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ABSTRACT 

Footwall Deformation and Structural Analysis of the Footwall 

of the Willard Thrust Fault, 

Northern Wasatch Range, Utah. 

by 

Douglas Scott Neves, Master of Science 

Utah State University, 1989 

Major Professor: Dr. James P. Evans 
Department: Geology 

Vlll 

Deformation mechanisms in the footwall of the Willard thrust fault, 

northern Wasatch Range, Utah, change from dominantly plastic to dominantly 

cataclastic (both microscopically and macroscopically) in the Ophir Formation 

and Maxfield Limestone before the thrust begins to ramp laterally upsection 

southward, just to the north of the North Ogden Canyon field area. This 

transition in compressional deformation style and mechanism is located within a 

lateral distance of 3.2-kilometers along the 22-kilometer long trace of the thrust 

fault. 

Between Willard Canyon and North Ogden Canyon penetrative 

deformation is localized within 200 meters of the thrust surface and is 

characterized by transposed bedding, solution cleavage parallel to bedding, a 

northeast- to northwest-dipping foliation, and tight isoclinal folds with axes 

plunging generally northward. A fracture overprint in the footwall is present 
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throughout the study area. The transition in deformation mechanism and style 

suggests that footwall deformation is dependent on the sensitive response of 

limestone and shale to increased pressure and temperature conditions and also 

the presence of a lateral ramp in the footwall of the Willard thrust. Data from a 

hangingwall sequence diagram and a stratigraphic displacement diagram suggest 

the Taylor and Ogden thrusts formed prior to the Willard thrust (the roof thrust) 

and their sequential geometrical evolution may have been influenced by pre­

existing rifts in the underlying crystalline basement rock. 

It is proposed that early Cretaceous movement of the Willard thrust sheet 

over the structurally lower and older Taylor and Ogden thrust sheets resulted in 

the formation of a recumbent syncline overturned to the east, a southward rising 

lateral ramp in the footwall of the Willard thrust, a lateral change in footwall 

deformation, and the anomalous east-west trending canyons that cut through the 

Willard thrust complex. 

(137 pages) 



INTRODUCTION 

PROBLEM STATEMENT AND OBJECTIVES 

The Willard thrust fault is located in the northern Wasatch Mountains 

northeast of Ogden, Utah (Fig. 1). Previous workers have classified the Willard 

thrust as the roof thrust of a foreland-dipping duplex or possibly a modified 

antiformal stack (Fig. 2) in the Willard-Paris thrust system of the Sevier orogenic 

belt in Idaho, Utah, and Wyoming (Bruhn and Beck, 1981; Schirmer, 1985c). 

Bruhn and Beck (1981) and Schirmer (1985c) reported contrasting styles of 

deformation in the footwall of the Willard thrust between Willard and Ogden 

canyons. Macroscopic and microscopic footwall deformation observed in the field 

near Willard Canyon was reported as being predominantly plastic, whereas 

footwall deformation observed in the field near Ogden Canyon is reported as 

being predominantly cataclastic . 

This study investigates changes in deformation mechanism and style in the 

footwall of the Willard thrust fault in the same area. The study is important 

because there are few well-exposed footwalls in thrust systems. The exposed 

footwall of the Willard thrust and the structurally lower Taylor and Ogden 

thrusts, provide an opportunity to study footwall deformation in a thrust complex 

that is unique because it dips to the foreland. Examination of footwall 

deformation in the Willard thrust will be helpful to the understanding of the 

propagation and evolution of thrust sheets, hangingwall movement over footwalls, 

and the sequential geometrical development of the Taylor, Ogden, and Willard 

thrust sheets. Deformation is hypothesized to change laterally along strike and in 

the footwall of the Willard thrust between Willard Canyon, which is the 
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northernmost exposure of the fault, and Ogden Canyon, which is the approximate 

southernmost exposure of the fault. The Willard thrust plays an interesting role 

in that it marks the only known area in the Idaho-Utah-Wyoming Sevier orogenic 

belt where hinterland basement rock from the west was involved with the 

foreland fold and thrust belt to the east. This study will provide insight into the 

kinematics and deformation mechanisms associated with the Willard thrust, as 

well as the structurally lower Taylor and Ogden thrusts. This is important 

because it relates the development and evolution of local thrusts to the regional­

scale tectonic provinces in the western Rocky Mountains . 

The purpose of this study is to identify, map, and interpret deformation in 

the footwall of the Willard thrust fault between Willard and Ogden canyons. The 

objectives of the study are to 1) locate the plastic-to-cataclastic transition in 

footwall deformation along the trace of the fault and map the strain 

accommodated by the footwall; 2) find the stratigraphic formation or formations 

that contain the change in deformation style; 3) discover if the transition in 

deformation takes place on both the microscopic and macroscopic levels; 4) use 

field data to ascertain possible mechanisms of deformation; 5) develope a 

sequential footwall chronology of the Taylor and Ogden thrusts and relate it to 

the emplacement of the Willard thrust and Willard thrust complex; and 6) 

investigate the relationship between footwall deformation, the geometry of the 

thrust complex, lateral ramping, a folded portion of the Willard thrust, 

Precambrian crystalline basement rock, and a possible structural high beneath the 

Willard thrust, and to compare the results with existing models of thrust-ramp 

evolution and deformation. 
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PREVIOUS WORK 

Previous workers in this area have included graduate students and 

professors from Utah State University and the University of Utah, other graduate 

students and professors, and professionals from the Utah Geological Association 

and the United States Geological Survey. A detailed list of previous work and 

workers is provided in Appendix A. and by Schirmer (1985c). 

GEOLOGIC SETTING 

The Willard thrust fault is located on the western edge of the Idaho-Utah ­

Wyoming Sevier orogenic thrust belt. Northeast of Ogden, Utah the fault is 

exposed along an approximate northwest-southeast trace 22-kilometers long that 

parallels the Wasatch fault. Thrusting has involved Precambrian crystalline 

basement rocks and Paleozoic sedimentary rocks (Fig. 3). 

The Willard thrust fault (Fig. 4) is the oldest and westernmost thrust of 

the four major thrusts in this region of the Sevier orogenic belt (Armstrong, 1968; 

Crittenden, 1972; Royse and others, 1975; Blackstone, 1977). More recently 

Woodward (1988) did not connect the Willard thrust to the Paris thrust. This 

study will use a working hypothesis similar to Woodward (1988) for the origin of 

the Willard thrust fault, that is, the assumption is made that the Willard thrust is 

older than and not connected to the Paris thrust, which is located northeast of the 

Willard thrust and near the town of Paris, Idaho. Without seismic data this study 

will not speculate on the subsurface nature of the Willard thrust, either to the 

north of Willard Canyon or to the south of Pineview Reservoir, where the 
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Willard thrust disappears into the subsurface. Schirmer (1985c) classified the 

Willard thrust and the structurally lower Taylor and Ogden thrusts as a "classic" 

foreland-dipping "duplex," (Boyer and Elliot, 1982) in which individual thrust 

sheets dip eastward in the direction of propagation. He named this the Ogden 

duplex. According to Schirmer (1985c), the "Ogden duplex" developed in a 

sequential, top to bottom, piggyback manner, causing older thrust sheets to be 

carried by younger thrust sheets, as compression from the west forced Archean 

and Proterozoic crystalline basement rock and Early to Middle Paleozoic and 

Late Proterozoic limestones, dolostones, shales, sandstones, and conglomerates 

eastward. The eastward or foreland-dipping geometry of the Willard thrust 

complex, the thrusting of Archean and Proterozoic crystalline basement rock, and 

the fact that the area marks the transition westward from thin- to thick-skinned 

deformation, makes the Willard thrust complex unique in the Idaho-Utah­

Wyoming thrust belt (Fig. 5). This study will not impose a previous genetic 

model (e.g., Boyer and Elliot, 1982) on the structural geometry of the Willard 

thrust fault. Instead, the term thrust complex will be used to describe the Willard 

thrust sheet and the structurally lower Taylor and Ogden thrust sheets. 

West of the Willard thrust, primarily in the northwest corner of Utah, are 

the metamorphic core complexes of the Albion, Raft River and Grouse Creek 

ranges. This area is the hinterland of the thrust belt and is characterized by a 

geologic history of regional metamorphism and ductile deformation in the lower 

crust followed by a "doming" to the surface of several granitic intrusions. These 

uplifted domes form the "cores" of the metamorphic complexes. Later, 

extensional faulting left the cores covered by a shallow, brittle deformation 
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(Davis and Coney, 1979; Armstrong, 1982; Jordan and others, 1983; Allmendinger 

and others, 1984; Miller and others, 1986; Malavielle, 1987; Hintze, 1988). 

East of the Willard thrust lies the central Rocky Mountain foreland, or 

fold and thrust belt, which is characterized by four thrusts in the Idaho-Utah­

Wyoming thrust belt. The four major thrusts east of the Willard thrust are the 

Paris, the Crawford-Meade, the Absaroka, and the Hogsback (Armstrong, 1968; 

Royse and others, 1975). These four thrusts are similar in geometric structure 

and appearance. That is, they formed as successively younger piggyback 

imbricates, which developed east of the Willard thrust. According to Spieker 

(1946), Harris (1959), Armstrong and Cressman (1963) , Armstrong and Oriel 

(1965) , Armstrong (1968), Wiltschko and Dorr (1983) and Schmitt (1984) , initi al 

movement on the Paris-Willard thrust was believed to have begun in Early 

Cretaceous (115 to 125 m.y.) or possibly in Late Jurassic and continued through 

Early Tertiary. Heller and others (1986) have constrained the age of the earli est 

Sevier thrusting (the Paris-Willard thrust sheet) by examining the distribution of 

fossil charophytes (a green algae), preserved in the synorogenic Ephraim 

Conglomerate east of the Willard thrust. Fossil distr ibutions and anal yses of 

subsidence of sedimentary basins east of the thrust belt showed that initial 

thrusting occurred no earlier than Middle Cretaceous, approximately 110 to 120 

m.y. (Heller and others, 1986). Y onkee and others (1989) used sericite grains 

from phyllonite and cataclasite to obtain 40Ar/ 39Ar ages of 110 to 140 m.y. 

Estimates of displacement for the Willard thrust have varied considerabl y 

from study to study. The lack of a clear hangingwall cutoff makes estimating 

displacement difficult. Current minimum estimates range from 10 to 35 
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kilometers of horizontal eastward displacement on the Willard thrust fault 

(Crittenden, 1972; Beck, 1982; Schirmer, 1985c). Yonkee and others (1989) used 

the footwall cutoff near Willard Peak and the hangingwall cutoff near Woodruff 

Canyon to give an estimate of 35 kilometers of net displacement. This distance is 

similar to Crittenden's (1972) estimate. 

PROBLEM HYPOTHESES AND MODELS 

In the footwall of the Willard thrust fault at Willard Canyon , the 

approximate northernmost exposure of the fault, deformation structures consist 

primarily of intense folding in the shale and limestone formations. In the 

footwall of the Willard thrust at Pineview Reservoir, the approximate 

southernmost exposure of the fault, deformation structures consist entirely of 

fracturing and cataclasis. The working hypothesis for this study is that a 

transition in microscopic and macroscopic deformation mechanisms and styles 

exists in the footwall of the Willard thrust between Willard Canyon and Ogden 

Canyon. A transition was hypothesized , wherein, plastically deformed footwall 

rock in the north changes to cataclastically deformed rock in the south. This 

hypothesis was based on macroscopic field evidence (footwall rock) observed by 

workers, including this author. The location, characteristics, and mechanisms of 

the hypothesized transition are dependent on several factors: pressure, 

temperature, footwall stratigraphy, lithology within stratigraphic formations, and 

the presence of a lateral ramp . Other hypotheses include the possibility that 

thrust sheets structurally below the Willard thrust, which may have formed befor e 

the Willard thrust, have influenced the final geom etry of the Willard thrust. Th e 



possibility also exists that a pre-existing subsurface high(s), in the crystalline 

basement rock, may have influenced initial thrust-sheet movement, sequential 

development, and emplacement of the Willard thrust complex. 

12 

The model proposed in this study for the sequential development of the 

Willard thrust and the structurally lower Taylor and Ogden thrusts is based on 

and modified from 1) thrust-fault duplex formation (Boyer and Elliot, 1982); 2) 

studies of the Taylor, Ogden, and Willard thrusts by Blackwelder (1910), Eardley 

(1944), Crittenden (1972), Sorensen and Crittenden (1972, 1976, 1979), Crittenden 

and Sorensen, (1985a, 1985b), Schirmer (1985a, 1985b, 1985c, 1988), and Yonkee 

and others (1989); 3) the anomalous (Hunt, 1982) east-west trending canyons 

(i.e., Box Elder, Willard, North Ogden, Ogden, and Taylor's) which cut the thrust 

complex; 4) the similar geometry of thrust sheets to the south of each of these 

canyons; 5) the overturned, east- vergent, recumbent syncline below the Willard 

thrust (Crittenden, 1972); 6) the folded portion of the Willard thrust sheet 

(between Willard Peak and Ogden Canyon); and 7) the change in footwall 

deformation between Willard and Ogden canyons. 
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PROJECT LOCATION AND FIELD AREAS 

The project study area is in the northern Wasatch Range of Utah between 

Willard Canyon and Ogden Canyon, north, northeast, and east of the city of 

Ogden. The distance along strike between the two canyons is approximately 22 

kilometers. Field work was conducted in six areas between Willard and Ogden 

canyons (Fig. 6). The six areas were chosen based on footwall exposure, quality 

and quantity of deformation structures in the footwall, and accessibility to the 

outcrop. The six areas are Willard Canyon, Willard Mountain, North Ogden 

Canyon, Cold Water Canyon (which includes part of One Horse Canyon), 

Goodale Creek Canyon, and Pineview Reservoir. Willard Canyon, the 

northernmost field area, is in section 24, R2W, T8N, in the Willard 1:24,000 

topographic quadrangle. The Willard Peak field area is in sections 31 and 32, 

Rl W, T8N and Rl W, TIN, in the Mantua 1:24,000 topographic quadrangle. The 

North Ogden Canyon field area is in sections 23 and 24 of Rl W, TIN, in the 

North Ogden 1:24,000 topographic quadrangle. The Cold Water Canyon field 

area is in sections 34 and 35 of RlW, TIN, and sections 2 and 3 of RlW, T6N in 

the North Ogden 1:24,000 topographic quadrangle. The Goodale Creek Canyon 

and Ogden Canyon field areas are in sections 16, 17, and 18 of RlE, T6N, in the 

Huntsville 1:24,000 topographic quadrangle. 

