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ABSTRACT 

Anaerobic Digestion of Wastewater: Effects of Inoculants and Nutrient  

Management on Biomethane Production and Treatment 

by 

Jason J Peterson, Master of Science 

Utah State University, 2017 

Major Professor: Dr. Ronald C. Sims 

Department: Biological Engineering 

 

Due to population expansion and the increased awareness of the impact on the 

environment by wastewater treatment, improved wastewater treatment systems are 

needed to treat municipal and agricultural wastewater.  Aerobic treatment of wastewater 

decreases organic compounds at the expense of energy to move organic chemicals and 

oxygen to be in contact with each other for treatment.  Anaerobic digestion of wastewater 

can reduce the cost by utilizing methanogens to treat high amounts of organic chemicals 

in wastewater without the need for oxygenation.  Anaerobic digestion also provides 

methane, a renewable energy source.  

Wastewaters with high carbon content have been shown to produce higher 

amounts of methane when balanced with nitrogen.  It has been suggested that microalgae 

be added to increase the nitrogen content to help balance the high carbon to nitrogen ratio 

of the wastewater.  One challenge with the use of algae is the initial degradation of 

microalgae.  Using a digester with algalytic microbes algae can be biodegraded and 

production of methane enhanced.  The augmentation of wastewater by microalgae with 
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algalytic microbes could provide the balance needed for the methanogens to treat 

wastewater and provide methane. 

A biomethane potential test was used to compare the ability of two inocula, 

facultative lagoon sediment and anaerobic digester sludge, to digest algae under 

anaerobic conditions and produce biomethane.  Each inoculant treated, dairy, swine, 

municipal, and petrochemical wastewaters augmented with algae and sodium acetate to 

increase and balance the carbon to nitrogen ratio.  The ability to degrade augmented 

wastewaters and produce methane was determined by measuring the volume and 

composition of biogas produced over time. 

Both treatments were successful in the production of methane.  Facultative lagoon 

sediment showed a higher ratio of methane produced per carbon dioxide than anaerobic 

digester sludge.  Facultative lagoon sediment showed a larger reduction in biological 

oxygen demand, where anaerobic digester sludge showed a larger decrease in volatile 

solids.  Facultative lagoon sediment showed more methane produced per gram of volatile 

solids than anaerobic digester sludge.     

 

 

 

 

 

 

 

(122 pages)  
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PUBLIC ABSTRACT 

Anaerobic Digestion of Wastewater: Effects of Inoculants and Nutrient 

 Management on Biomethane Production and Treatment 

Jason J Peterson 

Due to population expiation and the increased awareness of the impact on the 

environment by wastewater treatment, improved wastewater treatment systems are 

needed to treat municipal and agricultural wastewater.  Treating wastewater with oxygen 

decreases carbon compounds at the expense of energy to move carbon and oxygen to be 

in contact with each other.  Anaerobic digestion of wastewater can reduce the cost by 

utilizing microbes to treat high amounts of carbon in wastewater without the need for 

extensive oxygen requirement.  With a proper balance of nutrients, microbes also produce 

methane, a renewable energy source.  

It has been suggested that microalgae be utilized to help balance the nitrogen 

content of wastewater for treatment by microbes.  One challenge with the use of algae is 

the initial breakdown of algae cells.  Using a digester with microorganism that can 

produce methane and decompose algae could enhance production of methane from the 

digestion of algae.  The combination of wastewater, which is high in carbon content 

relative to nitrogen, with algae, which is high in nitrogen, could provide the balance 

needed for the microbes to treat wastewater and provide methane. 

A biomethane potential test was used to compare the ability of two microbe 

communities, facultative lagoon sediment and anaerobic digester sludge to digest algae.  

Each microbe community treated dairy, swine, municipal, and petrochemical wastewater 
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augmented with algae and acetate.  The ability to degrade augmented wastewater and 

produce methane was determined by measuring the volume and composition of biogas 

produced over time.  Both treatments were successful in production of methane.  

Facultative lagoon sediment showed more methane produced per carbon dioxide than 

anaerobic digester sludge.   
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INTRODUCTION AND OBJECTIVES 

Introduction 

Renewable energy resources are becoming a high priority as alternatives to fossil 

fuels.  Anaerobic digestion can be used to treat wastewater with the added benefit of 

methane production as a bioenergy resource.  Along with wastewater, microalgae can be 

utilized as a substrate for methane production.  However one challenge with the digestion 

of microalgae to methane (also referred to as biomethane) is initial breakdown of 

microalgae cells causing slower digestion (Cho et al., 2013) (Schwede et al., 2013).  

Another challenge with digesting microalgae is the low carbon to nitrogen (C:N) ratio 

resulting in ammonia toxicity (Sievers and Brune, 1978) as well as limiting digestion 

(Yen and Brune, 2007). 

Using a digester with methanogenic and algalytic microorganisms could enhance 

production of methane from the breakdown of microalgae.  Combining carbon rich 

wastewater with microalgae could mitigate ammonia toxicity resulting from digestion of 

microalgae alone.  Inefficient microbial consortium may leave digesters operating at a 

lower than ideal conditions.  Locations containing facultative lagoons, which facilitate 

the growth of microalgae using large ratios of surface area to volume by utilizing sunlight 

as the energy source for cultivation of autotrophs, may have evolved to cohabitate 

methanogenic microbes in lagoon sediments, with the ability with the ability to 

metabolize and digest microalgae over time.  Anaerobic digester sludge may have lost the 

capacity to degrade microalgae due to low pressure on microbes with algalytic activity, 

resulting in algalytic microbes being washed out over time.   

It was hypothesized that facultative lagoon sediment (City of Logan, Utah, 
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facultative lagoons) contains a greater ability to digest wastewater augmented with algae 

compared to anaerobic digester sludge (Central Weber Sewage District).  A comparison 

of lagoon sediment to anaerobic digester sludge would reveal if one microbial community 

can outperform the other when digesting wastewaters augmented with microalgae.  The 

four wastewaters selected were dairy (City of Wellsville, Utah, Caine Dairy), swine (City 

of Milford, Utah, Circle Four Farms), municipal (South Davis Sewer District), and 

industrial (City of Woods Cross, Utah, Refinery).  Performance will be measured based 

on rate of biogas production, total volume of biogas produced, and the resulting 

composition of biogas. 

Objectives 

The objective of this study was to determine if bioaugmentation with two 

inoculants, facultative lagoon sediment (FLS) or anaerobic digested sludge (ADS), 

demonstrated an advantage in anaerobic digestion of four wastewaters for the production 

of biomethane.  The wastewaters evaluated included swine, dairy, municipal, and 

petrochemical.  The advantage was assessed based on two comparisons.  The first 

comparison was to assess the capacity of each inoculant to digest each of the four 

selected wastewaters. The results show if either inoculant is applicable for the different 

wastewaters or if each inoculant is restricted in the type of wastewater it can digest.  The 

second comparison was between inoculants for each wastewater with regard to biogas 

production.  Treatability was determined by observing the production of biogas as well as 

the change in organic chemical concentration of each wastewater.   
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LITERATURE REVIEW 

Anaerobic digestion of waste material is not a new science, though many aspects 

of it remain challenging.  One challenge with treatment is to treat as much of the waste as 

possible while maximizing methane production.  This is a daunting task do to the many 

parameters that contribute to operation of anaerobic digestion.  Such complexity can 

leave digesters functioning at lower than ideal operating conditions (Lagerkvist and 

Morgan-Sagastume, 2012).  Examples of challenges of treatment include fluctuations in 

the organic loading rate (Ward et al., 2008) and fluctuations in the carbon to nitrogen 

ratio (Yenigün and Demirel, 2013).  Some researchers have suggested that mathematical 

models would be the best way to optimize performance of anaerobic digesters (Appels et 

al., 2011).  Models can be used to help design and maximize the performance of digesters 

provided that critical information is available when developing the models. 

A focus for anaerobic digestion has been to balance the C:N ratio of feed source 

to optimize performance (Wang, X. et al., 2014; Sievers and Brune, 1978).  The optimal 

C:N ratio for anaerobic digestion is reported to be between 20:1 and 30:1 mass ratio 

(Ward et al., 2008; Esposito et al., 2012).  Various C:N ratios have been tested using 

mixed paper as a carbon source and microalgae as the primary nitrogen source.  Rates of 

Biogas production have been measured with the different C:N ratios.  The highest yield 

of biogas observed when digesting microalgae and mixed paper was shown to be 

operating at a C:N mass ratio of 22.6:1 (Yen and Brune, 2007) and 21:1 mass ratio using 

algae and acetate (Soboh et al., 2016).  

Biomethane Potential Test 

The biomethane potential test (BMP) is becoming a popular choice for anaerobic 
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digestion studies.  This is attributed to the ease of setup and the ability to control 

treatment parameters resulting in valuable data that can be obtained from a small scale 

bench top digestion (Esposito et al., 2012).  The BMP test is used to test substrate 

degradation under favorable conditions and show the maximum biomethane potential of 

the degraded substrate (Browne et al., 2013).  Operating as a batch system, the BMP 

assay allows for a quick determination of substrate degradation.  The data collected from 

the BMP could then be used to determine if the wastewater should be treated on a 

continuous flow system.  Another benefit to the BMP test is the advantage of treating 

potential toxic wastewaters in a small working volume, reducing risks associated with 

toxic wastewaters in larger working volumes.   

The BMP test may also under estimate the yield of methane generated from 

wastewater. Solids that are slower to degrade could still have the potential to be 

converted to methane in a continual flow digester (Thamsiriroj and Murph, 2011).  The 

methane produced from the slow degrading solids in not accounted for due to early 

termination of BMP caused by low biogas production.  The actual yield of methane 

produced from substrate in a continuous flow digester may be higher than what is 

produced from a BMP test.  Soboh et al., 2016 reported a peak methane percentage of 

82% in the BMP assay and showed greater than 90% methane with the same carbon to 

nitrogen ratio operating at steady state.   

The parameters associated with collecting and measuring the formation of biogas 

from a BMP test can be accomplished in several ways.  These ways range from 

commercial kits that mix contents and monitor the production of biogas, to simple 

syringe methods (Mshandete et al., 2006) used to collect biogas content.  Other ways to 
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measure biogas include: the volumetric displacement of water from a flask (Esposito et 

al., 2012), the use of a manometer system (Saha et al., 2011), and the capture of biogas in 

a gas tight bag (Murto et al., 2004).  Each of these systems have strengths and 

weaknesses.  Commercial equipment can be simple to use, but also expensive, costing as 

much as 27,000 dollars.  Capturing biogas in a syringe is a cost effective way to monitor 

biogas formation, with the added challenge of accounting for the difference of friction 

between syringe and the challenge of determining the pressure of biogas in each syringe.  

All systems can be effective for measuring biogas production, but many are time and 

labor intensive (Wang, B. et al., 2014).   

Both temperature and mixing can change the rate of biogas formation during the 

BMP test.  A temperature range of 22 to 60 degrees Celsius has been applied to anaerobic 

digestion, (Gunaseelan, 1997) depending on the substrate being digested.  Typical 

mesophilic anaerobic digestion operates at a temperature of 35 or 37 degrees Celsius 

(Gunaseelan, 1997).Using lower temperatures for digestion would allow for less energy 

to be used for heating reactor.  Using a temperature of 35 degrees Celsius showed to be 

only 3% better than a digester operating at 30 degrees Celsius, (Chae et al., 2008) 

requiring less energy while achieving good digestion.  High percentages of methane were 

also observed at a digestion temperature of 30 degrees (Soboh et al., 2016) showing that 

high temperatures are not required for high yields of methane during digestion.  Mixing 

samples during digestion allows substrate to move and come in contact with inoculant 

during digestion.  It has been shown that mixing substrate and inoculant does have an 

effect on digestion.  Intense mixing to rapidly move substrate is not necessarily better 

than mixing contents at a gentle speed (Kaparaju, 2008).  
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Anaerobic Digestion of Algae 

The anaerobic digestion of algae provides additional challenges.  Common 

challenges associated with the digestion of algae include: concentrating algae prior to 

digestion, high ammonia toxicity due to the high nitrogen content, and the difficulty of 

breaking apart microalgae leaving it intact as it exits a digester.  To make anaerobic 

digestion of algae feasible with a large scale commercial digester, these issues need to be 

addressed.  

A commonly recognized challenge with the anaerobic digestion of microalgae is 

the overall low concentration of microalgae after harvesting (Ward et al., 2014).  

Centrifugation is a common method to concrete microalgae but it is an energy intensive 

method to do such.  An alternate method would be to use a RABR system (Christenson 

and Sims, 2012) to collect biofilm forming microalgae.  Biofilm forming microalgae 

could provide a way to concentrate the microalgae prior to digestion.  Using a biofilm 

forming microalgae could enhance digester performance due to the high carbon content 

of extracellular matrix composed of polysaccharides, proteins and other cellular 

components (Sutherland, 2001). Using concentrated microalgae would increase the 

volatile solids content for a digester feed improving biomethane yield.   

Another challenge with the anaerobic digestion of algae is the high ammonia 

toxicity the results from the degradation of algae.  As proteins for the microalgae are 

degraded nitrogen starts to accumulate as ammonia causing toxicity to the digester 

(Sialve et al., 2009).  Using microalgae to balance a high carbon wastewater could negate 

the toxicity by maintaining an appropriate carbon to nitrogen balance.  Using microalgae 

as part of a blended wastewater feed could help to keep anaerobic digesters operating at 
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maximum efficiency resulting in higher methane yields.   

Reports of algae not being degraded after digestion (Golueke et al., 1957) have 

lead to the belief that pre-treatment of microalgae prior digestion is needed.  Pre-

treatment is a challenge that is often answered by utilizing high energy and high cost 

solutions.  Pre-treatment techniques include: mechanical, ultrasound, microwave, 

chemical, thermal, and biological treatments (Rodriguez et al., 2015).  Mechanical 

treatments break apart micro algae by grinding or mashing micro algae between two 

surfaces.  Ultrasound treatments use high frequency sound waves to introduce a rapid 

change in pressure to disrupt cells.  Microwave treatment increases the energy around the 

cells leading to generation of heat breaking apart cells.  Thermal treatment disrupts 

hydrogen bonds weakening the cells.  Chemical treatments utilize an acid, base or oxygen 

to degrade polymers allowing the cell to rupture.  Biological methods use bacteria, fungi, 

or enzymatic activity to degrade cells.  Biological methods can be done at lower 

temperatures but have a disadvantage in requiring longer time (10-14 days) to degrade 

microalgae (Rodriguez et al., 2015).   

Wastewaters 

The composition of methane produced from anaerobic digestion of numerous 

wastewaters and combinations thereof have been examined.  Anaerobic digestion of pig 

manure has shown to produce between 68 and 73 percent methane (Fischer et. al, 2002).  

Dairy wastewater has shown to produce between 75 and 80 percent methane in a two-

phase anaerobic digestion system (Ince, 1998).  Municipal wastewater treated in a UASB 

has shown to produce 69 % methane (Barbosa and Sant'Anna, 1989).  Petrochemical 

wastewater has been shown to produce between 70 and 75 percent methane by 
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Ramakrishna and Desai, 1997 where Guyot et. al, 1990 showed lower amounts of 

methane being generated, between 50.2 and 63.1 percent methane. The maximum percent 

of methane generated from thermal pretreatment of algae was shown to be between 70.6 

% and 75.5 percent methane (Marsolek et. al, 2014).  Anaerobically digested algae 

acquired from a municipal pond showed to have a composition between 59 and 61 

percent methane (Salerno et. al, 2009).  Most of these values fall below the commonly 

accepted range of methane composition reaching up to 75 percent methane volume per 

volume.  
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MATERIALS AND METHODS 

A bio-methane potential assay (BMP) was used to monitor biogas production 

during the treatment of wastewaters using the inoculants describe previously.  The 

content of biogas was analyzed weekly to determine composition of biogas being 

produced, including methane and carbon dioxide.  This analysis shows how effective the 

treatment could be for bioenergy production by measuring the amount of carbon in the 

form of methane and the amount of carbon in the form of carbon dioxide.  Treatments 

were carried out for a duration of 60 days or until the system stopped producing biogas.  

Wastewater organic chemical concentrations prior to and after treatment were measured 

to determine treatment effectiveness.  The ability of the inoculants to decrease organic 

chemical concentration of wastewater was based on biological oxygen demand (BOD) 

chemical oxygen demand (COD), total organic carbon (TOC), and volatile solids (VS) 

concentrations. 

It was hypothesized that facultative lagoon sediment would have greater algalytic 

ability due to its constant co-habitation with microalgae, thus the production of biogas 

would be improved over anaerobic digester sludge.  Anaerobic digester sludge is under a 

smaller working volume and is constantly flushed with fresh wastewater.  This constant 

flushing would wash out algalytic microbes if a stable population is not maintained by a 

healthy concentration of microalgae.  Comparing the rate of biogas production, the total 

volume of biogas produced, and the resulting composition of biogas produced would 

reveal if one microbial community can outperform the other.   

Triplicate treatments of each inoculant (FLS and ADS) treating each wastewater 

(dairy, swine, municipal, and petrochemical) were setup.  Triplicate treatments were used 
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to show the average of each parameter measured and the standard deviation for each 

measurement.  To determine if one treatment was statistically significantly better, 

treatments were compared using single and two factor ANOVAs tables. Treatments were 

group based on inoculant and wastewater and a significant difference was determined 

based on a 0.05 alpha level.   

Measuring the volume of biogas formed can be accomplished in several ways.  

