5-1974

A Comparative Study of GPA Predictability Using the JAPQ and the SVIB

Kathleen A. Peterson
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

Recommended Citation
https://digitalcommons.usu.edu/etd/5764
A COMPARATIVE STUDY OF GPA PREDICTABILITY
USING THE JAPQ AND THE SVIB

by

Kathleen A. Peterson

A thesis submitted in partial fulfillment
of the requirements for the degree
of
MASTER OF SCIENCE
in
Psychology

Approved:

UTAH STATE UNIVERSITY
Logan, Utah
1974
ACKNOWLEDGMENTS

I express my appreciation to Dr. Robert C. Meacham, my thesis director for the time, testing materials, patience and interest he has so freely rendered to me during the course of this thesis. I also want to recognize for their helpful suggestions, encouragement and friendship throughout my graduate studies to Dr. Elwin C. Nielsen, my committee chairman, Professor Reed S. Morrill and Dr. David R. Stone of my Graduate Committee.

I am grateful for the cooperation of the Counseling and Testing staff of the University in letting me use their materials and facilities during this project; also to Glen Rawlins for his time and assistance in preparing and processing the data; and to Dr. Cordell D. Eckre for consultation.

To my roommates, Janet and Mardean, I express my appreciation for their help, understanding and reassurance in fulfilling this assignment.

Kathleen A. Peterson
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>Chapter</td>
<td></td>
</tr>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II REVIEW OF LITERATURE</td>
<td>3</td>
</tr>
<tr>
<td>Vocational Interest Theory and Human Behavior</td>
<td>3</td>
</tr>
<tr>
<td>The SVIB and the JAPQ</td>
<td>5</td>
</tr>
<tr>
<td>Interest and Achievement</td>
<td>10</td>
</tr>
<tr>
<td>III METHODOLOGY</td>
<td>13</td>
</tr>
<tr>
<td>Sample</td>
<td>13</td>
</tr>
<tr>
<td>Design</td>
<td>14</td>
</tr>
<tr>
<td>Hypotheses</td>
<td>14</td>
</tr>
<tr>
<td>Data and Instrumentation</td>
<td>15</td>
</tr>
<tr>
<td>Statistical Analysis</td>
<td>16</td>
</tr>
<tr>
<td>IV RESULTS</td>
<td>18</td>
</tr>
<tr>
<td>V DISCUSSION</td>
<td>21</td>
</tr>
<tr>
<td>The Hypotheses</td>
<td>21</td>
</tr>
<tr>
<td>Inferences of the 32 JAPQ Job Dimension Correlations</td>
<td>22</td>
</tr>
<tr>
<td>Implications of These Results for Vocational Counselors</td>
<td>22</td>
</tr>
<tr>
<td>Recommendations</td>
<td>23</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>25</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>29</td>
</tr>
<tr>
<td>VITA</td>
<td>54</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Pearson Product Moment Correlations Between: JAPQ and GPA, and SVIB and GPA</td>
<td>19</td>
</tr>
<tr>
<td>B.</td>
<td>Pearson Product Moment Correlations Between: GPA, JAPQ and ACT; GPA, SIVB and ACT; and GPA and ACT.</td>
<td>20</td>
</tr>
<tr>
<td>1.</td>
<td>Descriptive Sample Data (a)</td>
<td>30</td>
</tr>
<tr>
<td>2.</td>
<td>Descriptive Sample Data (b)</td>
<td>30</td>
</tr>
<tr>
<td>3.</td>
<td>Pearson Product Moment Correlations Between JAPQ D Scores and GPA</td>
<td>31</td>
</tr>
<tr>
<td>4.</td>
<td>Description of the 32 JAPQ Job Dimensions</td>
<td>32</td>
</tr>
<tr>
<td>5.</td>
<td>Formulas Used in This Study</td>
<td>33</td>
</tr>
</tbody>
</table>
ABSTRACT

A Comparative Study of GPA Predictability
Using the JAPQ and the SVIB
by
Kathleen A. Peterson, Master of Science
Utah State University, 1974

Major Professor: Dr. Elwin C. Nielsen
Department: Psychology

The purpose of this thesis was to compare the results from two vocational interest blanks, the Job Activity Preference Questionnaire (JAPQ) and the Strong Vocational Interest Blank (SVIB) in the prediction of grade point averages (GPA) for university students. An investigation was also made to determine if the variable vocational interest would contribute to a multiple r composed of American College Test (ACT) scores and GPA.

One hundred students were administered both instruments and predictions made of their GPA's after the completion of two quarters of classroom study and after the completion of the most recent quarter of classroom study. It was found that the predictions from the JAPQ were as good as or better than predictions based on SVIB achievement scores. For the 36 males in the sample a corrected multiple correlation coefficient of .48 resulted between Undergraduate Cumulative Grade Point Average (UGGPA) and the JAPQ Job Dimension Score whereas the SVIB Achievement Scale secured a correlation of .21. The JAPQ correlation is
significant at the .005 level, but the SVIB correlation is insignificant. When the 64 females in the sample were tested the JAPQ secured a corrected multiple correlation coefficient of .40, while the SVIB secured a cross-validation coefficient of .31 between interest and UCGPA. The JAPQ correlation is significant at the .005 level and the SVIB correlation is significant at the .05 level.

It was found that for the 22 males in the sample, for which ACT scores were available, when the variable vocational interest, as measured by the JAPQ or the SVIB, is added to the ACT it increases the correlation with GPA from .13 to .63 with the JAPQ and from .13 to .23 with the SVIB. However, for the 46 females in the sample, who had available ACT scores, the gain in adding the variable vocational interest to the combined prediction of ACT and GPA is negligible.

The results were discussed in respect to vocational interest and academic achievement, and for the implications of these results for vocational counselors.
CHAPTER I
INTRODUCTION

Educators and counselors have been investigating, for years, why some students achieve and others do not achieve. In order to better understand this dilemma, student advisors and counselors have found it helpful to investigate vocational interest variables in addition to aptitude variables.

The most commonly used instrument to assess vocational interest on university campuses is the Strong Vocational Interest Blank (SVIB) (Anastasi, 1970). It has a validated Academic Achievement Scale (AACH), which attempts to identify patterns of interests associated with good scholarship. Counselors report this scale helps them to better understand the educational process and gives additional information about the student.

The SVIB AACH Scale has been used in studies predicting college grades from variables other than aptitudes. These studies have yielded significant correlations between interests and college achievement. To date, studies using the SVIB AACH Scale for this purpose have given rise to predictive correlations equal to or greater than .36 (Campbell and Johnson, 1966; Leigh, 1969).

The existing approaches to vocational interest assessment, as determined by the SVIB, are limited (Birdie, 1950; Holland and Lutz, 1967; Dolliver, 1969; and Whitney, 1969). There are 59 occupational keys for the men's inventory and 34 occupational keys for the women's inventory.
This is not a substantial occupational reference when there are 22,000 occupations (U.S. Department of Labor, 1965) and new occupations developing with technological change.

Since the physical make-up of the SVIB, which will be further explained in Chapter II, restricts the number of vocational interests the instrument can assess, it is desirable to investigate the Job Activity Preference Questionnaire (JAPQ), an instrument which can measure interest for any identified job. The JAPQ, developed by Mecham, Harris, McCormick and Jeanneret (1972), approaches the measurement of vocational interests differently from the SVIB, attempting to relate measured interests directly to the behavioral units characterizing each occupation.

That is, for each question a rating scale is used by the individual to indicate how much he wants each of the listed work activities or situations to be a part of his job. These items or work situations are not related to a specific occupational scale, but are job elements, which can be considered as "common denominators" of work, relevant to any type of vocation. Thus, the JAPQ is designed so that it can measure vocational interests, for male and female in any identified job.

As stated above, researchers have developed an AACH Scale for the SVIB and have obtained significant predictive correlations between interests and college achievement when testing the scale. However, the JAPQ has not been tried in this area.

The problem is that despite the considerable amount of research done with the SVIB, there is a lack of JAPQ data to establish whether JAPQ job dimension scores are equal to or better than SVIB achievement scores for predicting college students' grade point averages.
CHAPTER II
REVIEW OF LITERATURE

Three separate considerations underlie the statement of the problem. The first is vocational interest theory and the role it plays in understanding human behavior. Second, is an investigation of the history and the physical make-up of two vocational interest tests—the SVIB and the JAPQ, and third is the SVIB AACH Scale as a predictor of college performance.

Vocational Interest Theory and Human Behavior

Since 1919, when Strong, Fryer and their associates first began to struggle with the problem of vocational interest measurement, vocational interests and aspirations have become accepted as important phenomena in the field of human behavior. These vocational interests pervade all phases of human life and form one of the mainsprings of an individual's actions (Bordin, 1943). Strong (1934) suggested that an adequate measure of a man's interests will prove the best approach to an understanding of him.

The vocational interest inventory is extensively used in counseling settings. However, the process through which late adolescents move in the transition from High School training and education to a work situation is not definitely known (Carter, 1940). There is no single chronological age at which a person develops significant vocational interests: for different people the age differs.
Bordin (1943) approached vocational interest theory from a standpoint of three categories. The first is the static point of view, which carries the implication of biological determinism. That is, vocational interests are fixed after the individual has reached maturity. The dynamic view is the second category, in which Bordin stated vocational interest is the product of a concatenation of psychological influences, subject to change with changes in the person's equilibrium. The third category is the empirical view which suggested that there are sets of preferences which can be shown to distinguish successful men in various occupations from men in general.

Another theorist, Ausubel (1954) theorized that a person must acquire intrinsic feelings of adequacy and worth before he can make a significant vocational choice. The individual does this through exploration—especially during his adolescent years. In exploration the individual seeks educational opportunities, makes independent decisions, and plays different kinds of adult roles. This way the person establishes his own identity.

Ginzberg (1951) and Super (1963) have viewed vocational choice as a developmental process of several stages. Ginzberg conceptualized this development to be an early fantasy exploration of self, through a more realistic identity-seeking to a final stage of stability and maturity. The tentative choice stage is comprised of three exploratory stages—examination, crystallization, and specification. Super (1963) associated developmental tasks with the exploratory stage to include a testing through trial jobs. Both theorists agreed that the person must evolve through all of these stages before he can arrive at a realistic stage of vocational development.
In summary the cited theorists suggested that the individual does not arrive at a vocational choice without much introspection. However, the process through which an individual arrives at a vocational choice is unique to him, but a vocational interest assessment can be of assistance.

The SVIB and the JAPO

This section of the review of literature will examine two vocational interest instruments. The first inventory to be reviewed will be the SVIB, a commonly used instrument (Cronbach, 1960; Anastasi, 1970). The development of the SVIB resulted from a graduate seminar on vocational interest conducted at the Carnegie Institute of Technology during the academic year 1919-1920 (Fryer, 1931). The evolvement of the JAPO resulted from research done by experimenters who expressed a need to establish a vocational interest inventory, using the "worker-oriented" job elements developed by Dr. Ernest J. McCormick (Harris, 1971; Mecham, Harris, McCormick, and Jeanneret, 1972).