Other field data previously collected from areas structurally below the 

Willard thrust have been included to help establish and support the proposed 

model of development of the Willard thrust complex. The field areas are Malans 

Peak , Taylor Canyon, the "S" fold to the south of the mouth of Ogden Canyon , 
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and Perry's Camp (several small houses located just east of the mouth of Ogden 

Canyon). Malans Peak is in section 35 of Rl W, T6N, in the Ogden 1:24,000 

topographic quadrangle. Taylor Canyon is in sections 35 and 36 of Rl W, T6N, in 

the Ogden 1:24,000 topographic quadrangle. The "S" fold is located in section 26 

of RlW, T6N, in the Ogden 1:24,000 topographic quadrangle. Perry's Camp is 

located in section 24 of Rl W, T6N, in the Ogden 1:24,000 topographic 

quadrangle. 

All of the field areas, because of differences in location, accessibility, and 

topography, presented unique opportunities and problems during field work. 

Accessibility to outcrops in each field area was aided by Forest Service trails, old 

jeep trails, and numerous deer trails. In all but one of the field areas, topography 

is relatively steep and required strenuous hiking and some climbing. In one field 

area (Willard Canyon), several outcrops were unreachable because of vertical 

rock exposures. 
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METHODOLOGY 

DATA 

Data used in this study include 1:24,000 and 1:12,000 geologic maps, nine 

thin sections made from 23 samples collected in the footwall, stereonets of 

orientations of bedding orientations and deformation structures in the footwall, a 

stratigraphic displacement diagram, and a hangingwall sequence diagram. The 

published geologic maps of Bryant (1984), Crittenden and Sorensen (1985a, 

1985b), Davis (1985), Hintze (1980), Schirmer (1985c), and Sorensen and 

Crittenden (1972, 1979) were used in this study; as well as color air photos 

(1:12,000), topographic quadrangles (1:24,000), and orthophoto quadrangles 

(1:24,000). 

Twenty-three oriented samples were collected from the footwall of the 

Willard thrust. From each sample, a north-south and west-east "chip," 

perpendicular to bedding, was cut and prepared for grinding. Of the twenty three 

samples (now 46 chips) nine west-east oriented chips were chosen for final thin­

section preparation. Only chips oriented west-east were chosen for final thin 

section preparation because deformation fabrics were best seen in west-east cuts 

of the original field samples. 

Stereonet plots of planar and linear orientations of deformation structures 

as well as bedding were constructed for each of the field areas. The types of 

stereonet plots include Great Circle Plots, Scatter Plots, and Kamb Contour Plots. 

A stratigraphic displacement diagram showing how footwall stratigraphy 

changes from north to south along strike was constructed from data from Davis' 
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(1985) 1:100,000 geologic map of the northern Wasatch Front, Utah. 

A hangingwall sequence diagram (Elliot and Johnson, 1980; Schirmer, 

1988) was constructed from data from Davis' (1985) 1:100,000 geologic map of 

the Northern Wasatch Front. The diagram is drawn longitudinally from N29W to 

S29E, which is approximately parallel to the trace of the Willard thrust. The 

diagram represents a west to east, time-based, schematic sequential development 

of the Willard thrust complex, based on previous geologic mapping and data 

incorporated from this study. 

FIELD PROCEDURE 

Data from deformation structures were collect ed from the footwall of the 

Willard thrust at each of the six primary field areas. The types of deformation 

structures from which data were collected are fractures , solution cleavage , 

foliations, lineations, folds, and bedding. All deformation data were recorded in 

a field notebook with sketches of outcrops , color photographs, and identification 

numbers of samples collected in the field. The process of determining where and 

what data to collect was decided by the nature of the particular outcrop. The 

procedure for collecting footwall data at each outcrop was relatively 

straightforward, and remained the same throughout the study. When a potential 

outcrop was located, the area was examined to determine outcrop extent and 

types of deformation structures present. Data were then collected both 

perpendicular and parallel to the fault surface throughout the outcrop to insure 

that they were representative of the entire outcrop. Footwall rock is best exposed 

at the Willard Canyon and Willard Mountain field areas. In these two areas, the 
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approximate stratigraphic thickness of exposed footwall rock where deformation 

data were collected was about 200 meters (Fig. 7). To the south, in the North 

Ogden Canyon field area, the exposed thickness of footwall rock is approximately 

10 to 20 meters. In the Goodale Creek Canyon and Pineview Reservoir field 

areas the exposed thickness of footwall rock is approximately 10 meters. 

FIELD DATA 

Willard Canyon 

Data collected from deformation structures in the Willard Canyon field 

area include orientations of fractures, solution cleavage, fold axes, and footwall 

bedding (see Appendix B). Rock samples for thin-section analysis of structural 

fabrics were also collected. Deformation structures are located in the Tintic 

Quartzite, Ophir Formation, and Maxfield Limestone (Fig. 8). Outcrop rock 

types include quartzite, limestone, shale, and dolostone (see Appendix C). 

Because of lateral and vertical thinning and thickening of stratigraphic units in 

the zone of deformation, it was not possible to determine to which formation the 

shale and limestone outcrops belonged. Data were collected from the north and 

south sides of the canyon but primarily from the north side because of better 

outcrop exposure. All deformation orientations were plotted on equal-area, 

lower-hemisphere stereonets (Fig. 9). The Ophir Formation and the Maxfield 

Limestone make up the "zone of deformation" in Willard Canyon. The zone is 

approximately 200 meters thick from the top of the Tintic Quartzite upward to 

the base of the Willard thrust sheet (the hangingwall). Because the Tintic 



Fig. 7 The zone of defom1ation at (a) the Willard Canyon field area and (b) the Willard 
Mountain field area. The view of the Willard Canyon zone of deformation is to 
the northwest and shows the Tintic Quartzite (lower left), Ophir Formation 
(lower center), Maxfield Limestone ((knob), and Proterozoic Facer Formation in 
the hanging wall (upper right). The view of the Willard Mountain zone of 
deformation is to the north and shows the Tintic Quartzite (lower left), the 
limestone and shale members ofthe Ophir and Maxfield Formations (central) and 
the hanging wall of the Willard thrust (upper). 
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(b) 

Fig. 7 (Continued) 



(a) 
Fig. 8 Examples of macroscopic footwall deformation structures, (a) and 

(b) at the Willard Canyon field area. Example (a) is a large 
isoclinal fold that opens to the east. Note rock hammer for scale 
(view is to the north). Example (b) is a folded limestone 
surrounded by shale. Dark vertical bar on scale is 10 centimeters 
long ( view is to the north). 
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(b) 

Fig. 8 (Continued) 
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Fig. 9 Stereonet plots of orientations of deformation structures at the 
Willard Canyon field area. See Appendix B for the number of 
data points used. Plotted data was visually grouped and means 
were calculated and plotted from resulting groups. 
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Quartzite is not part of this zone, its overall bedding geometry (throughout the 

entire study area) is less deformed than the Paleozoic formations above it and so 

serves as an excellent marker for recognizing individual thrust sheets in the 

Willard thrust complex. However, the Tintic Quartzite does contain extensive 

compressive and tensional cataclastic deformation. Orientations of deformation 

structures were plotted on stereonets as means (Fig. 9) to simplify data 

presentation and to present an average orientation of various deformation 

structures at each field area. The orientation of the Willard thrust surface is 

approximately N45W 32NE . The mean orientation of footwall bedding for the 

Tintic Quartzite in this area is the same as that of the thrust surface. Outcrops 

throughout the field area have been overprinted by fracturing in two separate 

orientations. The mean orientation of the first group is NSW with a dip of 75 

degrees to the west. The mean orientation of the second group is N71E with a 

dip of 19 degrees to the northwest. Fracturing in this field area is attributed to 

post-Willard-thrust deformation most likely associated with Basin and Range 

extensional faulting because fractures generally overprint the other deformation 

structures. 

Axial planar cleavage is abundant, and is associated with most folds in the 

limestones and shales. Solution cleavage in the Willard Canyon field area is not 

distinct, but is present in the limestones and shales and is parallel to bedding. It 

is not distinct because of the penetrative nature of the other structures. Folding 

in the footwall of Willard Canyon ranges from tight isoclinal to open. Folds open 

to the west and the east, with neither orientation dominating. 

Fold orientations were measured where exposure and accessibility 
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permitted. Many folds could not be measured. Also, many accessible and 

exposed folds were examined from which no data could be collected. The mean 

fold axis orientation in the field area trends NSW with a plunge of 21 degrees. 

Footwall deformation at the Willard Canyon field area is macroscopically 

plastic, as evidenced by the folding that is present. It is uncertain how much 

strain in the footwall was accommodated by pressure solution. Solution cleavage 

is folded, which indicates an older age than folding and the initiation of footwall 

deformation prior to frontal or lateral ramping. If solution cleavage is a result of 

initial movement by the Willard thrust, it must have formed just prior to initiation 

of folding in the footwall. No structures in the field area were noted that might 

resolve this question. From all data collected the primary mechanism of 

deformation in the Willard Canyon field area is the folding of previously stre ssed 

(and strained) incompetent rocks in the zone of deformation (i.e. , the Ophir 

Formation and Maxfield Limestone). 

Willard Mountain 

Data collected from deformation structures at the Willard Mountain field 

area (between Willard Mountain and Willard Peak) include orientations of 

fractures, pencil cleavage, folds, and footwall bedding (see Appendix B). Rock 

samples for thin -section analysis of structural fabric were also collected. 

Deformation data were collected from the Ophir Formation and Maxfield 

Limestone in this field area. Outcrop rock types include quartzite, limestone, 

shale, and dolostone (see Appendix C). Orientations of deformation structures 

were plotted on stereonets and are shown in Figure 10. 
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Fig. 10 Stereonet plots of orientations of deformation structures at the 
Willard Mountain field area. See Appendix B for the number of 
data points used. Plotted data was visually grouped and means 
were calculated and plotted from resulting groups. 
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Footwall deformation at the Willard Mountain field area is located 

primarily in the Ophir Formation and Maxfield Limestone (Fig. 11), which lie in 

the zone of deformation . These formations lie in the zone of deformation below 

the Willard thrust and above the Tintic Quartzite. Unlike the Willard Canyon 

field area, footwall bedding at the Willard Mountain field area is easier to 

recognize and to measure. The Willard thrust surface in this area is parallel to 

footwall bedding . The mean bedding orientation for the Tintic Quartzite, Ophir 

Formation, and Maxfield Limestone is N41W with a dip of 32 degrees to the 

northeast . 

Outcrops in this field area, like the Willard Canyon field area, have a 

fracture overprint. Fracture orientations for the Willard Mountain field area fall 

into four groups . The mean orientation of the first group is N83E with a dip of 

70 degrees to the north. The mean orientation of the second group is N65E with 

a dip of 43 degrees to the southeast. The mean orientation of the third group is 

N35W with a dip of 43 degrees to the northeast. The mean orientation of the 

fourth group is N5E with a dip of 55 degrees to the west. The fracture overprint 

in this field area, like the Willard Canyon field area, is a result of post-Willard 

thrust extensional tectonics. 

Fold-axis orientations in the field area fall into two groups. The mean 

orientation of the first (dominant) group trends N2W with a plunge of 21 degrees 

and the mean orientation of the second group trends N98E with a plunge of 31 

degrees. Fold axes of the first group are similar to those in the Willard Canyon 

field area. The first group of fold axes plunges shallowly to the north and 

indicates a west-to-east compressive stress in the footwall. The second group of 



(a) 

Fig. 11 Examples of macroscopic footwall deformation structures (a,b,c) 
from the Willard Mountain field area. Example (a) is a small 
isoclinal fold in limestone that opens to the north (view is to the 
east). Dark vert ical bar on scale is 10 centimeters long. Example 
(b) is also a folded limstone . Example (c) is a folded unit of shale 
and limestone alternating shale and lime tone 
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(b) 

Fig. 11 (Continued) 
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(c) 

Fig. 11 (Continued) 
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fold axes is somewhat anomalous. The anomalous east-plunging orientations are 

located in an isolated outcrop within the zone of deformation. These fold axes 

may be evidence for a north-to-south directed component of stress, which Hansen 

(1980) proposed as following the initial phase of west-to-east directed stress on 

the Willard thrust plate. Schirmer (1985c) believed that the north-to-south 

directed lateral stress resulted from uplifting of the margins of thrust-sheet 

segments (created at lateral ramps) when an adjacent segment climbed up a more 

distal frontal ramp. The anomalous folds are likely to have been the result of 

differential stresses within the zone of deformation caused by changing lithologies 

(within the Cambrian limestones and shales) and east-west directed imbrication in 

the footwall in this particular field area. Macroscopic footwall deformation at the 

Willard Mountain field area, like that observed in Willard Canyon, is primarily 

plastic. Folding is the dominant type of deformation mechanism present, but 

bedding-parallel pressure-solution deavage is also common. 

