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ABSTRACT 

Wearable Computing: Accelerometer-Based Human Activity Classification Using 

Decision Tree 

by 

Chong Li, Master of Science 

Utah State University, 2017 

Major Professor: Xiaojun Qi, Ph.D. 
Department: Computer Science 

This study focused on the use of wearable sensors in human activity recognition 

and proposes an accelerometer-based real-time human activity recognition approach 

using the decision tree as the classifier. We aimed to create an approach that requires only 

one accelerometer to be worn on the user’s wrist and recognizes activities in real-time 

based on the acceleration data. The decision tree was adopted as the classification 

algorithm and a classifier simplification technique and a novel decision tree storage 

structure were designed. Feature selection and tree pruning were applied to reduce the 

decision tree complexity. With this approach, the designed system has fairly low 

computational cost and consumes small memory space, and therefore can be easily 

implemented to a wristband or smart watch that has an embedded accelerometer.  

The proposed approach follows a process of feature extraction, feature selection, 

decision tree training, and decision tree pruning. We categorized human daily activities 

into three activity states, including stationary, walking, and running. Through 
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experiments, the effects of feature extraction window length, feature discretization 

intervals, feature selection, and decision tree pruning were tested. On top of this process, 

we also implemented misclassification correction and decision tree simplification to 

improve classification performance and reduce classifier implementation size. The 

experimental results showed that based on the particular set of data we collected, the 

combination of 2-second window length and 8 intervals yielded the best decision tree 

performance. The feature selection process reduced the number of features from 37 to 7, 

and increased the classification accuracy by 1.04%. The decision tree pruning slightly 

decreased the classification performance, while significantly reducing the tree size by 

around 80%. The proposed misclassification mechanism effectively eliminated single 

misclassifications caused by interruptive activities. In addition, with the proposed 

decision tree simplification approach, the trained decision tree could be saved to three 

arrays. The implemented decision tree could be initiated simply by reading configurations 

from the three arrays. 

(60 pages) 
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PUBLIC ABSTRACT 

 

Wearable Computing: Accelerometer-Based Human Activity Classification Using 

Decision Tree 

Chong Li 

 

In this study, we designed a system that recognizes a person’s physical activity by 

analyzing data read from a device that he or she wears. In order to reduce the system’s 

demands on the device’s computational capacity and memory space, we designed a series 

of strategies such as making accurate analysis based on only a small amount of data in the 

memory, extracting only the most useful features from the data, cutting unnecessary 

branches of the classification system, etc. We also implemented a strategy to correct 

certain types of misclassifications, in order to improve the performance of the system.  

We categorized a person’s daily activities into three activity states, including 

stationary, walking, and running. Based on data collected from five subjects, we trained a 

classification system that provides an activity state feedback every second and yields a 

classification accuracy of 94.82%. Our experiments also demonstrated that the strategies 

applied to reduce system size and improve system performance worked well.  
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CHAPTER 1 

INTRODUCTION 

 

Human activity recognition has been widely studied in recent years, mostly 

because of its important role in healthcare technologies. With one or more sensors and a 

computing device, human activities can be recognized in real life settings. This greatly 

helps with the design of smart homes [1], post-surgery rehabilitation at home [2], 

healthcare for elderly people [2], etc. A more common use of human activity recognition 

is daily activity monitoring, especially for fitness training. Many commercially available 

products provide such uses and are worn at different places, mostly on the wrist (Garmin 

Vivosmart HR, Casio WSD-F10, Samsung Gear Fit 2), and some on the foot (Kinematic 

Tune), hand (Zepp Golf 2), head (XMetrics Pro), or body (Fitbit Zip) [3].  

Two kinds of sensors are generally used for human activity recognition. 

Environmental sensors, such as cameras [4] and depth sensors [5], are used to track a 

person’s motion, location, and object interaction, usually in a smart house or for 

rehabilitation purposes. Wearable sensors [6], such as accelerometers, are usually 

attached to a person’s body to track the motion, location, temperature, etc. Both 

approaches have been demonstrated effective in various studies. 

This study focuses on the use of wearable sensors in human activity recognition. 

In existing studies, accelerometer data have been used to recognize relatively simple and 

common daily activities, including standing, walking, and jogging [7]–[9], as well as 

more complex daily activities such as cleaning, cooking, washing hands and so on [9]. 
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Those studies generally adopt a similar approach of supervised machine learning. One or 

multiple classifiers are trained with features extracted from annotated data collected by 

one or more accelerometers worn by the participants. Two factors, features and classifiers, 

distinguish those studies from each other.  