The ways to measure biogas include: the volumetric displacement of water in a flask, the 

use of a manometer system, and capture of gas in a bag or syringe.  A manometer system 

is an effective way to measure biogas production because of ease in measuring volume as 

water that is displaced and correlating pressure of the system to barometric pressure.  As 

biogas is produced, the water that is displaced can be measured to determine the total 

volume of the system.  By correlating the pressure of the system at the water level on a 

manometer, calculations can be made to determine the volume of the system at a standard 

pressure.  An example of a simple manometer system is shown in Fig. 3.1.  Treating 

multiple replicates of each wastewater provides a challenge for consistency.  To increase 

consistency in measuring biogas formation, a 36 manometer style system was used to 

measure the formation of biogas by the displacement of water, as shown in Fig. 3.2.  This 

system increased consistency by allowing more samples to be measured simultaneously 

and provided increased precision as water levels were better approximated using a 

reference grid.   

The scaled up system included 36 treatment flasks connected to the top of 36 

glass burette tubes filled with water.  As volume of biogas increased, water was displaced 

out of the bottom of the treatment burette.  The base of all treatment burettes were  



11 

 
Fig. 3.1  Manometer style biogas measuring system with treatment connected to burette 

for biogas measurement and pressure equalizing reference.  

 

 

 

 
Fig. 3.2  Image of 36 burette biogas monitoring system.  Each burette has septum located 

at top to remove biogas produced.  
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connected to a common manifold and storage container for displaced water.  To account 

for pressure of each flask and burette, a reference burette open to the atmosphere was also 

connected to the manifold parallel to the 36 treatment burettes.  Positioning the overflow 

storage container at the same level as the reference burette provided a constant water 

level in the reference burette.  As gas was produced, water was pushed down the 

treatment burette providing a measure of total system volume.  The difference in height 

of water between the treatment burette and the reference burette provided a hydraulic 

head pressure.  Combining the hydraulic pressure and atmospheric pressure together gave 

a total system pressure.  With the calculated volume and pressure, the volume of gas was 

converted to standard pressure (1 atm) and biological standard temperature 25 degrees 

Celsius.   

Volume measurements were taken by comparing the level of water in each 

treatment burette to a reference grid. Barometric pressures were recorded from National 

Weather Service station located at the Logan, Utah municipal airport (National Weather 

Service, 2016).  BMP Measurements were taken every few days while production of gas 

was low, and then taken more frequently at high production times as need to keep volume 

of biogas below the maximum volume of the system.   

Samples during treatment were placed in an insulated box on a shaker table as 

shown in Fig. 3.3.  The shaker table was set at 80 rpm to provide continual mixing of 

samples.  Temperatures of treated wastewaters were maintained at 30 degrees Celsius in 

an incubator using Campbell Scientific data logger as a control unit. Heat for the box was 

provided by the heat generated from the shaker table assisted by an incandescent light 

bulb when needed.  When incubator temperature increased above 30 degrees Celsius, a 
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Fig. 3.3  Image of incubator used to maintain 30° Celsius environment with shaker table 

for mixing of samples during treatment.  A) Cold air intake B) Warm air exhaust C) 

circulation fan to move air within incubator D) 500 ml glass sample bottles filled to 350 

ml on shaker table E) Secondary heating element as shaker table provides some heat for 

the incubator. 
 
  

fan turned on to move cool air into the insulated box and warm air outside of the box.  

Cooling fan and heating light bulb were both controlled by data logger that monitored the 

temperature of the Incubator.  

The chosen inoculants for comparison of anaerobic digestion of wastewaters were  

Facultative Lagoon Sediment (FLS) and Anaerobic Digester Sludge (ADS).  FLS was 

acquired from the City of Logan, Utah Lagoons municipal wastewater treatment plant 

pond C (Fig. 3.4).  Samples were acquired from the bottom of the lagoons using an  
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Fig. 3.4  Location where Facultative Lagoon Sediment(FLS) was acquired from Logan 

City Municipal Wastewater Treatment Facility.  FLS was removed from the bottom of 

pond C. 
 
  

Eckman dredge.  This location was chosen for the growth of mixed cultures of 

microalgae during spring, summer and fall seasons.  This growth provides an 

environment where algalytic microbes could flourish.  ADS was acquired from the 

Central Weber Sewage District anaerobic digester, located in Ogden, Utah.  A total of 

five gallons was acquired from both sources and stored at 4 degrees Celsius.  

Characteristics of each inoculant is shown in Table 3.1  

Four types of wastewater were selected for treatment comparison and for 

bioenergy production.  These wastes were selected due to high volume of wastewater 

produced and the potential for treatment.  The four wastewaters selected were dairy, 

swine, municipal, and industrial.  Dairy wastewater was selected for its high volume of 

wastewater and potential for methane production.  The Utah State University Caine Dairy  
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Table 3.1 

 Starting chemical oxygen demand (COD), total organic carbon (TOC), Biological 

oxygen demand (BOD),  volatile solids (VS), and total nitrogen (TN) of inoculants, algae 

and wastewaters used for conversion to biomethane.   

BMP Component  COD mg/l TOC mg/l BOD mg/l VS mg/l TN mg/l 

Facultative Logan Sediment 48800 8730 247* 26200 1190 

Anaerobic Digester Sludge 25600 4780 1220* 15500 2930 

Microalgae 71300 25000 26400* 43200 6750 

Dairy 6440 1810 484* 4100 93 

Swine 14100 4020 2720* 8610 1650 

Municipal  27700 3560 2580* 1360 1480 

Petrochemical 187 27.9* 36* 377 26 

* Values were determined from analysis done by Chemtech-Ford Laboratories.   
 

 

 

was selected as a source of wastewater comparable to other dairy farms.  Dairy 

wastewater was acquired from a lagoon style treatment pond.  Swine wastewater was 

selected for the same reason as dairy and was acquired from Circle Four Farms, located 

in Southern Utah.  This wastewater was taken from the surface of a lagoon treatment 

pond.  Municipal wastewater was acquired from the South Davis Treatment Plant to 

represent the treatment of municipal wastewater.  Sample was acquired at a location 

believed to be high in organic carbon.  The industrial wastewater selected was 

petrochemical wastewater and was acquired from a local refining industry located in 

Woods Cross, Utah.  This wastewater sample was taken before the wastewater was 

allowed to have a final biological treatment prior to discharge to local wastewater 

treatment plant.  The characteristics of each wastewater are shown in Table 3.1.  These 

wastewaters were selected for evaluation of treatment and resource recovery as methane 

using anaerobic digestion and the added inoculants described above. 

Concentrated microalgae was acquired from algal raceways at the Logan, Utah 
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Facultative Lagoons treatment plant.  These microalgae were initially frozen, but were 

moved to a 4 degrees Celsius refrigerator for storage.  Characteristics of microalgae are 

shown in Table 3.1.  Microalgae cultivated at the Logan Lagoons provided a good 

representation of microalgae that could be used in the feed stream of a large scale 

digester.  Augmenting the wastewater feed stream with microalgae would increase the 

nitrogen content of the wastewater to provide a 25:1 molar carbon to nitrogen ratio 

(Soboh et al., 2016). 

Balancing the nutrients in the feed wastewaters for treatment was accomplished  

by adding microalgae and sodium acetate with the wastewater as shown in Table 3.2.  

Knowing the starting amount of nitrogen in each wastewater, microalgae was added to 

raise the level of total nitrogen to 165 mg.  With the nitrogen level fixed at 165 mg, 

sodium acetate was used to increase the total content of organic carbon to 3500 mg for 

each wastewater.  The final carbon to nitrogen ratio of each wastewater was set to 25:1 

molar ratio for each wastewater feed stream.  Inoculants (FLS and ADS) containing 2000 

mg of volatile solids were added to each nutrient augmented wastewater.  Adding the 

inoculants to the wastewater feed steam changes the final carbon to nitrogen ratios of the  

 

 

Table 3.2   

Nutrient management showing how carbon and nitrogen were adjusted for different 

treatments.   

C:N  25:1 

Molar Ratio 
Wastewater Microalgae Sodium Acetate Total 

Total Organic Carbon Xc mg Yc mg Zc mg 3500 mg 

Total Nitrogen Xn mg Yn mg 0 mg 165 mg 
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 batch digestion, resulting in a molar ratio of 19:1 and 9:1 for FLS and ADS respectively.  

This was done to represent a C:N balanced wastewater feed stream being added to an 

inoculant during digester startup, providing an environment to measure digester startup 

time and initial biogas production rates.  Augmented wastewaters combined with 

inoculants were made with triplicates for each treatment and were brought to a total 

volume of 350 ml using double distilled water as needed.  Treatments were then mixed 

on a stir plate to make a homogeneous mixture.  The pH was adjusted to 7.0 using drops 

of 1.0 N hydrochloric acid and 1.0 N sodium hydroxide as needed.   

To remove oxygen, treatments were made anaerobic by one of two ways prior to 

placing samples in the incubator and monitoring the production of biogas.  The first 

method was the use of the Coy anaerobic chamber for a minimum of 24 hours.  This 

would provide a high nitrogen and oxygen free atmosphere to allow oxygen to be 

removed from samples via passive diffusion.  An oxygen free environment is created as 

hydrogen gas is allowed to combine with free floating oxygen forming water in the 

presence of a palladium catalyst.  As hydrogen gas was consumed to remove oxygen, 

additional hydrogen gas was added to ensure adequate levels of hydrogen present.  The 

second method used to make the samples anaerobic by bubbling nitrogen through the 

wastewater while monitoring the dissolved oxygen.  Nitrogen was bubbled through 

samples until a dissolved oxygen probe showed stabilized readings and no further 

reduction of dissolved oxygen was observed.  Prior to attaching treatment flasks to the 

BMP system, hoses connected to each treatment were flushed with nitrogen.  After 

system flush, the flasks were attached followed by another system flush.  Multiple 

flushing of the system was done as a precaution to remove as much oxygen from the 
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system as possible that may have entered while connecting sample bottles and hoses prior 

to starting treatment. 

The formation of biogas (methane and carbon dioxide) was monitored 

immediately following the attachment of wastewater samples to the BMP system and 

continued throughout the duration of the treatment.  Weekly samples of the biogas were 

taken and analyzed using the Agilent 7890B Gas Chromatography with a thermo 

conductivity detector and a pneumatic sampling valve.  Ultra high purity helium was used 

as a carrier gas set at a constant pressure of 20 PSI.  Contents of samples were separated 

using a HP Gas Pro column.  Temperature of column was maintained at 25 degrees 

Celsius in an isothermal oven.  The Analysis of biogas through gas chromatography 

allowed for separation of nitrogen, methane, and carbon dioxide to determine the 

percentage of each gas. 

The final composition of biogas was determined two ways.  The first method 

involved directly measuring the composition of biogas with gas chromatography as 

outlined above.  Measurements using gas chromatography provided information on the 

composition of biogas on the specific days measured, but did not completely reflect the 

amount of biogas being produced.  As the volume of the BMP system expanded to 

account for the biogas generated, the generated gas mixed with the previous composition 

of biogas.  As the BMP system filled with biogas, there was a need to remove biogas 

from the BMP system to accommodate for generation of more biogas.  With biogas being 

generated, mixed with previous contents, and a portion released, the composition of 

biogas would constantly be changing until it reached steady state.  If the system were to 

reach steady state, gas chromatography would accurately represent the composition of 
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biogas of the system and the composition of the biogas being generated.  This assumption 

did not seem feasible during times of low biogas production.  To compensate, a system of 

linear equations was developed to determine the average composition of biogas being 

generated based on the volume of biogas being produced and the initial and final 

concentrations of biogas.  As the percent of biogas being generated may change between 

gas chromatography measurements, the calculated percent of biogas generated represents 

an average percentage of methane between weekly gas chromatography measurements. 

A standard volume for the formation of biogas was calculated as shown in 

Equation 1, providing the formation of biogas in reference to standard pressure.  The total 

system volume (TSV) accounted for the volume of flask, tubing to connect to burette to 

the flask, and the volume of the burette.  For increased accuracy, burette volumes were 

measured according to the treatment burette water level (TBL) in mm, then multiplied by 

a burette conversion constant (BC) to convert from mm to ml.  Pressure of the system 

included atmospheric pressure (ATM) plus the hydraulic head of water above the 

treatment burette water level.  Hydraulic head is calculated using the difference in height 

between the treatment burette level (TBL) and the reference burette level (RBL) 

multiplied by density of water (rho) and the acceleration of gravity (g).  Combining the 

pressure and volume equations lead to Equation 2.  This equation consists of the standard 

volume of gas at a specific time point.  The difference between two time points provide 

the volume of gas produced in that duration of time.   

 

          𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑉𝑜𝑙𝑢𝑚𝑒 =   
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑆𝑦𝑠𝑡𝑒𝑚 ∗ 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑜𝑓 𝑆𝑦𝑠𝑡𝑒𝑚

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒
            𝐄𝐪𝐧.  𝟏 
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𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑉𝑜𝑙𝑢𝑚𝑒 =   
 𝑇𝐵𝐿 ∗ 𝐵𝐶 + 𝑇𝑆𝑉 ∗  𝐴𝑇𝑀 + 𝑟𝑜 ∗ 𝑔 ∗  𝑇𝐵𝐿 − 𝑅𝐵𝐿  

𝑆𝑇𝐷𝑃
   𝐄𝐪𝐧.  𝟐 

 

As biogas is produced and burettes are filled, there was a need to evacuate the gas 

or reset the system to capture more gas.  Septum's were used to access gas for evacuation 

and sampling.  Just prior to sampling and gas evacuation, measurements were taken for 

the final volume and pressure for that gas production window.  Gases were removed and 

measurements were taken for the initial conditions of the next gas production duration.  

Biogas production was monitored until gas production approached zero or a duration of 

60 days was met. 

The total volume of biogas was monitored over the duration of treatment time 

providing a sigmoidal pattern for the cumulative total biogas produced and a left modal 

pattern for the rate of biogas produced.  Treatments were compared for the maximum rate 

of biogas production, the time that the maximum rate occurred, the average rate of biogas 

production, the duration of average rate of biogas production, and the time required to 

initiate biogas production.  To compare the time required for the system to produce 

biogas, a standardized start time was established.  This start time was accounted for by 

the time at which biogas production passed 10 ml/day, just prior to maximum rate of 

biogas production.  An average rate of biogas production and duration the system 

operated at the average rate was also calculated.  Measurements were calculated by 

determining the slope of the total volume of biogas produced.  Some treatments required 

longer duration to treat wastewaters thereby skewing measurement to have a shallower 

slope.  To standardize the measurement, end points were truncated until a calculated 
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slope had an R
2
 value of 0.99 compared to collected data (Fig. 3.5).  End points were 

systematically truncated, truncating the point furthest from the calculated average slope.  

After the calculated slope matched an R
2
 value of 0.99 compared to collected data, the  

slope of the line was determined to be the average rate as shown in Fig. 3.5.  The duration 

was calculated from the difference in time determined by the time at each end of the 

calculated slope.  The average slope was calculated and used to compare treatments when 

the R
2
 value of 0.99 was calculated and more than two points remained in the average 

slope.   

Hach kits were used to determine the concentrations of total nitrogen (method 

10072), TOC (method 10128), and COD (method 8000) following the manufacturer's 

directions except where noted.  When measuring COD after treatment, due to small  

 

 

 
Fig. 3.5  Technique to find average rate of biogas production by narrowing window of 

points to a specific target value.  This window from lower x to upper x represents the 

duration of the average slope.  
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volumes of waste, treatments were not blended for homogeneity.  Samples were instead 

well mixed via vigorous shaking.  Also due to small sample volumes and limited 

equipment, TOC sample preparation was changed from using 10 ml of sample on a stir 

plate, to 1 ml sample mixed in test tubes on a shaker table for the same duration of time.  

Volatile solids and total solids were measured according to Method 2540 as presented in 

Standard Methods for the Examination of Water and Wastewater (APHA, 2005).  

Determination of BOD in samples were performed by Chemtech-Ford Lab, a certified lab 

located in Sandy, UT. 

 Three controls were used to determine the effects of the inoculant, acetate, and 

algae during each treatment.  The use of distilled water as a control allowed for 

evaluation of the effects of inoculum and its associated organic matter during the 

treatment process.  A control containing dairy wastewater without acetate was used as 

one treatment to assess the effects of acetate on the system, and control using dairy 

wastewater without microalgae was used to assess the effects of algae on the system as 

another treatment.  Table 3.3 shows the contents of each sample and controls.  Another 

control containing algae as the primary substrate for digestion was treated with the three 

primary controls.  The pure algae control had a period of time during maximum biogas 

production where the biogas could not be collected.  Last minute attempts were made to 

collect biogas by increasing the maximum volume of the system.  This attempt resulted in 

biogas leaking and inaccurate measurements taken.  As a result the data collected was not 

included for comparison, but is listed in the appendix for reference and for future study. 
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Table 3.3.   

Content of each sample treated and controls.  Each sample contained wastewater 

augmented with acetate, algae, and inoculant.  Controls were setup the same as the dairy 

sample but lacked one constituent as noted. 