North Ogden Canyon 

Data collected from deformation structures at the North Ogden Canyon 

field area include orientations of fractures, solution deavage, kink bands, folds, 

and footwall bedding (see Appendix B). Rock samples for thin-section analysis of 

structural fabrics were also collected. Data were collected from two areas in the 

canyon. The first area, Chicken Creek, is on the eastern side of the pass on the 

north side of the canyon. The second area is along the "Skyline" trail on the 

northern side of the canyon at the pass. Deformation structures in these two 

field areas are located in the Tintic Quartzite, Maxfield Limestone, and Ophir 

Formation (Fig. 12). The zone of deformation present at Willard Canyon and 



(a) 
Fig. 12 Examples of macroscopic footwall deformation structures (a,b,c,d) 

at the North Ogden Canyon field area. Example (a) is a limestone 
with small scale isoclinal folding. Dark bar on scale is 10 
centimeters and the view is to the north. Example (b) shows a 
a kink band in limestone. The notebook is 17 centimeters long 
and the view is to the north. Example (c) and (d) are very 
fractured limestone and Quartzi te outcrop s respectively. 
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(c) 

(d) 

Fig. 12 (Continued) 
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Willard Mountain is less distinct and stratigraphically thinner in this field area. 

Outcrop rock types include quartzite, limestone, shale, and dolostone. Figure 13 

contains stereonet plots of North Ogden Canyon deformation orientations. The 

orientation of the thrust surface in this field area is N44W with a dip of 52 

degrees to the northeast. The mean bedding orientation at the North Ogden 

Canyon field area is N76E with a dip of 36 degrees to the northwest. The change 

in footwall-bedding orientation relative to thrust-surface orientation is significant. 

This change may be due to the geometric relation of the thrust sheet to the 

underlying upper limb of an overturned syncline, mapped by Sorensen and 

Crittenden (1972) and Crittenden and Sorensen (1985b), which is first exposed in 

North Ogden Canyon. Because the trace of the Willard thrust is approximately 

northwest-southeast, and movement of the Willard thrust plate is assumed to have 

been to the east, it follows that folds forming in the footwall should have axes 

that are perpendicular to the direction of hangingwall movement. If the 

overturned syncline below the Willard thrust has formed in this manner, and both 

the upper and lower limbs of the fold are exposed, then according to this 

reasoning, footwall bedding should dip in either of two distinct directions that will 

depend on the exposed stratigraphic thickness of the footwall, the tightness of the 

fold, and the position of the thrust surface relative to the lateral ramp (Fig. 14). 

As well as could be determined by this author footwall bedding orientations 

measured in this area were from the upright (lower) limb of the syncline. 

Footwall bedding that is part of the upright limb of the syncline should dip to the 

northeast (i.e., the same as bedding at the Willard Canyon and Willard Mountain 

field areas). Footwall bedding that is part of the overturned limb of the syncline 
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Fig. 13 Stereonet plots of orientations of deformation structures at the 
North Ogden Canyon field area. See Appendix B for the number 
of data points used. Plotted data was visually grouped and means 
were calculated and plotted from resulting groups 

36 



West East 
Willard Thrust 

(a) 

West East 

(b) 

Fig. 14 Schematic croc;s sections modified from (a) Crittenden and 
-Sorensen (1985b) and (b) Hansen (1980) showing the overturned 
to the east recumbent syncline near the Goodale Creek Canyon 
field area. Cross section scales are 1:24,000 and 1: 17,500 
respectively and oriented approximately west-east. 
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may dip to the southwest or northeast. However, footwall bedding directly below 

the thrust in the North Ogden Canyon field area does not dip southwest, but 

strikes N64E and dips 40 degrees to the northwest. This orientation indicates 

that some other deformation event, prior to movement of the Willard thrust, has 

influenced the orientation of footwall bedding. Several possibilities exist which 

may explain this situation: 1) the overturned-to-the-east syncline may be a 

conical fold which opens eastward and southward, 2) upright and overturned 

limb geometries of the syncline may not be as geometrically straightforward as a 

simple conical fold which opens in two directions, and 3) variations in lithology 

and stratigraphy may be influencing footwall-bedding geometry. However, this 

study proposes that the thrusts structurally below the Willard thrust (i.e., Taylor 

and Ogden thrusts) are older than the Willard thrust, and their sequence of 

eastward displacement and emplacement history may have influenced by pre­

existing variations, discontinuities, or rifts (faults) in subsurface basement rocks. 

Reasons for this model will be given in the "DISCUSSION" and 

"IMPLICATIONS" sections. This change in the orientation of footwall bedding 

coincides with the location of the lateral ramp in the footwall, and where 

microscopic and macroscopic footwall deformation mechanisms begin to change 

southward from plastic to cataclastic, in the Ophir Formation and Maxfield 

Limestone as the thrust surface begins to cut upsection southward. 

Orientations of the fracture overprint in the footwall, like those at Willard 

Mountain, are separated into four groups (Fig. 13). The mean orientation of the 

first group is N33E with a dip of 62 degrees to the northwest. The mean 

orientation of the second group is N30W with a dip of 85 degrees to the 
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southwest. The mean orientation of the third group is N23W with a dip of 40 

degrees to the northeast. The mean orientation of the fourth group is N44E with 

a dip of 71 degrees to the southeast. Solution cleavage is less distinct, but 

parallel to bedding in this field area. 

Folding in the North Ogden Canyon field area consists of scattered smaller 

scale folds and some kink bands. The primary deformation mechanism in the 

North Ogden Canyon field area is folding, with some compressional fracturing 

appearing in the footwall. 

Cold Water Canyon 

Data collected from deformation structures in the Cold Water Canyon 

field area consists of bedding orientations only (see Appendix B) from the 

Maxfield Limestone, the Calls Fort Shale Member of the Bloomington 

Formation, and the Nounan Dolomite. Outcrop rock types in this field area 

consist of limestone, dolostone, and shale. Deformation structures within this 

field area include an extensional fracture overprint, compressional fracturing, and 

an overturned, east-vergent syncline (Sorensen and Crittenden, 1972) whose fold 

axis trends approximately parallel to the strike of the Willard thrust surface. 

Superimposed on this deformation and the Willard thrust sheet is another set of 

folds. This younger set of folds is located in the Cold Water Canyon area of 

Sorensen and Crittenden's (1972) map. Folding has involved footwall rock, the 

thrust surface, and the hangingwall of the Willard thrust. Bedding orientations 

were collected in this area only to determine the orientations of these younger 

fold axes. Results of mapping and stereonet analysis indicate the presence of 3 
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large conical folds in this field area (Fig. 15). The axis of the first fold trends 

N41W, plunges 78 degrees, and is located between North Ogden Canyon and 

Cold Water Canyon. The axis of the second fold trends N9E, plunges 86 degrees, 

and is located in Cold Water Canyon. The axis of the third fold trends N44E, 

plunges 81 degrees, and is located between Cold Water Canyon and One Horse 

Canyon. Sorensen and Crittenden (1972) mapped an overturned recumbent 

syncline in the stratigraphic formations below the Willard thrust, between Chicken 

Creek (in North Ogden Canyon) and Pineview Reservoir. The axial trace of the 

overturned syncline in their geologic map has been folded, as well as the surface 

of the Willard thrust fault. This field area (between North Ogden Canyon and 

One Horse Canyon; approximately 2-3 kilometers to the south) contains a folded 

(Cold Water Canyon data), overturned, east-vergent recumbent syncline, which 

may have formed during the eastward propagation of the structurally lower Taylor 

and Ogden thrust sheets, or contemporaneously as the Willard thrust moved over 

the structurally lower Taylor and Ogden thrusts. 
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Fig. 15 Stereonet plots of orientations of poles to bedding at the Cold 
Water Canyon field area. 
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Goodale Creek Canyon 

Data collected from deformation structures in the Goodale Creek Canyon 

field area include orientations of fractures, folds, and footwall bedding (see 

Appendix A). Rock samples for thin-section analysis of structural fabrics were 

also collected. Stereonet plots of orientations of deformation structures are 

shown in Figure 16. 

Deformation structures at the Goodale Creek Canyon field area consists of 

fracturing in the Garden City Formation, the Fish Haven Dolomite, the Water 

Canyon Formation, the Hyrum Dolomite, the Beirdneau Sandstone, the 

Lodgepole Limestone, the Deseret Limestone, and the Humbug Formation. 

Differentiating between post-Willard thrust cataclastic footwall overprinting and 

footwall cataclasis due to movement of the Willard thrust was difficult and not 

attempted in this area. The surface of the Willard thrust fault in this field area is 

oriented N56W with a dip of 51 degrees to the northeast. The mean bedding 

orientation in the field area is N62E with a dip of 33 degrees to the northwest. 

This orientation is similar to the orientation of footwall bedding at the North 

Ogden Canyon field area. The reason for this may be due to the large 

overturned syncline in the footwall, which caused footwall bedding geometry to 

change, but may be a result of rifts or faults in subsurface basement rocks that 

influenced the development of the Taylor and Ogden thrusts which then 

influenced the Willard thrust. 

Fracture orientations in this field area fall into two groups. The mean 

orientation of the first group is N45W with a dip of 81 degrees to the southwest. 
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Fig. 16 Stereonet plots of orientations of deformation structures at the 
Goodale Creek Canyon field area. See Appendix B for the 
number of data points used. Plotted data was visually grouped and 
means were calculated and plotted from the resulting groups. 
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The mean orientation of the second group is N54E with a dip of 64 degrees to 

the northwest. These two groups of fracture orientations are similar to two of the 

four groups of orientations from the North Ogden Canyon field area. The 

mechanism for footwall fracturing in this field area is caused by changing pressure 

and temperature conditions brought about by upward lateral ramping southward 

in the footwall, as well as later extensional overprinting. Smaller scale folds such 

as those in Willard Canyon and at Willard Mountain were not seen in this field 

area, but Hansen (1980) did map some small-scale folds. The mean orientation 

of Hansen's fold axis trends North 89 East and plunges 9 degrees. The 

overturned syncline in the footwall is still present in this field area (Sorensen and 

Crittenden, 1972). 

Pineview Reservoir 

Data collected from deformation structures at the Pineview Reservoir field 

area include only bedding orientations (see Appendix B). Rock samples for thin­

section analysis of structural fabrics were also collected. Outcrops in this field 

area are very fractured so fracture orientations were not measured. Figure 17 

contains stereonet plots of bedding orientations for the Pineview Reservoir field 

area. 

The orientation of the thrust surface is N24W with a dip of 51 degrees to 

the northeast. The mean bedding orientation in the footwall is N34W with a dip 

of 39 degrees to the northeast. In the three field areas where footwall bedding 

and thrust -surface orientation are approximately the same (i.e., Willard Canyon , 

Willard Mountain, and Pineview Reservoir) footwall bedding is the "flat" eith er 



Pineview Rese rvoir ~eon Thrust Surfoce Orlentet1on 

+ 

Pineview Reservoir Bedding Ortentotlons Pineview Reservoir Meon Bedding Orientott on 

Fig. 17 Stereonet plots of orientations of deformation structures at the 
Pineview Reservoir field area. See Appendix B for the number of 
data points used. Plotted data was visually grouped and means 
were calculated and plotted from resulting groups. 
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below or above the ramp lateral ramp. In the two field areas where footwall 

bedding and thrust-surface orientation are not the same (i.e., North Ogden 

Canyon and Goodale Creek Canyon) the change in footwall-bedding orientation 

represents the "ramp" of the lateral ramp. It is not possible to distinguish 

between compressional fracturing and extensional fracturing in this field area and 

throughout the other field areas. However, fracturing caused by movement of the 

Willard thrust probably dominates in this field area because fracturing is only 

present close to the thrust surface. 

Malans Peak 

Field data from Malans Peak consist of bedding orientations collected 

around the limb of a large, basement-cored monoclinal fold in the Tintic 

Quartzite and Ophir Formation (see Appendix B). Figure 18 contains stereonet 

plots of Tintic Quartzite bedding orientations. 

At Malans Peak, bedding of the Tintic Quartzite forms a large monocline 

that has been faulted downward to the north into Taylor Canyon. Numerous 

smaller folds are present within bedding near the peak. The monoclinal fold 

begins just to the north of Malans Peak where bedding begins to dip into Taylor 

Canyon. A best fit great circle drawn through poles to bedding is orientated 

N34E and dips 82 degrees to the northwest. The pole to the great circle gives a 

trend of N24E and a plunge of 8 degrees if the Malans Peak fold is cylindrical. 

If the fold is conical the trend is N99E and the plunge is 82 degrees. 



+ 

Mclcn ·s Peok Tlnltc-Ophir Poles to Bedding 

Ir f ol a is Cyllncr lcol 
Best Flt Grett Circ le 1s: 214 82NW 
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Melon's Peck Tintle-Ophir Poles to Bedding 

If the fold is Conicol 
Tr end end Plunge or the fold Axis ts · 99 62 

Malan's Peak Tinl/c-Oph/t Fold 
Karri) Plot 

Fig. 18 Stereonet plots of orientations of poles to bedding around the limb 
of the basement-cored monocline at Malans Peak. Field mapping 
indicates the fold to be cylindrical. 
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Taylor Canyon 

Field data collected on the south side of Taylor Canyon include 

orientations of fractures, solution cleavage, fold axes, and bedding (see Appendix 

B). Deformation structures are located in the Tintic Quartzite, the Ophir 

Formation, and the Maxfield Limestone. Outcrop rock types in this area include 

limestone, shale, and quartzite. Figure 19 contains stereonet plots of deformation 

orientations in Taylor Canyon. Bedding orientations fall into two groups. The 

mean orientation of the first group is N44W with a dip of 60 degrees to the 

northeast. The average orientation of the second group is S61E with a dip of 43 

degrees to the south. The trend and plunge (fold axis) of the pole to the great 

circle that was drawn through poles to bedding is oriented North 129 East and 

dips 13 degrees. This orientation is similar to that of the fold axis of the Malans 

Peak fold. Smaller folds which were observed but not measured have axes which 

trend and plunge to the east. Deformation on the south side of Taylor Canyon is 

a result of localized stress in the limestones and shales above the Tintic 

Quartzite, caused by adjustments in the units to folding. 