The following summary of the SVIB is taken from Campbell (1966). He states Form T399, which was published in 1966 is the SVIB currently in use on university campuses. It consists of 399 items, is grouped into eight parts and has separate forms for men and women. The first five sections of the SVIB require the respondent to record his preference by responding like, indifferent, or dislike to stated: 1) occupations, 2) school subjects, 3) amusements, 4) activities, and 5) types of people. The last three parts require the examinee to rank given activities in order of preference, make choices between pairs of
work activities or ways of doing things, and rate his present abilities and other personal characteristics. (The SVIB Form T399 for men is reproduced in the appendix.)

There are 59 occupational keys for scoring the men's form and 34 keys for the women's form. Scores on the SVIB are based on differences between the interests of an occupational criterion group and those of men, or, women-in-general reference groups. The criterion and reference groups will be explained in the next paragraphs.

The general reference group consisted of 1,000 individuals. These men, or women, depending upon the battery being validated, were people from a wide variety of professional and business occupations that college graduates usually enter. The average age was 40. It is interesting to note that Strong (1943) and Anastasi (1970) have suggested that the SVIB is more suitable for professional and business occupations because the men, or, women-in-general reference group was chosen from the professional and business occupations, with no skilled and unskilled tradesmen included.

The criterion reference occupational groups are smaller than the general reference group. There is a criterion reference group for each occupational scale. These groups contain 150 to 300 persons averaging 40 years of age. Each person had been employed in the given occupation for three years or more and reported work satisfaction. These groups were validated in 1930 but three studies have collected new criterion groups for occupations where scales already existed (Strong and Tucker, 1952; Kriedt, 1949; and McCormack, 1954). The three studies, based on physicians, psychologists, and social workers, respectively, found some mild differences between the original and new criterion groups, though
it was not clear how much of the difference was due to shifts in interests within the occupations and how much to the use of different sampling methods (Campbell, 1966). Harris suggested in 1971 that changes in a particular occupation over a period of time may invalidate the key prepared for that occupation.

The second vocational interest inventory to be reviewed is the JAPO, which was published in 1972 (Mechan, Marris, McCormick and Jeanneret, 1972). It is fashioned after the Interest Analysis Questionnaire (IAQ) (Harris, 1971).

The JAPQ is an instrument which provides for the expression of interests in the job elements of the Position Analysis Questionnaire (PAQ) (Mecham, Harris, McCormick and Jeanneret, 1972). Since this is the situation it is necessary to review the PAQ in order for the JAPQ to be understood.

The PAQ is a structured job analysis instrument, consisting of 194 elements, with which human work can be assessed. These elements are considered to be worker-oriented rather than job-oriented, by McCormick and thus can be termed as "common denominators" of work, relevant to any type of job since there is a logically limited number of human behavioral variables relevant to job performance (Mecham, 1970).

The "common denominators" of work make possible a quantified job analysis capable of statistical evaluation (McCormick, Cunningham and Gordon, 1969). When using the quantified job analysis approach three premises are made (McCormick, Jeanneret and Mecham, 1969b). The first premise is that a given kind of work behavior involves the same requirements of the worker in whatever job the activity occurs. Second, it is assumed that there is order in human work. The third assumption is that
the use of the worker-oriented job elements will make possible the statis-
tical determination of the nature of that job structure.

Jeanneret and McCormick (1969) used principle components analysis
to identify job dimensions within the divisions of the PAQ. The re-
searchers identified thirty-two job dimensions which tend to occur in
combination in any job which might be considered. (Refer to Table 4 of
the appendix.)

With basic knowledge of the PAQ it is appropriate to review the
JAPQ. The items are responded to by ranking, on a scale, the degree to
which the subject wants each of the work activities or situations to be
a part of his future work. Section one requires the respondent to rate
the degree to which he would be willing to engage in an activity such as
reading to get the information needed in his work. In the second section
the examinee rates how important stated abilities and activities such as
measurement are to his work. Section three requires the subject to rank
the importance, to him, of contact with different types of people in his
work (e.g., students, trainees or apprentices). In section four, five
job situations are listed and the respondent is to rate the degree to
which he would be willing to accept each in his work. The fifth section
has the subject indicate how much he would like to use listed technical
devices, such as stopwatches in his work. Section six asks the examinee
to indicate how much of his working time he would be willing to spend in
activities such as sitting. The seventh section describes four degrees
of injury ranging from minor to serious and has the respondent rank the
degree to which he would be willing to accept these dangers in his work
surroundings. Section eight requests the subject to rate how much he
would want a factor such as detail to be a part of his work. The ninth
section consists of seventeen statements relating to work elements, and has the subject rate how important elements such as competition, responsibility and supervision will be to his work. (The JAPQ is reproduced in the appendix.)

The inventory consists of 150 job elements. These elements, or items, require the respondent to make only a simple expression of preference. The answers are not weighted by comparison with criterion groups. Scores are procured for each of the 32 job dimensions to determine the examinees' pattern of interests. The battery is used for both men and women, and is applicable for both professional and business occupations as well as skilled and semi-skilled occupations (Longhurst, 1973).

In summary, the JAPQ has two distinctions from the SVIB. First, the JAPQ items are not in reference to a specific occupational scale, validated by a criterion-reference group. Instead the elements attempt to relate measured vocational interests directly to the behavioral units characterizing each occupation. The JAPQ elements are designed so that a quantified job analysis is possible. Thus it can measure vocational interests for jobs on which an occupational scale has been validated by a criterion-reference group. It is very difficult to locate this homogeneous occupational group so this process can be time consuming and expensive. The second distinction is that the JAPQ is appropriate for skilled and semi-skilled vocations as well as professional and business occupations. Since many students drop out of university and enter the trade areas, the assumption can be made that the JAPQ would be more appropriate for assessing the university student's vocational interest than the SVIB. As stated earlier, researchers suggest that the SVIB
is most suitable for students with professional and business vocational interests. These two distinctions alone suggest that the JAPO is more flexible than the SVIB.

Interest and Achievement

Studies have been made in regard to predicting college achievement from the SVIB AACH Scale. The following is a summary of these studies.

Campbell and Johnson (1966) developed the men's academic achievement scale (AACH). In developing this scale, items from the SVIB that demonstrated a large response difference between the top and bottom 40 percent of the sample were selected to complete the AACH Scale. They observed that this scale, which includes items that differentiate between good and poor students is moderately effective in predicting grades and eventual educational level. The validation group consisted of 462 freshmen entering the University of Minnesota's Liberal Arts College in 1961. A cross-validation sample of 250 was held out from the same class. The subjects were rank-ordered by their High School and College Grand Point Averages (GPA). The correlation between the AACH Scores and first year cumulative GPA was .52 for the validation group and .36 for the cross-validation group. However, the AACH score did not contribute to a multiple r composed of High School Rank (HSR) and Minnesota Scholastic Aptitude Test (MSAT).

Campbell (1965) did a second cross-validation study of his 1961 study. This group was composed of 283 participants in a 25-year follow-up study of University of Minnesota students. This study was retrodictive, rather than predictive, with a correlation of .35 between the
AACH Scores and the Cumulative GPA. (Campbell used the Cumulative GPA at the completion of the subject's education.)

An Academic Achievement Scale (AACH) for the Women's form was developed by Campbell and Johnson (1966) analogous to the Men's form. The validation group consisted of 658 freshmen entering the University of Minnesota's Liberal Arts College in 1966. A cross-validation sample of 250 was held out from the same class. The correlation between the AACH scores and the first year GPA's was .42 for the validation group and .29 for the cross-validation group.

Salter (1969) investigated the value of the SVIB AACH Scale as a predictor of college performance. He reported an r of .20 between AACH Scores and Cumulative GPA. His subjects were 224 male and female students who had requested decision-making help at the University of Utah Counseling Center. Salter purports that perhaps the reason for the low correlation is that his study dealt with a restricted population.

Lindsay and Althouse (1968) did a study similar to Salter's. They examined the relationship between AACH Scale scores and first quarter GPA for a group of 388 Pennsylvania State University freshmen. The authors obtained correlations of .10 for 299 males and .25 for 89 females.

Leigh (1969) obtained correlations more similar to Campbell and Johnson. He secured an r of .32 between the AACH Scale scores and first quarter GPA's for 1,994 freshmen at the University of Utah.

In summarizing these studies it is evident that there is a correlation between vocational interest, as determined by the SVIB AACH Scale, and the student's GPA. Interest can effectively predict a university student's GPA.
However, as cited earlier in the Review of Literature, the JAPQ, because of its' design may make a more accurate assessment of the student's interest than does the SVIB. In order to determine the validity of the JAPQ as a vocational interest instrument further study is needed to find if the JAPQ scores can be used as predictors of academic achievement. For this reason the researcher did a comparative study between the SVIB and the JAPQ to determine if the JAPQ scores are equal to or better than the SVIB scores for predicting college students' grade point averages.
CHAPTER III

METHODOLOGY

The purpose of this present study was directed at three goals. First of all, it was directed at replicating Campbell and Johnson's 1966 findings with a sample of USU students at Logan, Utah. Secondly, the goal was to explore the possibility that JAPQ job dimension scores will correlate as high or higher than SVIB AACH scores with college students' grade point averages. Thirdly, the study was directed at exploring the possibility that the variable vocational interest, as measured by the JAPQ job dimension scores or the SVIB AACH scale scores will significantly increase the correlation between the independent variables of ACT scores and vocational interest scores and the dependent variable of GPA.

Sample

One hundred college students—36 males and 64 females were administered two Interest Inventories. The sample was voluntarily drawn from the Utah State University student body at Logan, Utah. This university is located in a town of approximately 20,000 people in a rural section of north-eastern Utah. All except seven subjects—five females and two males had completed a minimum of two quarters of freshmen class work at the University. American College Test (ACT) scores were available for 22 males and 46 females in the sample.
Design

Data from the subjects was used in four ways. First the SVIB AACH Scale scores were examined to determine if the correlation between SVIB AACH scores and the students' second quarter and cumulative GPA's were significant, and sufficiently high to use in a prediction equation. Secondly, the JAPQ scores were studied to learn which, if any, job dimension scores were significantly related to the students' cumulative and second quarter GPA's. The third step was to statistically evaluate the correlation coefficients between GPA, the SVIB AACH scores and the JAPQ predicted GPA to determine if the JAPQ predictions were equal to or better than the SVIB predictions. Lastly it was determined if separately adding SVIB and JAPQ job dimension scores as independent variables in a multiple regression equation with ACT scores would significantly improve the prediction of GPA.