Sample 

Name 
Dairy Swine Municipal Petrochemical 

No 

Acetate 

No 

Algae 
Inoculum 

Wastewater Dairy Swine Municipal Petrochemical Dairy Dairy ----- 

Acetate Yes Yes Yes Yes ----- Yes ----- 

Algae Yes Yes Yes Yes Yes ----- ----- 

Inoculant Yes Yes Yes Yes Yes Yes Yes 

Water Yes Yes Yes Yes Yes Yes Yes 
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BIOGAS PRODUCTION: VOLUMES AND RATES 

Introduction 

The volumes and rates of biogas produced were examined to compare the 

differences between inoculant treatments and individual augmented wastewaters treated, 

which included dairy, swine, municipal and petrochemical wastewaters.  The first 

comparison was made to assess the ability of each inoculant to digest the four augmented 

wastewaters. The second comparison was made to assess total volume of biogas 

produced and the rate of biogas production from each wastewater treated by each 

inoculant.  Comparisons between wastewaters were based on the mean value of each 

triplicate treatment.  Comparisons were also examined by identifying specific differences 

between inoculants with individual wastewaters.  The duration of biomethane potential 

tests was set to a 60 day time scale.  This time duration was chosen because every 

wastewater sample had passed through its maximum biogas production, and many of the 

samples had ceased to produce biogas.   

Wastewater Cross Comparison of Rates and Volumes 

The first comparison was made by examining the average total biogas produced 

from each wastewater with its respective inoculant treatment. All four augmented 

wastewaters were successfully digested using facultative lagoon sediment (FLS) (Fig. 

4.1).  The average volumes produced by FLS were within 107 ml of the overall combined 

treatment mean of 3,060 ml of total biogas.  Anaerobic digester sludge (ADS) was also 

successful in digesting each augmented wastewater as shown in Fig. 4.2.  Anaerobic 

digester sludge showed a greater deviation as the average value of each triplicate had a  
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Fig. 4.1 Cumulative average total volume of biogas produced with Facultative Lagoon 

Sediment (FLS) treatment.  Augmented wastewaters included dairy, swine, 

petrochemical, and municipal.  Each plot is an average of 3 replications.  Horizontal line 

is the average total volume produced by all FLS treatments (3060 ml).  

 

 

 

 
Fig. 4.2  Cumulative average total volume of biogas produced with Anaerobic Digester 

Sludge (ADS) treatment.  Augmented wastewaters included dairy, swine, petrochemical, 

and municipal.  Each plot is an average of 3 replications. Horizontal line is the average 

total volume produced by all ADS treatments (3100 ml). 

 

 

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100 120

T
o

ta
l 

B
io

g
as

 V
o

lu
m

e 
(m

l)

Time Days

Facultative Lagoon Sediment

Dairy
Swine
Municipal
Petrochemical
Avg. Total Volume

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100 120

T
o

ta
l 

B
io

g
as

 V
o

lu
m

e 
(m

l)

Time Days

Anaerobic Digester Sludge

Dairy
Swine
Municipal
Petrochemical
Avg. Total Volume

 



26 

deviation of 195 ml from overall combined treatment mean value of 3,100 ml of total 

biogas.  Both treatments showed the ability to digest augmented wastewaters, but neither 

treatment was significantly greater than the other when each treatment was given a 

sufficient amount of time to digest the waste.  One unusual characteristic observed in Fig. 

4.2 was that treating augmented swine wastewater with anaerobic digester sludge 

produced a curve that lagged more than any other wastewater inoculant combination.  

Using a 60 day constraint for treatment, a significant difference was found between FLS 

and ADS.  On a 60 day time period, FLS produced a mean value of 3,020 ml of biogas 

with a deviation 91 ml where ADS produced 2,900 ml of biogas with a deviation of 270 

ml. Under this time constraints FLS produced more biogas on average than ADS.  With 

such a small difference measured in total biogas production between treatments the 

difference in biogas production may not be apparent in a full scale treatment plant.   

Some similarities were observed between the average rates of biogas produced by 

each wastewater.  Fig. 4.3 and 4.4 shows the rate of biogas being produced for FLS and 

ADS, respectively.  Each Fig. shows the maximum rate of biogas produced, the time of 

peak production, and the time of initial biogas production. 

Initial production was defined by the first time point prior to maximum 

production that a rate of biogas greater than 10 ml/day was measured.  A significant 

difference was observed between times of initial biogas production with FLS showing a 

faster starting time.  FLS showed a mean start time at 12.5 ± 1.3 days and ADS mean 

value of 14.0 ± 4.5 days.   

Two rate measurements with corresponding time measurements were determined.  

Maximum rate of biogas was determined by the peak rate during treatment.  An average  
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Fig. 4.3  Average rate of total biogas produced by augmented wastewaters during 

treatment with FLS.  Augmented wastewaters included dairy, swine, municipal, and 

petrochemical.  Each plot is an average of 3 replicates.  Horizontal line depicts a rate of 

10 ml / day for 20 days as reference for start production.  Point indicates FLS averaged 

peak rate and time.  

 

 

 

 
Fig. 4.4  Average rate of total biogas produced by augmented wastewaters during 

treatment with ADS.  Augmented wastewaters included dairy, swine, municipal, and 

petrochemical.  Each plot is an average of 3 replicates.  Horizontal line depicts a rate of 

10 ml / day for 20 days as reference for start production.  Point indicates ADS averaged 

peak rate and time.  
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rate was calculated as describe with Fig. 3.5.  A significant difference between FLS and 

ADS was found in the maximum rate of biogas production with ADS out performing 

FLS.  FLS showed a mean peak production of 107 ± 11 ml/day where ADS showed a 

mean peak production of 124 ± 15 ml/day respectively.  The average time that peak 

production was measured for FLS and ADS was 25.7 ± 0.9 days and 23.8 ± 4.8 days.  No 

significant difference was found between the times when peak biogas production 

occurred.   

FLS showed a calculated average rate at 84 ± 11.5 ml/day while ADS showed a 

calculated average rate of 96 ± 13.7 ml/day.  ADS showed a significantly higher average 

rate of biogas production.  Where FLS had lower rates of biogas production compared to 

ADS, FLS had a longer time period at which it operated at the calculated average rate.  

This was first observed in Fig. 4.3 as FLS appears to have a broader base and a steeper 

decrease in biogas production compared to ADS in Fig. 4.4.  This observation was 

confirmed when the duration of the average rate was calculated to an R
2
 value of 0.99 

showing that the duration at which FLS operated at the average rate was significantly 

longer.  FLS operated at the average rate for 41.4 ± 6.7 days where ADS only maintained 

an average rate for 28.9 ± 2.7 days. It is hypothesized that FLS is better able to maintain 

steady biogas production under changing concentrations of substrate.  As change in 

substrate was not a focus of this study, future work is needed to address this hypothesis.   

Treatments reached a common low in biogas production at approximately 60 

days, as seen in Fig. 4.3 and 4.4, with one exception.  Augmented swine wastewater 

treated with ADS doesn't reach the same low level of biogas production.  Another 40 

days were required for digestion.  In Fig. 4.3 dairy wastewater also appears to be unique 
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by dropping in rate earlier than the other FLS treated wastewaters.   

Dairy wastewater - Rate and Volume 

Augmented dairy wastewater was treated well with both FLS and ADS.  Fig. 4.5A and 

4.5C show total biogas produced for treatment by FLS and ADS, respectively.  Both FLS 

and ADS treatments showed little difference between total biogas production. The 

average total biogas produced for FLS was 3060 ± 134 ml, and 3150  ± 149 ml for ADS 

with no statistical difference between treatments for total biogas production.  This result 

can be seen in Fig. 4.5E where both treatments by FLS and ADS overlap at the end of 

treatment.   

Triplicate biogas production rate values are shown in Fig. 4.5B and 4.5D for FLS 

and ADS respectively.  Triplicate values of dairy wastewater treated with FLS and ADS 

were uniform in pattern providing a good representation for augmented dairy wastewater 

as shown with the small standard deviation in Fig. 4.5E and 4.5F.  FLS showed a 

significantly smaller time required to reach a biogas production rate of 10 ml/day 

compared to ADS.  FLS reached a production of 10 ml/day at an average time of 12.3 ± 

0.6 days where ADS required an average of 14.1 ± 0.0 days. 

The maximum rate for augmented dairy wastewater was found to be significantly 

better with ADS.  FLS produced biogas at a rate of 122 ± 6.8 ml/day where ADS 

produced biogas faster at a rate of 148 ± 1.6 ml/day.  ADS not only produced biogas 

faster, but also produced it sooner.  The average FLS peak production time was found to 

be at 25.6 ±  0.9 days where the time was 23.5 ± 0.3 days by ADS.  FLS adjusted to the 

augmented dairy wastewater quicker by starting to produce biogas faster, but this head 

start was not enough to reach a maximum rate as fast as ADS. 
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Fig. 4.5 Dairy Wastewater Total volume and rate of biogas produced from Facultative 

Lagoon Sediment (FLS) and Anaerobic Digester Sludge (ADS) as inoculants for 

treatment of augmented dairy waste.  A) Triplicates of total biogas produced using FLS.  

B) Triplicates plots with the rate of biogas produced using FLS. C)  Triplicates of total 

biogas produced using ADS.  D) Triplicates plots with the rate of biogas produced using 

ADS.  E) Average of total biogas produced from triplicate treatments of FLS and ADS.  

F) The average rate of biogas produced from triplicate treatments using FLS and ADS as 

inoculant source.  All error bars represent one standard deviation.     
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The maximum rate of biogas production from dairy wastewater was greatest for 

treatment with ADS.  FLS showed a slower overall average rate of biogas being produced 

at 100.0 ± 5.6 ml/day compared to ADS that produced 17.6 ml/day faster at 117.6 ± 0.8 

ml/day.  Although FLS has a slower overall average rate, it makes up for this by 

maintaining that rate for longer duration of time.  FLS was able to maintain an average 

rate for 33.4 ± 1.0 days where ADS maintained an average rate for 25.9 ± 0.8 days. 

Swine wastewater - Rate and Volume 

Augmented Swine wastewater was unique in a few aspects.  In 60 days, there was 

a significantly greater volume of biogas produced with FLS.  FLS produced a total 

volume of 3000 ± 13 ml of biogas while ADS produced 2550 ± 159 ml of biogas.  The 

volumes of biogas produced by triplicate treatments with FLS were almost identical as 

shown by Fig. 4.6A.  This similarity between triplicates was not seen in augmented swine 

wastewater being treated with ADS.  One replicate started producing biogas faster than 

the other two replicates as shown in Fig. 4.6C.  This difference accounts for the greater 

standard deviation in ADS compared to FLS in Fig. 4.6E.  Though one treatment by ADS 

started faster than the other two treatments, overall FLS was still significantly faster at 

initiating biogas production.  FLS reached a production rate of 10 ml/day at day 14.3 ± 

0.8 days where ADS took 20.8 ± 2.4 days to reach this value. 

The rate of biogas produced with augmented swine wastewater showed a 

stabilization or slight decrease in rate of biogas production starting day 18 for FLS.  This 

short change in rate at day 18 (Fig. 4.6B) was not seen in treatments by ADS (Fig. 4.6F).  

This brief stabilization in rate may be caused by a metabolic change in the methanogenic 

archaea with the FLS treatment. 
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Fig. 4.6 Swine Wastewater Total volume and rate of biogas produced from Facultative 

Lagoon Sediment (FLS) and Anaerobic Digester Sludge (ADS) as inoculants for 

treatment of augmented swine waste.  A) Triplicates of total biogas produced using FLS.  

B) Triplicates plots with the rate of biogas produced using FLS. C)  Triplicates of total 

biogas produced using ADS.  D) Triplicates plots with the rate of biogas produced using 

ADS.  E) Average of total biogas produced from triplicate treatments of FLS and ADS.  

F) The average rate of biogas produced from triplicate treatments using FLS and ADS as 

inoculant source.  All error bars represent one standard deviation.     
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Similar maximum rates observed from FLS and ADS in Fig. 4.6F resulted in no 

significant difference between treatments with the maximum rate of biogas being 

produced.  FLS showed a maximum rate of 105 ± 7.6 ml/day while ADS showed a 

maximum rate of 113 ± 6.6 ml/day.  Also there was not a significant difference found 

between the times of maximum rate or the calculated average rate.  FLS showed 

maximum rate at 32.5 ± 0.3 days and the calculated average rate to be 80.0 ± 4.3 ml/day.  

ADS showed the maximum rate at 30.8 ± 3.2 days and a calculated average rate of 84.6 ± 

4.6 ml/day.  There was a significant difference found in the duration of the average rate.  

Like augmented dairy waste, FLS maintained a longer duration of average rate of biogas 

production of 43.1 ± 6.7 days, while the average rate for ADS lasted 28.3 ± 0.8 days.         

Municipal wastewater - Rate and Volume 

Little deviation was found in total biogas production from municipal wastewater 

within triplicate treatments by FLS and ADS as shown Fig. 4.7A and 4.7C.  The mean 

total biogas produced from FLS augmented wastewater (3014 ± 108 ml) was not 

significantly different from the biogas produced in ADS augmented wastewater (2863 ± 

159 ml) (Fig. 4.7E).  Fig. 4.7B and 4.7D show the rate of biogas production for FLS and 

ADS.  The rate of biogas production was consistently increasing prior to reaching the 

maximum rate when treated with ADS, while FLS treatment showed a short stabilization 

of rate observed at day 15.  This small change in rate as shown in Fig. 4.7B is similar to 

that observed with dairy (Fig. 4.5B) but not as pronounced.  Neither FLS nor ADS 

showed a significant difference in biogas production as measured by a 10 ml/day starting 

rate.  FLS reached 10 ml/day at day 11.7 ± 1.0, while ADS required 11.8 ± 0.0 days, 

almost identical values between FLS and ADS.  The slight difference in rate  
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Fig. 4.7 Municipal Wastewater Total volume and rate of biogas produced from 

Facultative Lagoon Sediment (FLS) and Anaerobic Digester Sludge (ADS) as inoculants 

for treatment of augmented municipal waste.  A) Triplicates of total biogas produced 

using FLS.  B) Triplicates plots with the rate of biogas produced using FLS. C)  

Triplicates of total biogas produced using ADS.  D) Triplicates plots with the rate of 

biogas produced using ADS.  E) Average of total biogas produced from triplicate 

treatments of FLS and ADS.  F) The average rate of biogas produced from triplicate 

treatments using FLS and ADS as inoculant source.  All error bars represent one standard 

deviation.     
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of biogas observed in one replicate with FLS may be accounted for by a loose fitting on 

the biogas collection apparatus.  Fittings to collect and store biogas were re-tightened at 

day 19, resulting in triplicates rates aligning closer together.  This possible leak in the 

system may account for the slightly slower starting time observed with one of the FLS 

triplicates. 

A significant difference was found with the maximum rate of biogas production 

measured at 107 ± 3.5 ml/day for FLS and 116 ± 2.2 ml/day for ADS.  This difference in  

maximum rate can be seen in Fig. 4.7F as FLS showed a lower maximum value than 

ADS.  The time for FLS to reach the maximum rate took significantly longer than the 

time for ADS to reach the maximum rate.  FLS reaching a maximum rate on day 23.8 ± 

1.2 compared to ADS that reached a maximum rate 2.6 days sooner on day 21.8 ± 0.0.  

The maximum rate of biogas produced with municipal wastewater was larger and quicker 

when treated with ADS.  FLS showed an average rate of 84.6 ± 2.6 ml/day where ADS 

showed a significantly greater average rate of biogas production at 90.9 ± 1.6 ml/day.  As 

seen with other wastewaters, augmented municipal wastewater treated with FLS 

maintained the average rate for a duration of time significantly longer than wastewaters 

treated with ADS.  FLS maintained an average rate 10.1 days longer than ADS.  FLS 

maintained an average rate for 39.0 ± 2.6 days while ADS was able to maintain the 

average rate for 28.9 ± 0.5 days. 

Petrochemical wastewater - Rate and Volume 

Augmented petrochemical wastewater showed some unique results.  Fig. 4.8A 

and 4.8C show a plot of total biogas produced for FLS and ADS.  It was observed that 

there was little deviation in triplicates as shown in Fig. 4.8A.  Analysis of the total  
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Fig. 4.8 Petrochemical Wastewater Total volume and rate of biogas produced from 

Facultative Lagoon Sediment (FLS) and Anaerobic Digester Sludge (ADS) as inoculants 

for treatment of augmented petrochemical waste.  A) Triplicates of total biogas produced 

using FLS.  B) Triplicates plots with the rate of biogas produced using FLS. C)  

Triplicates of total biogas produced using ADS.  D) Triplicates plots with the rate of 

biogas produced using ADS.  E) Average of total biogas produced from triplicate 

treatments of FLS and ADS.  F) The average rate of biogas produced from triplicate 

treatments using FLS and ADS as inoculant source.  All error bars represent one standard 

deviation.     
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biogas production showed no significant difference between the treatments.  This 

similarity is observed in Fig. 4.8E.  The total biogas produced by both treatments was 

closer than any other augmented wastewater with only a difference of 12 ml in 60 days of 

measurements.  FLS produced 3000 ± 109 ml of biogas in 60 days where ADS produced 

3012 ± 206 ml.   

Augmented petrochemical wastewater was different than any other augmented 

wastewater by being the only wastewater treated with ADS having a significant 

difference in start time as measured by a rate of 10 ml/day.  FLS was two days slower at 

reaching 10 ml/day starting on day 11.5 ± 0.0 where ADS started on day 9.5 ± 0.0.   

A difference in treatments was observed with the rate of biogas produced from 

augmented petrochemical waste.  FLS treating augmented dairy wastewater and 

municipal wastewater each had a time where the rate was constant for a brief time (Fig. 