"S"-Fold 

Field data from the "S" fold consist of orientations of lineation and 

bedding structures orientations from the lower, middle, and upper limbs of the 

fold (see Appendix B). The "S" fold is located in the Maxfield Limestone in the 

upper portion of the first ravine south of the mouth of Ogden Canyon. Outcrop 

rock types are limestone and shale. Figure 20 contains stereonet plots of 
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Teylor's Ccnyon Poles to Colclte Vain Orlentetlons 

Fig. 19 Stereonet plot s of orientations of deformation structures at the 
Taylor Canyon field area. See Appendix B for the number of data 
points used. 
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S- Fold Beading 0r1entetlons of Upper end Middl e limbs 
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Jf Fold Is Cylinclricol 
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Tre nd ond Plunge or Fold Axis ls : NI 19E 12 

+ 
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s-ro!d Poles to Bedding of Lower end Middl e limbs 

If Fold 1s Cyllnorfcol 
Best Fit Gree t Circle Is · NJ IE 76NW 
Trend enCI Plung e of Fold Axts ls : N121E 14 

S-Fold Upper Limb Kamb Plot 

S-Fol d lower Uni> Kamb Plc l 

Fig. 20 Stereonet plots of orientations of bedding for the upper, middle, 
and lower limbs of the "S" Fold. See Appendix B for the number 
of data point used. 
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orientations of the upper, middle, and lower limbs of the "S" fold. A best-fit 

great circle through poles to bedding for the lower and middle limbs is orientated 

N31E and dips 76 degrees to the northwest. The pole to this great circle defines 

a fold axis that trends N121E with a plunge of 14 degrees. A best fit great circle 

through poles to bedding for the upper and middle limbs is oriented N29E and 

dips 78 degrees to the northwest. The pole to this great circle defines a fold axis 

that trends N119E with a plunge of 12 degrees. The "S" fold south of Ogden 

Canyon formed when limestones and shales above the Tintic Quartzite were 

locally strained as the Tintic Quartzite folded downward and northward into 

Ogden Canyon. 

Perry's Camp 

Data collected from deformation structures at Perry's Camp include 

orientations of folds, solution cleavage, and bedding (see Appendix B). The 

outcrops are located on the north side of the canyon, just east of Perry's Camp, 

approximately 1 to 2 kilometers up Ogden Canyon. Deformation is located in the 

Ophir Formation and Maxfield Limestone. Outcrop rock types include shales and 

limestones. Figure 21 contains great circle stereonet plots of deformation data at 

Perry's Camp. 

The mean bedding orientation is N37W with a dip of 50 degrees to the 

east. Fold-limb orientations from Perry's Camp fall into two groups. The mean 

fold-limb orientation of the first group trends S31E with a plunge of 8 degrees. 

The mean orientation of the second group trends N22W with a plunge of 18 

degrees. The trend and plunge (fold axis) of the pole to the great circle of poles 
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to fold limb orientations is N118W and 28 degrees. Deformation in this area is a 

result of localized strain, due to movement of overriding thrust sheets, within the 

incompetent Ophir Formation and Maxfield Limestone. 



Perry ·s Ccmp Beacling Oritnl e llons 
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Fig. 21 Stereonet plots of orientations of deformation structures at the 
Perry's Camp field area. See Appendix B for the number of data 
points used. The mean bedding orientation was calculated from all 
bedding data. 
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RESULTS 

THIN SECTIONS 

Thin sections are useful in structural geology for studying the texture, the 

mineralogy, and the structural fabrics of rocks. Nine thin sections were made 

from samples collected in the field areas. Preliminary examination showed that 

microscopic deformation textures and fabrics show up best in thin sections that 

are oriented west-east and cut perpendicular to bedding. Thin sections cut in this 

way show an apparent dip of structural fabric to the east. TI1e "true" dip of 

bedding, fold limbs, and other structures which look similar to s-c shearing in 

Weber Canyon (Y onkee and Bruhn, 1986) is to the northeast. The most 

important area for thin- section analysis is between Willard Mountain and North 

Ogden Canyon. It is this segment in the footwall of the thrust where deformation 

mechanisms in the footwall change from plastic to cataclastic. Thin sections from 

these areas are from the Ophir Formation and Maxfield Limestone. The best 

examples of microscopic plastic and cataclastic deformation come from the 

Willard Mountain and North Ogden Canyon field areas (Figs. 22 and 23). The 

dominant mechanism of microscopic plastic deformation in this field area is 

folding of limestone accompanied by dynamic recrystallization of calcite grains, 

the development of solution cleavage parallel to bedding, and mineral alteration 

of the shale in the limestone. The original clay minerals in the shale have been 

altered to what appears to be sericite. To the south, in the North Ogden Canyon 

field area, microscopic folding structures are less pronounced in outcrop and thin 

section. Dynamic recrystallization of calcite, solution cleavage, and the initiation 



(a) 

Fig. 22 Examples of microscopic footwall deformation structures (a,b,c) 
from the Willard Mountain field area. Thin sections are cut west­
east and perpendicular to bedding. Example (a) is a folded 
limestone. Example (b) is a folded limestone. Example (c) 
contains alternating layers of limestone and shale that have been 
folded (diagonal lines) and sheared (horizontal lines). Examples 
(a), (b), and (c) are 18 millimeters wide. 
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(b) 

Fig. 22 (Continued) 
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(c) 

Fig. 22 (Continued) 



Fig. 23 Examples of microscopic footwall deformation structures (a,b,c,d,e) from the 
North Ogden Canyon field area. The thin sections are all limestones and cut 
east-west perpendicular to bedding. Example (a) shows a folded calcite vein. 
Example (b) shows a "plastic flow" fabric around rigid inclusions. Example (c) 
shows folding in the same thin section as example (b). Example (d) shows a 
"plastic-flow" fabric that was overprinted by fracturing. Example 9e) shows 
only fractured limestone. Examples (b), (d)., and (e) are I 8 millimeters wide. 
Examples (a) and (c) are 0.45 millimeters wide. 
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(b) 

Fig. 23 (Continued) 
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(c) 

Fig. 23 (Continued) 
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(d) 

Fig. 23 (Continued) 
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(e) 

Fig. 23 (Continued) 
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of microscopic fracturing is visible. Thin sections provide confirmation that 

microscopic deformation as well as macroscopic (outcrop-scale) deformation 

changes from plastic to cataclastic between the Willard Mountain and North 

Ogden Canyon field areas. Thin sections from these areas reveal interesting 

structural and textural fabrics. Figure 22 shows several examples of plastic 

footwall deformation from the Willard Mountain field area. Structures that can 

be identified include isoclinal folding (Figs. 22a and 22b) and folding 

accompanied by shearing (Fig. 22c). Figure 22c show a distinctive difference in 

limestone and shale composition. No laboratory analysis was performed to 

determine a chemical or mineralogical composition of the two types of layers, but 

using a petrographic microscope the layers appear to differ by the percentage of 

limestone or shale they contain. The structural fabric in Figure 22c is the same 

as the structural fabric of s-c mylonites found in the Weber Canyon shear zone 

(Yankee and Bruhn, 1986). Figure 23 shows examples of plastic and cataclastic 

deformation from the North Ogden Canyon field area. Structures that can be 

identified include isoclinal folding (Fig. 23a), a "plastic-flow" texture of calcite, 

deforming by dynamic recrystallization, flowing around rigid inclusions (23b and 

23c), cataclasis overprinted on a "plastic-flow" texture (Fig. 23d), and cataclasis 

only (Fig. 23e ). The origin of the inclusions within the plastic-flow structure is 

unknown, but deformation around the inclusions is plastic. The thin section with 

the cataclasis (Fig. 23d) also contains very small veins of calcite which have be en 

folded (Fig. 23a). The combination of plastic deformation and cataclastic 

deformation at the same scale in the same thin section suggests that this field 

area lies in the area of transition of footwall deformation. This idea is support ed 
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by thin sections collected north of the North Ogden Canyon field area, which 

show only plastic deformation at the same scale, and thin sections from south of 

the North Ogden Canyon field area, which show only cataclastic deformation at 

the same scale. 

STEREONETS 

The projection of three-dimensional line and plane field data (i.e., fold 

axes and bedding) to solve geometric problems in structural geology can be 

graphically depicted using a two-dimensional equal-area coordinate net (Schmidt 

net) . The resulting stereonet is useful because it preserves geometric field 

orientations of lines and planes without regard to the spatial orientation of the 

structures (Davis, 1984; Suppe, 1985). The stereonets used in this study were 

constructed using "STEREONET' version 3.6, an academic shareware computer 

plotting program for the Macintosh computer. The program was written by 

Richard W. Allmendinger of the Department of Geological Sciences at Cornell 

University . 

Stereonets constructed from field data reveal several significant 

geometrical relationships . The most interesting and possibly the most important 

is the changing relationship between the orientation of footwall bedding and the 

orientation of the thrust surface (Figs. 9, 10, 13, 16, 17). The change may be a 

clue to subsurface structure(s) which influenced the geometry of the top of the 

footwall thereby causing deformation in the footwall as the thrust complex 

developed. Another geometrical relationship seen on the stereonets is the 

orientation of footwall fold axes relative to the orientation of the thrust surface. 
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Footwall fold-axis orientations suggest that movement of the hangingwall of the 

Willard thrust was approximately due east. Schirmer (1985c) also used the 

geometry of the thrust sheets to determine the direction of movement. Other 

stereonet relationships include post-Willard-thrust fracture patterns, which can be 

approximately correlated from one field area to the next, and bedding-parallel 

solution cleavage which may be pre-Willard deformation, syn-Willard 

deformation, or a combination of the two. 

MAPS 

Previously published geologic maps of the study area contain many 

structural features associated with the Willard thrust fault. Some of these 

features include: 1) bedding-plane thrusts, 2) imbrication of the main thrust, 

3) folding of the thrust surface, 4) a large overturned syncline in the footwall of 

the thrust, and 5) a lateral change in stratigraphy at the top of the footwall from 

north to south. Bedding-plane thrusts and main-thrust imbrication are primarily 

between Willard Canyon and North Ogden Canyon. Folding of the Willard thrust 

surface and exposure of the large overturned syncline in the footwall are best 

displayed between North Ogden Canyon and Cold Water Canyon. The lateral 

change in footwall stratigraphy is most dramatic between Cold Water Canyon and 

Pineview Reservoir, where the thrust cut upsection from Cambrian in the north to 

Mississippian in the south. Possible explanations for the change in stratigraphic 

formation, the over-turned syncline, and the folded trace of the thrust will be 

discussed below. 
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STRATIGRAPHIC DISPIACEMENT DIAGRAM 

Stratigraphic displacement diagrams (Chapman and Williams, 1984; 

Woodward, 1987) are used to locate graphically stratigraphic changes of thrust 

faults. This helps to identify frontal and lateral ramps, and to quantify shortening 

and stretching between the hangingwall and footwall of a thrust. The 

stratigraphic displacement diagram constructed for this study (Fig. 24) shows the 

longitudinal stratigraphic position of the Willard thrust surface relative to footwall 

stratigraphy along the strike of the fault surface from the Willard Canyon field 

area to the Pineview Reservoir field area. Very generally, the displacement 

diagram shows that at about North Ogden Canyon the Willard thrust surface 

begins to cut upsection laterally from north to south. The displacement diagram 

also shows a peculiar set of peaks just south of North Ogden Canyon in the area 

of Cold Water Canyon. The cause of these peaks is unclear but they may be a 

result of: 1) thrust-surface folding and subsequent differential erosion, 2) 

footwall remnants with little or no meaning, 3) footwall imbricates which laterall y 

appear and disappear along the trace of the thrust surface, or 4) areas where the 

thrust fault actually cuts up and down in footwall stratigraphy. 