Hypotheses

The hypotheses that were tested can be summarized as follows:

1. A significant correlation will exist between SVIB AACH scores and college achievement as measured by second quarter and cumulative GPA.

2. The SVIB correlations will not be significantly different from those found by Campbell and Johnson (1966).

3. Significant correlations will exist between JAPQ job dimension scores and college achievement (GPA).

4. The JAPQ job dimension scores will correlate with GPA at a level significantly equal to or higher than SVIB AACH scores.
5. The JAPQ job dimension scores will contribute to an increase in the multiple r when they are used with ACT scores in a multiple r with GPA as the dependent variable.

6. The SVIB AACH score will contribute to an increase in the multiple r when it is used with ACT scores in a multiple r with GPA as the dependent variable.

The hypotheses in this study were tested at the .05 level of significance.

Data and Instrumentation

In order to test the stated hypotheses, ACT test scores, second quarter and cumulative GPA's were secured for the data analysis.

Two vocational interest assessment instruments were used in this study--the Strong Vocational Interest Blank (SVIB) for men and the Job Activity Preference Questionnaire (JAPQ). These tests were administered in the testing room of the Counseling and Testing division of the University. The tests are not timed and they have adequate instruction in the introduction so the subjects took the tests, at their convenience. The researcher was available to distribute the tests and to give assistance when it was required. The combined testing time for both instruments was a maximum of two hours. The SVIB, for men, was used for both the men and the women in the sample because the men's blank provides a pattern of interests portrayed by college women (Anastasi, 1970).

The subjects were instructed, by the researcher, to complete the tests quickly. Cronback (1960) and Holland and Lutz (1967) state that the first response which comes to the examinee when writing a vocational
interest test is the best assessment of the student's vocational interest. The subjects were also instructed that when responding to the JAPQ, they should not relate to any specific job or occupation for this will bias their responses.

Two cumulative GPA's were computed for each subject. The first GPA was computed for the first two quarters of freshman class work. The second GPA was a cumulative GPA through the completion of the most recent quarter's class work. The experimenter secured written permission from the university provost granting access to the students' transcripts. She also secured the subjects' permission to release their GPA's for research purposes.

The SVIB AACH scores were hand scored. The JAPQ elements were machine scored. Scores were obtained for each of the thirty job dimensions for each subject. (For a description of the job dimensions refer to Table 4 of the appendix.) ACT scores were acquired from the Counseling and Testing Department of the university.

Statistical Analysis

1. To test hypothesis 1 Pearson product moment correlations were calculated for the SVIB AACH Score and the student's cumulative GPA after two quarters of freshman class work and the GPA after the completion of the most recent quarter's class work. A formula was used to test the significance of the correlation coefficient. (The formula is reproduced in Table 5 of the appendix.)

2. To test hypothesis 2 the calculated two-quarter Pearson product moment correlation for hypothesis 1 and Campbell and Johnson's (1966) correlation were used in a formula to test the significance of
difference between two correlation coefficients for independent samples. (The formula is reproduced in Table 5 of the appendix.)

3. To test hypothesis 3 Pearson product moment correlations were calculated for the JAPQ job dimension scores and the student's cumulative GPA after the completion of the most recent quarter's class work. A formula, (Table 5 of the appendix) was used to test the significance of the correlation coefficient.

4. To test hypothesis 4, the correlation coefficients between GPA, the AACH score and the JAPQ predicted GPA were statistically evaluated to determine if the JAPQ predictions were equal to, or better than the SVIB predictions. A formula (Table 4 of the appendix) to test the significant difference between the two correlation coefficients was used.

5. The researcher was unable to secure a correction formula to test hypothesis 5 and 6, but statistical evaluations were made.

a. To investigate hypothesis 5 a multiple r was calculated using the predicted GPA scores and ACT composite scores to determine if JAPQ predicted scores increase the correlation with GPA.

b. To investigate hypothesis 6, a multiple r was calculated for SVIB AACH scores and ACT composite scores to determine if the AACH scores increase the correlation with GPA.
CHAPTER IV
RESULTS

For the males in the study, an r of .19 was obtained between the SVIB AACH scores and the 2 Quarter Cumulative GPA (2QCGPA) while an r of .21 was secured between AACH and Undergraduate Cumulative GPA (UCGPA). These results are not significantly different from zero at the .05 level of significance. However, even though the 2QCGPA r of .19 was not significantly different, at the .05 level, from Campbell and Johnson's (1966) cross-validation correlation of .29, it did reach the .10 level of significance.

The SVIB AACH Scores from tested females in the sample secured a correlation, which was insignificant from Campbell and Johnson's study (1966). The correlation was .28 between SVIB AACH scores and 2QCGPA and .31 with the UCGPA. Although such correlations are low, the 2QCGPA was significantly different at the .05 level of significance while the UCGPA was significant beyond the .01 level of significance.

The JAPQ job dimension scores secured higher correlations with cumulative GPA's than did the SVIB AACH scores for both males and females in this study. The corrected multiple correlation coefficient for the males was .43 at the 2QCGPA and .48 for the UCGPA. Respectively, corrected r of .33 and .40 was obtained for the female population. These correlations were significantly different from zero at the .001 level of significance.
The above results are summarized in Table A.

Table A
Pearson Product Moment Correlations Between; JAPQ and GPA, and SVIB and GPA

<table>
<thead>
<tr>
<th>Correlations</th>
<th>JAPQ 2Q GPAr</th>
<th>SVIB 2Q GPAr</th>
<th>JAPQ UC GPAr</th>
<th>SVIB UC GPAr</th>
<th>Corrected JAPQ GPA* 20 GPAr</th>
<th>UC GPAr</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>N=34</td>
<td>N=34</td>
<td>N=36</td>
<td>N=36</td>
<td>N=34</td>
<td>N=36</td>
</tr>
<tr>
<td></td>
<td>.75 ***</td>
<td>.19</td>
<td>.63 ***</td>
<td>.21 ***</td>
<td>.43 ***</td>
<td>.48 ***</td>
</tr>
<tr>
<td>F</td>
<td>N=59</td>
<td>N=59</td>
<td>N=64</td>
<td>N=64</td>
<td>N=59</td>
<td>N=64</td>
</tr>
<tr>
<td></td>
<td>.60 ***</td>
<td>.28 **</td>
<td>.68 ***</td>
<td>.31 ***</td>
<td>.33 ***</td>
<td>.40 ***</td>
</tr>
</tbody>
</table>

*Correlation Coefficient corrected to estimate cross-validation coefficient using Lord and Nickolsen Formula (Herzberg, 1969). (The formula is reproduced in Table 5 of the appendix.)

**Significant at the .05 level of significance.

***Significant at the .005 level of significance.

****Significant at the .01 level of significance.

When comparing the correlations of the 32 job dimension scores with GPA, the tested females in the sample did not exhibit such extreme correlations as did the tested males. The JAPQ correlations for males vary from -.52 to .35 and -.23 to .27 for the females.

These job dimension scores were used in a multiple regression. It was learned that certain job dimension scores (D) were significantly related to the students' 2QCGPA and UC GPA. For the tested males in the study D 6, 11, 15, 17, 22, 23, 24, 26, and 31 were related to the 2QCGPA while D 2, 10, 11, 12, 14, 17, 22, 24, and 30 were used in a predictive
equation with UCGPA. When the females in the sample were tested, D: 1, 5, 8, 12, 19, 21, 24, 26, and 32 were used in a predictive equation with 2QCGPA while D: 3, 4, 5, 9, 11, 12, 25, 31, and 32 were used with UCGPA.

The above results are cited in Table 3 of the appendix.

It was found the JAPQD and the SVIBAACH did contribute to an increase in the multiple r when they were used with ACT scores in a multiple r with GPA as the dependent variable. For the 22 males in the sample for which ACT scores were available the D increased the multiple r .55 for the 2QCGPA and .50 for the UCGPA. When the 46 females were tested the D respectively increased the multiple r .01 and .07. The SVIB contributed .05 and .10 for the males and .01 for the females.

The above results are biased because the correlations are not corrected.

These results are summarized in Table B.

Table B

Pearson Product Moment Correlations Between:
GPA, JAPQ and ACT; GPA, SIVB and ACT;
and GPA and ACT

<table>
<thead>
<tr>
<th>Correlations</th>
<th>GPA</th>
<th>JAPQ + ACT</th>
<th>SVIB + ACT</th>
<th>ACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 2QCGPA</td>
<td>.75*</td>
<td>.25</td>
<td></td>
<td>.20</td>
</tr>
<tr>
<td>M UCGPA</td>
<td>.63*</td>
<td>.23</td>
<td></td>
<td>.13</td>
</tr>
<tr>
<td>F 2QCGPA</td>
<td>.60*</td>
<td>.60*</td>
<td></td>
<td>.59*</td>
</tr>
<tr>
<td>F UCGPA</td>
<td>.68*</td>
<td>.62*</td>
<td></td>
<td>.61*</td>
</tr>
</tbody>
</table>

*Significant at the .05 level of significance.
CHAPTER V
DISCUSSION

The major objective of this study was to determine whether JAPQ job dimension scores were equal to or better than SVIB AACH scores for predicting college students' grade point averages.

A secondary objective was to determine if the dimension scores and the SVIB AACH scores contribute significantly to a multiple r composed of ACT scores and GPA.

The results will be discussed in respect to: 1) The hypotheses; 2) Inferences of the 32 JAPQ job dimension correlations with the students' cumulative GPA: 3) Implications of these results for vocational counselors; and 4) Recommendations.

The Hypotheses

The correlations between SVIB AACH scores and college achievement for the males in this study as measured by GPA were lower than Campbell and Johnson's (1966) cross-validation study. However, the female correlations in the present study are similar. Apparently the AACH scale was less discriminative when applied to the males in this sample than when applied to the females in this study.

Significant correlations did exist between the JAPQ job dimension scores and college achievement for both males and females in the study. The results suggest the JAPQ job dimension scores were better predictors of college achievement than were the SVIB AACH scores. (See Table A
of Chapter IV.) However the correlation is more significant at the UCCPA level than at the 2QCGPA. This was probably due to the fact that the students' GPA becomes more stable during his upper division class work.

It has not determined how significantly the JAPQ or SVIB scores contributed to an increase in the multiple r when they were used with ACT scores and with GPA as the dependent variable. The JAPQ scores increased the correlation more than did the SVIB scores, especially with the males of the sample. (Refer to Table B of Chapter IV.) As stated in the results section, these results are biased because the correlations are not corrected.

Inferences of the 32 JAPQ Job Dimension Correlations

When analyzing the individual dimension score correlations with GPA it appears that the males have more extreme scores than the females. This is more evident after the student has been in college for a longer period of time. Since many of the JAPQ items suggest physical activity the assumption can be made that the more he enjoys manual work the lower his GPA. This accounts for the male's extreme negative correlations.