4.6B and 4.7B).  Similar to dairy and municipal wastewaters, petrochemical wastewater 

did not continue to increase in rate of biogas production until a maximum rate was 

achieved.  Petrochemical wastewater was different in that biogas production started to 

decrease for a time and then increase to a maximum value or near maximum value.  This 

decrease in rate was hypothesized to be a metabolic shift and acclimation.  The change in 

rate observed with augmented petrochemical wastewater being treated with FLS was 

different in that it was the only wastewater to have a steep decrease in rate of biogas 

production followed by a steep increase in production as observed in Fig. 4.8B.  This 

decrease is believed to be caused by a metabolic shift.  Like all of the other wastewaters 

compared, ADS showed a greater maximum rate on average being 25.4 ml/day faster.  

FLS reached a maximum rate of 94.4 ± 3.0 ml/day while ADS reached a rate of 119.8 ± 
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6.1 ml/day.   

The decrease in rate observed with FLS affected the time that the maximum rate 

occurred.  Two of the triplicates treated with FLS reached a maximum rate at day 16, and 

the third triplicate reached a maximum rate at day 32.  This difference resulted in FLS 

having an average maximum rate on day 21.0 ± 9.6 where ADS was earlier on day 19.8 ± 

2.3.  With such a large standard deviation found in the rate of biogas production by FLS, 

the decision was made to calculate times based on maximum rate prior to the temporary 

drop in biogas production, and after the drop in biogas production. FLS had a maximum 

rate on day  15.3 ± 0.3 when the maximum rate of biogas occurred prior to the temporary 

drop in biogas production. After the drop in biogas production, the maximum rate of 

biogas production was observed on day 28.1 ± 4.3.  Both times before and after the 

temporary decrease in biogas production was significantly different than the times 

measured with ADS.  It is unclear if FLS or ADS has an earlier maximum rate start time 

due to the inconsistency caused by the temporary decrease in rate of biogas. 

The calculated overall average rate of biogas production with augmented 

petrochemical wastewater was significantly greater in treatments with ADS.  FLS 

inoculated wastewater showed an overall average rate of 71.1 ± 2.7 ml/day where ADS 

had an overall average rate of 90.9 ± 5.0 ml/day.  

While ADS demonstrated a faster rate of biogas production, FLS is able to 

maintain its average rate over a longer period of time.  FLS maintained an average rate of 

biogas production over 50.0 ± 2.0 days while ADS was only able to maintain this rate for 

32.4 ± 2.3 days.  FLS augmented petrochemical wastewater maintained the overall 

average rate longer than any other wastewater being treated with FLS or ADS.  This is 
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seen when the plot of total gas produced with FLS treatment has longer duration in the 

linear region (Fig. 4.8A) than the typical sigmoidal curve observed with the other 

treatments.  The extended duration is also observed in Fig. 4.8F, with FLS maintaining a 

greater rate of biogas production for a longer period of time than ADS.   

Conclusion 

FLS showed a quicker start time in biogas production, as well as biogas 

production for a greater amount of time in all wastewaters. ADS performed better with a 

higher maximum rate of biogas production and an overall higher average rate.  Both 

inoculants performed equally well in producing the same amount of biogas when given a 

sufficient amount of time.  FLS performed better than ADS treatment with regard to 

seven wastewater parameters for individual wastewaters where ADS performed better 

with respect to nine wastewater parameters.  The significant differences in individual 

augmented wastewaters as well as a combined effect can be seen in Fig. 4.9.   
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YIELD AND COMPOSITION OF BIOGAS WITH 

CHANGE IN ORGANIC LOADING 

Introduction 

The yield and composition of biogas were monitored throughout treatment of 

augmented wastewaters to determine bioenergy (methane) production and treatability.  

Composition of biogas was measured by gas chromatography and the results were used to 

calculate average rate of methane being generated as well as percent of methane, carbon 

dioxide, and nitrogen in the biogas.  The amount of methane and carbon dioxide accounts 

for the total carbon in the biogas. Total carbon in the wastewater was accounted for 

directly and indirectly through volatile solids (VS), biological oxygen demand (BOD), 

total organic carbon (TOC) and the chemical oxygen demand (COD) prior to treatment 

and post treatment.  The change of organic chemicals in the wastewater resulting from 

treatment and the amount of methane produced per change in organic carbon provide 

twelve parameters for treatment comparison.  Each parameter addressed the treatability of 

each wastewater by facultative lagoon sediment (FLS) and anaerobic digester sludge 

(ADS). Treatability was also assessed by grouping all augmented wastewaters by 

treatment and determining if a significant difference exists between combined wastewater 

treatments groups. 

 Compositions and Yield 

The composition of biogas in each BMP treatment was measured weekly using 

gas chromatography.  Fig. 5.1 shows a bar graph of the maximum percentage of methane 

observed from each wastewater by each treatment.  Each wastewater reached a maximum 
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percentage of methane in the range of 82 to 86% methane.  Augmented dairy wastewater 

was the only wastewater to show a significant difference in maximum percentage of 

methane measured.  FLS produced 84.4 ± 0.8% methane, where ADS produced a 

maximum value of 82.6 ± 0.4% methane.  A significant difference was also found in the 

combined wastewater group where FLS produced a higher maximum percentage of 

methane.  FLS had a mean value of 85.2 ± 0.8% methane where ADS had a maximum 

value of 84.2 ± 1.3%.  Municipal wastewater showed the highest methane composition at 

85.96% methane with FLS.  

A bar graph was created to compare the highest average percent of methane 

generated (Fig. 5.2).  Augmented municipal wastewater was the only wastewater to show 

a significant difference between treatments.  FLS showed a maximum percent of methane 

being generated at 89.2 ± 0.4%, where ADS showed 86.9 ± 0.1% methane.  All other 

treated wastewaters had a higher maximum percentage of methane being produced with 

FLS, though none were statistically greater than the percentage of methane generated by 

treatment with ADS.  FLS had a significantly higher percentage of methane being 

produced regardless of the type of wastewater treated.  The combined treatment group 

showed FLS treatment producing a maximum percent of methane being generated at 87.3 

± 1.7% where ADS showed a lower percentage at 85.8 ± 1.5%. 

No significant difference was found in the mass of methane produced from each 

treatment.  This is observed when comparing wastewater treatments in Fig. 5.3.  FLS 

treatment produced more methane with municipal and petrochemical wastewaters where 

ADS produced more methane with dairy and swine wastewaters.  While FLS and ADS 

had instances where each produced more methane than the other, no significant  
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Fig. 5.1 Average maximum composition of biogas measured from triplicate treatments of 

four augmented wastewaters.  Facultative lagoon sediment (FLS) is shown in blue and 

anaerobic digester sludge (ADS) is shown in red.  Error bars show one standard deviation 

and asterisks around wastewater (e.g., *Dairy*) indicate a significant difference between 

treatments was measured. 
 

 

 

 
Fig. 5.2 Average values for maximum percent of methane generated from triplicate 

treatments of four augmented wastewaters.  Facultative lagoon sediment (FLS) is shown 

in blue and anaerobic digester sludge (ADS) is shown in red.  Error bars show one 

standard deviation and asterisks around wastewater (e.g., *Municipal*) indicate a 

significant difference between treatments was measured.   
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difference was found in the amount of methane produced by either treatment. 

 The ratio of methane to carbon dioxide (Volume:Volume) was significantly 

higher for FLS in every treatment observed.  Fig. 5.4 shows a comparison of each 

wastewater treatment and treatment as a combined group.  FLS treating augmented dairy 

wastewater produced 0.92 ml more methane per ml carbon dioxide than ADS.  FLS 

produced a ratio of 7.38 ± 0.1 methane to carbon dioxide when dairy wastewater was 

treated, where ADS produced a ratio of 6.47 ± 0.2.  Augmented swine wastewater 

showed the largest methane to carbon dioxide ratio of the treated wastewaters.  FLS 

produced a ratio of 10.65 ± 0.1 methane to carbon dioxide where ADS produced a ratio 

of 9.52 ± 0.3.  FLS was able to produce 1.13 more methane per carbon dioxide than ADS.  

Augmented municipal wastewater showed a methane to carbon dioxide ratio in between 

dairy and swine wastewaters.  FLS showed a ratio of 9.75 ± 0.3 where ADS produced a 

ratio of 7.65 ± 0.2.  Augmented municipal wastewater showed the biggest difference 

between treatments with FLS producing 2.1 more methane per carbon dioxide compared 

to ADS.  The methane to carbon dioxide ratio with augmented petrochemical wastewater 

showed that FLS out performed ADS by 1.43 moles of methane per mole of carbon 

dioxide.  This is the second highest difference measured having a greater difference than 

found with dairy and swine wastewaters.  Augmented petrochemical wastewater treated 

with FLS produced a ratio of 8.82 ± 0.3 where ADS produced a ratio of 7.39 ± 0.4 

methane to carbon dioxide.  Petrochemical wastewater showed a higher methane to 

carbon dioxide ratio than dairy wastewater, but showed a lower ratio than swine and 

municipal wastewaters.  FLS showed a significantly greater amount of methane produced 

per carbon dioxide in each individual wastewater compared to ADS.  FLS as a combined  
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Fig. 5.3 Average values for total methane (mg) produced from triplicate treatments of 

four augmented wastewaters.  Facultative lagoon sediment (FLS) is shown in blue and 

anaerobic digester sludge (ADS) is shown in red.  Error bars show one standard deviation 

no significant differences between treatments were measured for any of the augmented 

wastewaters. 

 
 

 

 
Fig. 5.4  Average values for  methane to carbon dioxide ratio (ml:ml) from triplicate 

treatments of four augmented wastewaters.  Facultative lagoon sediment (FLS) is shown 

in blue and anaerobic digester sludge (ADS) is shown in red.  Error bars show one 

standard deviation and asterisks around wastewater (e.g., *Dairy*) indicate a significant 

difference between treatments was measured 
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group produced 1.39 more molecules of methane per molecule of carbon dioxide than  

ADS produced.  FLS produced an average ratio of 9.15 ± 1.3 where ADS produced 7.76 

± 1.2 methane to carbon dioxide.   

Decreases in Organic Content Measured as VS, BOD, TOC, and COD.   

Fig. 5.5 shows a bar graph with a comparison of the change of VS observed with 

each wastewater and as a combined group.  ADS showed a significantly greater reduction 

in VS with every wastewater treated than FLS.  Augmented dairy wastewater treated with 

FLS showed a decrease in VS of 5.27 ± 0.09 g where ADS showed a decrease in VS by 

6.93 ± 0.09 g, a difference of 1.66 g.  Augmented swine wastewater showed a greater 

decrease in VS than dairy wastewater.  Augmented swine wastewater showed a decrease 

in  VS by 5.95  ± 0.10 g for treatment by FLS, where ADS showed a decrease of VS by 

7.48  ± 0.04 a difference of 1.53 g.  The smallest difference shown between FLS and 

ADS as measured by VS was observed with municipal wastewater.  FLS showed a 

decreased in VS by 6.19  ± 0.29 g where ADS showed a decrease of 6.98  ± 0.05 g,  a 

difference of 0.79 g.  Petrochemical wastewater showed the biggest difference in FLS 

and ADS as measured with the change of VS at 1.97 g.  FLS showed a decrease in VS by 

4.92 ± 0.07 g where a decrease of 6.89 ± 0.05 g was observed with ADS.  FLS as a 

combined wastewater group showed a decrease in VS by 5.58 g ± 0.55 where ADS 

showed a greater decrease in VS by 7.07 g ± 0.25.   

Where ADS showed a significant change in VS across all treatments, the opposite 

was found with the change in BOD, with FLS showing a significantly greater change in 

BOD across all treatments (Fig. 5.6).  FLS was 0.16 g better at decreasing BOD than 

ADS when treating augmented dairy wastewater.  FLS demonstrated an average  
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Fig. 5.5  Average change in volatile solids from triplicate treatments of four augmented 

wastewaters.  Facultative lagoon sediment (FLS) is shown in blue and anaerobic digester 

sludge (ADS) is shown in red.  Error bars show one standard deviation and asterisks 

around wastewater (e.g., *Dairy*) indicate a significant difference between treatments 

was measured. 
 

 

 

 
Fig. 5.6  Average change in biological oxygen demand from triplicate treatments of four 

augmented wastewaters.  Facultative lagoon sediment (FLS) is shown in blue and 

anaerobic digester sludge (ADS) is shown in red.  Error bars show one standard deviation 

and asterisks around wastewater (e.g., *Dairy*) indicate a significant difference between 

treatments was measured. 
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decrease of 6.96 g where ADS showed a change of 6.80 g.  Augmented swine  

wastewater showed the biggest change in BOD.  FLS showed a decrease in BOD by 7.67 

g where a decreased of 7.36 g was observed with ADS.  Municipal wastewater showed 

the biggest difference in the change of BOD between treatments.  FLS showed a decrease 

in  BOD by 7.66 g where a decrease of 4.91 ± 0.01 g was observed with ADS, a 

difference of 2.75 g.  ADS treating municipal wastewater showed the smallest change in 

BOD compared to all other treatments.  Petrochemical wastewater showed a decrease in 

BOD by 6.24 g ± 0.01, the smaller change observed with FLS.  ADS showed a decrease 

in BOD with petrochemical wastewater of 5.41 ± 0.01 g.  The combined group showed 

the biggest decrease in  BOD by FLS with a change of 7.13 ± 0.62 g where ADS showed 

a decrease in BOD by 6.12 ± 1.04 g. 

Half of the wastewaters treated with FLS showed a significant difference in the 

amount of TOC reduced, while the other half showed little difference between treatments 

(Fig. 5.7).  Augmented dairy wastewater showed a significant difference in the amount of 

TOC reduced.  The difference between FLS and ADS was observed to be small at 0.05 g.  

FLS treatment reduced the TOC of dairy wastewater 3.47 ± 0.01 g where ADS showed a 

decrease in TOC by 3.42 ± 0.03 g.  The difference observed between FLS and ADS 

treating augmented dairy wastewater was small but still statistically significant.  

Augmented swine wastewater had almost identical values in the change of TOC with 3.6 

g.  Augmented municipal wastewater was significantly different showing the biggest 

difference in TOC between treatments.  FLS showed decrease in TOC by 3.60 ± 0.03 g 

where a decrease of 3.05 ± 0.05 g was observed by ADS, a difference of 0.55 g.  

Augmented petrochemical wastewater showed identical treatments reducing TOC 3.07 g.  
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FLS was significantly better in treating all augmented wastewaters as a combined group.  

FLS treatment as a combined group showed a decrease in TOC by 3.43 ± 0.23 g.  ADS 

showed a decrease in TOC by 3.28  ± 0.24 g.  Municipal wastewater showed the biggest 

difference in treatments as shown with the bar graph in Fig. 5.7. 

The change in COD fluctuated more from wastewater to wastewater than any 

other organic parameter measured as shown in Fig. 5.8.  ADS showed a decrease in the 

COD with dairy wastewater being 0.94 g more than FLS, but this difference was a not 

significant having an alpha value of 0.06.  The total change in COD was greater with 

swine wastewater being treated with ADS compared to FLS.  The difference between 

FLS and ADS treatments as measured by COD was smaller than dairy, with only a 

difference of 0.24 g.  Municipal wastewater was the only wastewater to show a 

significant difference between treatments as measured by the change in COD.  Municipal 

wastewater was the only wastewater that FLS showed a greater decrease in COD 

compared to ADS.  Municipal wastewater treated with FLS showed a changed of 8.86 ± 

0.21 g of COD where ADS showed a change of 7.30 ± 0.36 g.  Treatment of municipal 

wastewater with FLS showed the greatest difference between treatments having a 

difference of 1.56 g.  Petrochemical wastewater was similar to dairy and swine 

wastewaters showing a bigger decrease in COD with ADS, but the difference between 

treatments was not statistically significant.  FLS and ADS showed similar changes in the 

decrease of COD as observed with the combined treatment group.  Both groups showed a 

change of about 7.86 g.  The effects of the combined wastewaters showed no significant 

difference in treatments by FLS or ADS. 
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Fig. 5.7  Average change in total organic carbon from triplicate treatments of four 

augmented wastewaters.  Facultative lagoon sediment (FLS) is shown in blue and 

anaerobic digester sludge (ADS) is shown in red.  Error bars show one standard deviation 

and asterisks around wastewater (e.g., *Dairy*) indicate a significant difference between 

treatments was measured. 
 

 

 

 
Fig. 5.8  Average change in chemical oxygen demand from triplicate treatments of four 

augmented wastewaters.  Facultative lagoon sediment (FLS) is shown in blue and 

anaerobic digester sludge (ADS) is shown in red.  Error bars show one standard deviation 

and asterisks around wastewater (e.g., *Municipal*) indicate a significant difference 

between treatments was measured. 
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Methane Produced from the Decrease in Organic Content Measured as VS, BOD, TOC, 

and COD   

There is greater amount of methane produced per gram of volatile solid (CH4/VS) 

observed with FLS than ADS for all wastewaters tested (Fig. 5.9).  While ADS showed a 

better capacity to reduce the amount of VS (Fig. 5.5), FLS displayed a better conversion 

of VS to methane.  Augmented dairy wastewater produced 308 ± 12.7 mg/g CH4/VS 

when treated with FLS. ADS showed production of methane at 240 ± 21.0 mg/g CH4/VS, 

a difference of 68 mg/g. When augmented swine wastewater was treated, a difference of 

52 mg/g of CH4/VS was observed between treatments.  FLS showed the ability to 

produce 272 ± 4.12 mg/g, where ADS showed a production of 220 ± 5.5 mg/g.  