In this study, we propose the use of decision tree in the real-time classification of 

several human activities based on data collected from accelerometers. The next section 

discusses the related work that has been done on this topic, and describes the technique 

that will be used in this study, as well as the contributions of this work. Section 3 details 

the approach and Section 4 presents the experiments designed to evaluate the proposed 

approach and analyzes the experimental results. Section 5 concludes this study.  
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CHAPTER 2 

RELATED WORK 

 

Kwapisz et al. [7] studied the recognition of activities including walking, jogging, 

climbing up/down stairs, sitting, and standing based on accelerometer data from an 

Android phone worn by a user in his/her front pants leg pocket. Data were collected from 

29 subjects at a sampling frequency of 20 Hz. The collected data were divided into 10-

second non-overlapping windows and 43 features were extracted from each window. The 

features are variants of six basic features along three axes including mean, standard 

deviation, average absolute difference, average resultant acceleration, time between peaks, 

and binned distribution. With the 4526 samples extracted from the collected data, ten-fold 

validations were performed by using three classification algorithms separately. The three 

algorithms are J48, logistic regression, and multi-layer perception. The overall accuracies 

for the aforementioned three algorithms are 85.1%, 78.1% and 91.7%, respectively. 

However, each algorithm performs inconsistently when recognizing different activities.  

Anguita et al. [8] used SVM (Support Vector Machine) to recognize activities 

including standing, walking, laying, sitting, walking upstairs, and walking downstairs. 

They collected 3-axial acceleration data and angular velocity data from the accelerometer 

and gyroscope embedded in an Android phone at a sampling rate of 50 Hz. Data were 

collected by 30 subjects carrying the Android phone on his/her waist. After noise filtering, 

17 features were extracted from the data with a 2.56-second sliding window and a 50% 

overlapping. Those features include mean, standard deviation, signal magnitude area, 
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entropy, signal-pair correlation, etc. of both accelerometer and gyroscope data. The 

multi-class hardware-friendly SVM they proposed achieved a classification accuracy of 

89%. The approach requires less memory, processor time, and power consumption, while 

the use of gyroscope data and the noise filtering step added complexity to the design.  

Dernbach et al. [9] tried to recognize simple activities including biking, climbing 

stairs, driving, lying, running, sitting, standing, and walking, as well as complex activities 

including cleaning, cooking, medication, sweeping, washing hands, and watering plants 

from accelerometer data. They collected acceleration data from 10 participants, each 

wearing an Android smartphone at no predetermined location or orientation. Raw data 

were collected at the sampling rate of 80 Hz, and then features were extracted with 

sliding windows of 1, 2, 4, 8, 12, or 16 seconds. The features are mean, min, max, 

standard deviation, zero-cross, and correlation of the accelerometer data in three axes. 

They used six classifiers including multilayer perception, Naïve Bayes, Bayesian network, 

decision table, best-first tree, and K-star algorithms to classify the activities. For simple 

activities, all activities, and complex activities, all algorithms (except for Naïve Bayes) 

reached accuracies of over 90%, 70%, and 45%, respectively. They also concluded that 

the window length has little effect on the accuracy for simple activities. Meanwhile, 

when window sliding is not used, recognizing complex activities, which has rarely been 

done, could achieve an accuracy of 78%. However, although not stated by the authors, 

the performance improvement in recognizing complex activities may compromise the 

performance of recognizing simple activities as not using a sliding window significantly 

reduces the number of training samples. Nevertheless, the system has high demand on the 
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phone’s power usage, which restrains its implementation.  

Bayat et al. [10] combined six classifiers to recognize daily activities including 

slow walking, fast walking, running, stairs-up, stairs-down, and aerobic dancing. From 

accelerometer data collected by smartphones worn by four participants in hands or 

pockets, features including mean, standard deviation, RMS (Root Mean Square), 

correlation, difference, etc. were extracted. By using the combined probability 

determined by six classifiers (multilayer perception, SVM, random forest, LMT (Logistic 

Model Tree), simple logistic, and Logit boost), an accuracy of 91.15% was obtained. The 

combination of a number of classifiers is a novel design. However, the system is very 

complex as it uses complicated features and requires several algorithms to be 

implemented.  

Zhang et al. [11] categorized daily living activities into four categories including 

walking, running, household, or sedentary activities, and developed methods to recognize 

them based on raw acceleration data from the GENEA (Gravity Estimator of Normal 

Everyday Activity). They also compared the classification accuracies from a wrist-worn 

GENEA and a waist-worn GENEA. Sixty participants, each wearing three accelerometers 

(one at the waist, one on the left wrist, and one on the right wrist), completed an ordered 

series of 10-12 semi-structured activities in laboratory and outdoor environments. 