Refer to Table 4 of the appendix for a description of the job dimensions.

Implications of These Results for Vocational Counselors

The results of this study suggest that the JAPQ makes a more accurate assessment of the student's interest for this sample of USU students than does the SVIB as measured by the correlation between vocational interest and GPA. (Refer to Table A of the results section.)
One of the uses of a vocational interest battery is to investigate the vocational interest variables so that the counselor can better understand the student. The underlying assumption is that the better the counselor understands the educational process, the more assistance he can be to the student. The results suggest that the variable interest has predictive power when used to predict the student's GPA.

The JAPQ could prove to be a very valuable tool for vocational counselors. Often students seek the counselor's help when he is doing poorly in school. These students are sometimes failing because they are not academically inclined—they would rather be employed as skilled or semi-skilled laborers. The JAPQ is more appropriate for these individuals than is the SVIB (Refer to Chapter II.) Because it tests for skilled and semi-skilled interest as well as professional and business interest. Also, students are often disgruntled because they are unhappy in the field they are studying. The counselor could help to identify the problem by establishing the student's vocational interest and predicted GPA. By identifying this the counselor could conceivably recommend to the student a more appropriate major, according to his interest.

Recommendations

It is recommended that:

1. Future research be founded on the development of a more attractive JAPQ battery with better face validity. The subjects in the sample did not enjoy seating the test. In some instances the subjects had to be encouraged to complete the battery.
2. Future research should justify the studying of interest patterns as determined by the JAPQ, unique to separate colleges of the university. This could be valuable information for the vocational counselor as well as to the individual when the counselee is selecting a vocation.

3. On the basis of the results of this study and past research, the JAPQ should be considered as a practical tool to be used in pinpointing the student's vocational interest and recommending which area he may succeed in, not only academically, but also vocationally.
REFERENCES

Jeanneret, P. R., and McCormick, E. J. The job dimensions of "worker-oriented" job variables and of their attribute profiles as based on data from the position analysis questionnaire. Lafayette, Indiana: Occupational Research Center, Purdue University, 1969.

Lindsay, C. A. and Althouse, R. Comparative validities of the SVIB Academic Achievement Scale and the college student questionnaire motivation for grades scale. Unpublished Manuscript, Pennsylvania State University, 1963.

McCormick, E. J., Jeanneret, P. R. and Mecham, R. C. The development and background of the Position Analysis Questionnaire (PAQ). Lafayette, Indiana: Occupational Research Center, Purdue University, 1969. (a)

McCormick, E. J., Jeanneret, P. R., and Mecham, R. C. A study of job characteristics and job dimensions as based on the Position Analysis Questionnaire. Lafayette, Indiana: Occupational Research Center, Purdue University, 1969. (b)

Whitney, D. R. Predicting from expressed vocational choice: A Review.
Table 1

Descriptive Sample Data (a)

<table>
<thead>
<tr>
<th>Class</th>
<th>Males (N=36)</th>
<th>Females (N=64)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Sophomore</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Junior</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Senior</td>
<td>17</td>
<td>29</td>
</tr>
<tr>
<td>Graduate</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 2

Descriptive Sample Data (b)

<table>
<thead>
<tr>
<th>College</th>
<th>Males (N=36)</th>
<th>Females (N=64)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td>10</td>
<td>28</td>
</tr>
<tr>
<td>Science</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Family Life</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Business</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Engineering</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Agriculture</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Humanities</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Natural Resources</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 3

Pearson Product Moment Correlations Between JAPQ D Scores and GPA

<table>
<thead>
<tr>
<th>JAPQ D</th>
<th>GPA2 Males N=34</th>
<th>UCGPA Males N=36</th>
<th>GPA2 Females N=59</th>
<th>UCGPA Females N=64</th>
</tr>
</thead>
<tbody>
<tr>
<td>D- 1</td>
<td>-0.03196</td>
<td>-0.13810</td>
<td>-0.08784</td>
<td>-0.03602</td>
</tr>
<tr>
<td>D- 2</td>
<td>-0.16577</td>
<td>-0.21970</td>
<td>0.15783</td>
<td>0.04931</td>
</tr>
<tr>
<td>D- 3</td>
<td>0.11003</td>
<td>0.19947</td>
<td>0.12181</td>
<td>0.19765</td>
</tr>
<tr>
<td>D- 4</td>
<td>0.09431</td>
<td>0.08971</td>
<td>0.10687</td>
<td>0.22637</td>
</tr>
<tr>
<td>D- 5</td>
<td>0.06809</td>
<td>-0.96334</td>
<td>-0.19920</td>
<td>-0.23624</td>
</tr>
<tr>
<td>D- 6</td>
<td>-0.04228</td>
<td>-0.09074</td>
<td>-0.08746</td>
<td>-0.05206</td>
</tr>
<tr>
<td>D- 7</td>
<td>0.05176</td>
<td>-0.19410</td>
<td>0.03565</td>
<td>-0.09518</td>
</tr>
<tr>
<td>D- 8</td>
<td>0.12016</td>
<td>0.21620</td>
<td>0.04381</td>
<td>0.07738</td>
</tr>
<tr>
<td>D- 9</td>
<td>-0.10513</td>
<td>-0.08689</td>
<td>0.07296</td>
<td>0.11401</td>
</tr>
<tr>
<td>D- 10</td>
<td>0.12906</td>
<td>0.22456</td>
<td>0.03485</td>
<td>0.01180</td>
</tr>
<tr>
<td>D- 11</td>
<td>-0.31086</td>
<td>-0.44877</td>
<td>0.27666</td>
<td>0.23777</td>
</tr>
<tr>
<td>D- 12</td>
<td>-0.25763</td>
<td>-0.52278</td>
<td>0.16729</td>
<td>0.14943</td>
</tr>
<tr>
<td>D- 13</td>
<td>0.07684</td>
<td>-0.23192</td>
<td>0.06130</td>
<td>0.03289</td>
</tr>
<tr>
<td>D- 14</td>
<td>-0.16349</td>
<td>-0.28335</td>
<td>-0.00523</td>
<td>-0.02770</td>
</tr>
<tr>
<td>D- 15</td>
<td>-0.29407</td>
<td>-0.17837</td>
<td>0.05082</td>
<td>0.08246</td>
</tr>
<tr>
<td>D- 16</td>
<td>-0.03971</td>
<td>-0.19053</td>
<td>0.16186</td>
<td>0.05934</td>
</tr>
<tr>
<td>D- 17</td>
<td>0.22162</td>
<td>0.35344</td>
<td>0.12303</td>
<td>0.10651</td>
</tr>
<tr>
<td>D- 18</td>
<td>-0.01669</td>
<td>-0.27946</td>
<td>0.12208</td>
<td>0.00313</td>
</tr>
<tr>
<td>D- 19</td>
<td>-0.23305</td>
<td>-0.21450</td>
<td>-0.15061</td>
<td>-0.09021</td>
</tr>
<tr>
<td>D- 20</td>
<td>0.08402</td>
<td>0.04765</td>
<td>0.01977</td>
<td>-0.00635</td>
</tr>
<tr>
<td>D- 21</td>
<td>-0.15822</td>
<td>-0.25270</td>
<td>-0.06308</td>
<td>-0.11966</td>
</tr>
<tr>
<td>D- 22</td>
<td>-0.01488</td>
<td>-0.31216</td>
<td>0.03331</td>
<td>0.07314</td>
</tr>
<tr>
<td>D- 23</td>
<td>-0.07882</td>
<td>-0.05373</td>
<td>-0.09693</td>
<td>0.00614</td>
</tr>
<tr>
<td>D- 24</td>
<td>0.31746</td>
<td>0.23818</td>
<td>0.00680</td>
<td>-0.03941</td>
</tr>
<tr>
<td>D- 25</td>
<td>-0.11756</td>
<td>-0.08672</td>
<td>0.09969</td>
<td>0.17801</td>
</tr>
<tr>
<td>D- 26</td>
<td>-0.11163</td>
<td>-0.27844</td>
<td>0.02891</td>
<td>-0.04238</td>
</tr>
<tr>
<td>D- 27</td>
<td>0.24736</td>
<td>-0.28370</td>
<td>0.20940</td>
<td>0.11919</td>
</tr>
<tr>
<td>D- 28</td>
<td>0.12594</td>
<td>0.14996</td>
<td>0.09683</td>
<td>0.13846</td>
</tr>
<tr>
<td>D- 29</td>
<td>-0.13210</td>
<td>-0.18954</td>
<td>0.14012</td>
<td>0.06510</td>
</tr>
<tr>
<td>D- 30</td>
<td>-0.09246</td>
<td>-0.42896</td>
<td>0.11009</td>
<td>0.10736</td>
</tr>
<tr>
<td>D- 31</td>
<td>-0.03613</td>
<td>-0.10094</td>
<td>-0.12304</td>
<td>-0.17356</td>
</tr>
<tr>
<td>D- 32</td>
<td>-0.02164</td>
<td>-0.19737</td>
<td>-0.01587</td>
<td>-0.06862</td>
</tr>
</tbody>
</table>
Table 4
Description of the 32 JAPQ Job Dimensions

<table>
<thead>
<tr>
<th>Division Job Dimensions</th>
<th>Overall Job Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-1 Watching Devices or Materials For Information</td>
<td>D-28 Having Decision Making, Communication, and Social Responsibilities</td>
</tr>
<tr>
<td>D-2 Interpreting What is Heard or Seen</td>
<td>D-29 Performing Skilled Activities</td>
</tr>
<tr>
<td>D-3 Using Data Originating With People</td>
<td>D-30 Being Physically Active or Related Environmental Conditions</td>
</tr>
<tr>
<td>D-4 Watching Things From a Distance</td>
<td>D-31 Operating Equipment or Vehicles</td>
</tr>
<tr>
<td>D-5 Evaluating Information From Things</td>
<td>D-32 Processing Information</td>
</tr>
<tr>
<td>D-6 Being Aware of Environmental Conditions</td>
<td></td>
</tr>
<tr>
<td>D-7 Being Aware of Body Movement and Balance</td>
<td></td>
</tr>
<tr>
<td>D-8 Making Decisions</td>
<td></td>
</tr>
<tr>
<td>D-9 Processing Information</td>
<td></td>
</tr>
<tr>
<td>D-10 Controlling Machines or Processes</td>
<td></td>
</tr>
<tr>
<td>D-11 Using Hands and Arms to Control or Modify</td>
<td></td>
</tr>
<tr>
<td>D-12 Using Feet or Hands to Operate Equipment or Vehicles</td>
<td></td>
</tr>
<tr>
<td>D-13 Performing Activities Requiring General Body Movement</td>
<td></td>
</tr>
<tr>
<td>D-14 Using Hands and Arms to Move or Position Things</td>
<td></td>
</tr>
<tr>
<td>D-15 Using Fingers Versus General Body Movement</td>
<td></td>
</tr>
<tr>
<td>D-16 Performing Skilled or Technical Activities</td>
<td></td>
</tr>
<tr>
<td>D-17 Communicating Judgments, Decisions, Information</td>
<td></td>
</tr>
<tr>
<td>D-18 Exchanging Job-Related Information</td>
<td></td>
</tr>
<tr>
<td>D-19 Performing Staff or Related Activities</td>
<td></td>
</tr>
<tr>
<td>D-20 Contacting Supervisor or Subordinates</td>
<td></td>
</tr>
<tr>
<td>D-21 Dealing With the Public</td>
<td></td>
</tr>
<tr>
<td>D-22 Being in a Hazardous or Unpleasant Environment</td>
<td></td>
</tr>
<tr>
<td>D-23 Engaging in Personally Demanding Situations</td>
<td></td>
</tr>
<tr>
<td>D-24 Engaging in Businesslike Work Situations</td>
<td></td>
</tr>
<tr>
<td>D-25 Being Alert to Detail or Changing Conditions</td>
<td></td>
</tr>
<tr>
<td>D-26 Performing Unstructured Versus Structured Work</td>
<td></td>
</tr>
<tr>
<td>D-27 Working on a Variable Versus Regular Schedule</td>
<td></td>
</tr>
</tbody>
</table>
Table 5
Formulas Used in This Study

