 and 4.5 and it is pointed

out that these poles are not at low frequencies. At least in all the cases shown, the poles

do not move towards the area around the origin when varying parameters. This is another

observed property that low-frequency, high-swinging solutions are not optimal in the game

theoretic setups analyzed here.

4.6 Discussion

In this section, some of the key aspects of this game-theoretic framework are highlighted

and also some limitations to the current approach of solving a Riccati equation are discussed.

It should be noted that forming a proper game-theoretic problem requires one or two

conditions to be met. Just as in optimal control, the Rii matrices that weight the player’s

own control inputs have to be positive definite. This means that it can never benefit a player

to apply ever increasing control input. However the Q matrices as they have appeared in

this chapter, can have a mix of nonnegative and negative eigenvalues. This aspect of the

solution makes it interesting to ask the question: when do saddle-point solutions exist. [50]

treats this question and derives some necessary and sufficient conditions, albeit with some

limitations, for having a valid solution.

For the presented system, a single Riccati equation was solved which emerges in the

zero-sum case. If nonzero-sum formulations were allowed, a system of Riccati equations

would need to be solved simultaneously [51]. The computational tools used here were

built primarily for the purposes of standard optimal control and thus only allowed unique

stabilizing solutions to a single Riccati equation. As this equation can normally have more

than one solution, but at maximum only one stabilizing one, it might be worthwhile, in

order to entertain the unstable case, to ask which unstable solution actually corresponds to

the saddle-point or Nash equilibrium point in a game-theoretic formulation [54].

Furthermore, this setup can be generally extended to a higher number of cars and
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multiple attackers (who would still form the same single player). Those results might enable

the sort of attacks that might have been more devastating in the traditional damage sense,

but varying those parameters would add another dimension of complexity to an already

complex system. It is humbly submitted that the results presented here are not entirely

exhaustive and that the conclusions one might like to draw from these results might be

overturned by a case where the attack does cause the desired behavior. However, these

results are similar to those provided by optimal control theory and perhaps some general

statements can be made on the nature of solutions provided by game theory in terms of

system performance such as a guaranteed phase margin.

4.7 Conclusion

In this chapter, a game-theoretic framework was applied to the problem of vehicular

platooning. An infinite time horizon, linear quadratic game was formulated whose saddle-

point solution was found using methods from optimal control. The various solutions to this

problem demonstrated that it is hard to achieve a setting (with the above qualities) that

sees the attacker colliding with other cars or causing large oscillations in traffic flow while

still fairing well in the game itself; it is usually not in the best interest of the attacker to

disrupt regular operation. Further extensions of this work can involve solving the nonzero

sum case and possibly entertaining unstable solutions. The effect of collusion by multiple

attackers can also be considered in future work.
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CHAPTER 5

EXPERIMENTAL VALIDATION

5.1 Introduction

This chapter presents the methodology and results from an experimental validation of

the controllers presented in chapter 3. A brief discussion of the results is also presented.

5.2 Testbed Setup

The entirety of the following experiment was performed at the Robust Intelligent Sens-

ing and Control (RISC) lab at Utah State University using the RISC Multi-Agent Analysis

Platform (MAAP). This testbed uses the Cortex motion capture system integrated with

the Robotics Operating System (ROS) [55].

This effort was greatly expedited by a handful of students who had previously performed

their own experiments here. The integration of the Cortex visual capture system and ROS

was accomplished mainly by Maughan [56]. Further integration and optimization of the

testbed was performed by Mehrok and Manjunath [57, 58]. Erekson assembled the ground

vehicles used in this experiment and used custom reflection marker templates to enable

them to be uniquely identified by Cortex motion capture system [2].

The ground robots role was fulfilled by the Polulu m3pi robot shown in Fig. 5.1. These

cars require a voltage level to apply to the left and right motors which form a differential

drive system. Communications between the robots and the ground station computer were

handled by Xbee Series 1 RF Modules, which was only used to transmit control commands

to the robots. No on-board sensing was needed as the Cortex system supplied all position

and velocity data required. The control algorithm was implemented in ROS using C++

on a single linux machine that served as a ground station. The system level architecture is

shown in Fig. 5.2.
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Fig. 5.1: The Polulu m3pi Robot with Custom Reflector Template [2].