Features obtained from both FFT (Fast Fourier transform) and DWT (Discrete Wavelet 

Transform) were extracted, and machine learning algorithms were used to classify the 

four types of daily activities. With their proposed approach, they were able to reach high 

overall classification accuracy for both waist-worn GENEA (99%) and wrist-worn 



6 
 

 
 

GENEAs (right wrist: 97%; left wrist: 96%).  

Mannini et al. [12] replicated the algorithm of Zhang et al. [11] and tested it on a 

dataset with 33 participants performing a set of daily physical activities. Various 

combinations of window lengths (i.e., the amount of data acquired to give a single 

classification output) and feature sets (sets of variables used for classification purposes) 

were tested to develop an algorithm. With a 4-second window length and the same 

features as those in the study of Zhang et al., the algorithm yielded an accuracy of 84.2% 

for wrist data. The study validated the feasibility of the design of Zhang et al.   

Gao et al. [13] proposed an activity recognition approach that requires multiple 

sensors to be worn on distributed body locations. They designed a distributed computing-

based sensor system to run “light-weight” signal processing algorithms on multiple 

computational efficient nodes to achieve higher recognition accuracy. Through 

comparison of six decision tree-based classifiers employing single or multiple sensors, 

they proposed a multi-sensor system consisting of four sensors that can achieve an 

overall recognition accuracy of 96.4% by adopting the mean and variance features. They 

further evaluated different combinations of sensor positioning and classification 

algorithms. However, wearing multiple sensors on the subject’s body restrains the design 

from being adopted in a daily life setting.  

Some studies designed user-specific classifiers. A user’s activity data were 

collected first to train a classifier, which was then used to classify the user’s future 

activities. In this way, a real-time monitoring is realized. In the study of Brezmes et al. 

[14], a kNN (k-Nearest Neighbors) algorithm is used to classify activities including 
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walking, climbing up stairs, climbing down stairs, sitting-down, standing-up, and falling. 

Accuracies of 70% to 90% were reached for the six activities.  

Many probability-based algorithms have been used for activity recognition. For 

example, Kwapisz et al.’s study adopted the decision tree and Brezme et al.’s study used 

kNN. In the study of Dernbach et al., six different algorithms were adopted and resultant 

accuracies were compared. The compared algorithms include multilayer perception, 

naïve Bayes, Bayesian network, decision table, best-first tree, and K-star. Little 

difference showed among the different algorithms’ accuracies. Bayat et al. combined 

several algorithms together for classification.   

Although the topic has been extensively studied, there is still more to explore. In 

this study, we propose a real-time single accelerometer-based activity recognition 

approach that makes the following contributions:  

• Requiring only one accelerometer instead of multiple sensors worn on the 

subject’s wrist (left or right) to increase portability, reduce cost, and broaden 

the applications.  

• Recognizing activities in real-time without requiring user-specific classifier 

training.   

• Adopting the decision tree as the classification algorithm and designing 

decision tree simplification technique to store the trained decision tree in 

fairly small memory.  

• Reducing the complexity of the decision tree by applying feature selection and 

tree pruning and therefore allowing the system to have low computational cost 
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and consume small memory size. 

• Studying the effects of window length, feature discretization, feature selection, 

and decision tree pruning on the activity recognition performance and 

providing insightful information for future studies.  
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CHAPTER 3 

METHODOLOGY 

 

A four-step approach is designed in this study for the activity recognition task. 

Three kinds of activity states including stationary, walking, and running, are recognized 

from accelerometer data. The four steps are data collection and preprocessing, feature 

extraction, feature selection, and classifier learning as summarized below: 

• Data collection and preprocessing. Data are collected at the sampling 

frequency of 31.5 Hz in a controlled manner. Five subjects are supervised to 

perform different activities and the recordings are annotated after collection. 

Data preprocessing is then performed to remove the noisy data collected at the 

beginning and towards the end of each collection process to ensure valid data 

are used to train the classifier.  

• Feature extraction. Based on analysis of data and review of related work, 37 

features, newly developed or previously published, are selected and extracted 

from the raw accelerometer data. The data recordings are divided into 

windows of certain lengths, and a set of features is extracted from each 

window and labeled. Each two consecutive windows overlap by a half of the 

window length.   

• Feature selection. Feature selection aims to reduce the number of features so 

the complexity of the classifier will be reduced and the recognition accuracy 

will be improved. A two-step approach is adopted. First, a random forest-
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based R package, Boruta, is used to rank the features. Then, a sequential 

feature selection (SFS) algorithm is performed on the features that are marked 

important by the Boruta package. Based on the feature selection result, we 

determine the optimal feature subset for the classifier.  