HANGINGWALL SEQUENCE DIAGRAMS 

Hangingwall sequence diagrams are two-dimensional longitudinal cross 

sections showing, through time, the initiation, progressive footwall deformation, 

and sequential development of a series of related thrust sheets. Constructed 
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Fig. 24 Stratigraphic Displacement Diagram showing the change in 
footwall geology, from north to · south (left to right), along the trace 
of the Willard thrust fault. Stratigraphic units on this diagram 
correspond to the stratigraphic columns in Appendix C. The units 
are pEf-Farmington Canyon Complex, Et-Tintic Quartzite, Eo­
Ophir Formation, Em-Maxfield Limestone, Ebm-Calls Fort 
Member of Bloomington Formation, En-Nounan Dolomite, Esw­
Worm Creek Quartzite , Es-St. Charles Limestone, Oge-Garden 
City Formation, Ofb-Fish Haven Dolomite, Dwc-Water Canyon 
Formation, Db-Beirdneau Sandstone, Ml-Lodgepole Limestone , 
Md-Deseret Limestone, Mh-Humbug Formation . 
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diagrams are subjective in nature, model-dependent, and based on available maps 

and collected field data. The hangingwall-sequence diagrams constructed for this 

study (Fig. 25) show a simplified development of the Willard thrust complex. The 

diagram is oriented northwest-southeast (because the trace of the fault is 

approximately northwest-southeast) and uses the Tintic Quartzite formation as a 

marker horizon. The diagram shows the Taylor Canyon thrust developing first, 

followed by the Ogden thrust and then the Willard thrusts (possibly a "roof' 

thrust). The significance of the diagram is that unlike previous studies in this 

area (Eardley , 1944; Bell, 1952; Bruhn and Beck, 1981; Schirmer, 1985c) the idea 

being proposed here is that the Taylor and Ogden thrusts are older than the 

Willard thrust. The idea for the proposed sequential development is based on 

the geometry of thrust plates near the four major canyons in the area ( only three 

of which are shown on the diagram), the possible existence (?) of north-south and 

east-west rifts in subsurface basement rock (not shown in Fig. 25), the North to 

South change in footwall deformation mechanism and structure, and the presence 

of a lateral ramp in the footwall of the Willard thrust. It is proposed that pre­

existing discontinuities and rifts in subsurface basement rocks influenced where 

and how thrust faults developed and that continued displacement along these 

discontinuities further deformed the evolving thrust complex. 
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Fig. 25 Hangingwall sequence diagrams showing a simplified 
longitudinal development (NW-SE) of the Willard "thrust 
complex." Horizontal scale is 1:100,000. N.W.-Northwest, 
S.E.-Southeast, W.C.-Willard Canyon, N.0.C.-North Ogden Canyon , 
O.C.-Ogden Canyon , T.T.-Taylor Thrust, O.T.-Ogden Thrust, 
W.T.-Willard Thrust. 
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DISCUSSION 

INTERPRETATION OF FOO1WALL DEFORMATION 

Analysis of footwall deformation and thrust-complex geometry below the 

Willard thrust fault provides additional insights into the relationship between 

hangingwall movement and resulting footwall strain and pre-existing footwall 

geometry and resulting hangingwall geometry. 
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The direction of tectonic transport of the Willard thrust sheet over its 

footwall might be determined by assuming that fold axes ( of folds formed in the 

footwall) form perpendicular to the direction of transport. The direction of 

tectonic transport is approximated by adding 90 degrees to the trend of the mean 

fold axis orientation at field areas where folding has occurred in the footwall. 

Corrections are based on the assumption that thrusting was generally from west 

to east, which is confirmed by regional data, and the "Z" fold (Crittenden , 1972; 

Pavlis and Bruhn, 1988) at the head of Ogden Canyon. The mean fold-axis 

orientation in the footwall of the Willard Canyon field area trends NSW with 21 

degrees of plunge, this implies a tectonic transport direction of N85E or almost 

due east for the Willard thrust sheet in this area. The mean fold axis orientation 

in the footwall at the Willard Mountain field area trends N2W with 21 degrees of 

plunge, this implies a tectonic transport direction of N88E. An isolated stress 

field, whose origin may due to intraformational lithological variation and 

imbricate bedding-plane thrusts in the detachment zone below the Willard thrust , 

is present in this area and has a mean fold-axis orientation of N98E with 31 

degrees of plunge . The mean fold-axis orientation in the North Ogden Canyon 



field area is NlE with 48 degrees of plunge which gives a tectonic transport 

direction of N91E. Although no folds were discovered in the Goodale Creek 

Canyon field area during this study, Hansen (1980) measured 15 small isoclinal 

folds near this field area. The mean fold-axis orientation for Hansen's data is 

N25W which suggests a tectonic transport direction of N65E for the Willard 

thrust sheet. No folds were observed at the Pineview Reservoir field area, but 

the strike of footwall bedding, which closely approximates thrust surface 

orientation, is oriented N34W 39NE. This indicate a general tectonic transport 

direction of N56E. All field data collected in this study indicates a direction of 

movement of west to east for the Willard thrust sheet. Other evidence for 

eastward movement includes an overturned to the east, recumbent syncline 

(Sorensen and Crittenden, 1972), which lies below the Willard thrust fault 

between the North Ogden Canyon and Pineview Reservoir field areas, and the 

"Z" fold exhibiting eastward drag at the head of Ogden Canyon. Studies by 

Hammond (1971), Hammond and Parry (1972), Sadeghi (1972), Hansen (1980), 

Beck (1982), and Schirmer (1985c) also concluded that tectonic movement was 

from west to east. 
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Footwall deformation due to movement of the Willard thrust sheet is both 

plastic and cataclastic. Penetrative plastic deformation at both the macroscopic 

and microscopic scales is present in the Willard Canyon, Willard Mountain, North 

Ogden Canyon, and Goodale Creek Canyon field areas. Cataclastic deformation 

is present in the North Ogden Canyon, Goodale Creek Canyon, and Pineview 

Reservoir field areas. All six of the field areas contain an extensional fracture 

overprint. The extensional cataclastic overprint was caused by post-Willard thrust 
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tectonism (i.e., Basin and Range faulting). The transition in deformation styles 

begins just north of the North Ogden Canyon field area (Fig. 26) and continues 

southward past the North Ogden Canyon field area. All footwall deformation 

north of this point is plastic, with folding the dominant mechanism of 

deformation. Solution cleavage and tectonic thinning and thickening of footwall 

formations are primarily present in the northern field areas (i.e., Willard Canyon, 

Willard Mountain, North Ogden Canyon), but exactly how strain was 

accommodated by pressure solution is difficult to determine. Solution cleavage in 

the limestones and shales however is important because they provide rough 

constraints on temperature and pressure conditions during deformation ( e.g., for 

limestone pressure solution doesn't usually form at < 120"C). From the North 

Ogden Canyon field area southward the abundance of plastic deformation in the 

footwall decreases and cataclastic deformation becomes more dominant. South of 

the Goodale Creek field area plastic deformation is not present in the footwall of 

the Willard thrust. The transition from plastic to cataclastic deformation takes 

place within the Ophir Formation and Maxfield Limestone where plastic strain 

begins to give way to cataclastic strain. The transition happened at this point 

because the Maxfield Limestone was able to record differing styles of 

deformation, due to changing pressure and temperature conditions brought about 

by the lateral ramp, which begins to cut upsection (southward) near the transition 

in footwall deformation. A possible relationship between lateral ramping, the 

overturned to the east syncline in the footwall, and possible influences from 

subsurface structures will be discussed next. 
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Fig. 26. Generalized geologic map showing the area (box) where footwall deformation 
begins to change from plastic to cataclastic. Map scale is 1:125,000. 
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LATERAL RAMPS 

Between the North Ogden Canyon field area and the Pineview Reservoir 

field area the Willard thrust cuts laterally up-section from the Lower Cambrian 

Maxfield Limestone (in the north) to the Upper Mississippian Humbug 

Formation (in the south). The proposed mechanism most cited for this 

occurrence is the presence of a lateral ramp in the footwall of the thrust 

(Schirmer, 1985c; Bruhn and Beck, 1981). The overturned-to-the-east recumbent 

syncline, which lies below the thrust, is only exposed where the Willard thrust cuts 

upsection along the ramp between North Ogden Canyon and Pineview Reservoir. 

The fold is not exposed north of the North Ogden Canyon field area because the 

upper and lower limb are cut off by the thrust surface. Crittenden and Sorensen 

(1985b) left few written details concerning the evolution of the recumbent 

syncline which he mapped below the Willard thrust (Fig. 14). Hansen (1980) 

described the axis of the overturned syncline in Goodale Creek Canyon as 

trending north-northwest with most of the overturned limb truncated by the 

Willard thrust. He also noted that bedding in the upright (lower) limb of the 

syncline is dips east, whereas bedding in the overturned (upper) limb dips west. 

Schirmer (1985c) also described the change in geometry of the syncline between 

North Ogden Canyon and Ogden Canyon. He described the fold as changing 

from overturned isoclinal in the north to tight in the south where the syncline 

opens as the thrust cuts upsection. Possibilities for the origin of the fold are: 1) 

Paleozoic strata were uplifted, overturned, and folded as movement on the 

Willard thrust fault initiated, 2) Paleozoic strata were overturned and folded as a 



result of drag underneath the Willard thrust sheet as it moved eastward (a 

footwall fault-propagation fold), or 3) some combination of 1 and 2. 
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Another possibility, for which no evidence exists, is that a pre-Willard­

thrust tectonic event folded the strata. Previous workers (Bruhn and Beck, 1981; 

Schirmer, 1985c) have concluded the Taylor and Ogden thrusts are younger than 

the Willard thrust. The presence of the recumbent syncline poses several 

problems. Did the syncline form prior to movement on the Willard thrust or did 

it form contemporaneously with the Willard thrust? Could its presence be the 

result of structural highs in the subsurface? If the shape of the recumbent 

syncline is conical (Fig. 10), that is, closed in the north (North Ogden Canyon 

field area) and opening to the south and east, then one possible explanation (if 

the fold is pre-Willard thrust) is that the Willard thrust fault is ramping upsection 

laterally southward because of the large fold in its footwall. The syncline also 

opens southward and may or may not have been influenced by a subsurface 

basement structure. If the fold was contemporaneous with the Willard thrust and 

formed as the thrust moved eastward then a pre-existing, sub-fold, basement 

structure may have influenced the location of formation of the recumbent syncline 

and thereby caused the Willard thrust fault to cut upsection southward. 

The geometry of the footwall between the North Ogden Canyon field area 

and the Pineview Reservoir field area has been carefully described and mapped 

by Schirmer (1985c) as a frontal ramp that cuts upsection eastward and a lateral 

ramp that cuts upsection southward. The sequential development of Schirmer 's 

Ogden duplex accounts for the fact that the Willard thrust fault cuts upsection 

from Cambrian to Mississippian age rocks. 
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The idea proposed in this study is that multiple smaller ramps or steps 

may be present in the footwall of the thrust complex (i.e., structurally below the 

Taylor thrust). Evidence for these lateral steps includes the presence of the 

"anomalous" east-west-trending canyons (Hunt, 1982) that cut the Willard thrust 

and Willard thrust complex in the study area, and the large basement-cored 

anticline in the Tintic Quartzite, Ophir Formation, and Maxfield Limestone south 

of Taylor's Canyon, which Bruhn and Beck (1981 p. 203) stated " ... could be a 

'step' fold caused by oblique movement across an east-trending tear fault at 

depth ." The three anomalous canyons in question are North Ogden Canyon , 

Ogden Canyon, and Taylor 's Canyon. As Hunt (1982) pointed out, the origin of 

these canyons is not well understood . Evidence for the multiple lateral steps is 

present in the geometry of the footwall of the Willard thrust fault and underlying 

thrust complex in each of these canyons. At each of the three canyons the Tintic 

Quartzite is a marker horizon, and changes in duplex geometry are reflected in 

changes in its bedding orientation. Part of the evidence for the multiple lateral 

steps is that bedding geometry of the Tintic Quartzite is similar at each canyon. 

To the south of each canyon (approximately 3 to 6 kilometers) the overall 

bedding orientation in the Tintic Quartzite dips eastward in the east -dipping 

thrust complex. Near the south side of each canyon, bedding in the Tintic 

Quartzite bedding begins to fold downward toward the canyon . The anticlinal 

fold that has developed in each of the canyons is most obvious at Malans Peak 

(south of Taylor Canyon), where Precambrian crystalline basement rock from the 

Farmington Canyon Complex is exposed in the core of the fold. The Malans 

Peak fold is uniqu e because rocks from the Farmington Canyon Complex also 
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have been uplifted on the north side of Taylor's Canyon to form an "apparent" 

high-angle reverse fault with "reverse" drag in the downthrown block south of the 

canyon. The fold on the south side of the canyon has been called a basement­

cored anticline by Bruhn and Beck (1981) and Schirmer (1985c). This fold and 

the east-west trending reverse fault in the canyon floor may represent the 

reactivation of east-west rifts in the Precambrian basement followed by the initial 

movement of the Taylor thrust. South of Ogden Canyon bedding in the Tintic 

Quartzite bedding changes from east dipping to north-northeast dipping. The 

major difference at Ogden Canyon is that the Tintic Quartzite dips below ground 

level before it actually reaches the canyon. The Ogden Canyon fold is unique 

because it is cored by Precambrian crystalline basement rock and because above 

the crystalline basement rock the Tintic Quartzite is faulted. This east-west "tear" 

fault was first mapped by Gilbert (1890). Above the tear fault, in the Maxfield 

Limestone, faulting has given way to folding. This is the location of the "S" fold. 

The presence of the tear fault and the "S" fold are attributed here to the change 

in overall geometry as the east-dipping units in the footwall and in the overlying 

thrust complex changed to north dipping closer to Ogden Canyon. North of 

Ogden Canyon the Tintic Quartzite dips to the east, and is part of the thrust 

complex beneath the Willard thrust fault. Farther north near North Ogden 

Canyon the Tintic Quartzite in the footwall is folded, dips to the north, and 

gradually disappears into the subsurface. This fold is similar to the fold just 

south of Ogden Canyon because it also disappears into the subsurface before 

reaching the canyon. A similar structure in the Tintic Quartzite is present farther 

north at the northernmost exposure of the Willard thrust fault (i.e., north of 
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Willard Canyon). South of Willard Canyon the Tintic Quartzite is part of the 

east-dipping thrust complex. Where the Tintic Quartzite approaches Willard 

Canyon, it begins to dip to the north, and eventually disappears into the 

subsurface before it reaches Box Elder Canyon, east of Brigham City. This study 

proposes that the change in thrust complex geometry to the south of Taylor 

Canyon, Ogden Canyon, North Ogden Canyon, and Box Elder Canyon may be 

due to three or more east-west lateral steps in the lowest footwall of the thrust 

complex. A possible origin for these lateral steps will be discussed in the 

"IMPLICATIONS" section. 

Other evidence that supports the presence of lateral ramps is the relative 

orientation of footwall bedding to thrust-surface orientation (Figs. 9, 10, 13, 15, 

16, 17). At the Willard Canyon and Willard Mountain field areas both footwall 

bedding and thrust-surface orientation strike northwest and dip to the northeast. 