Fig. 5.2: USU’s RISC MAAP System [2].
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5.3 Experiment Parameters

In Table 5.1 are some parameters some of which had to be altered for this test setup.

Two key changes had to be made in order to carry out this experiment in this testbed,

both of which exhibit at most minor effect on the results. Firstly, the platoon had to follow

a circular path as shown in Fig. 5.3 for which a lateral controller was required. This was

required to be independent of the longitudinal controller and, in the end, was designed

using a method similar to the differential flatness controller by Ferrin et al. [59]. Lastly,

the weights of the bidirectional controller had to be modified to slightly favor front control

under normal operation in a ratio of 70/30. This was done to decrease the initial overshoot

of the cars, which would sometimes cause saturation.

Table 5.1: Platooning Data used in Experiment.

Type Parameter Value

Common σref 0.5 m
l 0.15 m
ẋref 0.25 m s−1

rrad 1.0 m

Lateral kr 0.22
kψ 0.35

Attack Car 2
fatt 0.2 Hz
amplitude 0.67 V

Linear Bidirectional kp 3
kd 7

Sliding Mode k 0.5
ε 0.75
vmax 1.5 m s−1

amax 2.0 m s−2

Naturally, the distance and velocity calculations were made along the circular path,

and thus the were calculated from raw motion capture data. The state-space model of one
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Fig. 5.3: Platoon Positions Along a Circular Path.

differential drive robot is as follows
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ṗy

ψ̇

v̇+

v̇−


=



v+ cosψ

v+ sinψ

v−
w

a+v+

a−v−


+



0 0

0 0

0 0

b+ 0

0 b−



V+

V−

 (5.1)

where

px, py are the Cartesian position coordinates,

ψ is the heading measured from the x-axis counter clockwise,

v+ is forward velocity,
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v− is the rotational velocity at the wheels.

V+, V− are the common-mode and differential voltages applied to the motors.

w is the distance between the wheels and

a’s and b’s are some motor constants.

The a+ and b+ variables were characterized for each robot, which turned out to be

roughly -5 and 5 respectively. The differential motor constants were not found and the

lateral controller was tuned so that this part of the system would converge to the path

quickly. The lateral controller was

V− = kr(rrad − r) + kψ(ψdes − ψ) (5.2)

where r are the distance of the car from the origin calculated from px, py and ψdes is a

desired heading based on the local direction of the path.

This allowed the use of the same inversion procedure as used in chapter 3

V+ =
1

b̂+
(u− â+v+) (5.3)

where the “̂” denotes an estimate and u is the input to the second order system (accelera-

tion).

This enabled the decoupling of the lateral and longitudinal parts of the control and

allowed using the second-order acceleration based models used in the literature.

5.4 Results

The plots shown here are made to resemble the ones in preceding chapters, in order to

facilitate comparisons. There are a total of four cars and car 4 is the leader, which follows

a virtual target.
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5.4.1 Linear Bidirectional Base Case

The linear bidirectional case is shown in Fig. 5.4, which does achieve all the platooning

objectives.
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5.4.2 Linear Bidirectional Under Attack

Here, the linear bidirectional case is shown under attack in Fig. 5.5. The attacker is

able to split the platoon. The Lateral controller here keeps the error in r under ±10cm.
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5.4.3 Sliding Mode Control Under Attack

The sliding mode controller in Fig. 5.6 does not incorporate any attack detection. There

are even a few collisions in this case. The lateral controller still works well.
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5.4.4 Sliding Mode Control with Attack Detection

The attack is properly detected and the control is adjusted accordingly for controller
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in Fig. 5.7. As a result, and as expected, there are no collisions and separations are rightly

maintained, even under attack. The blue separation trace is just the distance between the

leader and the virtual target, which means the first car had to leave the virtual target

behind to save itself from a collision.
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CHAPTER 6

CONCLUSION

6.1 Summary of Results

The results of attacker capability from chapter 2 reinforce the assertion that, even in

a fully controllable system, there can be some linear directions in the state space which are

more reachable than others. This is especially true for a system like a platoon of cars where

the usual controllability matrix is full rank but is ill conditioned.

It was proposed that the singular values and the corresponding left eigenvectors would

also exhibit this trend. With the discrete-time equivalent problem, it was possible to express

a necessary and sufficient control input as the minimizer of a convex optimization problem.