Municipal wastewater had the smallest difference between FLS and ADS treatment.  FLS 

produced 271 ± 17.2 mg/g CH4/VS, being 45 mg/g more than ADS at 226 ± 8.4 mg/g.  

Petrochemical wastewater showed the biggest difference of CH4/VS between treatments.  

FLS produced 327 ± 19.9 mg/g where ADS produced 230 ± 17.5 mg/g being 97 mg/g 

less than FLS.  Looking at combined treatment groups, FLS showed a greater amount of 

CH4/VS with 295 ± 28.1 mg/g where ADS showed less at 229 ± 14.5 mg/g.  It is 

interesting to note how similar the CH4/VS is with each wastewater treated with ADS as 

seen in Fig. 5.9.  Where ADS showed very similar values for CH4/VS, FLS shows a 

bigger variation of CH4/VS over all treatments.       

Where every wastewater group showed a significant difference between 

treatments as measured by the change in BOD (Fig. 5.6), only one wastewater showed a 

statistically significant difference with the amount of methane produced per gram of 

BOD (CH4/BOD) (Fig. 5.10).  Augmented municipal wastewater treated with FLS  
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Fig. 5.9  Methane produced per gram of volatile solid for four wastewaters. Averages of 

triplicate augmented wastewater treatments shown.  Facultative lagoon sediment (FLS) is 

shown in blue and anaerobic digester sludge (ADS) is shown in red.  Error bars show one 

standard deviation and asterisks around wastewater (e.g., *Dairy*) indicate a significant 

difference between treatments was measured. 
 

 

 

 
Fig. 5.10  Methane produced per gram of biological oxygen demand for four 

wastewaters. Averages of triplicate augmented wastewater treatments shown.  Facultative 

lagoon sediment (FLS) is shown in blue and anaerobic digester sludge (ADS) is shown in 

red.  Error bars show one standard deviation and asterisks around wastewater (e.g., 

*Dairy*) indicate a significant difference between treatments was measured. 
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produced 219 ± 5.0 mg/g, 102 mg/g less CH4/BOD than ADS.  ADS showed 321 ± 14.0 

mg/g CH4/BOD, the most of any treatment.  A significant difference was also observed 

with the amount of CH4/BOD when treatment groups were combined.  FLS produced 230 

± 20.4 mg/g where ADS was able to produce 271 ± 42.9 mg/g CH4/BOD.  While every 

group in Fig. 5.10 shows a greater production of CH4/BOD with ADS over FLS, only 

municipal wastewater was statistically significantly different.   

The amount of methane produced per total organic carbon (CH4/TOC) was 

similar to CH4/BOD in that some wastewaters that were significant with the change in 

TOC were not found to be significant with the amount of methane produced per TOC 

(Fig. 5.11).  Dairy wastewater showed a significant difference between the total amount 

of TOC removed between FLS and ADS treatments (Fig. 3.7).  When comparing the 

amount of methane produced based on the change in TOC, dairy wastewater was no 

longer significantly different (Fig. 5.11). Neither was a significant difference found 

between FLS and ADS when treatments were grouping by inoculants, not by a specific 

wastewater.  The only wastewater to show significantly more methane per TOC was 

municipal wastewater.  Treatment with FLS produced 465 ± 4.2 mg/g where ADS 

showed a production of 517 ± 21.9 mg/g.  Fig. 5.11 shows that all wastewaters 

demonstrated an insignificant difference in the amount of methane produced per TOC, 

except municipal wastewater. 

Municipal wastewater also showed a significant difference between FLS and ADS 

treatments when measured as the amount of methane produced per COD (Fig. 5.12).  

FLS showed 189 ± 7.9 mg of methane per gram of COD, where ADS produced 216 mg/g 

± 14.0 methane per COD.  Dairy and Petrochemical wastewaters showed a difference in  
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Fig. 5.11  Methane produced per gram of total organic carbon for four wastewaters. 

Averages of triplicate augmented wastewater treatments shown.  Facultative lagoon 

sediment (FLS) is shown in blue and anaerobic digester sludge (ADS) is shown in red.  

Error bars show one standard deviation and asterisks around wastewater (e.g., 

*Municipal*) indicate a significant difference between treatments was measured. 
 

 

 

 
Fig. 5.12  Methane produced per gram of chemical oxygen demand for four wastewaters.  

Averages of triplicate augmented wastewater treatments shown.  Facultative lagoon 

sediment (FLS) is shown in blue and anaerobic digester sludge (ADS) is shown in red.  

Error bars show one standard deviation and asterisks around wastewater (e.g., *Dairy*) 

indicate a significant difference between treatments was measured 
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treatments but the difference in the amount of methane produced per COD was not  

significantly different.  Swine wastewater and the combined treatment group showed 

nearly identical average values of methane produced per gram of COD as shown in Fig. 

5.12. 

Conclusion 

FLS augmentation showed significantly better treatment of wastewater by 

outperforming ADS in 6 of the 12 wastewater parameters.  This is shown with blue boxes 

in the combined row of Fig. 5.13.  ADS showed significantly better than FLS in two 

parameters, change in VS and the amount of methane produced per change in biological 

oxygen demand.  Parameters that are better with ADS are shown with the red boxes in 
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Fig. 5.13  Visual representations of significant Yield and composition parameters found 

from treatment of dairy, swine, municipal, and petrochemical wastewaters by Facultative 

Lagoon Sediment (FLS) and Anaerobic Digestive Sludge(ADS).  Non significant 

findings are marked in gray, FLS significant findings are marked in blue and ADS 

significant findings are marked in red.  Bottom row (Combined) show if significance 

difference was found between treatments based on all wastewaters treated. 
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the combined row of Fig. 5.13.  A total of 48 individual wastewater parameters were 

measured.  Of the 48 measurements, 17 of them treated by FLS were significantly better 

than the treatment by ADS.  Only 7 out of the 48 individual wastewater parameters 

showed ADS to be significantly better than FLS.     
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COMPARISON AND EVALUATION OF CONTROLS 

Introduction 

Three controls were analyzed to determine the influence of the addition of algae, 

acetate, and inoculant to dairy wastewater.  Controls contain the same proportions of 

dairy wastewater, acetate, algae and inoculant as augmented dairy wastewater previously 

described.  Dairy wastewater augmented with acetate was examined to determine the 

influence of acetate on dairy wastewater without the aid of algae.  Dairy mixed with algae 

was used to determine the influence of algae on dairy wastewater without the aid of 

acetate.  The third control contained the same amount of inoculant used in each treatment 

with the addition of distilled water (no algae or acetate).  Inoculants treating distilled 

water show the influence that the additional nutrients found in each inoculant have on 

treatment.  The rates and volumes of biogas were examined for each control as well as 

the change in organic chemical level as measured by volatile solids (VS), biological 

oxygen demand (BOD), total organic carbon (TOC), and chemical oxygen demand 

(COD).  The volume of methane produced was compared to the volume of carbon 

dioxide.  The mass of methane was compared to the change in organics (VS, BOD, TOC, 

COD).  These controls showed the impact on anaerobic treatment from the addition of 

algae, acetate, and inoculants. 

Control Rates and Volumes 

Dairy and Acetate (No algae) 

Dairy augmented with acetate showed a pattern of biogas production similar in 

shape to augmented dairy wastewater (Fig. 4.5).  Facultative lagoon sediment (FLS) 
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augmented with acetate showed a more uniform plot of total volume (Fig. 6.1A) than 

augmented dairy wastewater (Fig. 4.5A).  Replicates of Acetate treated with anaerobic 

digester sludge (ADS) showed a greater variation in total volume (Fig. 6.1C) than 

replicates of augmented dairy wastewater (Fig. 4.5C). 

As observed in other FLS treatments, dairy wastewater augmented with acetate 

showed a brief stabilization in rate of biogas production at day 20 (Fig. 6.1B).  The 

stabilization in rate was not observed in treatment with ADS (Fig. 6.1D).  Although dairy 

wastewater augmented with acetate produced more biogas when treated with FLS than 

ADS treatment, the difference was not significant (Fig. 6.1E).  Dairy wastewater 

augmented with acetate showed a significant larger maximum rate of biogas produced 

when treated with FLS than when treated with ADS (Fig. 6.17).  FLS showed a 

maximum rate of biogas production at 110.6 ± 2.6 ml/day, significantly greater than 

ADS, which had a maximum rate of 90.1 ± 6.2 ml/day.  

Dairy wastewater augmented with acetate showed a maximum rate of biogas 

production sooner when treated by FLS than ADS.  FLS required 29.5 ± 2.8 days to reach 

a maximum rate, while ADS required 34.6 ± 1.2 days to reach maximum biogas 

production.  FLS required significantly less time to start biogas production as measured 

be reaching a rate of 10 ml/day.  FLS required 17.4 ± 0.0 days to reach the initial rate, 

where ADS required 20.5 ± 1.0 days. 

Dairy augmented with acetate showed a significantly larger percentage of 

methane produced than dairy wastewater augmented with algae and acetate.  The high 

concentrations of methane came with a cost.  Dairy wastewater augmented with acetate 

required more time to reach the maximum biogas production rate compared to 
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Fig. 6.1  Dairy Acetate (No Algae) Total volume and rate of biogas produced from 

Facultative Lagoon Sediment (FLS) and Anaerobic Digester Sludge (ADS) as inoculants 

for treatment of dairy wastewater augmented with acetate.  A) Triplicates of total biogas 

produced using FLS.  B) Triplicates of the rate of biogas produced using FLS. C)  

Triplicates of total biogas produced using ADS.  D) Triplicates of the rate of biogas 

produced using ADS.  E) Average of total biogas produced from triplicate treatments of 

FLS and ADS.  F) The average rate of biogas produced from triplicate treatments using 

FLS and ADS as inoculant source.  All error bars represent one standard deviation. 
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dairy augmented with acetate and algae.  When algae was present, the maximum rate at 

which biogas was produced was sooner than treatment without algae.  

Dairy and Algae (No acetate) 

Dairy wastewater augmented with algae displayed the shortest duration of biogas 

production.  Both treatments reached a low in biogas production after 35 days (Fig. 6.2F).  

Treatment of dairy wastewater augmented with algae was terminated prior to reaching 

day 60 due to plateau of biogas production.  Treatment of dairy wastewater augmented 

with algae exhibited a variation within replicates observed with FLS (Fig. 6.2A) and 

ADS (Fig. 6.2C).  One of the replicates treated with FLS showed little biogas production 

up to day 15 when it displayed a sudden increase (Fig. 6.2B).  When a large deviation in 

triplicates was observed, fittings to collected biogas were checked and tightened.  A loose 

fitting accounted for the low production of biogas observed.  The cause of low biogas 

production from one replicate (Fig. 6.2C) treated with ADS is unknown.  Biogas was 

produced with the replicate displayed a lower and less stable rate as shown in Fig. 6.2D.  

Treatment of dairy wastewater augmented with algae showed similar volumes of 

biogas produced with FLS and ADS as shown in Fig. 6.2E.  Both treatments showed a 

larger standard deviation in total biogas produced relative to other dairy treatments.  The 

large standard deviation is observed because of one replicate in each treatment did not 

produce biogas like the others.   

Dairy wastewater augmented with algae treated by ADS showed a maximum rate 

of biogas earlier than treatment by FLS (Fig. 6.2F).  The maximum rate observed with 

ADS was more than 7 days earlier than FLS.  This was the only significant difference 
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Fig. 6.2  Dairy Algae (No Acetate)  Total volume and rate of biogas produced from 

Facultative Lagoon Sediment (FLS) and Anaerobic Digester Sludge (ADS) as inoculants 

for treatment of dairy wastewater augmented with algae.  A) Triplicates of total biogas 

produced using FLS.  B) Triplicates of the rate of biogas produced using FLS. C)  

Triplicates of total biogas produced using ADS.  D) Triplicates of the rate of biogas 

produced using ADS.  E) Average volume of total biogas produced from triplicate 

treatments of FLS and ADS.  F) The average rate of biogas produced from triplicate 

treatments using FLS and ADS as inoculant source.  All error bars represent one standard 

deviation. 
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found when comparing parameters associated with the volume and rate of biogas 

production.  

The average rate of biogas production and duration at which the biogas operated 

at this rate were calculated and are not included in this study.  The two points calculated 

were found to be adjacent when using an R
2
 value of 0.99.  Due to the subjectivity of 

selecting which two points to use as the average rate, this value was omitted. 

Dairy wastewater augmented with algae showed an earlier maximum rate than 

was observed with dairy wastewater augmented with acetate or dairy augmented with 

acetate and algae.  The addition of algae decreased the time required for treatment to 

reach its maximum biogas production.  Both treatments containing algae (dairy 

wastewater augmented with acetate and algae as well as dairy wastewater augmented 

with algae) showed a significantly earlier maximum rate of biogas production when 

compared to treating dairy wastewater augmented with acetate.  The two shortest times to 

reach maximum rate contained the largest and smallest organic loading.  Therefore 

decreasing the time requirement to reach maximum rate was best achieved using algae, 

rather than increasing the organic chemical loading.     

Inoculant Treating Distilled Water (No wastewater, No acetate, No Algae) 

Fig. 6.3 shows the production volumes and rates of biogas produced from each 

inoculant using the same scale for x and y axes as other treatments reported, which shows 

that little biogas was produced from either inoculant without addition carbon or nitrogen 

from the wastewater or augmentation.  FLS treatment showed the lowest volume of 

biogas produced (Fig. 6.3A).  The final total volume of biogas produced was negative, (-

18.1 ± 6.1 ml) revealing that it consumed more gas than produced.  This is observed in  
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Fig. 6.3  Inoculants Total volume and rate of biogas produced from Facultative Lagoon 

Sediment (FLS) and Anaerobic Digester Sludge (ADS) as inoculants for treatment of 

distilled water.  A) Triplicates of total biogas produced using FLS.  B) Triplicates of the 

rate of biogas produced using FLS. C)  Triplicates of the total biogas produced using 

ADS.  D) Triplicates of the rate of biogas produced using ADS.  E) Average of total 

biogas produced from triplicate treatments of FLS and ADS.  F) The average rate of 

biogas produced from triplicate treatments using FLS and ADS as inoculant source.  All 

error bars represent one standard deviation. 
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Fig. 6.3B where the rate of biogas production fluctuated between positive and negative 

showing both production and consumption of biogas.  ADS also showed a small amounts 

of biogas produced (Fig. 6.3C) with at final total volume of 48.8 ± 15.0 ml.  A significant 

difference was shown in the total volume of biogas produced with FLS and ADS, almost 

undistinguishable in Fig. 6.3E.  ADS also showed times of positive and negative biogas 

production similar to FLS (Fig. 6.3D).   

Neither FLS nor ADS treating distilled water showed a time when biogas 

production reached 10 ml per day as observed with other treatments.  Calculation of an 

average rate and duration of average rate was omitted as the R
2
 value of 0.99 was limited 

to two adjacent points, leaving measurement subjective.  Overall inoculants showed 

baseline values for the total volume of biogas produced (Fig. 6.3E) and rate of biogas 

production (Fig. 6.3F).  The values obtained from volume and rate measurements were 

often smaller than the standard deviation found in the treatment of other augmented 

wastewaters suggesting that the contribution of inoculants (FLS or ADS) on volume of 

biogas produced is negligible. 

Composition and Organic Chemicals 

A significant difference was observed with the total volume of biogas produced 

between FLS and ADS treating distilled water.  FLS treatment showed a consumption of 

biogas with a final volume of -18 ± 6 ml and ADS showed a final volume of 49 ± 15 ml.  

No significant difference was found between FLS and ADS treatment in the total amount 

of biogas observed with any of the controls containing dairy wastewater.  Dairy 

wastewater augmented with both algae and acetate produced more biogas than dairy 

wastewater augmented with acetate or algae individually (Fig. 6.4).  This was expected 
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because controls augmented with only algae or acetate combined with dairy wastewater 

contained a lower organic load than dairy wastewater augmented with both acetate and 

algae.   

Combining algae and acetate to attain a molar ratio of 25:1 carbon to nitrogen 

showed better biogas production than individual augmentations of algae with ratio 8:1 or 

acetate with a ratio of 181:1.  An additional amount of 645 ml of biogas was observed for 

dairy wastewater containing algae and acetate compared with dairy wastewater 

augmented with acetate only when treated with FLS (Table 6.1).  The volume of biogas 

produced when dairy was augmented with algae alone was only 514 ml.  Therefore 

combining algae and acetate showed more biogas produced (3128 ml) than the sum of the 

individual augmented treatments (2997 ml).  Treatment by ADS showed similar findings 

with a larger difference observed in total biogas produced when dairy wastewater was 

augmented with both algae and acetate (Table 6.1). 

Treatment by FLS and ADS showed a significant difference in the maximum 

percentage of methane when dairy augmented with acetate was treated (Fig. 6.5).  FLS 

 

 

Table 6.1   

Volume of total biogas produced from FLS and ADS treating dairy wastewater 

augmented with algae , acetate, or algae and acetate (left).  The additional amount of 

biogas produced when algae and acetate were combined (Right).   

 Dairy wastewater augmented with: 

 

Additional biogas observed due to 

mixing Algae and Acetate over 

isolated augmentation. 

  Acetate Algae 
Acetate and 

Algae 

Increase in biogas 

from Acetate 

Increase in biogas 

from Algae 

FLS 2483 ± 19 ml 514 ± 122 ml 3128 ± 152 ml 2614 ± 195 ml 645 ± 153 ml 

ADS 2260 ± 159 ml 526 ± 309 ml 3247 ± 206 ml 2721 ± 371 ml 987 ± 260 ml 
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Fig. 6.4  Average total biogas from triplicate control treatments for dairy wastewater.  