To the south, at the North Ogden Canyon field area, where the plastic to 

cataclastic transition is associated with a southward climbing lateral ramp, 

footwall bedding is oriented approximately northeast and dips to the northwest, 

whereas the orientation of the thrust surface strikes northwest and dips to the 

northeast. The same divergence is present in the Goodale Creek Canyon field 

area, where bedding strikes northeast and dips to the northwest and the Willard 

thrust fault strikes northwest and dips to the northeast. At the Pineview 

Reservoir field area, the approximate southernmost exposure of the Willard 

thrust, bedding is once again oriented approximately the same as the Willard 

thrust surface. The change in footwall-bedding orientation may be an indication 

not only of lateral ramping but also of possibly pre-Willard-thrust thrusting. 
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The development of the Willard thrust complex in northern central Utah, 

in a very general sense, is relatively straightforward when viewed regionally. 

That is, west to east tectonic compression during Middle Cretaceous time forced 

Archean, Late Proterozoic and Paleozoic miogeosyncline sedimentary basin rock 

from the hinterland, onto rock of the adjoining eastern shelf, or foreland 

(Wheeler and Krystinik, 1988). In a more restricted sense, the development of 

the Willard thrust complex does not fit well with previously conceived models for 

the evolution of thrust faults and classic duplexes. The problems are that the 

Taylor, Ogden, and Willard thrust sheets dip in the direction of propagation (the 

foreland) and the amount of deformation in the footwall is more than what is 

predicted in other models (Boyer and Elliot, 1982; Suppe, 1985). The exception 

to this occurs between Taylor's Canyon and Ogden Canyon (below the Ogden 

thrust) where a segment of the Tintic Quartzite forms an anticlinal structure that 

dips both west and east. How did the overall structure of the thrust complex end 

up dipping to the east if thrust sheet movement was from west to east? 

Schirmer (1985c, 1988) modified Boyer and Elliot's (1982) classic models of 

foreland-dipping duplexes and antiformal stacks in addition to using hangingwall­

sequence diagrams to describe the Willard thrust sheet and structurally lower 

Taylor and Ogden thrust sheets, which he named the Ogden Duplex. Schirmer 

(1988) concluded that the Ogden Duplex formed in a sequential piggyback 

manner, as older thrust sheets (horses) are placed on top of and folded over 

younger and structurally lower thrust sheets as thrusting propagated eastward. 
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Then, normal faulting along the Wasatch fault zone downdropped the western 

half of the duplexes to a position now buried by valley fill. If correct, the Ogden 

Duplex would constitute an "antiformal stack duplex" locally or a "foreland 

dipping duplex" overall in the classification of Boyer and Elliot (1982). 

This study suggests the term "thrust complex" be used to describe the 

Willard thrust fault and structurally lower Taylor and Ogden thrust faults in order 

to avoid any inference of genetic models of multiple, sequential stacking and 

development, of thrust sheets. The Willard thrust complex as proposed by this 

study developed as part of the eastward-propagating Sevier orogeny. A 

decollement or zone of deformation formed in Cordilleran miogeosyncline rocks 

far to the west of the current Wasatch Front (Fig. 27). Continued eastward 

displacement along the zone of deformation combined with the possible existence 

of pre-existing east-west and north-south structures (located approximately where 

the Wasatch Fault exists today), caused the Taylor and Ogden thrust sheets to 

ramp upsection from west to east and then the Willard thrust sheet formed as the 

"roof thrust " of the thrust complex. This study's proposed development of the 

thrust complex is similar to previous models (Dahlstrom, 1970) which do not 

require progressive failure of the footwall frontal ramp (fig. 2). Most of the 

recent thrust-fault duplex models (i.e., Boyer and Elliot, 1982) have proposed 

progressive failure of the footwall ramp, so that younger and structurally lower 

thru sts develop beneath older thrusts. Figure 27 shows a decollement or zone of 

deformation forming at the base of miogeosyncline shelf sediments to the west. 

To the east rifts in the cratonic shelf may have influenced the detachment surface 

to ramp upward. As thrusting continued new thrusts developed by ramping 
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Fig. 27 Proposed schematic development of the Willard thrust complex. 
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upsection along the same initial frontal ramp and then overriding older thrusts. 

This eliminates the need for younger thrusts to develop their own frontal ramp 

structurally beneath the initial frontal ramp. In this model the Taylor thrust sheet 

was the first to form. The Ogden thrust sheet was the second to form. The final 

thrust or roof thrust was the Willard thrust sheet which carried Proterozoic rock 

in its base. Finally, the entire thrust complex was eroded and followed by 

Cenozoic extension and normal faulting (reactivation of Precambrian extension ?) 

which enhances the eastward dipping nature if the thrust complex. 

Other factors have also influenced the final geometry of the Willard thrust 

complex. In addition to the west-to-east frontal ramp, north-to-south lateral 

ramps of the Willard thrust fault also formed. Lateral ramps are assumed to be 

related to east-west Precambrian rifts in cratonic shelf sediments. The 

combination of frontal ramps, lateral ramps, and other possible structures in the 

subsurface help explain the complex thrusting, thrust imbrication, and bedding­

plane thrusts below the Willard thrust sheet between Willard Canyon and 

Pineview Reservoir, the approximate southern exposure of the Ogden thrust. 

The model proposed in this study, with the exception of the proposed sequence of 

progressive failure in the footwall, still adheres to the basic rules of development 

of thin-skinned thrust faults and their resulting geometries and structures 

(Dahlstrom, 1970; Jones, 1971; Perry, 1978; Elliot and Johnson, 1980; Boyer and 

Elliot, 1982; Mitra, 1986). 
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IMPLICATIONS 

SUBSURFACE STRUCTURES 

One of the problems that workers in this area of the Idaho-Wyoming-Utah 

thrust belt have to deal with is trying to interpret Cretaceous-age thrusting 

overprinted by Cenozoic extension. This apparent complication may potentially 

be more helpful than complicating. Prior to Cenozoic extension, Cretaceous 

thrusting during the Sevier orogeny, and Proterozoic development of a passive 

continental margin (and the sediments of the Cordilleran miogeosyncline that 

accumulated on the margin), the area was subjected to numerous episodes of 

Precambrian rifting (Wheeler and Krystinik, 1988). Rifting and associated 

extension and thinning in Late Proterozoic time helped form a continental margin 

that extended between the present location of Alaska and Mexico. So, to unravel 

the history of Cretaceous thrusting in this study area, it is important to try to 

understand the influence of pre-Cretaceous subthrust structures ( e.g., Late 

Proterozoic extension). These subthrust structures may be just as important in 

unraveling Cretaceous thrusting as is the Cenozoic extension which overprints the 

thrust complex in this area. The hypothesis states that thrusts of the Sevier 

orogeny overrode the older and rifted passive margin. Wheeler and Krystinik 

(1988) stated that when compared to other thrust systems, the resulting thrust 

complex should " ... contain numerous faults of diverse strikes, dips, and degrees of 

interconnection" (Boyer and Elliot, 1982; Perry and others, 1984). Wheeler and 

Krystinik (1988) used gravity data, aeromagnetic data, earthquake-epicenter data, 

topographic data, and geologic data in addition to other studies by Stewart 
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(1972), Stewart and Poole (1974), Zoback (1983, 1987), Bruhn and Smith (1984), 

Christie-Blick (1984), Smith and Bruhn (1984), Pricha and Gibson (1985), and 

Bryant and Nichols (1988) to infer the existence of normal faults, extending both 

north-south and east-west, in Precambrian rock beneath the thrust sheets exposed 

in the Wasatch Front. Wheeler and Krystinik (1988) made a correlation between 

Precambrian extensional faults and possible segmentation boundaries along the 

Wasatch Fault. 

One of the objectives of this study, which these previous studies have not 

directly focused on, is the influence of pre-existing structures in the passive 

continental margin on thrust complex geometry and evolution. A point to keep in 

mind is that seismic-reflection profiles of the area in question are scarce. 

HYPOTHESES AND MODELS 

The hypotheses and proposed models for the development and evolution 

of the Willard thrust complex in this study are based on direct and indirect lines 

of evidence from published literature, map analyses, lab work, and field work. 

The implication of this research, in a broad sense, is that plastic to brittle changes 

in deformation in the footwall of the Willard thrust fault should not be thought of 

as a single tectonic event, but as a continuous and interrelated sequence of 

overlapping tectonic events. That is, a plastic-to-brittle transition in the footwall 

of the Willard thrust fault is not only a function of the thrust fault ramping 

laterally upsection southward, but also a function of footwall topography ( e.g., the 

overturned syncline) and thrust complex geometry below the Willard thrust, which 

in turn may be a function of pre-existing rifts or faults in passive continental-
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margin rocks. On a smaller scale however, the transition from plastic to brittle 

footwall deformation within the same stratigraphic units (Ophir Formation and 

Maxfield Limestone) where the thrust fault ramped upsection laterally southward 

implies that deformation style is controlled not only by the changing geometry of 

a thrust sheet, but by the physical, chemical, and mineralogical properties of the 

stratigraphic formations in the footwall. 
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CONCLUSIONS 

The Willard thrust fault is the roof thrust of an east-dipping thrust 

complex in the northern Wasatch Mountains, east, northeast, and north of Ogden, 

Utah. The thrust complex is made up of three separate thrusts which include the 

Willard thrust and the structurally lower and older Taylor and Ogden thrusts. 

The proposed model of development and evolution for the Willard thrust 

complex is that an eastward-propagating thrust (decollement or zone of 

deformation) during the Sevier orogeny encountered rifts or possibly faults (both 

west-east and north-south) in the crystalline basement rock and miogeosyncline 

sediments of the passive continental margin. These rifts caused the Taylor, 

Ogden, and Willard thrust sheets to ramp upward (both parallel and 

perpendicular to the direction of thrust-sheet transport) and form an east dipping 

thrust complex. This study proposes that the Taylor thrust fault developed first 

and that the Ogden thrust developed second and overrode the Taylor thrust. The 

timing of these two thrusts is difficult to determine as is the timing of the Willard 

thrust fault which formed shortly thereafter as a roof thrust that carried the Late 

Proterozoic Facer and Perry Canyon formations. 

This study investigated microscopic and macroscopic changes in 

deformation mechanism and style in the footwall of the Willard thrust fault 

between Willard Canyon and Ogden Canyon. Deformation structures in the 

Willard Canyon and Willard Mountain field areas are dominantly plastic and 

formed by mechanisms of folding, pressure solution, and dynamic recrystallization 

of calcite. Intensely folded shales and limestones of the Ophir Formation and 
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Maxfield Limestone can be seen in outcrop and thin section. Thin sections 

revealed dynamic recrystallization of calcite, styolitic textures, folding, shearing, 

and possible mineral alteration in the shale. Deformation structures in the North 

Ogden Canyon field area are both plastic and cataclastic. At the outcrop scale 

folding is less distinct and at a smaller scale than at the Willard Canyon or 

Willard Mountain field areas. At the microscopic scale, folding, pressure 

solution, and dynamic recrystallization of calcite are present, but the plastic 

deformation is overprinted by fracturing. The presence of both plastic and 

cataclastic deformat ion structures, the fact that the thrust begins to cut up section 

in this area, and the lack of plastic deformation structures to the south indicates 

this is the location of the transition in footwall deformation. The transition from 

plastic to cataclastic footwall deformation begins approximately 3 kilometers 

north of the North Ogden Canyon field area in the Ophir Formation and the 

Maxfield Limestone. It is in this area of the footwall, between Willard Canyon 

and Ogden Canyon, where plastic mechanisms of deformation give way to 

cataclastic mechanisms of deformation. The transition in deformation appears 

most prominent in the Maxfield Limestone. 

Understanding how the deformation in the footwall of a thrust sheet 

relates to the total displacement of the thrust sheet is important to the history of 

how the thrust sheet and its associated thrust complex evolved. Deformation 

structures and mechanisms in the footwall of the Willard thrust discussed in this 

study present some interesting ideas. Footwall deformation structures observed in 

this study represent strain that was accommodated just prior to and during frontal 

ramping, lateral ramping, and the sequential geometrical evolution of the Willard 
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thrust complex. This idea states that deformation in the footwall of the Willard 

thrust is not representative of the total strain accommodated during the total net 

displacement of the Taylor, Ogden, and Willard thrust sheets. Rather, footwall 

deformation in the Willard thrust represents a record of thrust complex 

development and specifically how thrust sheets interacted as they were thrust 

eastward and upward on top of one another. Results of this study are important 

because they show that footwall deformation can be used to determine a specific 

thrust complex chronology and relate the resulting geometry of the thrust complex 

to deformation mechanisms working within the deforming thrust sheets. 
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APPENDIX A. PREVIOUS WORK 

Blackwelder (1910) was one of the first workers to describe geologic 

structures between Weber Canyon (south of Ogden) and Willard Canyon (east of 

Willard). Later workers (Eardley, 1933, 1939, 1944, 1949, 1952, 1962, 1963, 1969, 

1972; Eardley and Hatch 1940a, 1940b; Bell, 1951, 1952; Thomas, 1940; Granger, 

1953; Williams, 1948; Crittenden, Sharp, and Calkins 1952; Hanson, 1953; Hardy 

and Williams, 1953; Crittenden 1959, 1961, 1967, 1972, 1974, 1980; Crittenden, 

Mckee, and Peterson, 1971; Crittenden, Schaeffer, Trimble, and Woodward, 1971; 

Crittenden and Christie-Blick, 1980; Maxey, 1958; Hintze, 1959, 1960, 1973, 1988; 

Rigo, 1968; Bryant, 1980; Hedge, Stacey, and Bryant, 1983; Chidsey, 1984) 

described stratigraphy, lithology, and structure of both the Willard-Paris thrust 

and the surrounding geology of the north-central Wasatch Mountains. More 

recently, the Sevier orogenic belt has been studied in detail by workers such as 

Armstrong and Hansen (1966), Condie (1966, 1969), Armstrong (1967, 1968), 

Compton (1969), Mullens and Crittenden (1969), Temple (1969), Tooker and 

Roberts (1971), Coney (1972, 1973), Roberts (1972), Beutner (1977), Burchfiel 

and Davis (1972, 1975) Hollet, (1979), Allmendinger and Jordan (1981), Jordan 

(1981); Standlee, (1982, 1983), Bruhn, Picard, and Beck (1983), Bruhn, Picard, 

and Griffey (1983), Yonkee and Mitra (1982), Heller and others (1986), Christie­

Blick (1983, 1984), Kulik and others (1983), Miller (1983), Naeser, Bryant, 

Crittenden, and Sorensen (1983), Tooker (1983), Villien and Kligfield (1983), 

Wiltschko and Dorr (1983), Mitra and others (1984), Mitra and Yonkee (1985), 

Christie-Blick and Levy (1985, 1988), Lawton (1985), Yonkee and Bruhn (1986, 
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1987, 1988), Dunlap (1988), and Neuhauser, (1988). More specifically, workers 

such as Eriksson (1960), Hammond (1971), Hammond and Parry (1972), Bruhn 

and Beck (1981), Beck (1982), Beck and Bruhn (1983), Cashman and others 

(1986), Crittenden (1972), Crittenden and others (1971a), Eardley (1969, 1972), 

Hansen (1979, 1980), Heller and others (1986), Schirmer (1982, 1984, 1985a, 

1985b, 1985c, 1988), have conducted detailed studies in the Willard thrust. 