Numerically solving this problem using the CVX solver, it was shown that the singular

values do in fact indicate the different directions in which the reachable set extends.

Then using the properties of singular values and the fact that the control input derived

was a minimizing function, the effect of final time on the reachability could be visualized.

It was observed that increasing the final value beyond a point corresponds to a an ever

smaller increase in the reachable set.

Thus it was established that there are some configurations that would be too hard for

an attacker to achieve. As such, if an attack is to be mounted, it might be more devastating

in terms of increasing a functional over time rather than driving the platoon to a final state.

Based on this alternative goal, the new damage metric described by (3.1) was estab-

lished. In fact, it has been shown that the severity of a single collision can be greatly

increased if an attacker injects an oscillatory disturbance [1].

The bidirectional platoon was chosen to serve as the basis for a mitigation strategy [26].

One of the beneficial and salient features of this architecture is that it does not require V2V

or V2I communication; only local sensing is needed. It would be extremely desirable to
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avoid adding a layer of complexity (another attackable system) such as data exchange or

global localization and still be able to provide a robust countermeasure to this sort of an

attack.

The sliding mode controller was chosen for its guarantee of stability and error bound-

edness in the presence of an uncertain but bounded disturbance input. When coupled with

an attack detection scheme, this controller has been shown to achieve these characteristics.

It was shown that in any platooning scenario, a single car does not have full control over

all the states it can observe. Based on this, it can be decided what direction in the state

space is to be stabilized by a vehicle, and what directions can be left for other members

of the platoon. It was decided to prioritize those directions which an attacker would affect

first, that is, if a malicious car is somewhere downstream, emphasize that direction and vice

versa.

The specific detection scheme employed for this work is not the only one that can be

used; as long as it adjusts the adjacency matrix to the one in (3.28), the error boundedness

properties for the sliding mode controller can be actualized completely for half of the state

directions around a car. The other states are left for the other cars to handle. Simula-

tion Results show that this approach successfully mitigates most avoidable collisions and

ameliorates the unavoidable ones.

This controller was tested experimentally using USU’s RISC MAAP system. The

results seem to follow what was expected from simulation. While there were collisions

under normal operation during an attack, the proper adjacency matrix adjustment ensures

that the cars are doing whatever they can to avoid coming together.

Apart from these attacks and controllers, the question of optimality was proposed in a

game-theoretic sense. The problem statement asks if there exists an equilibrium between the

severity of an attack and the defensive control that normal cars apply. A linear-quadratic

game with different parameters was used to formulate a solution which was optimal for both

the attackers and defenders.

Such a game would yield an optimal (saddle-point or Nash) solution which, if any
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player deviated from, would result in that particular member losing out. It was found that

under most game formulations, the attacker does not cause collisions or instability.

6.2 Conclusions

This thesis extends the domain of knowledge regarding autonomous cars before their

imminent arrival on the streets. With an objective and mathematical idea of what a mali-

cious actor can and cannot do, controllers can be designed with these capabilities in mind

that ensure a list of priorities in which passenger safety is at the very top.

Based on the analysis provided, a possible countermeasure is presented which lends

priority to passenger life and avoiding damage rather than the usual platooning goals. It

is hoped that this countermeasure and the game-theoretic approach will serve to make

platoons safer and more secure.

6.3 Future Work

In all of the cases above, there was no mention of string stability which is essential to

understanding platooning. Further work in this area may incorporate how these attacks are

mitigated and how their effect is attenuated up and downstream.

In most of the cases examined in this thesis, only a single attacker is assumed. It would

be interesting to know the effect that multiple attackers can have on platoons of these sorts–

both on the consensus and controllability of the entire system.

The game-theoretic controller could be extended beyond linear quadratic games. Game

theory provides an alternate view on the attack and defend scenario. It would most likely

be beneficial to see exactly what effect increasing the range of possible attacks can have on

platooning. Also, the question whether or not a game exists in which the attacker always

causes damage and wins is worth investigating based on alternate game formulations.

An independent lateral controller was developed which required the heading angle and

minimum distance to the desired path. It might be possible to develop such a controller for

real-world platooning that emulates a path by extrapolating data from the measurements

of cars around itself and still retain the decentralized architecture.
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