Facultative lagoon sediment (FLS) is shown in blue and anaerobic digester sludge (ADS) 

is shown in red.  Error bars show one standard deviation and asterisks around control 

(*Inoculant*) indicate a significant difference between treatments. 

 

 

 

 
Fig. 6.5  Average maximum composition of biogas measured from triplicate control 

treatments for dairy wastewater.  Facultative lagoon sediment (FLS) is shown in blue and 

anaerobic digester sludge (ADS) is shown in red.  Error bars show one standard deviation 

and asterisks around wastewater (*Dairy*) indicate a significant difference between 

treatments. 
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showed 87.2 ± 0.2% where ADS showed a maximum percentage of methane at 84.5 ±  

0.9%.  Inoculants treating distilled water showed a significant difference in the amount of 

methane produced with FLS showing a maximum percentage of methane at 1.0 ± 1.7% 

and ADS with 14.8 ± 1.5%.  The small amount of methane produced with FLS treatment 

shows some production of biogas where the final total volume showed an overall 

consumption of gas.  Dairy augmented with algae showed no significant difference 

between FLS and ADS treatments.  Both treatments show similar composition of biogas 

as measured by Mussgnug et al. (2010) when treating algae alone. 

Treatment with FLS showed a significantly larger maximum rate of biogas  

production when treating dairy wastewater augmented with acetate (Fig. 6.6).  FLS 

showed a maximum production of 110.6 ± 2.6 ml/day where ADS showed 90.1 ± 6.2 

ml/day.  FLS treating deionized water showed a significantly smaller maximum rate of 

biogas being produced at 1.5 ± 0.5 ml/day where ADS showed a maximum rate of 5.3 ± 

0.1 ml/day.  Dairy wastewater augmented with acetate was the only group treated where 

FLS showed a larger maximum rate of biogas production.  All other augmented 

wastewaters and control groups showed a larger rate of biogas production with ADS.   

The difference between maximum rate observed with dairy wastewater 

augmented with acetate and dairy wastewater augmented with acetate and algae was 

greater with ADS than FLS.  Both FLS and ADS treatments received an increase in 

volatile solids (VS) by 12.9% from the added algae.  The additional VS showed an 

increased maximum rate of biogas production by 11.2 ± 7.28 ml/day with FLS, and an 

increase of 57.7 ± 6.4 ml/day with ADS.   

FLS treating dairy wastewater augmented with acetate showed an earlier time to  



68 

reach maximum rate than ADS showed (Fig. 6.7).  The maximum rate was observed 

significantly sooner with FLS at 29.5 ± 2.8 days where ADS showed a maximum rate 

after 34.6 ± 1.2 days.  This observation is opposite of what was observed with all other 

augmented wastewaters and control groups.  Dairy wastewater augmented with algae 

showed a significant difference in time required to attain maximum rate.  FLS showed a 

maximum rate on day 15.8 ± 0.6, taking twice as long as ADS showing a maximum rate 

on day 7.9 ± 0.0.  

A significant difference was observed in the amount of methane produced when 

dairy wastewater augmented with acetate was treated (Fig. 6.8).  Treatment with FLS 

showed more methane produced (1,348 ± 14 mg) than ADS (1190 ± 90 mg).  This is the 

only instance where a significant difference was observed in the amount of methane 

produced from treatment of an augmented wastewater (Fig. 6.8 and Fig. 5.3).  A 

significant difference was observed when inoculants treated distilled water.  FLS showed 

0.2 ± 0.4 mg of methane produced where ADS showed 19.0 ± 3.0 mg of methane 

produced.  FLS treating distilled water showed only one replicate that produced methane, 

resulting in a low average amount of methane produced.  Methane produced from 

inoculants treating distilled water would come from organic matter with the inoculants 

portion of each treatment.  Dairy wastewater augmented with algae showed little 

difference between FLS and ADS treatments.   

ADS showed a greater methane to carbon dioxide ratio than FLS showed when 

treating distilled water.  This is reflected due to the lack of methane produced with FLS 

treating distilled water.  FLS showed a ratio of 0.10 ± 0.18 ml:ml where ADS showed a 

ratio of 2.65 ± 0.26 ml:ml.  This was the only instance where ADS showed greater 
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Fig. 6.6  Average maximum rate of biogas produced as measured from triplicate control 

treatments for dairy wastewater.  Facultative lagoon sediment (FLS) is shown in blue and 

anaerobic digester sludge (ADS) is shown in red.  Error bars show one standard deviation 

and asterisks around wastewater (*Dairy*) indicate a significant difference between 

treatments.  

 

 

 

Fig. 6.7  Average time required to reach maximum rate of biogas production as measured 

from triplicate control treatments for dairy wastewater.  Facultative lagoon sediment 

(FLS) is shown in blue and anaerobic digester sludge (ADS) is shown in red.  Error bars 

show one standard deviation and asterisks around wastewater (*Dairy*) indicate a 

significant difference between treatments. 
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methane to carbon dioxide ratio (Fig. 6.9) presumably from the lack of biogas produced 

with FLS.  Dairy augmented with acetate and dairy augmented with algae both showed 

greater methane to carbon dioxide ratio with FLS but neither were significant at an 0.05 

alpha level.  Dairy wastewater augmented with algae contain a carbon to nitrogen ratio of 

8:1 and dairy wastewater augmented with acetate contain a ratio of 181:1, both not at the 

optimal wastewater feed ratio of 25:1.  Having a wastewater feed ratio of 25:1 carbon to 

nitrogen showed FLS to be significantly better at converting organics to methane.  When 

the feed ratio was not operating at 25:1 carbon to nitrogen as seen with the dairy 

wastewater augmented with acetate (181:1) or algae (8:1) individually, the significance 

between FLS and ADS was not observed.  ADS was better at producing methane over 

carbon dioxide only when inoculants were treating distilled water, an instance where FLS 

showed an overall consumption of gas.   

ADS showed a larger decrease in VS in each control (Fig. 6.10), as was shown 

with each augmented wastewater (Fig. 5.5).  Each control showed a significant difference 

between FLS and ADS treatments.  FLS treating dairy wastewater augmented with 

acetate showed a decrease in VS by 3.96 ± 0.13 g where ADS showed a decrease of 5.77 

± 0.13 g.  FLS treating dairy wastewater augmented with algae showed an increase in VS 

by 0.19 ± 0.05 g where ADS showed a decrease of 1.17 ± 0.11 g.  FLS treating distilled 

water showed an increase in VS by 0.31 ± 0.04 g where ADS showed a decrease of 0.36 

± 0.02 g.  Both instances of an increase in VS is considered to be caused by experimental 

error.   

FLS treating dairy wastewater augmented with acetate showed a greater amount 

of methane produced per change in VS than ADS showed (Fig. 6.11).  FLS showed 
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Fig. 6.8  Average values for total methane (mg) produced from triplicate control 

treatments for dairy wastewater.  Facultative lagoon sediment (FLS) is shown in blue and 

anaerobic digester sludge (ADS) is shown in red.  Error bars show one standard deviation 

and asterisks around control (*Dairy Acetate*) indicate a significant difference between 

treatments. 

 

 

 

 
Fig. 6.9  Average values for  methane to carbon dioxide ratio (ml:ml) from triplicate 

control treatments for dairy wastewater.  Facultative lagoon sediment (FLS) is shown in 

blue and anaerobic digester sludge (ADS) is shown in red.  Error bars show one standard 

deviation and asterisks around wastewater (*Dairy*) indicate a significant difference 

between treatments. 
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Fig. 6.10  Average change in volatile solids from triplicate control treatments for dairy 

wastewater.  Facultative lagoon sediment (FLS) is shown in blue and anaerobic digester 

sludge (ADS) is shown in red.  Error bars show one standard deviation and asterisks 

around wastewater (*Dairy*) indicate a significant difference between treatments. 
 

 

 

 
Fig. 6.11  Methane produced per gram of volatile solid for dairy wastewater. Averages of 

triplicate control treatments shown.  Facultative lagoon sediment (FLS) is shown in blue 

and anaerobic digester sludge (ADS) is shown in red.  Error bars show one standard 

deviation and asterisks around wastewater (*Dairy*) indicate a significant difference 

between treatments. 
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341 ± 11 mg/g methane per VS where ADS showed 206 ± 15 mg/g methane produced 

VS.  FLS showed a negative amount of methane produced per gram of VS when dairy 

wastewater augmented with algae was treated, as well as when distilled water was treated 

(Fig. 6.11).  As both showed an increase in VS, the amount of methane produced is 

represented as negative amount of methane per VS.  

A significant difference in the change of biological oxygen demand (BOD) was 

observed for each control treated by FLS and ADS (Fig. 6.12).  FLS showed a greater 

decrease in BOD when treating dairy wastewater augmented with algae as well as dairy 

wastewater augmented with acetate.  FLS showed a decrease in BOD of 5.98 ± 0.01g 

when dairy augmented with acetate was treated, where ADS showed a decrease of 4.29 ± 

0.01 g.  When dairy augmented with algae was treated, FLS showed a decrease in BOD 

of 0.65 ± 0.00 g, and 0.64 ± 0.00 g when treated by ADS.  Inoculants treating distilled 

water showed an increase in BOD with both FLS and ADS treatments.  FLS treating 

distilled water showed a smaller increase in BOD than ADS showed. FLS showed an 

increase in BOD of 0.11 ± 0.00 g where ADS showed an increase of 0.21 ± 0.00 g.   

ADS showed a significantly greater amount of methane produced per change in 

BOD when dairy augmented with acetate was treated (Fig. 6.13).  FLS showed 226 ± 2 

mg/g methane per change in BOD, where ADS showed 277 ± 21 mg/g methane per 

change in BOD.  Treatments where algae was implemented to augment wastewater 

showed no significant difference between FLS and ADS treatment as shown in Fig. 6.13.  

Inoculants treating distilled water also showed a significant difference between 

treatments.  FLS showed a -2.2 ± 3.8 mg/g methane per change in BOD, where ADS  
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Fig. 6.12  Average change in biological oxygen demand from triplicate control treatments 

for dairy wastewater.  Facultative lagoon sediment (FLS) is shown in blue and anaerobic 

digester sludge (ADS) is shown in red.  Error bars show one standard deviation and 

asterisks around wastewater (*Dairy*) indicate a significant difference between 

treatments. 

 

 

 
Fig. 6.13  Methane produced per gram of biological oxygen demand for dairy 

wastewater. Averages of triplicate control treatments shown.  Facultative lagoon 

sediment (FLS) is shown in blue and anaerobic digester sludge (ADS) is shown in red.  

Error bars show one standard deviation and asterisks around control (*Dairy Acetate*) 

indicate a significant difference between treatments. 
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showed - 91 ± 14.5 mg/g.  The standard deviation with FLS treatment is greater than the 

amount of methane produced per change in BOD, as two of the replicates showed no 

biogas produced.  A significant difference was measured with the change in total organic 

carbon (TOC) observed with dairy wastewater augmented with acetate (Fig. 6.14).  FLS 

showed a greater decrease in TOC with a change of 2.58 ± 0.08 g where ADS showed a 

change in TOC of 2.37 ± 0.05 g.  Inoculants treating distilled water also showed a 

significant difference with the change in TOC.  FLS showed a greater decrease in TOC 

than ADS showing a decrease in TOC of 0.32 ± 0.02 g and 0.23 ± 0.01 g respectively. 

Dairy wastewater augmented with acetate and dairy wastewater augmented with 

algae both showed no significant difference in the amount of methane produced per 

change in TOC (Fig. 6.15).  Inoculants treating distilled water showed a significant 

difference with FLS showing 0.7 ± 1.2 mg/g methane per change in TOC where ADS 

showed 84.4 ± 16.1 mg/g methane per change in TOC.   

All controls treated with FLS and ADS showed a significant difference with the 

change in chemical oxygen demand as shown in Fig. 6.16.  FLS showed a greater change 

in COD when treating dairy wastewater augmented with acetate.  FLS showed a decrease 

in COD of 6.43 ± 0.06 g where a decrease of 6.00 ± 0.08 g was observed with ADS. ADS 

showed a greater decrease in dairy wastewater augmented with algae than FLS.  FLS 

showed a decrease in COD by 1.35 ± 0.41 g where ADS showed a greater decrease with 

2.12 ± 0.06 g.  Inoculants treating distilled water showed results similar to dairy treating 

algae, with ADS showing a greater decrease in COD (0.03 ± g) than FLS (0.50 ± g).  

Augmented dairy wastewater showed no significant difference in the change  
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Fig. 6.14  Average change in total organic carbon from triplicate control treatments for 

dairy wastewater.  Facultative lagoon sediment (FLS) is shown in blue and anaerobic 

digester sludge (ADS) is shown in red.  Error bars show one standard deviation and 

asterisks around wastewater (*Dairy*) indicate a significant difference between 

treatment. 

 

 

 

 
Fig. 6.15  Methane produced per gram of total organic carbon for dairy wastewater. 

Averages of triplicate control treatments shown.  Facultative lagoon sediment (FLS) is 

shown in blue and anaerobic digester sludge (ADS) is shown in red.  Error bars show one 

standard deviation and asterisks around control (*Inoculant*) indicate a significant 

difference between treatments. 
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Fig. 6.16  Average change in chemical oxygen demand from triplicate control treatments 

for dairy wastewater.  Facultative lagoon sediment (FLS) is shown in blue and anaerobic 

digester sludge (ADS) is shown in red.  Error bars show one standard deviation and 

asterisks around control (*Dairy Acetate*) indicate a significant difference between 

treatment. 

 

 

 

 
Fig. 6.17  Methane produced per gram of chemical oxygen demand for dairy wastewater.  

Averages of triplicate control treatments shown.  Facultative lagoon sediment (FLS) is 

shown in blue and anaerobic digester sludge (ADS) is shown in red.  Error bars show one 

standard deviation and asterisks around control (*Inoculant*) indicate a significant 

difference between treatments. 
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in COD between FLS and ADS treatments.  When dairy wastewater was at a ratio of 

181:1 carbon to nitrogen with the absence of algae, treatment by FLS was better at 

decreasing COD.  When acetate was absent and the feed wastewater was at a ratio of 8:1 

ADS was better at decreasing COD.  When carbon levels where high as seen with dairy 

augmented with acetate, FLS was significantly better at decreasing COD.  With the 

addition of algae to dairy wastewater, nitrogen levels are higher and carbon structures 

more complex than acetate are introduced showing ADS to be better at decreasing COD.    

No significant difference was found in amount of methane produced per change in 

COD with dairy was augmented with acetate or dairy was augmented with algae (Fig. 

6.17).  These results show that a significant difference in the change in COD doesn't 

reflect a significant difference in the amount of methane being produced from the change 

in COD.   

Inoculants treating distilled water showed a significant difference in the amount 

of methane produced per change in COD.  FLS showed a native amount of methane 

produced, while ADS was positive.  One replicate of the FLS treating distilled water 

showed a negative change in COD.  This replicate was also the only replicate to produce 

methane, making the average value -4.0 ± 7.0 mg/g.  ADS showed 42.9 ± 16.3 mg/g 

methane produced per change in COD.   

Conclusion 

Augmenting digester wastewater feed with algae and acetate to a carbon to 

nitrogen balance of 25:1 showed to be critical for maximum biogas production.  The 

combination of algae and acetate and wastewater with the carbon to nitrogen ratio of 25:1 

showed to produce more biogas than the sum of the biogas produced from wastewater 
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augmented with algae at a ratio of 8:1 and wastewater augmented with acetate at a ratio 

of 181:1.   
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CONCLUSION ON THE HYPOTHESIS AND OBJECTIVES 

It was hypothesized that facultative lagoon sediment (FLS) contains a greater 

ability to digest wastewater augmented with algae compared to anaerobic digester sludge 

(ADS).  After comparing the treatments by each inoculant it was determined there was 

not enough evidence to accept this hypothesis.   Both inoculants showed high percentages 

of methane being generated and similar amounts of biogas produced.  ADS showed 

higher rates of biogas production when compared to FLS.  This would be advantageous 

for fast digestion of wastewater with high yields of biogas.  A higher methane to carbon 

dioxide ratio was observed with treatment of wastewaters by FLS.  The high methane to 

carbon dioxide ratio would result in a greater flux of carbon from the organic wastewater 

to be converted to bioenergy in the form of methane. 

The objective of this study was to determine if bioaugmentation with two 

inoculants, FLS or ADS, demonstrated an advantage in anaerobic digestion of four 

wastewaters for the production of biomethane.  The first comparison was to assess the 

capacity of each inoculant to digest each of the four selected wastewaters.  Each 

augmented wastewater was successfully digested by both inoculant treatments.  

Successful digestion of wastewaters by both inoculants show that either inoculant would 

be feasible for full scale treatment.   

The second comparison was made between inoculants treating each wastewater 

with regard to biogas production as well as the change in organic chemical concentration 

of each wastewater.  Biogas production was started faster with FLS and maintained the 

average rate of production longer than ADS.  ADS showed faster rates of biogas 

production, and a higher overall average rate.  Both inoculants performed equally well in 
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producing the same amount of biogas when given a sufficient amount of time. 

ADS showed significantly better than FLS with a greater change in volatile solids 

and produced more methane per change in biological oxygen demand.  FLS showed to be 

better at reducing biological oxygen demand, total organic carbon and produced more 

methane per change in volatile solids.  Knowing which inoculant is best at reducing 

biological oxygen demand, total organic carbon, comical oxygen demand, and volatile 

solids allows a wastewater treatment plant operator to select the best inoculant for 

treatment of wastewater.   