Studies by Heller and others, (1986), Pavlis and Bruhn (1988), and Y onkee and 

others (1989) have focused on time of thrusting and hangingwall deformation. 

Other investigations that were helpful to this study were: 1) studies of thrust-ramp 

mechanics and thrust-ramp deformation by Berger and Johnson (1980), 

Bombolakis (1986), Ori and Friend, (1984), Boyer (1986), Butler (1982a, 1982b, 

1985), Groshong and Usdansky (1986), Mitra and Boyer (1986), Williams (1987), 

Wiltschko (1979a, 1979b), and Wiltschko and Eastman (1983); 2) thin-skinned 

structures and deformational f ea tu res in thrust plates by Armstrong and Dick 

(1974), Boyer and Elliot (1982), Byerlee (1968), Chapple (1978), Davis and others 

(1983), Elliot (1976a, 1976b), Mitra (1984), Mitra and others (1984), Mitra and 

others (1985), Bruhn and Kligfield (1983), Morley (1986), Jamison (1987), and 

Royse and others (1975); and 3) subsurface influences on thrust sheet geometry 

and emplacement by Pricha and Gibson, (1983, 1985), Wiltschko and Eastman 

(1983, 1988), Schedl and Wiltschko (1987), Bryant and Nichols (1988), Chester 

and others, (1988), Kulik and Schmidt (1988), Wheeler and Krystinik (1988), and 

Woodward (1988). 
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APPENDIX B. FIELD DATA 

Willard Canyon 

Fracture orientations in Willard Canyon occur in two dominant groups. 

Orientations of the first group range from N35W to NOW, with dips ranging from 

73 to 77 degrees to the west. Orientations from the second group range from 

N55E to N85E, with dips ranging from 11 to 30 degrees to the north. Lineation 

data from Willard Canyon consists almost entirely of fold axis orientations. Fold 

axis trends range from N44W to N39E, with plunges ranging from 10 to 25 

degrees. Bedding data collected in the Willard Canyon field area is from the 

Tintic Quartzite. Bedding in the Tintic Quartzite ranges from NS0W to N36W, 

with dips ranging from 20 to 40 degrees. 

Sample Numbers: 
7-25-88-1 
7-27-88-1 

Fold Axes: Lineations: Fractures: 

N44W 22 
Nl0W 18 
N28W 22 
N38W 14 
NOW 10 
N5E 25 
N24W 10 
N39E 15 

N78E 18 NOW 76W 
N8W 74W 
N3W 77W 
N8W 73W 
N4W 75W 
N85E llN 
N70E 14N 
N65E 20N 

Solution Cleavage: En Echelon Veins: 

N55E 24N 
N35W 30N 
N70E 30N 

N40W 
N40W 
N44W 
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Willard Mountain 

Bedding orientations range from N72W to N20W, with dips ranging from 

20 to 57 degrees to the northeast. Fracture orientations in the field area fall into 

four groups. Orientations of the first group range from N67E to N90E, with dips 

ranging from 30 to 90 degrees to the north. Orientations from the second group 

range from NlSE to N58E, with dips ranging from 24 to 78 degrees to the 

southeast. Orientations from the third group range from NlSW to N47W, with 

dips ranging from 34 to 52 degrees to the northeast. Orientations from the fourth 

group range from NSW to N12E, with dips ranging from 50 to 65 degrees to the 

west. Other foliation data collected at Willard Mountain includes axial planar 

cleavage and pencil cleavage. Lineation data collected on Willard Mountain 

includes fold axes, slickenlines, and lines of intersection of two planes. Fold-axis 

trends on Willard Mountain fall into two groups. The range of trends for the 

first group is N15W to N20E, with plunges ranging from 15 to 24 degrees. The 

range of trends for the second group is N63E to N125E, with plunges ranging 

from 18 to 44 degrees. 

Sample Numbers: Bedding: 

7-18-88-1 
7-19-88-1 
7-28-88-1 
7-28-88-2 

N72W 20N 
N42W 53N 
N20W 24N 
N25W 20N 
N20W 26N 
N47W 57N 
N47W 34N 
N32W 39N 

Fold Axes: Slickenlines: Pencil Cleavage: 

N20E 15 
N63E 44 
NlOE 24 
NlOW 21 
N12W 19 
N15W 15 
S80E 22 
S85E 31 
SSSE 18 

S65W 65 N47W 34N 
N12E SOW 
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Willard Mountain (continued) 

Fractures: 

N88E 78N N46E 24S N15W 49N N15E 60S N74E 30N 
N31W 51N N85E SON N46W 41N NOW 62W N47W 34N 
N12E 50W NlW 60W N82W 71N N67E 84N N90W 90N 
N90E 85N N84E 83N N90W 88N N58E 78S N19W 71S 
N5W 65W N83E 34N N30W 52N 
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North Ogden Canyon 

Bedding orientations in the North Ogden Canyon field area range from 

N35E to N90E, with dips ranging from 33 to 60 degrees to the north. Fracture 

orientations in North Ogden Canyon, like those on Willard Mountain, fall into 

four groups. Orientations from the first group range from N14E to N75E, with 

dips ranging from 43 to 74 degrees to the northwest. Orientations from the 

second group range from N31 W to N8W, with dips ranging from 89 to 90 degrees 

to the southwest. Orientations from the third group range from N51 W to N4W, 

with dips ranging from 30 to 75 degrees to the northeast. Orientations from the 

fourth group range from N5E to N55E, with dips ranging from 65 to 90 degrees 

to the southeast. Lineation data collected at the field area includes fold axes, 

kink band axes, and slickenline orientations. Trends of fold axes and kink bands 

range from N40W to N60E, with plunges ranging from 40 to 45 degrees. 

Sample Numbers: Bedding: Fold Axes: 

6-23-1 7-4-88-1 N35E 60N N23W 44 
6-24-1 7-6-88-1 N44W 52N N40W 40 
6-24-2 7-11-88-T N74E 33N N20W 40 
6-24-3 N90E 30N N60E 45 

N55E 35W N37E 35 

Fracture Data: 

N20E 73N N35E BON N37E 71N N75E 47N N30E 67N N26E 55N 
N30E 62N N24E 52N N49E 48N N20E 78N N14E 64N NlSE 64N 
N55E 44N N47E 43N N4W 75E N51W 37N NllW 37N N42W 30N 
N31W 31N N17W 44N N40E 74N N40E 71N N39E 71N N26E 71N 
N24W 90S NllW 37N N31W 89S N15W 90S N5W 90S N5E 90S 
NlOW 90S N24W 90S N12W 90S N8W 90S N50E 70S N30E 70S 
N40E SOS N55E 65S N7E 90S 
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Goodale Creek Canyon 

Bedding orientations in Goodale Creek Canyon range from N68E to 

N69E, with dips ranging from 20 to 48 degrees to the northwest. Goodale Creek 

Canyon fracture data falls into two groups. Orientations from the first group 

range from N30W to N40W, with dips ranging from 80 to 83 degrees to the 

southwest. Orientations from the second group range from N40E to N63E, with 

dips ranging from 64 to 66 degrees to the northwest. 

Sample Numbers: Bedding: 

6-20-1-G 
6-20-2-G 
6-21-1 

N69E 20N 
N68E 48N 

Hammond's Fold Axes: 

N26E 8 
N32E 4 
N94E 9 
N112E 3 
N115E 11 
N98E 1 
N118E 4 
Nll0E 1 

N38E 11 
N86 1 
N94E 12 
N103E 4 
N75 24 
N102E 2 
Nl13E 20 

Fracture Data: 

N40W SOS 
N60E 64N 
N35W 83S 
N63E 64N 
N30W SOS 
N40E 66N 



Pineview Reservoir 

Bedding orientations at the field area range from N26W to N42W, with 

dips ranging from 37 to 42 degrees to the northeast. 

Sample Numbers: 

7-7-88-1 
7-7-88-2 

Bedding: Slickenlines: 

N26W 37N S65W 60 
N42W 42N 
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Cold Water Canyon 

Fold #1 Bedding Orientations: 

N54W 26N N45W 24N N16W 31N N70E 22N N42E 13S N47E 17S 
N44E 20N N23W 25N N34E 31N N36E 19N N55E 2SN N75E 25N 
N36W SN N65E 14N N56E 25N N3SE 2SN N60W 19N NS7W 7N 
N50W 24N N3SW 6N NSW 20S NOW 22W N2W 15W N15W 30W 
N46E 23N N61E 21N N42E 20N N36E 25N N62W 26N N70W 30N 
NS2W 32N N7SW SN N52W 19N N75W lSN N52W 29N N40E 26S 
N44E 31S NllE 36S N30E 36S N14E 30S NOW 44E N15W 40N 
N15E 16S NlOE lSS N60E 61S N65E 3SS N75E 35S NS2E 26S 
N5SE 49S NS6E 31S N50E 27S NSOE 32S N69E 49S 

Fold #2 Bedding Orientations: 

N62W 26N N70W 30N NS2W 32N N7SW SN N52W 19N N75W lSN 
N54W 26N N45W 24N N16W 31N N42E 13S N47E 17S N44E 20N 
N34E 31N N36E 19N N55E 2SN N70E 22N N23W 25N N75E 25N 
N36W SN N65E 14N N56E 25N N3SE 2SN N60W 19N NS7W 7N 
N50W 24N N3SW 6N NSW 20S NOW 22W N2W 15W N15W 30W 
N34E 30N N65E 16S N95E 32S N46W 20N NS5W 20S NSOW 19S 
N72W lSS N46E 23N N61E 21N N42E 20N N36E 25N N24W 3SS 
N34W 36S N33W 34S N30W 43S N14W 12S N15W 15S NS2E 27N 
N19W 30N N37W 46N N24W 39N N20W 15N N12E 35S N3E 23S 
N44E 19S N26E 16S NSW 22N N32W 42N N55W 39N NSOE 22N 
N34W 30S N26W 49S N29W 41S N26W 45S NS2W 59S N49W 15S 
N25W 2SS N51W 34S 

Fold #3 Bedding Orientations: 

N24W 3SS N34W 36S N33W 34S N30W 43S N14W 12S N15W 15S 
N20W 15N N12E 35S N3E 23S N44E 19S N26E 16S NSW 22N 
N32W 42N N55W 39N N50E 22N N34W 30S N26W 49S N29W 41S 
N26W 45S NS2W 59S N49W 15S N25W 2SS N51W 34S N2W SOS 
N2W 35S N42W 22S N70E 2SS N45E 13N N52E 33N N47E 26N 
N2SE 19N N50W lON N30W lON NllE llN N40E 14N NlOE 30N 
N3W 62S NlOE 41N NSOE 32N N53E 36N N35E 32N N67E lSN 
N12E 41S 



Malans Peak 

Bedding Orientations: 

N30W 36N 
N55W 50N 
N52W 61N 
N62W 72N 
N50W 74N 
N50W 61N 
N56W 72N 
S59E 51S 

N46W 45N 
N56W 60N 
N67W 56N 
N50W 57N 
N48W 69N 
N45W 70N 
N55W 85N 
S72E 78S 

N39W 47N N44W 44N 
N51W 52N NSOW 57N 
N54W 59N N55W 72N 
N60W 64N N48W 59N 
N55W 76N N48W 65N 
N62W 62N N48W 67N 
NSOW 88N S54E 66S 
S75E SOS 

N64W 47N 
N46W 53N 
N53W 70N 
NSSW 61N 
N49W 65N 
N54W 64N 
SSOE 79S 

115 

N53W 53N 
N49W 61N 
N46W 72N 
N45W 60N 
N47W 68N 
NSOW 71N 
S45E 79S 
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Taylor Canyon 

Bedding orientations fall into two groups. Orientations from the first 

group range from N50W to N40W, with dips ranging from 25 to 74 degrees to the 

north . The second group of orientations range from S87E to S50E, with dips 

ranging from 25 to 76 degrees to the south. Fracture cleavage orientations from 

Taylor Canyon fall into three groups. Orientations from the first group range 

from S16E to S3E, with dips ranging from 37 to 57 degrees to the west. 