1. Formula to test the significance of the difference between two correlation coefficients for independent samples (Ferguson, 1966, p. 188).

\[
Z = \frac{z_{r_1} - z_{r_2}}{\sqrt{1/(N_1-3) + 1/(N_2-3)}}
\]

2. Formula to test the difference between two correlation coefficients for correlated samples (Ferguson, 1966, p. 189).

\[
t = \frac{(r_{12} - r_{13}) \sqrt{(N - 3)(1 + r_{23})}}{\sqrt{2(1-r_{12}^2-r_{13}^2-r_{23}^2 + 2r_{12}r_{13}r_{23})}}
\]

3. Formula to test the significance of a correlation coefficient (Ferguson, 1966, p. 187).

\[
t = \frac{r \sqrt{N - 2}}{1 - r^2}
\]

4. Formula to estimate cross-validation coefficient (Herzberg, 1969, p. 4).

\[
\text{Est}(p^2) = 1 - \frac{N-1}{N-n-1} \frac{N+n+1}{N} (1 - r^2)
\]

- p^2 = population correlation coefficient
- N = number in sample
- n = number of predictors
Job Activity Preference Questionnaire (JAPQ)

(The JAPQ is an interest inventory that provides for the expression of interests in the job elements of the Position Analysis Questionnaire, which is a structured job analysis instrument.)

Robert C. Mecham, Alma F. Harris, Ernest J. McCormick, P. R. Jeanneret

The purpose of this questionnaire is to obtain a measure of your job interests or preferences. Each individual has different interests, so there are no right or wrong answers. Simply mark what applies to you.

The questionnaire is divided into 9 sections, each of the sections containing a listing of work activities or situations. For each section there is a rating scale that you are to use in rating how much you would want each of the work activities or situations to be a part of a job that you might sometime have.

In rating the work activities and situations, do not attempt to relate your responses directly to any specific job or occupation. Rather, consider each item separately, and indicate the level of your interest in the activity or situation as a part of any job that you might consider. As you rate each work activity or situation, assume that an opportunity would be available for you to get any required education or training.

PERSONAL DATA

<table>
<thead>
<tr>
<th>Last Name</th>
<th>First Name</th>
<th>Middle Name</th>
<th>Social Security Number</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employer, if presently employed</td>
<td>Occupation, if employed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City</td>
<td>State</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Education (Check One)

<table>
<thead>
<tr>
<th>8 or less</th>
<th>High school</th>
<th>Some college</th>
<th>College degree</th>
<th>Advanced degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

School or College, if presently a student

| Name | |
| City | State |

Your Address

<table>
<thead>
<tr>
<th>City</th>
<th>State</th>
</tr>
</thead>
</table>

Sex (Check One)

| Male | Female |
| ☐ | ☐ |

Copyright © 1972, Robert C. Mecham, Alma F. Harris, Ernest J. McCormick, and P. R. Jeanneret.

A substantial part of this document is reprinted from the Position Analysis Questionnaire (PAQ). Copyright © 1969, Purdue Research Foundation, Lafayette, Indiana.
SECTION 1

Information is needed to perform any type of work, and that information can come from many different sources. Use the numbers from 0 to 5 on the rating scale to mark how much you would like to use or engage in each of the following activities to get the "information" needed in your work. Place the scale value that you choose in the space provided beside each question.

<table>
<thead>
<tr>
<th>Rating Scale</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 None</td>
<td>5</td>
</tr>
<tr>
<td>1 Very limited</td>
<td>1. Reading (books, reports, office notes, job instructions, etc.)</td>
</tr>
<tr>
<td>2 Limited</td>
<td></td>
</tr>
<tr>
<td>3 Moderate</td>
<td></td>
</tr>
<tr>
<td>4 Considerable</td>
<td></td>
</tr>
<tr>
<td>5 Very extensive</td>
<td>A "5" has been marked in this example. This indicates that "very extensive" reading as a source of job information is desired.</td>
</tr>
</tbody>
</table>

1. Reading (books, reports, office notes, job instructions, etc.)
2. Using numerical materials (graphs, accounts, specifications, etc.)
3. Using graphic materials (pictures, drawings, blueprints, diagrams, maps, tracings, X-ray films, TV pictures, etc.)
4. Using patterns and related devices (stencils, patterns, templates, etc.)
5. Using visual displays (dials, gauges, signal lights, radar scopes, speedometers, clocks, etc.)
6. Using measuring devices (rulers, calipers, tire pressure gauges, scales, thermometers, etc.)
7. Observing and listening to mechanical devices in use (tools, equipment, machinery, etc.)
8. Observing things you are working with (materials, parts or objects, such as bread dough being mixed, wood being cut, metal being welded, boxes being inventoried, items being inspected, etc.)
9. Observing features of nature (landscapes, fields, geological samples, plants, cloud formations, or other features of nature)
10. Observing or inspecting man-made features of the environment (buildings, dams, highways, bridges, docks, railroads, etc.)
11. Observing the behavior of people or animals
12. Observing the events or circumstances around you (flow of traffic, movement of materials, airport control tower operations, etc.)
13. Viewing art, decorations, etc. (paintings, sculpture, jewelry, window displays, etc.)
14. Listening to spoken information (instructions, conversations, interviews, meetings, discussions, etc.)
15. Listening to sounds (non-verbal)
16. Touching
17. Smelling
18. Tasting
DATE: write how important you would like each of the following abilities and activities to be in your work. Again use the numbers 0 to 5.

19. Using distance vision (watching things at distances beyond arm's reach)

20. Using depth perception (judging the distance from yourself to an object, or the distance between objects, as in running a crane, operating a dentist's drill, etc.)

21. Using color perception (telling the difference between things by color)

22. Recognizing sound patterns (Morse code, heart beats, engine not running properly, etc.)

23. Recognizing sounds by loudness, pitch or tone quality (tuning pianos, repairing sound systems, etc.)

24. Body movement sensing (detecting changes in the direction or speed at which you are moving, without using sight or hearing, as in flying aircraft, working in a submarine, etc.)

25. Body balancing (walking on steel beams, climbing high poles, working on steep roofs, etc.)

26. Judging condition or quality (antique dealer, appraiser, jeweler, used car dealer, coin dealer, etc.)

27. Inspecting (grading or finding defects)

28. Estimating speed of moving parts (the revolutions per minute of a motor, the speed at which a lathe turns, etc.)

29. Estimating speed of moving objects (the speed of vehicles, speed of materials moving on a conveyor belt, etc.)

30. Estimating speed of processes (chemical reactions, assembly operations, timing of food preparation, etc.)

31. Estimating quantity (number of board feet of lumber in a log, the weight of a horse, the number of bacteria in an area by looking through a microscope, etc.)

32. Estimating size (height of a tree, measurements of a box, etc.)

33. Estimating time (time to make a delivery, to service a piece of equipment, etc.)

34. Combining information (weatherman using different pieces of information to prepare a weather report, pilot using different bits of information to fly his plane, etc.)

35. Analyzing information (interpreting financial reports, determining why an automobile engine will not run, diagnosing an illness, etc.)

36. Gathering, grouping, or classifying information (preparing reports, filing correspondence, etc.)

37. Coding or decoding (reading Morse code, translating foreign languages, shorthand, etc.)

38. Setting up or adjusting equipment (setting up a lathe or drill press, adjusting an engine carburetor, etc.)

39. Using hands directly to change things (using the hands directly to change or alter or to modify people, materials, products, etc.)
40. Controlling or guiding materials being processed (operating a sewing machine, operating a jig saw, etc.)

41. Assembling or disassembling (putting parts together to form a complete item, or taking an item apart)

42. Arranging or positioning (placing objects, materials, persons, animals, etc., in a specific position or arrangement)

43. Physically handling objects, materials, animals, human beings, etc. (loading or unloading trucks, farming activities, taking care of babies in a nursery, etc.)

44. Highly skilled body coordination activities (athletics, dancing, etc.)

45. Finger manipulation (making careful finger movements in various types of activities, such as in the use of precision tools, repairing watches, playing the piano, etc.)

46. Feeding/off-bearing (feeding materials into a machine or removing materials from a machine or piece of processing equipment)

47. Hand-arm manipulation (activities involving hand and arm movements, as might be used in repairing automobiles, packaging products, etc.)

48. Hand-arm steadiness (steady hand and arm movements, as might be necessary in using a welding torch or in performing surgery, etc.)

49. Eye-hand/foot coordination (the coordination of hand and/or foot movements with what is seen)

50. Limb movement without visual control (movement of body limbs from one position to another without the use of vision)

51. Hand-ear coordination (the coordination of hand movements with sounds or instructions that are heard)

52. Advising (using legal, financial, scientific, technical, clinical, spiritual, or other professional principles to counsel or guide individuals)

53. Negotiating (dealing with others to reach an agreement or solution, for example, labor bargaining, diplomatic relations, etc.)

54. Persuading (influencing others, as in selling or political campaigning)

55. Teaching

56. Interviewing

57. Exchanging routine information (giving and receiving routine information as might be done by a ticket agent, taxi-cab dispatcher, etc.)

58. Exchanging specialized information (giving and receiving specialized information, as might be done in a professional committee meeting, or as engineers might do when discussing a product design, etc.)