Balancing the wastewater feed ratio to 25:1 carbon to nitrogen (molar ratio) 

showed to be important in maximizing biogas production.  The combination of algae and 

acetate and wastewater with the carbon to nitrogen ratio of 25:1 showed to produce more 

biogas than the sum of the biogas produced from wastewater augmented with algae at a 

ratio of 8:1 and wastewater augmented with acetate at a ratio of 181:1.  The proper 

augmentation of a treatment plants wastewater feed stream with algae to a ratio of 25:1 

carbon to nitrogen could increase overall biogas production, creating valuable renewable 

energy for the plant.   
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ENGINEERING SIGNIFICANCE 

Implementation of anaerobic digestion on a full scale treatment plant would need 

to be very different from the setup of this research study.   It would be impractical to use 

a batch system when trying to treat wastewater by converting organic material to 

bioenergy in the form of methane.  Using a batch system would require lengthy time 

periods and large storage of wastewater during the digestion process.   If large scale 

treatment required as much time as shown in this study, treatment plants would need a 

minimum of 60 digesters, each with a single day’s volume of wastewater.  As time, 

volume and other requirements are impractical for full scale batch systems, adjustments 

will be required for scale up of practices implemented.  A continuous flow system is the 

better choice for treatment of wastewater over the batch system outlined above.  

Treatment of wastewater by an up flow anaerobic sludge blanket reactor (UASB) or 

similar continuous flow system would be a better choice for full scale system.  These 

systems allow for wastewater to enter an environment with an established community of 

microbes and have the complex carbons converted to methane using a shorter hydraulic 

retention time.  This section is intended to bridge the gap between full scale continues 

flow reactor, and the batch system outlined for this study.  

The simplest environmental parameter to apply from the batch reactor to a 

continuous flow systems is temperature.   The temperature of this study was chosen to be 

30 degrees Celsius over the more popular temperature of 35 degrees Celsius.  Reducing 

the temperature of a continuous flow reactor would reduce the energy required to treat 

wastewater.   The reduction of energy provides a cost saving alternative to treatment.    

Mixing of substrate and microbial community is another factor to consider in 
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scale up of anaerobic digestion.  Continuous mixing in a large treatment plant would 

come at additional cost to plant operations.  In this study the samples were mixed at a rate 

of 80 RPM to help substrate come in contact with microbes.  This was implemented to 

ensure each sample would reach complete digestion by reducing dead zones where no 

microbial action takes place.  In contrast to a batch system, a continuous flow system 

would allow for the flow of the wastewater through the system aiding in mixing of 

substrate and microbes.  If additional mixing is required implementation of intermittent 

mixing paddles at a slow speed could be implemented to ensure no dead zones exist in 

continuous flow system. 

Balancing the nutrient requirements required for anaerobic digestion can be a 

challenging aspect when a full scale treatment plant is considered.  Maintaining a 

wastewater carbon to nitrogen feed ratio of 25:1 can be accomplished in several ways.  In 

this study, sodium acetate was used to increase carbon content of wastewater.  It is 

impractical to use commercial available sodium acetate to increase the carbon content of 

the wastewater.  A more practical approach would be to use another carbon source such 

as mixed paper (Soboh et al., 2016; Yen and Brune, 2007), blend in food waste, or other 

high carbon wastes based on local availability.  These wastes could be used at a reduced 

cost for digestion to supplement sodium acetate used in this study. 

During the initial startup of a continuous flow anaerobic digester system, 

microbial communities may not have the density required to digest the wastewater.  It 

may be decided that the digester be feed wastewater and allow the microbes to acclimate 

before starting the digester as a continues flow system.   During this time period, the 

continuous flow system would resemble the batch systems shown in this study.  
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Parameters such as startup time, and a scaled maximum rate could be used as a baseline 

to determine the appropriate time to start the continuous flow system.  Starting 

continuous flow to early could lead to washout of microbes and undigested wastewater 

resulting with a suboptimal digester.   Utilizing the startup times and maximum rate of 

production determined in this study could allow for plant operators have a better 

understanding of the digester during startup conditions and be able to make plans for 

when continuous feed operation could be started.  



85 

RECOMMENDATIONS FOR FUTURE WORK 

This project has answered many questions, and started some new ones as well.  

With each wastewater having its own unique carbon to nitrogen ratio the need for 

augmentation is apparent.  In this project acetate and algae were used to augment 

wastewaters to produce a final wastewater carbon to nitrogen ratio of 25:1.  Using this 

ratio carbon and nitrogen were added to the system.  When full scale digesters are being 

augmented with algae and other blended wastes the question arises how much carbon can 

be added before it becomes detrimental to the system.  The question of the lower bounds 

in the amount of carbon was also unaddressed, causing question of what concentrations 

of carbon and nitrogen are required to sustain an anaerobic microbial population.   

Other questions that have been left unanswered include the change in rate 

observed with Facultative Lagoon sediment during initial biogas production (Fig. 4.3).  

This was observed with three augmented wastewaters (swine, municipal and 

petrochemical) and at least two controls (Dairy augmented with acetate, as well as algae 

digested alone).  It was hypothesized that the change in biogas formation was caused by 

change in metabolic pathway, however further study is needed to identify if it is indeed a 

pathway causing the change in biogas formation and identify the metabolite(s) associated 

with the change in rate.   
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APPENDIX A: Supplementary Data   
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5 FLS T Dairy 122.14 26.13 12.65 100.40 33.06 3132.12 3074.41 

6 FLS T Dairy 128.37 24.63 11.64 105.44 32.52 3278.34 3191.02 

7 FLS T Dairy 114.75 26.13 12.65 94.18 34.54 2974.41 2924.65 

11 FLS T Swine 99.46 32.16 14.14 77.59 45.12 3089.92 3008.11 

12 FLS T Swine 113.57 32.67 15.13 84.97 39.01 3036.80 2985.99 

13 FLS T Swine 101.49 32.67 13.64 77.58 45.12 3058.99 3010.08 

17 FLS T Municipal 107.05 23.00 10.66 84.94 40.01 3135.32 3088.25 

18 FLS T Municipal 110.10 23.20 12.68 87.01 36.00 2913.13 2890.65 

19 FLS T Municipal 103.20 25.17 11.75 81.83 40.98 3113.71 3063.00 

800 FLS T Petrochemical 94.71 32.00 11.57 73.92 50.00 3132.92 3115.23 

900 FLS T Petrochemical 91.33 15.46 11.57 68.63 51.99 3001.83 2991.95 

1000 FLS T Petrochemical 97.28 15.46 11.57 70.70 48.01 2899.56 2897.08 

8 ADS T Dairy 148.31 23.13 14.08 117.06 26.51 3329.33 3210.51 

9 ADS T Dairy 149.05 23.64 14.08 118.64 26.06 3399.59 3263.64 

10 ADS T Dairy 145.96 23.64 14.08 117.34 25.03 3013.46 2983.70 

14 ADS T Swine 108.74 32.67 22.63 81.77 28.98 3141.09 2457.81 

15 ADS T Swine 120.23 27.13 18.14 89.85 27.37 3291.58 2732.90 

16 ADS T Swine 109.01 32.67 21.64 82.22 28.57 3137.86 2456.04 

20 ADS T Municipal 113.98 21.17 11.75 89.43 28.37 2859.64 2805.48 

21 ADS T Municipal 118.39 21.17 11.75 92.67 29.45 3057.97 2985.41 

22 ADS T Municipal 116.08 21.17 11.75 90.56 28.98 2854.95 2798.88 

1100 ADS T Petrochemical 116.00 18.44 9.51 87.56 29.94 2781.96 2781.96 

1200 ADS T Petrochemical 126.83 18.44 9.51 96.59 32.87 3189.08 3178.55 

1300 ADS T Petrochemical 116.63 22.48 9.51 88.50 34.46 3102.54 3074.21 
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5 300.84 2492 332 7.50 85.14 1386.48 1634.83 3465.10 6965.57 6958.10 

6 290.07 2614 358 7.30 84.56 1459.05 1714.73 3476.13 8107.97 6959.51 

7 319.43 2328 317 7.34 83.53 1298.65 1527.38 3479.22 7308.88 6958.42 

11 303.14 2538 238 10.67 84.89 1362.80 1665.09 3594.30 8242.25 7665.03 

12 322.30 2473 231 10.70 84.95 1327.32 1622.03 3637.50 8126.44 7668.23 

13 320.72 2401 227 10.57 84.55 1290.44 1575.33 3575.09 8324.00 7669.79 

17 292.89 2600 266 9.78 86.10 1407.03 1705.74 3627.21 8618.13 7664.24 

18 187.64 2486 262 9.47 85.50 1349.04 1630.55 3516.37 8926.89 7658.00 

19 313.26 2569 257 10.00 86.26 1387.40 1685.45 3644.58 9021.46 7654.56 

800 282.53 2570 281 9.16 86.33 1399.36 1685.80 3123.37 7052.46 6232.19 

900 276.48 2447 279 8.78 85.23 1337.97 1605.12 3030.76 6539.49 6251.22 

1000 281.70 2343 275 8.53 85.70 1285.21 1537.24 3043.56 7112.65 6229.38 

8 320.25 2607 401 6.50 82.97 1476.57 1709.94 3392.35 8503.85 6799.82 

9 305.05 2687 406 6.63 82.66 1518.43 1762.97 3435.06 8127.73 6801.69 

10 347.66 2299 365 6.29 82.20 1307.94 1508.12 3438.18 8553.71 6800.68 

14 408.28 2482 257 9.67 84.02 1344.30 1627.97 3563.02 8106.13 7359.34 

15 433.49 2582 280 9.21 82.43 1405.35 1694.08 3580.58 8722.28 7359.49 

16 423.41 2465 255 9.68 84.63 1335.19 1617.18 3608.52 8575.13 7359.34 

20 252.78 2326 297 7.82 85.45 1287.79 1525.73 3083.67 7617.66 4920.19 

21 226.70 2519 331 7.61 85.44 1399.17 1652.48 3068.25 7366.56 4907.09 

22 186.89 2369 315 7.51 85.30 1317.71 1554.04 2996.92 6910.33 4912.86 

1100 288.57 2189 305 7.19 84.75 1223.99 1435.76 3067.82 7460.62 5401.78 

1200 291.87 2539 359 7.08 85.27 1422.35 1665.45 3096.64 7201.45 5422.61 

1300 247.68 2534 321 7.90 85.63 1401.55 1662.33 3033.79 7089.88 5409.04 
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5 471.80 234.70 234.95 326966.94 2472 327.41 1621.96 86.80 

  6 493.29 211.49 246.39 285788.93 2580 351.62 1692.81 85.98 

  7 439.00 208.98 219.50 218197.21 2317 313.70 1520.33 85.44 

  11 463.26 202.02 217.23 151371.38 2512 234.97 1647.91 88.87 

  12 445.92 199.60 211.53 135168.91 2471 229.79 1621.31 88.83 

  13 440.64 189.25 205.39 121179.31 2402 226.37 1575.56 84.76 

  17 470.26 197.92 222.56 100337.61 2579 262.49 1691.84 88.76 

  18 463.70 182.66 212.92 90586.14 2488 261.52 1632.47 89.64 

  19 462.45 186.83 220.19 88707.98 2546 253.87 1669.99 89.26 

  800 539.74 239.04 270.50 2107.25 2544 278.36 1668.96 86.81 

  900 529.61 245.45 256.77 1783.46 2424 276.71 1590.10 85.60 

  1000 505.08 216.13 246.77 1537.24 2330 273.05 1528.67 86.21 

  8 504.06 201.08 251.47 213742.03 2538 389.71 1665.25 83.95 

  9 513.23 216.91 259.20 195885.63 2605 391.64 1709.26 85.34 

  10 438.64 176.31 221.76 150812.25 2301 362.24 1509.28 83.86 

  14 456.91 200.83 221.21 116283.50 2014 204.04 1321.15 84.14 

  15 473.13 194.22 230.19 112938.71 2214 238.29 1452.20 88.91 

  16 448.16 188.59 219.75 101073.71 1991 203.44 1305.84 85.02 

  20 494.78 200.29 310.09 76286.26 2293 292.94 1504.40 87.00 

  21 538.57 224.32 336.75 78689.36 2471 325.15 1620.93 86.80 

  22 518.54 224.89 316.32 70637.98 2334 310.68 1531.22 86.91 

  1100 468.01 192.44 265.79 1305.23 2186 303.77 1434.00 85.49 

  1200 537.82 231.27 307.13 1387.87 2523 356.28 1655.19 85.57 

  1300 547.94 234.47 307.32 1278.72 2498 316.96 1638.44 86.08     
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200 FLS C FLS 1.02 15.46 

     300 FLS C FLS 1.46 15.46 

     400 FLS C FLS 2.01 4.56 

     1400 FLS C Big Algae 222.48 18.44 

 

114.09 21.53 2746.71 2746.71 

1500 FLS C Big Algae 211.26 17.94 

 

122.67 20.54 2806.26 2806.26 

1600 FLS C Big Algae 224.19 18.44 

 

121.04 22.05 2970.28 2970.28 

2000 FLS C Dairy Acetate 107.68 32.00 

 

86.05 30.54 2461.68 2458.88 

2100 FLS C Dairy Acetate 111.53 26.48 

 

86.35 30.33 2498.52 2493.58 

2200 FLS C Dairy Acetate 112.56 29.98 

 

88.96 29.55 2488.97 2486.18 

2600 FLS C Dairy Algae 56.17 15.46 

 

38.31 4.49 454.47 454.47 

2700 FLS C Dairy Algae 36.76 16.46 

 

25.09 14.91 431.90 431.90 

2800 FLS C Dairy Algae 54.64 15.46 

 

38.81 10.94 655.05 655.05 

500 ADS C ADS 5.25 4.56 

     600 ADS C ADS 5.11 4.56 

     700 ADS C ADS 5.39 4.56 

     1700 ADS C Big Algae 237.11 13.63 

 

142.11 11.89 2665.46 2665.46 

1800 ADS C Big Algae 243.87 13.63 

 

152.99 12.90 3089.54 3088.54 

1900 ADS C Big Algae 233.17 13.63 

 

151.17 11.89 2890.01 2890.01 

2300 ADS C Dairy Acetate 96.29 33.94 

 

77.61 31.11 2432.33 2409.65 

2400 ADS C Dairy Acetate 90.03 33.94 

 

72.02 32.01 2228.54 2207.80 

2500 ADS C Dairy Acetate 83.86 35.95 

 

67.18 32.60 2119.20 2100.39 

2900 ADS C Dairy Algae 85.96 7.90 

  

1.04 695.33 695.33 

3000 ADS C Dairy Algae 87.47 7.90 

  

1.18 714.38 714.38 

3100 ADS C Dairy Algae 40.70 7.90 

  

1.95 169.58 169.58 
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200 -28.70 1 3 0.31 2.93 2.26 0.72 338.23 -59.73 -109.23 

300 -21.10 0 3 0.00 0.00 1.56 0.00 296.23 17.27 -109.23 

400 -15.65 0 3 0.00 0.00 1.70 0.00 324.23 136.27 -109.23 

1400 339.83 1620 785 2.06 64.25 1180.50 1062.75 2329.27 3638.00 

 1500 319.35 1689 798 2.12 64.38 1220.89 1107.79 2406.27 2966.00 

 1600 291.12 1826 852 2.14 66.18 1314.63 1197.61 2182.27 2514.50 

 2000 228.28 2031 202 10.06 87.10 1096.46 1332.69 2570.83 6495.90 5971.43 

2100 227.00 2063 271 7.62 87.02 1145.56 1353.28 2661.22 6386.95 5974.47 

2200 210.22 2071 207 9.99 87.40 1118.72 1358.86 2508.96 6421.89 5981.41 

2600 -35.96 359 115 3.11 67.52 232.71 235.29 973.81 1429.37 650.73 

2700 119.00 206 82 2.51 60.72 141.50 135.17 1099.81 1712.87 650.73 

2800 122.65 391 127 3.09 69.29 253.93 256.27 1042.06 904.37 650.73 

500 15.17 30 11 2.70 15.05 20.10 19.59 220.30 768.67 -208.40 

600 14.29 33 11 2.88 16.20 21.81 21.62 221.35 474.67 -208.40 

700 -2.44 24 10 2.37 13.19 16.70 15.69 236.05 271.67 -208.40 

1700 253.60 1620 792 2.05 65.81 1183.96 1062.69 2510.93 5103.40 

 1800 335.20 1854 900 2.06 66.12 1352.21 1216.46 2157.43 5260.90 

 1900 354.23 1714 821 2.09 66.59 1244.69 1124.64 2237.93 4399.90 

 2300 222.48 1953 257 7.61 85.22 1084.89 1281.38 2414.23 6088.60 4286.54 

2400 181.73 1807 240 7.53 84.79 1004.85 1185.38 2370.52 5937.04 4295.98 

2500 223.75 1680 215 7.80 83.55 930.54 1102.21 2316.10 5959.91 4297.86 

2900 122.16 401 157 2.55 66.19 274.01 262.99 934.98 2054.77 638.56 

3000 137.43 399 161 2.47 65.61 274.80 261.43 962.98 2180.77 638.56 

3100 -14.67 114 46 2.50 61.57 78.62 75.00 943.73 2117.77 638.56 
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200 2.14 -12.09 -6.61 3.61 4 3.63 2.34 0.00 