Orientations from the second group range from S80E to S81E, with dips ranging 

from 15 to 29 degrees to the south. Orientations from the third group range 

from NOW to N8W, with dips ranging from 40 to 78 degrees to the north. 

Foliation orientations from Taylor Canyon range from S80E to S44E, with dips 

ranging from 14 to 49 degrees to the south . Fold axes in Taylor Canyon trend 

appro ximately east-west and plunge to the east. 

Fracture Orientations: 

S68E 49S S68E 37S S70E 42S S48E 48S S45E 47S S44E 36S 
S44E 37S S52E 43S S53E 43S S57E 30S S50E 30S S52E 32S 
S58E 29S S60E 14S S80E 29S N55W 42S N54W 42S N56W 41S 

Calcite Vein/Joint Orientations: 

SllE 42S S15E 45S S13E 41S S16E 57S S14E 55S S3E 38S 
NOE 40S SSE 37S S4E 38S SSW 42N N8W 78N S80E 29S 
S81E 15S 
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"S" Fold 

Bedding orientations range from N72W to N30W and S60E to S80E, with 

dips ranging from 18 to 85 degrees. Lineation trends range from S48E to S70E, 

with plunges ranging from 6 to 19 degrees. 

Lower and Middle Limb Orientations: 

N36W 34E N34W 45E N36W 47E N36W 53E N40W 32E N36W 53E 
N40W 32E N36W 30E N33W 32E N37W 35E N45W 28E N30W 32E 
N34W 40E N51W 30E N46W 35E N30W 31E N40W 35E N36W 45E 
N45W 32E N32W 38E N31W 42E N45W 32E N35W 33E N40W 41E 
N45W 45E N47W 51E N57W 40E N43W 48E N54W 41E N40W 46E 
N46W 49E N45W 56E N51W 54E NSOW 53E N58W 66E N57W 67E 
N55W 67E N60W 74E N58W 81E N60W 81E NSOW 72E N40W 61E 
N51W 60E N42W 68E N46W 76E S73E 75S S75E 80S S60E 40S 
S72E 61S S72E 62S S80E 35S S64E 74S S60E 62S S60E 59S 
S67E 71S S68E 70S S70E 69S S72E 74S S80E 44S S60E 85S 
S75E 38S S65E 31S S62E 34S S72E 39S S72E 51S S70E 77S 
S64E 78S 

Upper and Middle Limb Orientations: 

S64E 78S S73E 75S S75E 80S S60E 40S S72E 61S S72E 62S 
S80E 35S S64E 74S S60E 62S S60E 59S S67E 71S S68E 70S 
S70E 69S S72E 74S S80E 44S S60E 85S S75E 38S S65E 31S 
S62E 34S S72E 39S S72E 51S S70E 77S N55W 64E N67W 69E 
N57W 63E N55W 52E N50W 54E N49W 51E NSOW 24E N48W 27E 
N44W 18E N42W 37E N35W 44E N30W 47E N34W SOE N40E 31E 
N44W 30E N40W 39E 
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Perry's Camp 

Bedding orientations range from N58W to N20W, with dips ranging from 

35 to 80 degrees to the east. Fold Axis orientations from Perry's Camp fall into 

two groups. Fold axis trends from the first group range from S36E to S20E, with 

plunges ranging from 5 to 15 degrees. Fold axis trends from the second group 

range from N35W to NlOW, with plunges ranging from 10 to 25 degrees. 

Bedding Orientations: 

N51W 38E N45W 46E N55W 55E N55W 85E S58W 34W NSW 38E 
N20W 35E N25W 51E N20W 41E N22W 59E N25W 77E N30W SOE 

Fracture Orientations: 

SlOE 24S N45W 60N 

Fold Axes: 

S36E 12 N35W 10 S20E 3 S20E 10 S35E 15 S35E 7 
S35E 7 NlOW 20 N20W 25 S35E 7 S35E 5 
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APPENDIX C. GENERAL STRATIGRAPHY 

The geologic units below the Willard thrust range in age from 

Precambrian to Mississippian. Figures 28, 29, 30, and 31 are generalized 

stratigraphic columns of Willard Canyon, Willard Mountain, North Ogden 

Canyon, and Ogden Canyon. The following Iithologic and stratigraphic 

descriptions are general descriptions only. The reason for this is due to extensive 

lateral and vertical facies changes within local formations and because lateral 

tectonic thinning and thickening has occurred in the incompetent formations. 

The oldest unit below the Willard thrust is the Precambrian Farmington Canyon 

Complex (Eardley and Hatch, 1940a; Bruhn and Beck, 1981; Hedge and others, 

1983; Bryant, 1980, 1984, 1988). The Farmington Canyon Complex is exposed in 

both Ogden Canyon and Willard Canyon, but not in North Ogden Canyon. 

Bryant (1988) divided the complex into four principle map units. The four units 

are quartz monzonite gneiss, migmatite, schist and gneiss, and schist, gneiss, and 

quartzite. In general the complex is a light gray, pinkish gray, and yellowish gray 

quartz monzonite gneiss with thick lenses of greenish black amphibolite; medium 

gray mica schist; light gray, pinkish gray, and pale orange pegmatite; and also 

white to pale yellowish green coarse-grained meta-quartzite. The formation is 

approximately 1,220 meters thick in the North Ogden quadrangle. Ages from Rb­

Sr and Sm-Nd isotopes show that protoliths from these layered, metamorphic 

crustal rocks range in age from 2,800 to 3,600 m.y. old. The protoliths underwent 

metamorphism approximately 2,600 m.y. ago. Isotopic studies along with modal 

and chemical compositions indicate the quartz monzonite gneiss 
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Fig. 28 Generalized stratigraphic column of Willard Canyon. Unit 
thicknesses are report ed in meters from Hintze (1988). 
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Fig. 29 Generalized stratigraphic column of Willard Mountain. Unit 
thicknesses are reported in meters from Hintze (1988). 
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formed approximately 1,790 m.y. ago when upper crustal rocks melted (Hedge 

and others, 1983). 
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The Lower Cambrian Tintic Quartzite lies nonconf ormably above the 

Farmington Canyon Complex. The Tintic Quartzite is exposed in Ogden, North 

Ogden, and Willard canyons. The Tintic Quartzite is a white, pink, buff, and tan, 

medium- to coarse-grained, medium to thick, cross-bedded quartzite, in which 

layers and zones of quartz-pebble conglomerate increase in abundance downward. 

The unit is approximately 335 to 427 meters thick in the North Ogden quadrangle 

(Bryant, 1984; Crittenden and Sorensen, 1985a, 1985b; Davis, 1985). 

Above the Tintic Quartzite is the Middle Cambrian Ophir Formation, 

which is exposed only in Ogden and North Ogden canyons. This shale is divided 

informally into three parts (Rigo, 1968; Sorensen and Crittenden, 1972; Bryant, 

1984). The lower part is a light brown to olive drab micaceous shale, with locally 

abundant worm tracks and linguloid brachiopods; the middle part is a fine­

crystalline blue gray limestone, and commonly has tan to orange brown, silty 

limestone; the upper part is an olive drab to greenish olive drab shale, with some 

limestone and shaly limestone, approximately 137 to 183 meters thick in the 

North Ogden quadrangle (Sorensen and Crittenden, 1972, 1976; Bryant, 1984; 

Crittenden and Sorensen, 1985a, 1985b; Davis, 1985). 

Above the Ophir Formation is the Middle Cambrian Maxfield Limestone. 

The Maxfield Limestone is exposed in Ogden, North Ogden, and Willard canyons. 

Like the Ophir Formation, the Maxfield Limestone is also divided informally into 

three parts. Both the lower part and the upper part consist of medium to dark 

gray, thin-bedded, fine-crystalline, cliff-forming dolostone and limestone, 
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commonly with intercalated light gray silty limestone. Both lower and upper parts 

include laminated dolostone and dark gray mottled limestone. The middle part 

contains an olive drab to greenish brown micaceous shale and an interbedded, 

medium to dark gray limestone, which are overlain by a medium to dark gray, 

cliff-forming platy limestone. The Maxfield Limestone is approximately 259 

meters thick in the North Ogden quadrangle (Rigo, 1968; Sorensen and 

Crittenden, 1979; Crittenden and Sorensen, 1985a, 1985b; Bryant, 1984; Davis, 

1985). 

Above the Maxfield Limestone is the Nounan Dolomite and St. Charles 

Formation . Davis (1985) showed these units as one undivided map unit. These 

formations crop out only in Ogden and North Ogden canyons. Rigo (1968), 

Sorensen and Crittenden (1972, 1976), and Sorensen and Crittenden (1979) 

mapped these formations as separate units, as well as placing the Calls Fort 

Member of the Bloomington Formation (a shale) at the base of the Nounan 

Dolomite and the Worm Creek Quartzite at the base of the St. Charles 

Formation. The Nounan Formation is a thin- to thick-bedded, fine-crystalline, 

light to medium gray, cliff-forming dolostone, that is approximately 240 meters 

thick in Ogden Canyon. The Worm Creek Quartzite Member is a thin-bedded, 

fine- to medium-grained, medium to dark gray, brown-weathering, calcareous 

quartzite. Detrital grains in the Worm Creek Quartzite Member are commonly 

well sorted and well rounded. The St. Charles Formation is a thin- to thick­

bedded, fine- to medium-crystalline, white to light gray, cliff-forming dolostone, 

that is approximately 610 meters thick. 

The following six units have been mapped in Ogden Canyon, but not in 
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North Ogden or Willard canyons: The Lower Ordovician Garden City Formation, 

the Upper Ordovician Fish Haven Dolomite, the Lower Devonian Water Canyon 

Formation and Hyrum Dolomite, the Upper Devonian Beirdneau Sandstone, the 

Mississippian Lodgepole Limestone, Deseret Limestone, and the Upper 

Mississippian Humbug Formation (Rigo, 1968; Hintze, 1973; Sorensen and 

Crittenden, 1972, 1976, 1979; Crittenden and Sorensen, 1985a, 1985b; Bryant , 

1984; Davis, 1985). 

The Garden City Formation is a medium to pale gray and tan, thin- to 

thick-bedded limestone and dolomitic limestone, with interbedded 

intraformational conglomerate. The unit commonly contains sandy streaks and 

lenses, with interbedded and intercalated, thinly laminated, medium gray to tan , 

and tan- weathering siltstone. In places the siltstone contains nodules and lenses 

of dolomite. The unit is approximately 44 meters thick. 

The Fish Haven Dolomite is a dark gray, medium- to coarse-crystalline , 

medium- to thick-bedded, cliff-forming dolomite. Remnants of horn corals and 

crinoids are common. 

The lower part of the Water Canyon Formation is thin-bedded to 

laminated, fine-crystalline , medium to pale gray dolostone and silty dolostone. 

The upper part is a medium to dark gray dolostone. 

The Hyrum Dolomite is a dark gray to black, dark to light gray­

weathering, thin to thick-bedded, fine- to medium-crystalline cliff-forming 

dolostone with lenses of intraformational dolostone breccia and some minor 

intercalated gray limestone and limy siltstone. 

The Beirdneau Sandstone is a tan-, orange-, and brown-weathering, fine- to 



127 

medium-grained sandstone, and laminated to medium-bedded dolomitic sandstone 

and dolostone. The formation is approximately 76 to 92 meters thick in Ogden 

Canyon. 

The Lodgepole Limestone and Deseret Limestone are dark gray, thick­

bedded, contain medium gray dolostone with lenses of chert, and contain a dark 

gray to black, thin- to medium-bedded, light blue gray- weathering, platy, 

fossiliferous limestone. 

The Humbug Formation is a medium-bedded, tan and gray siltstone and 

fine-grained sandstone. The unit is interbedded with dark to medium gray, 

medium-bedded limestone and dolostone and is approximately 245 meters thick 

(Rigo , 1968; Hintze, 1973; Sorensen and Crittenden, 1972, 1976, 1979; Crittenden 

and Sorensen, 1985a, 1985b; Bryant, 1984; Davis, 1985). 

Other stratigraphic units below the Willard thrust that do not crop out in 

Ogden Canyon include the Precambrian Facer Formation, the Precambrian Perry 

Canyon Formation, and the Lower Cambrian Geertsen Canyon Quartzite 

(equivalent to the Tintic Quartzite). In Willard Canyon only the Facer 

Formation and the Perry Canyon Formation crop out. In North Ogden Canyon 

only the Geertsen Canyon Quartzite and the Perry Canyon Formation crop out. 

The Facer Formation is a white to light gray metaquartzite. The 

formation also contains a pale greenish gray and grayish purple schist; lustrous 

quartz-muscovite schist; a dark green to greenish black amphibolite (in sills); a 

creamy white gneiss, and a light gray quartzose conglomerate. Some localized 

gray limestone and dolostone are present. Partially measured sections total 

approximately 750 meters thick (Crittenden, 1980; Bryant, 1984; Davis, 1985). 
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The Perry Canyon Formation contains brown and gray to dark green 

micaceous siltstone, brown quartzitic sandstone, and gray to dark green argillite. 

The lower part of the formation is a gray to black diamictite (tillite ?) with some 

limestone and minor pillow lava near the base. The entire formation is 

approximately 460 meters thick (Sorensen and Crittenden, 1979, Crittenden and 

Sorensen, 1985a; Davis, 1985). 

The Geertsen Canyon Quartzite is a white, gray, pink, and light green, 

medium- to coarse-grained metaquartzite in the upper part, and a tan, white, 

maroon , and green metaquartzite in the lower part. The formation is 

approximately 1,220 to 1,340 meters thick in the Huntsville quadrangle (Bryant, 

1984; Davis, 1985). 
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