59. Public speaking

60. Writing (letters, reports, newspaper articles, etc.)

61. Signaling (hand signals, semaphore, whistles, horns, bells, lights, etc.)

62. Code communications (telegraph, cryptography, shorthand, etc.)

63. Entertaining (performing to amuse or entertain others)
64. Serving or catering (performing personal services, or attending to the needs of others, for example, waiting on tables, hairdressing, etc.)

65. Supervising non-employees (students, patients, campers, etc.)

66. Coordinating activities (social director, committee chairman, etc.)

67. Serving as a staff member (advising, consulting, and giving other types of assistance to management personnel, for example, legal adviser, accountant, etc.)

SECTION 3

Different jobs require you to associate with different types of individuals. How important would you want personal contact with the following types of individuals to be? Continue using the same rating scale.

68. Executives or officials (government administrators, corporation vice-presidents, plant superintendents, etc.)

69. Middle management (division or district managers)

70. Supervisors (foremen, office managers, etc.)

71. Professional personnel (doctors, lawyers, scientists, engineers, professors, teachers, etc.)

72. Semi-professional personnel (technicians, draftsmen, designers, photographers, surveyors, etc.)

73. Personnel engaged in office work (clerks, bookkeepers, receptionists, etc.)

74. Purchasing agents (individuals who buy for companies)

75. Customers (as in stores or restaurants)

76. The public generally (such as police officers, park attendants, etc., might come in contact with)

77. Students, trainees, or apprentices

78. Clients, patients, or individuals being counseled

79. Special interest groups (stockholders, property owners, lobbyists, etc.)

80. Sales personnel

81. Skilled and unskilled workers
SECTION 4

Following are five job situations or circumstances. Use the numbers from 0 to 5 to indicate how much of each you would be willing to accept in your work.

- 82. Frustrating situations (situations in which you would become frustrated because your attempts to do something might be hindered or obstructed)
- 83. Unpleasant personal contacts (some types of police work, handling certain mental patients, etc.)
- 84. Personal sacrifice in the service of others (as might be required by a policeman, minister of religion, social worker, etc.)
- 85. Disagreements or conflict situations (as might be involved in labor negotiations, enforcement of an unpopular policy, etc.)
- 86. Distractions (telephone calls, interruptions and disturbances from others, etc.)

SECTION 5

Use the numbers from 0 to 5 to indicate how much you would like to use each of the following devices or pieces of equipment in your work.

- 87. Precision hand tools (engraver's tools, watchmaker's tools, surgical instruments, etc.)
- 88. Other hand tools (hammers, wrenches, knives, scissors, etc.)
- 89. Long-handle tools (hoes, rakes, shovels, picks, axes, brooms, etc.)
- 90. Handling devices or tools (tongs, ladles, dippers, forceps, etc., used for moving or handling objects and materials)
- 91. Hand-held precision power tools (dentist drills, welding equipment, etc.)
- 92. Other hand-held power tools (ordinary power saws, drills, sanders, clippers, etc.)
- 93. Writing and drawing instruments (pens, pencils, artist's brushes, drafting equipment, etc.)
- 94. Applicators (brushes, rags, paint rollers, used in applying solutions, materials, etc.)
- 95. Technical devices (cameras, stopwatches, slide rules, etc.)
- 96. Processing machines and equipment (used to process or modify parts, objects, materials, etc.)
- 97. Controls: used continuously (controls requiring continuous adjustment or manipulation, for example, accelerator, steering wheel, etc.)
- 98. Controls: not used continuously (controls used to start or stop, to set positions on a machine, etc.)
SECTION 6

Use the numbers from 0 to 5 to indicate how much of your working time you would be willing to spend in the following activities or under the following circumstances.

107. Sitting

108. Standing

109. Walking or running

110. Climbing (for example, house painter, telephone lineman, etc.)

111. Kneeling or stooping (or other body positions which may be uncomfortable or awkward)

112. Working indoors in high temperatures (conditions in which you may be uncomfortable, such as in boiler rooms, around furnaces, etc.)

113. Working indoors in low temperatures (conditions in which you would be definitely cold even though you wore heavy clothing, such as in refrigerated rooms, etc.)

114. Working outdoors (under different weather conditions)

115. Working in contaminated air (dust, fumes, smoke, bad odors, etc.)

116. Working with vibrating equipment (equipment that vibrates the whole body or body limbs (driving a tractor or truck, operating an air hammer, etc.)

117. Working under poor lighting conditions (not enough light, excessive glare, etc.)
118. Working under dirty conditions (garages, foundries, coal mines, highway construction, furnace cleaning, etc.)

119. Working in awkward or small work spaces (conditions in which the body is cramped or uncomfortable)

120. Traveling

SECTION 7

Below are descriptions of 4 degrees of injury, ranging from minor to very serious. Use the numbers from 0 to 5 to indicate the "risk" (or the possibility) of each occurring that you would be willing to accept as a part of your work.

121. Minor injury or illness which might result in a day or less of lost time

122. Injury or illness which would prevent work for one full day or more, but which would not have any permanent effects

123. Permanent injury or illness (resulting in the loss of an arm, leg, hearing, sight of one eye, etc.)

124. Permanent total disability or death (injury or illness which would result in disability for life, or in death)

SECTION 8

Following is a list of job requirements. Use the numbers from 0 to 5 to rate how much you would want each to be a part of your work.

125. A set specified rate of work (assembly line, etc.)

126. Repetitive activities (repeating the same activity, without interruption, for periods of time)

127. Cycled work activities (working according to a schedule which repeats weekly, daily, or hourly, such as a postman or milkman making his rounds, a guard patrolling his beat, etc.)

128. Precision (need to be more than normally precise and accurate)

129. Attention to detail

130. Recognition (need to identify certain objects, events, processes, behavior, etc.)
131. Vigilance (need to be constantly alert and aware of any changes in a situation)

132. Need to keep job knowledge current (continually learning new developments related to the job)

SECTION 9

Select one of the responses for each of the following questions.

133. Competition: How important would you want competition with other individuals or groups to be in your work (for such things as promotions, financial rewards, recognition, etc.)

1. Very minor importance
2. Minor importance
3. Moderate importance
4. High importance
5. Extreme importance

134. Decision making level: What level of decisions would you want to make in your work?

1. Low level decisions (such as must be made in pasting labels on cartons, putting items on shelves in a warehouse, etc.)
2. Below average level decisions (such as those made in running a wood planer, greasing a car, or dispatching a taxi)
3. Average level decisions (such as in ordering office supplies several months in advance, determining what is wrong with an automobile engine, setting up machine tools for operation, etc.)
4. Above average level decisions (such as deciding who will be promoted, who will be hired or fired, if property will be purchased, etc.)
5. High level decisions (such as recommending major surgery, selecting the location for a new plant, or approving a corporation's annual budget)

135. Reasoning in problem solving: Which of the following reasoning levels would you want your work to require?

1. Low (use of common sense to carry out uninvolved instructions, as might be done by a janitor or a deliveryman)
2. Below average (use of some experience or training, such as a sales clerk, a postman, a keypunch operator or an electrician's apprentice might use)
3. Average (use of principles to solve practical problems, such as might be required in farming, drafting or carpentry)
4. Above average (use of logic or scientific thinking, as might be used by a mechanical engineer, a personnel director, or the manager of a store, etc.)
5. High (use of principles of logic or scientific thinking to solve a wide range of problems, as might be done by a research chemist, a nuclear engineer, a corporate president, or the manager of a large plant)
136. Amount of planning: How much planning or scheduling would you like to do in your work?

0. None
1. Very little (little planning of your own activities, as in selling tickets at a theater, working on an assembly line, etc.)
2. Little (some planning required, but not a great deal, as in delivering milk, working as a janitor, etc.)
3. Average amount (for example, a carpenter who must plan the best way to build a house, the planning that must be done by a taxi dispatcher, etc.)
4. Considerable (for example, a foreman who must plan what his workers must do, a teacher who must prepare lectures or lesson plans, etc.)
5. Large amount (for example, a department store manager, an executive who must plan the activities of different work groups, an architect, etc.)

137. Education: How much education would you want your work to require?

0. Little or none
1. Less than high school
2. High school diploma
3. Some college education
4. College degree
5. Advanced degree (M.S., Ph.D., M.D., L.L.D., etc.)

138. Training: How much training, other than the education in number 124, would you want your work to require? Consider such things as on-the-job training, apprentice training, technical and vocational schools, and orientation training.

0. 1 day or less
1. Over 1 day up to 1 month
2. Between 1 and 6 months
3. Between 6 months and 1 year
4. Between 1 and 3 years
5. Over 3 years

139. Experience: How much experience in related or lower-level jobs would you like your work to require?

1. Less than 1 month
2. Less than 1 year
3. Between 1 and 3 years
4. Between 3 and 5 years
5. Over 5 years

140. Level of mathematics: What is the highest level of mathematics you would want your job to require?

0. None
1. Simple counting, addition and subtraction of numbers smaller than 100
2. Addition and subtraction of numbers up to 1,000, and some multiplication and division
3. Use of fractions, decimals, percentages
4. Use of algebra, geometry, trigonometry, or statistics
5. Advanced use of calculus, topology, vector analysis, factor analysis, probability theory, etc.
141. Physical exertion: How much physical effort would you want your work to require?

1. Very light (occasional walking or standing, occasionally moving light objects, as might be required of a secretary, watchmaker, telephone operator, etc.)
2. Light (frequently walking or standing and often exerting effort equal to that which would be required to lift between 10 and 20 pounds, as might be done by a sales clerk, bank teller, etc.)
3. Moderate (frequently exerting effort equal to that which would be required to lift between 25 and 50 pounds, for example, auto mechanic, coin vending machine serviceman, bus driver, etc.)
4. Heavy (lifting between 50 and 100 pounds, for example, general laborer, bulldozer operator, baggage porter, etc.)
5. Very heavy (frequently using enough effort to lift 50 pounds, and occasionally using enough effort to lift over 100 pounds, for example, quarry mining, setting up concrete forms, etc.)

142. Supervision given: How many workers would you want to directly supervise?

0. None
1. 1 or 2 workers
2. 3 to 5 workers
3. 6 to 8 workers
4. 9 to 12 workers
5. 13 or more workers

143. Personnel responsibility: How many personnel would you want to be responsible for in your work? As an example, a president of a corporation would be responsible for everyone who worked for the corporation.

0. None
1. 10 or fewer workers
2. 11 to 50 workers
3. 51 to 250 workers
4. 251 to 750 workers
5. 751 or more workers

144. Safety responsibility: How much responsibility for the safety of others would you be willing to assume in your work?

0. None
1. Little (working only with small hand tools, machines that are not dangerous, etc.)
2. Limited (responsible to exercise only reasonable care)
3. Intermediate (must be careful to avoid hurting others, as in operating overhead cranes, driving vehicles, etc.)
4. Substantial (must constantly be careful not to injure others, as in handling dangerous chemicals or explosives, etc.)
5. Very substantial (the safety of others would depend entirely upon you, as in piloting the aircraft, performing major surgery, etc.)