300 0.00 0.00 0.00 0.00 0 3.12 0.00 0.00 

400 0.00 0.00 0.00 0.00 0 3.26 0.00 0.00 

1400 456.26 292.13 

 

759.11 1597 781.66 1047.52 64.51 

1500 460.38 373.50 

 

738.53 1668 800.96 1094.47 66.07 

1600 548.79 476.28 

 

748.51 1827 852.58 1198.24 66.99 

2000 518.39 205.16 223.18 666.34 2025 201.31 1328.38 87.17 

2100 508.52 211.88 226.51 644.42 2055 308.86 1348.28 87.11 

2200 541.60 211.60 227.18 617.66 2066 206.94 1355.66 87.48 

2600 241.62 164.61 361.58 90.50 359 115.35 235.29 76.63 

2700 122.90 78.92 207.72 50.06 206 82.18 135.17 75.09 

2800 245.92 283.37 393.82 91.52 391 126.60 256.27 75.24 

500 88.91 25.48 -93.99 39.17 30 10.67 19.50 64.06 

600 97.69 45.56 -103.76 36.04 33 11.11 21.65 67.93 

700 66.48 57.76 -75.30 22.42 24 8.99 15.50 62.97 

1700 423.23 208.23 

 

625.11 1619 790.99 1062.24 66.40 

1800 563.84 231.23 

 

675.81 1854 899.39 1216.33 66.60 

1900 502.54 255.61 

 

591.92 1714 820.52 1124.65 67.51 

2300 530.76 210.46 298.93 557.12 1922 253.09 1260.63 85.58 

2400 500.05 199.66 275.93 493.91 1777 236.86 1166.07 85.49 

2500 475.89 184.94 256.46 440.88 1651 212.21 1083.27 85.10 

2900 281.28 127.99 411.85 90.69 401 157.24 262.99 70.80 

3000 271.48 119.88 409.41 87.14 399 161.23 261.43 69.60 

3100 79.47 35.41 117.45 24.19 114 45.82 75.00 85.54 
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Unused Control - Algae added to reach 3500 mg carbon (No Acetate or Dairy)  Total 

volume and rate of biogas produced from Facultative Lagoon Sediment (FLS) and 

Anaerobic Digester Sludge (ADS) as inoculants for treatment of algae.  Control was not 

used because of biogas leaking during days 18 through 22 for FLS and days 14 through 

22 for treatment with ADS.  A) Triplicates of total biogas produced using FLS.  B) 

Triplicates of the rate of biogas produced using FLS. C)  Triplicates of total biogas 

produced using ADS.  D) Triplicates of the rate of biogas produced using ADS.  E) 

Average volume of total biogas produced from triplicate treatments of FLS and ADS.  F) 

The average rate of biogas produced from triplicate treatments using FLS and ADS as 

inoculant source.  All error bars represent one standard deviation. 

 

 

Total Volume Biogas Produced Rate of Biogas Production

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60

T
o
ta

l 
B

io
g
as

 P
ro

d
u

ce
d

 (
m

l)

Time Days

A
FLS

0
20
40
60
80

100
120
140
160
180
200
220
240
260

0 10 20 30 40 50 60

A
v
g
. 

V
o
lu

m
e 

(m
l)

 /
 D

ay

Time Days

B
FLS

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60

T
o
ta

l 
B

io
g
as

 P
ro

d
u

ce
d

 (
m

l)

Time Days

C
ADS

0
20
40
60
80

100
120
140
160
180
200
220
240
260

0 10 20 30 40 50 60

A
v
g
. 

V
o
lu

m
e 

(m
l)

 /
 D

ay

Time Days

D
ADS

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60

T
o
ta

l 
B

io
g
as

 P
ro

d
u

ce
d

 (
m

l)

Time Days

FLS
ADS

E

0
20
40
60
80

100
120
140
160
180
200
220
240
260

0 10 20 30 40 50 60

A
v
g
. 

V
o
lu

m
e 

(m
l)

 /
 D

ay

Time Days

FLS

ADS

F

 



98 

APPENDIX B: Python Code 

The following code was used to calculate the concentrations of biogas produced 

on a linear relationship between gas chromatography measurements.   

""" 

Created on Wed Jun 08 20:01:27 2016 

 

@author: JJP 

""" 

 

#Code for calculating rates across whole linear slope while removing points. 

 # row then column 

 

 

#http://stackoverflow.com/questions/1810743/how-to-set-the-current-working-directory-

in-python 

 

import os 

import numpy as np 

os.chdir('D:\Composition_Rate') 

 

#http://stackoverflow.com/questions/14676265/how-to-read-text-file-into-a-list-or-array-

with-python 

 

from numpy import loadtxt 

#measuredpoints = np.genfromtxt('short.txt', delimiter=',', dtype=None) 

data_files_in = 

['Dairy567.csv','Swine111213.csv','S_Davis171819.csv','Petrochem8910.csv','Inoculant2

34.csv','DairyAcetate202122.csv','DairyAlgae262728.csv','BigAlgae141516.csv','Dairy89

10.csv','Swine141516.csv','S_Davis202122.csv','Petrochem111213.csv','Inoculant567.csv'

,'DairyAcetate232425.csv','DairyAlgae293031.csv','BigAlgae171819.csv'] 

data_files_in_con = 

['Dairy567Con.csv','Swine111213Con.csv','S_Davis171819Con.csv','Petrochem8910Con.

csv','Inoculant234Con.csv','DairyAcetate202122Con.csv','DairyAlgae262728Con.csv','Bi

gAlgae141516Con.csv', 

'Dairy8910Con.csv','Swine141516Con.csv','S_Davis202122Con.csv','Petrochem111213C

on.csv','Inoculant567Con.csv','DairyAcetate232425Con.csv','DairyAlgae293031Con.csv',

'BigAlgae171819Con.csv'] 

data_files_out_concalc = 

['Dairy567Out.csv','Swine111213Out.csv','S_Davis171819Out.csv','Petrochem8910Out.c

sv','Inoculant234Out.csv','DairyAcetate202122Out.csv','DairyAlgae262728Out.csv','Big

Algae141516Out.csv', 

'Dairy8910Out.csv','Swine141516Out.csv','S_Davis202122Out.csv','Petrochem111213Ou
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t.csv','Inoculant567Out.csv','DairyAcetate232425Out.csv','DairyAlgae293031Out.csv','Bi

gAlgae171819Out.csv'] 

data_files_out_concalc_each = 

['Dairy567Out_volumes.csv','Swine111213Out_volumes.csv','S_Davis171819Out_volum

es.csv','Petrochem8910Out_volumes.csv','Inoculant234Out_volumes.csv','DairyAcetate2

02122Out_volumes.csv','DairyAlgae262728Out_volumes.csv','BigAlgae141516Out_volu

mes.csv', 

'Dairy8910Out_volumes.csv','Swine141516Out_volumes.csv','S_Davis202122Out_volu

mes.csv','Petrochem111213Out_volumes.csv','Inoculant567Out_volumes.csv','DairyAcet

ate232425Out_volumes.csv','DairyAlgae293031Out_volumes.csv','BigAlgae171819Out_

volumes.csv'] 

headersconcalc = 'time, Nitrogen, Methane, Carbon Dioxide, Nitrogen, Methane, Carbon 

Dioxide, Nitrogen, Methane, Carbon Dioxide'   

 

    # for each iteration of treatment 

for data in range(0,16): 

    measuredVolumes = loadtxt(data_files_in[data], comments="#", delimiter=",", 

unpack=False) 

    concentration = loadtxt(data_files_in_con[data], comments="#", delimiter=",", 

unpack=False) 

    con_matrix = np.zeros([concentration.shape[0],10]) #matrix the in gas compostion for 

each treament  

    volumes_of_each = np.zeros([measuredVolumes.shape[0]+1,10]) 

    # for each iteration of treatment 

    for y in range(1,10,3): 

        #sets up size of matrix to hold equations 

        diagonal = 0 

        eqnlength = concentration.shape[0] + measuredVolumes.shape[0] + 1 

        eqns = np.zeros([eqnlength,eqnlength]) 

        #puts start and final volumes in on diagonal  

        while diagonal < measuredVolumes.shape[0]: 

            #eqns[diagonal,0] = measuredVolumes[diagonal-1,3] 

            eqns[diagonal,diagonal] = measuredVolumes[diagonal,y] 

            eqns[diagonal,diagonal+1] = -measuredVolumes[diagonal,y+1] 

            diagonal = diagonal + 1 

        eqns[diagonal,0] = 1 

        # adds chance of volumes and 1 in eqns for concentration values. 

        volume_column = diagonal + 1 

        concentration_row = 0 

     

        for x in range(0,diagonal): 

            if measuredVolumes[x,0] != concentration[concentration_row,0]: 

                eqns[x,volume_column] = measuredVolumes[x,y+2] # puts volumes in in the 

eqns columns 
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            if measuredVolumes[x,0] == concentration[concentration_row,0]: 

                eqns[x,volume_column] = measuredVolumes[x,y+2] 

                eqns[volume_column,x+1] = 1 

                volume_column = volume_column + 1 

                concentration_row = concentration_row + 1  

        #eqns[volume_column-1,diagonal-1] = 1 #adds duplicate value on the bottom. 

         

        #creates answer values for linear solving 

        ansn = np.zeros([eqnlength,1]) 

        ansn[measuredVolumes.shape[0],0] = 100 

        anso = np.zeros([eqnlength,1]) 

        anso[measuredVolumes.shape[0],0] = 0 

        ansh = np.zeros([eqnlength,1]) 

        ansh[measuredVolumes.shape[0],0] = 0 

        for x in range(1,concentration.shape[0]+1): 

            ansn[measuredVolumes.shape[0] + x,0 ] = concentration[x-1,y] 

            ansh[measuredVolumes.shape[0] + x,0 ] = concentration[x-1,y+1] 

            anso[measuredVolumes.shape[0] + x,0 ] = concentration[x-1,y+2] 

     

        #np.savetxt("eqns.csv", eqns, delimiter=",") 

        n = np.linalg.solve(eqns, ansn) 

        h = np.linalg.solve(eqns, ansh) 

        o = np.linalg.solve(eqns, anso) 

        if y == 1: 

            firstout = np.zeros([eqnlength,10]) 

            for x in range(0,measuredVolumes.shape[0]): 

                firstout[x+1,0] = measuredVolumes[x,0] # time for each individual 

concentration 

                volumes_of_each[x+1,0] = measuredVolumes[x,0] #individual time for matrix 

to calculate volumes of each gas produced.  trying to solve for total volume methane 

produced 

            for x in range(measuredVolumes.shape[0]+1,eqnlength): 

                firstout[x,0] = concentration[x-measuredVolumes.shape[0]-1,0] # puts the time 

spot on calculated concentration of biogas produced. 

        for x in range(0,eqnlength):     

            firstout[x,y+0] = n[x,0] 

            firstout[x,y+1] = h[x,0] 

            firstout[x,y+2] = o[x,0] 

         

    np.savetxt(data_files_out_concalc[data], firstout, fmt='%.9f', 

delimiter=",",header=headersconcalc)    

#    np.savetxt('eqns.csv', eqns, fmt='%.9f', delimiter=",") 

#    np.savetxt('ansh.csv', ansh, fmt='%.9f', delimiter=",") 

#    np.savetxt('ansn.csv', ansn, fmt='%.9f', delimiter=",") 

    #setup concentration multiplier 
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    for row in range(0,concentration.shape[0]): 

        for column in range(0,10): 

            con_matrix[row,column] = firstout[row+diagonal+1,column] 

    current_con_in = 0 

    for time in range(0,measuredVolumes.shape[0]): #while time < con_matrix[-1,0]: 

        for y in range(1,10,3):     

            volumes_of_each[time+1,y+0] = measuredVolumes[time-

1,y+2]*con_matrix[current_con_in,y+0] / 100. #nitrogen 

            volumes_of_each[time+1,y+1] = measuredVolumes[time-

1,y+2]*con_matrix[current_con_in,y+1] / 100. #meth 

            volumes_of_each[time+1,y+2] = measuredVolumes[time-

1,y+2]*con_matrix[current_con_in,y+2] / 100. #Co2 

        if volumes_of_each[time,0] == con_matrix[current_con_in,0]: 

            current_con_in = current_con_in + 1 

             

    np.savetxt(data_files_out_concalc_each[data], volumes_of_each, fmt='%.9f', 

delimiter=",",header=headersconcalc) 

 

The following code was used to calculate the average rate and the duration of average 

rate as shown in Fig. 3.5 

""" 

@author: JJP 

""" 

 

#Code for calculating rates across whole linear slope while removing points. 

#http://stackoverflow.com/questions/1810743/how-to-set-the-current-working-directory-

in-python 

 

import os 

import numpy as np 

os.chdir('D:\RateCode') 

 

#http://stackoverflow.com/questions/14676265/how-to-read-text-file-into-a-list-or-array-

with-python 

 

from numpy import loadtxt 

#from numpy import genfromtxt 

#measuredpoints = np.genfromtxt('short.txt', delimiter=',', dtype=None) 

xy = loadtxt("Dairy5_10.csv", comments="#", delimiter=",", unpack=False) 

#print measuredpoints 

#http://docs.scipy.org/doc/numpy/reference/generated/numpy.insert.html 

#measuredpoints = np.insert(measuredpoints, 2, 0,axis=1) 

#print len(measuredpoints) 
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#print measuredpoints 

 

#setup output array 

ratearray = np.zeros([len(xy)+1,36]) 

 

#setup x, and x^2 for calculations 

linearvalues = np.zeros([len(xy),3]) 

for w in range(0,len(xy)): 

        linearvalues[w,0] = xy[w,0] 

        linearvalues[w,2] = xy[w,0]*xy[w,0] 

#put y values in linear values and then repeats for each treatment. 

 

for j in range(4,20,3): 

    for a in range(0,len(xy)): 

        linearvalues[a,1] = xy[a,j] 

    r2 = 0 

    outarraycounter = 1 

     

    k = int(2.*j-8.) 

    

    #ratearray = ([['Left point','Right point', 'slope','intercept','R2']]) 

     

    toprow = 0 

    bottomrow = (len(xy))-1 

#    ratearray[0,k+0] = int(1) 

#    ratearray[0,k+1] = int(2) 

#    ratearray[0,k+2] = int(3) 

#    ratearray[0,k+3] = int(4) 

#    ratearray[0,k+4] = int(5) 

     

    #print ratearray 

    sumx2 = 0 

    sumx = 0 

    sumxy = 0 

    sumy = 0 

    n = 0 

    SSE = 0 

    SST = 0 

 

    while r2 < 1: 

        for i in range(toprow,bottomrow+1): 

            #print measuredpoints[i,0] 

            sumx2 = linearvalues[i,2] + sumx2 

            sumx = linearvalues[i,0] + sumx 

            sumxy = linearvalues[i,1]*linearvalues[i,0] + sumxy 
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            sumy = linearvalues[i,1] + sumy 

        n = bottomrow-toprow+1 

        #print n 

             

        eqns = np.array([[sumx2,sumx],[sumx,n]]) 

        solsn = np.array([sumxy,sumy]) 

        slopepoint = np.linalg.solve(eqns, solsn) 

        #print slopepoint 

        for i in range(toprow,bottomrow): 

            SSE = ((linearvalues[i,1]-

(slopepoint[0]*linearvalues[i,0]+slopepoint[1]))**2)+SSE 

            SST = ((linearvalues[i,1]-sumy/n)**2)+SST 

        r2 = 1 - SSE/SST 

        #print r2 

        #nextline = [[measuredpoints[toprow,0],measuredpoints[bottomrow-

1,0],slopepoint[0],slopepoint[1],r2]] 

        #print nextline 

        #ratearry = np.concatenate((ratearray, nextline), axis=0) 

        ratearray[outarraycounter,k+3] = linearvalues[toprow,0] # left point 

        ratearray[outarraycounter,k+4] = linearvalues[bottomrow,0] #Right point 

        ratearray[outarraycounter,k+2] = linearvalues[bottomrow,0] - linearvalues[toprow,0] 

#time frame of aveverage values 

        ratearray[outarraycounter,k+1] = slopepoint[0] #slope 

        ratearray[outarraycounter,k+5] = slopepoint[1] # y Intercept 

        ratearray[outarraycounter,k+0] = r2 # R^2 

        #calculates the degree to which point is farther away. 

        rtop = (linearvalues[toprow,0]*slopepoint[0]+slopepoint[1]-

linearvalues[toprow,1])**2 

        rbottom = (linearvalues[bottomrow,0]*slopepoint[0]+slopepoint[1]-

linearvalues[bottomrow,1])**2 

         

        if rtop > rbottom : 

            toprow = toprow  + 1 

            #print "top Gone" 

        else: 

            bottomrow = bottomrow - 1 

            #print "bottom gone" 

              

        sumx2 = 0 

        sumx = 0 

        sumxy = 0 

        sumy = 0 

        n = 0 

        SSE = 0 

        SST = 0 
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        outarraycounter = outarraycounter + 1 

         

        #print slopepoint 

        #print r2 

    #print ratearray 

headers = 'R2, slope, Avg rate window, Left point, Right point, Intercept, R2, slope, Avg 

rate window, Left point, Right point, Intercept, R2, slope, Avg rate window, Left point, 

Right point, Intercept, R2, slope, Avg rate window, Left point, Right point, Intercept, R2, 

slope, Avg rate window, Left point, Right point, Intercept, R2, slope, Avg rate window, 

Left point, Right point, Intercept' 

 

np.savetxt("Dairy5_10Out.csv", ratearray, fmt='%.9f', delimiter=",",header=headers) 
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