145. Property responsibility: How much property would you be willing to assume responsibility for?

1. Very little (a few dollars worth)
2. Little ($50.00 to $500.00 worth)
3. Moderate amount ($501.00 to $5,000.00 worth)
4. Substantial amount ($5,001.00 to $25,000.00 worth)
5. Very substantial amount (more than $25,000.00 worth)
146. General responsibility: How much general responsibility would you want in your work?
1. Very little
2. Little
3. Average amount
4. Substantial
5. Very substantial

147. Supervision received: How much supervision would you want to receive in your work?
1. Close supervision, including job assignments and close observation of work
2. General supervision
3. General guidance, but quite independent of others
4. Very little direction or guidance
5. No supervision

148. Job structure: To what extent would you want to follow a routine, or have your work outlined for you?
1. Almost no change from a predetermined job routine (working on an assembly line, etc.)
2. Little change from the work routine possible (bookkeeping, stocking items in a warehouse, etc.)
3. Certain work must be done, but you can determine your own schedule or routine (carpenter, automobile mechanic, machinist, etc.)
4. Little routine work (most of the decisions made by you, for example, store manager, industrial engineer, etc.)
5. No routine (a wide variety of problems must be dealt with, and you would determine your own solutions, for example, corporation vice-president, research chemist, etc.)

149. Criticality of position: Some positions in a company are especially critical. If not filled properly, such things as the company's earnings or reputation might seriously suffer. With this in mind, what degree of criticality would you want your job or position to have?
1. Very low
2. Low
3. Moderate
4. High
5. Very high

150. Civic obligations: How important would you want civic obligations to be in your work (serving on zoning boards, helping with United Fund drives, assisting with school activities, etc.)
0. No importance
1. Very minor
2. Low
3. Average
4. High
5. Extreme importance
It is possible with a fair degree of accuracy to determine by this inventory whether or not you would like certain occupations. This is not a test of intelligence or special abilities. It does measure the extent to which your interests agree or disagree with those of successful men in a given occupation.

Some of your instructions for completing this inventory may be given orally; pay close attention. Then read the following directions carefully:

1. With this question booklet, you should have a special answer sheet or cards on which to record your responses. Make no marks at all on this booklet; it will be used again by other people.

2. There are 399 items, or questions, in this booklet. Be sure there are spaces for only 399 items on your answer sheet or cards. (Older answer sheets had 400 question spaces; they should not be used with this booklet.)

3. If you have been given a special pencil, use it. If not, mark with any soft, black, lead pencil. Make a heavy, dark mark—not a cross or check mark.

4. If you make a mistake or change your mind, erase carefully and thoroughly. Do not fold or crease your answer sheet in any way.

5. You should make one mark for each of the 399 questions. If you omit items, or make more than one mark, your test cannot be scored. If you are not familiar with a particular item, guess how you might feel about it and mark accordingly.

6. The instructions change somewhat from part to part; read the instructions for each part carefully.

7. Read the instructions on your answer sheet or card. And be sure to fill in your name and the other information requested on your answer sheet or card. In some cases, it is necessary to code your name by marking spots representing each letter.

8. Work quickly; first impressions usually give the best results with this inventory.
Part I. Occupations. For each occupation listed below, indicate whether you would like that kind of work or not. Don’t worry about whether you would be good at the job or about your lack of training for it. Forget about how much money you could make or whether you could get ahead in it. Think only about whether you would like the work done in that job.

Mark on the answer sheet in the space labeled “L” if you like that kind of work.
Mark in the space labeled “I” if you are indifferent (that is, don’t care one way or another).
Mark in the space labeled “D” if you dislike that kind of work.

Work fast. Put down the first thing that comes to mind. Answer every one.

<table>
<thead>
<tr>
<th></th>
<th>1 Actor</th>
<th>2 Advertising Man</th>
<th>3 Architect</th>
<th>4 Military Officer</th>
<th>5 Artist</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 Astronomer</td>
<td>7 Athletic Director</td>
<td>8 Auctioneer</td>
<td>9 Author of novel</td>
<td>10 Author of technical book</td>
</tr>
<tr>
<td></td>
<td>11 Auto Salesman</td>
<td>12 Auto Racer</td>
<td>13 Auto Mechanic</td>
<td>14 Airplane Pilot</td>
<td>15 Bank Teller</td>
</tr>
<tr>
<td></td>
<td>16 Designer, Electronic Equipment</td>
<td>17 Building Contractor</td>
<td>18 Buyer of merchandise</td>
<td>19 Carpenter</td>
<td>20 Cartoonist</td>
</tr>
<tr>
<td></td>
<td>21 Cashier in bank</td>
<td>22 Electronics Technician</td>
<td>23 Chemist</td>
<td>24 Civil Engineer</td>
<td>25 City or State Employee</td>
</tr>
<tr>
<td></td>
<td>26 Minister, Priest, or Rabbi</td>
<td>27 College Professor</td>
<td>28 Foreign Service Man</td>
<td>29 Dentist</td>
<td>30 Draftsman</td>
</tr>
<tr>
<td></td>
<td>31 Editor</td>
<td>32 Electrical Engineer</td>
<td>33 Employment Manager</td>
<td>34 Geologist</td>
<td>35 Factory Manager</td>
</tr>
<tr>
<td></td>
<td>36 Income Tax Accountant</td>
<td>37 Farmer</td>
<td>38 Labor Union Official</td>
<td>39 Art Museum Director</td>
<td>40 Foreign Correspondent</td>
</tr>
<tr>
<td></td>
<td>41 Governor of a State</td>
<td>42 Hotel Manager</td>
<td>43 Interior Decorator</td>
<td>44 Interpreter</td>
<td>45 Inventor</td>
</tr>
<tr>
<td></td>
<td>46 Photographer</td>
<td>47 Judge</td>
<td>48 Labor Arbitrator</td>
<td>49 Laboratory Technician</td>
<td>50 Landscape Gardener</td>
</tr>
<tr>
<td></td>
<td>51 Lawyer, Criminal</td>
<td>52 Lawyer, Corporation</td>
<td>53 Librarian</td>
<td>54 Life Insurance Salesman</td>
<td>55 Locomotive Engineer</td>
</tr>
<tr>
<td></td>
<td>56 Machinist</td>
<td>57 Magazine Writer</td>
<td>58 Manufacturer</td>
<td>59 High School Principal</td>
<td>60 Professional Baseball Player</td>
</tr>
<tr>
<td></td>
<td>61 Mining Superintendent</td>
<td>62 Musician</td>
<td>63 Music Teacher</td>
<td>64 Psychologist</td>
<td>65 Office Manager</td>
</tr>
<tr>
<td></td>
<td>66 Orchestra Conductor</td>
<td>67 Pharmacist</td>
<td>68 Public Relations Man</td>
<td>69 Physician</td>
<td>70 Playground Director</td>
</tr>
<tr>
<td></td>
<td>71 Poet</td>
<td>72 Politician</td>
<td>73 Printer</td>
<td>74 Private Secretary</td>
<td>75 Radio Announcer</td>
</tr>
<tr>
<td></td>
<td>76 Rancher</td>
<td>77 Real Estate Salesman</td>
<td>78 Reporter, General</td>
<td>79 Reporter, Sports page</td>
<td>80 Retailer</td>
</tr>
<tr>
<td></td>
<td>81 Sales Manager</td>
<td>82 School Teacher</td>
<td>83 Scientific Research Worker</td>
<td>84 Sculptor</td>
<td>85 Manager, Chamber of Commerce</td>
</tr>
<tr>
<td></td>
<td>86 Secret Service Man</td>
<td>87 Computer Operator</td>
<td>88 Shop Foreman</td>
<td>89 Social Worker</td>
<td>90 Specialty Salesman</td>
</tr>
<tr>
<td></td>
<td>91 Statistician</td>
<td>92 Stockbroker</td>
<td>93 Surgeon</td>
<td>94 Toolmaker</td>
<td>95 Traveling Salesman</td>
</tr>
<tr>
<td></td>
<td>96 Travel Bureau Manager</td>
<td>97 Funeral Director</td>
<td>98 Watchmaker</td>
<td>99 Wholesaler</td>
<td>100 Worker in Y.M.C.A.</td>
</tr>
</tbody>
</table>
Part II. School Subjects. Show as you did in Part I your interest in these school subjects, even though you may not have studied them.

101 Algebra
102 Agriculture
103 Arithmetic
104 Art
105 Bookkeeping
106 Botany
107 Calculus
108 Chemistry
109 Civics (government)
110 Dramatics
111 Economics
112 English Composition
113 Geography
114 Geology
115 Geometry
116 History
117 Languages, ancient
118 Languages, modern
119 Literature
120 Mathematics
121 Industrial Arts
122 Mechanical Drawing
123 Military Drill
124 Bible History
125 Nature Study
126 Philosophy
127 Physical Education
128 Physics
129 Psychology
130 Physiology
131 Public Speaking
132 Shop Work
133 Sociology
134 Spelling
135 Typewriting
136 Zoology

Part III. Amusements. Show in the same way as you did before whether or not you like these ways of having fun. Work rapidly. Do not think over various possibilities. Record your first feeling of liking, indifference, or disliking.

137 Golf
138 Fishing
139 Hunting
140 Tennis
141 Sketching pictures of wild animals
142 Hiking
143 Boxing
144 Chess
145 Poker
146 Bridge
147 Bird watching
148 Solving mechanical puzzles
149 Religious music
150 Camping out
151 Drilling in a military company
152 Playing the piano
153 Amusement parks
154 Picnics
155 Sight-seeing trips
156 Stag parties
157 Jazz concerts
158 Conventions
159 Formal dress affairs
160 Electioneering for office
161 Going to church
162 Horseback riding
163 Art galleries
164 Leading a Boy Scout troop
165 Writing a one-act play
166 Science fiction magazines
167 Symphony concerts
168 Night clubs
169 Church young people's group
170 Biographies
171 Sports pages in newspapers
172 Poetry
173 Detective stories
174 Skiing
175 Planning a large party
176 Telling jokes
177 Business methods magazines
178 Travel magazines
179 Weekly news magazines
180 Popular mechanics magazines
181 Reading the Bible
182 Educational movies or TV
183 Magazines about art and music
184 Social problem movies
185 Making a radio or hi-fi set
Part IV. Activities

Indicate your interests as before.

1. Repairing a clock
2. Adjusting a carburetor
3. Repairing electrical wiring
4. Cabinetmaking
5. Operating machinery
6. Handling horses
7. Giving "first-aid" assistance
8. Raising flowers and vegetables
9. Decorating a room with flowers
10. Arguments
11. Interviewing men for a job
12. Interviewing prospects in selling
13. Interviewing clients
14. Making a speech
15. Organizing a play
16. Starting a conversation with a stranger
17. Teaching children
18. Teaching adults
19. Calling friends by nicknames
20. Being called by a nickname
21. Meeting and directing people
22. Taking responsibility
23. Making statistical charts
24. Adjusting difficulties of others
25. Drilling soldiers
26. Pursuing bandits in a sheriff’s posse
27. Doing research work
28. Acting as cheer-leader
29. Being a forest ranger
30. Writing reports
31. Looking at things in a hardware store
32. Bargaining ("swapping")
33. Looking at things in a clothing store
34. Buying merchandise for a store
35. Displaying merchandise in a store
36. Expressing opinions openly, regardless of what others say
37. Competitive activities
38. Methodical work
39. Regular hours for work
40. Continually changing activities
41. Developing business systems
42. Saving money
43. Contributing to charities
44. Raising money for a charity
45. Living in the city
46. Climbing along the edge of a precipice
47. Discussing the purpose of life
48. Looking at a collection of antique furniture

Part V. Types of People

Show your feeling about these different kinds of people. Do not think of various possibilities or of exceptional cases. "Let yourself go" and record the feeling that comes to mind as you read each item.

1. Progressive people
2. Conservative people
3. Energetic people
4. Military men
5. Aggressive people
6. Beachcombers
7. Optimists
8. Pessimists
9. People who are natural leaders
10. People who assume leadership
11. Ballet dancers
12. People who have made fortunes in business
13. Emotional people
14. Thrifty people
15. Spendthrifts
16. Famous chefs
17. Religious people
18. Irreligious people
19. Easygoing people
20. Artistic men
21. Public opinion interviewers
22. Foreigners
23. Physically sick people
24. Babies
25. Very old people
26. Women athletes
27. Outspoken people with new ideas
28. Musical geniuses
29. People who daydream a lot
30. Prominent artists
31. Outstanding scientists
32. Acrobats
33. Democrats
34. Prohibitionists
35. Republicans
36. Men who perform on TV
37. People who insist on having everything in its proper place
38. Fashionably dressed people
39. Carelessly dressed people
40. People who don’t believe in evolution
41. Socialists
42. Nonconformists
43. Independents in politics
44. Men who live dangerously
45. Prominent businessmen
46. Prominent labor union men
47. Athletic men
Part VI. Order of Preference of Activities. Here are ten things you could do. First read all ten. Then select the three things you think you would like most to do, and mark them in the first row on the answer sheet, next to their numbers. Select the three things you would like least to do, and mark them in the third row. Then mark the remaining four items in the middle row where no marks have been made so far. (Some answer sheets use columns instead of rows.)

281 Develop the theory of operation of a new machine (for example, an auto)
282 Operate (manipulate) the new machine
283 Discover an improvement in the design of the machine
284 Determine the cost of operation of the machine
285 Supervise the manufacture of the machine
286 Create a new artistic effect (that is, improve the beauty of the machine)
287 Sell the machine
288 Prepare the advertising for the machine
289 Teach others the use of the machine
290 Interest the public in the machine through public addresses

Show in the same way the three things that mean the most to you in a job; then the three least important things. Mark the four items left over in the middle row.

291 Salary received for work
292 Steadiness and permanence of work
293 Opportunity for promotion
294 Courteous treatment from superiors
295 Opportunity to make use of all one’s knowledge and experience
296 Opportunity to ask questions and to consult about difficulties
297 Opportunity to understand just how one’s superior expects work to be done
298 Certainty that one’s work will be judged by fair standards
299 Freedom in working out one’s own methods of doing the work
300 Co-workers—congenial, competent, and adequate in number

Show in the same way the three occupations you would like most; then the three you would like least. Mark the remaining four in the middle row.

301 Plant scientist—develops new vegetables and flowers
302 Opera singer
303 Inventor
304 Manufacturer
305 Nationally known artist
306 Banker, financier
307 General of the Army
308 Member of the Supreme Court
309 Author of “best seller”
310 Manager of large department store

Show in the same way the three offices you would like most to hold in a club or society; then mark the three you would like least to hold. Mark the four offices left over in the middle row.

311 President of a Society or Club
312 Secretary of a Society or Club
313 Treasurer of a Society or Club
314 Member of a Society of Club
315 Chairman, Arrangements Committee
316 Chairman, Educational Committee
317 Chairman, Entertainment Committee
318 Chairman, Membership Committee
319 Chairman, Program Committee
320 Chairman, Publicity Committee

Please check to see that in each set of ten questions you have three marks in the first row, three in the third row, and four in the middle row.
Part VII. Preference between Two Items. Show here which of two different kinds of work or ways of doing things you like better. If you prefer the items on the left, mark in the first row; if you prefer the items on the right, mark in the third row. If you like both the same or if you can't decide which one you like better, mark in the middle row. Work rapidly. Make one mark for each pair.

321 Airline pilot Airline ticket agent
322 Policeman Fireman (fights fire)
323 Taxicab driver Policeman
324 Head waiter Lighthouse keeper
325 Take dancing lessons Take singing lessons

326 Selling things house to house Gardening
327 Repaint autos Grease autos
328 Develop plans Execute plans
329 Do a job yourself Tell somebody to do the job
330 Talk others into doing something Order others to do something

331 Deal with things Deal with people
332 Plan for immediate future Plan for five years ahead
333 Activity that produces tangible returns Activity that is enjoyed for its own sake
334 Taking a chance Playing safe
335 Definite salary Commission on what is done

336 Work for yourself Carry out program of superior who is respected
337 Thrilling, dangerous activities Quieter, safer activities
338 Work in a large corporation with little chance of becoming president until age 55 Work for self in small business
339 Selling something for less than others sell it Selling something for more than others sell it
340 Travel alone and make own preparations Travel with someone else who makes all the decisions

341 Work with few details Work with many details
342 Outside work Inside work
343 Work in which you move from place to place Work where you stay in one place
344 Great variety of work Similarity in work
345 Physical activity Mental activity

346 Work in an import-export business Work in a research laboratory
347 Technical responsibility (in charge of 25 people doing scientific or technical work) ... Supervisory responsibility (in charge of 300 people in typical business work)
348 Present a report in writing Present a report verbally
349 Listening to a story Telling a story
350 Playing baseball Watching baseball

351 Amusement where there is a crowd Amusement alone or with one or two others
352 Music and art events Athletic events
353 Reading a book Watching TV or going to a movie
354 Plumber Electrician
355 A few close friends Many acquaintances

356 Superintendent of hospital Warden of a prison
357 Vocational counselor Public health officer
358 Travel to outer space Explore bottom of ocean
359 Dog trainer Juvenile parole officer
360 Appraise real estate Repair, restore antiques
Part VIII. Your Abilities and Characteristics. Show here what kind of person you are and the kinds of things you do. If the item really describes you, mark in the first row (Yes); if the item does not describe you mark in the third row (No); and if you are not sure mark in the second row (?). (Be frank in pointing out your weak points, because these are as important as your strong points in choosing a career.)

361 Usually start activities of my group
362 Make decisions immediately, not after considerable thought
363 Win friends easily
364 Usually get other people to do what I want done
365 Usually liven up the group on a dull day
366 Keep detailed records of expenses
367 Prefer working alone to working on committees
368 Have mechanical ingenuity (inventiveness)
369 Have more than my share of novel ideas
370 Can prepare successful advertisements
371 Am concerned about philosophical problems, for example, religion, meaning of life, etc.
372 My grades in high school were a fairly accurate reflection of my abilities
373 Am always on time with my work
374 Remember faces, names, and incidents better than the average person
375 Can correct others without giving offense
376 Am able to meet emergencies quickly and effectively
377 Do my best work early in the morning
378 Can write a concise, well-organized report
379 Have good judgment in appraising values
380 Plan my work in detail
381 Follow up subordinates effectively
382 Put drive into the organization
383 Stimulate the ambition of my associates
384 Can be firm and show I mean it
385 Am slow-going and sure rather than quick-moving
386 Can smooth out tangles and disagreements between people
387 Have patience when teaching others
388 Discuss my ideals with others

for each question, choose from the three phrases the one that best describes you. Then mark your choice on the answer sheet: first row if your choice is (1), middle row for (2), or third row for (3).

389 Pay attention to details
390 Worry about mistakes
391 Lend money to acquaintances
392 When it comes to taking orders from others and carrying them out
393 When caught in a mistake, I make excuses
394 Speak
395 Complain about me
396 In my family, I am the child
397 At a large conference, I prefer a seat
398 My advice is asked for
399 Make bets

NOTE: If your answer sheet has room for 400 items, fill in ALL THREE answers to item number 400; then write very plainly somewhere on the edge of the answer sheet, "I used Booklet Form T399."
A NOTE TO PROFESSIONAL USERS OF THE SVIB

The following comments are directed to counselors, personnel workers, and research psychologists.

In 1966, this revised version of the SVIB was published to bring the questions in the inventory up to date. Many items were slightly reworded, and some were changed substantially. During the revision, several occupational scales were added to the profile, and the scoring system was changed.

The revised scales correlate highly with the older scales, and the reliabilities and validities of the revised scales are essentially the same as those of the older scales.

A complete discussion of this revision can be found in the 1966 Manual for the Strong Vocational Interest Blank.

The revised booklet is designated Form T399 and contains 399 items. (The older booklet contained 400 items.) Instructions in this booklet emphasize that a 399-item answer sheet should be used with Form T399 to prevent confusion. Actually, during 1966–67, either the revised (399-item) answer sheet or the old (400-item) answer sheet can be used, as they can both be scored with the revised scales. However, new scales will soon be developed for the revised booklet, and for this reason the changeover to the new answer sheet should be made as quickly as possible.

If the old answer sheet is used with the revised booklet, the instructor should ask the person being tested to ignore instruction (2) on the front page of this booklet, and to begin the test by marking the answer sheet as requested in the special boxed instruction at the bottom of page 7.

Unless specifically requested otherwise, scoring services will use the revised scales for all answer sheets. Under certain conditions, inventories completed before 1966 can be scored on both the old and the revised scales. Inventories completed after 1966—with the revised booklet—can be scored on the revised scales only. More detailed information is available in the Manual for the SVIB. If questions arise, consult your scoring service or the publisher.
VITA
Kathleen A. Peterson
Candidate for the Degree of
Master of Science

Thesis: A Comparative Study of GPA Predictability Using the JAPQ and the SVIB

Major Field: Counseling Psychology

Biographical Information:

Personal Data: Born at Quesnel, British Columbia, Canada, March 8, 1939, daughter of Andrew R. and Florence F. Peterson.

Education: Graduated from Kelowna Senior High School in 1958; received an Elementary Teaching Certificate from the University of British Columbia in August 1962; graduated from Utah State University with a Bachelor of Science degree, June 1970.