• Classifier learning. A simple and efficient algorithm, the decision tree, is used 

to learn a classifier for activity recognition. A TDIDT (Top-Down Induction 

of Decision Trees) process is used to train an ID3 decision tree, which uses 

information gain to decide the splitting criteria. A simple structure is designed 

to compactly store the trained decision tree in small memory spaces. The 

reduced error pruning strategy is also used in the tree pruning process to 

reduce the complexity of the decision tree and improve the activity 

recognition accuracy. A misclassification correction mechanism is also 

employed to improve classification performance. 

For each step, we perform investigation and evaluate potential approaches to find 

a tradeoff between recognition accuracy and classifier complexity. In the following 

subsections, each step is explained in detail. 

 

3.1 Data Collection and Preprocessing 

3.1.1 Data collection 

The data collection is conducted by using a prototype TCL Watch. Five 

participants, each wearing two watches on the left and right wrists, perform 13 daily 

activities and categorize them into three activity states, namely, stationary, walking, and 
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running. Table 3-1 summarizes the activities performed by the participants. As the 

subjects perform activities, accelerometer data are collected and annotated. Data collected 

from the left wrist and data collected from the right wrist are treated as two individual 

sets of data. In other words, only one accelerometer is needed in final implementation.  

The data are collected at a sampling frequency of 31.5 Hz, which means 31.5 data points 

are collected per second. Each data point contains a timestamp and three values, which 

correspond to the acceleration along the x-axis (horizontal movement), y-axis 

(upward/downward movement), and z-axis (forward/backward movement), respectively.   

Fig. 3-1 shows some representative plots of each state. Eight seconds of data is shown in  

 

 Table 3-1 Accelerometer data collection 

State Activity Details Left/Right wrist 

Stationary 
 

Standing 5 minutes without doing anything both 

Answering 
phone 

5 minutes, standing and talking on 
the phone 

both 

Typing 5 minutes, sitting and typing both 

Writing 5 minutes, sitting and writing dominant hand 

Reading 5 minutes, sitting and reading both 

Drinking 5 minutes, sitting and drinking 
water 

dominant hand 

Eating 5 minutes, sitting and eating dominant hand 

Walking 
 

Slow walking 5 minutes at slower than 1 m/s both 

Normal walking 5 minutes at about 1.4 m/s both 

Fast walking 5 minutes at faster than 2 m/s both 

Running 
 

Slow running 5 minutes at about 2 m/s both 

Normal running 400 meters at about 4 m/s both 

Fast running 100 meters fast run both 
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Fig. 3-1: Examples of raw accelerometer signals (each showing an 8-second segment of 
data) in three axes for different daily activities. 

 

each plot. The value range of the collected acceleration is [-2, 2], whereas the value range 

of [-1.5, 1] is used in the plots (except for fast running) to clearly reflect the repetitive 

motions in the walking state and the small fluctuations in the stationary state.  

 

3.1.2 Data preprocessing 

In order for the final implementation of the system to be able to process real-time 

accelerometer data without performing massive computation, signal preprocessing is not 
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designed in this study. However, a simple procedure is performed to eliminate the 

potential annotation errors during data collection. For example, when a subject is 

collecting fast running data, he might need two seconds to activate both collectors on his 

wrists; after he stops running, he would also need a few second to calm down and 

deactivate the collectors. Such a process inevitably produces noise at the beginning and 

towards the end of the data collection process. As a result, the features extracted from 

those noisy portions of data cannot correctly reflect the annotated activity state. In order 

to have correct data for classifier learning, the first 5 and the last 5 seconds of data are 

truncated from each recording.  

 

3.2 Feature Extraction 

Since the collected raw data are time-series data, we cannot train or run 

classification algorithms directly on those data. Therefore, the raw data are divided into 

segments of a specific length and then informative features are extracted from each 

segment for classifier training.  

 

3.2.1 Sliding windows 

The raw accelerometer data are broken into windows of the same duration in 

order to capture its characteristics. As seen in Fig. 3-1, the accelerometer data of most 

activities show repetitive patterns. In each window, there should be enough repetitions of 

motion to distinguish different activities. Meanwhile, since we develop a real-time 

classifier, the time between each two classifications (feedbacks) should be reasonable for 
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users to monitor their activities. Consecutive windows overlap by a half of the window 

length. This means each data point contributes to two windows. This strategy, on one 

hand, yields more useful training data. On the other hand, it benefits the misclassification 

correction mechanism adopted in the classification stage.  

The length of each window is a significant factor influencing our classifier 

performance. Having a smaller window length means fewer motion repetitions are 

included in each window, which may result in lower classification accuracy, while the 

feedback is more frequent during real-time monitoring. Meanwhile, having a larger 

window length means more motion repetitions are included in each window, while the 

feedback frequency may not be satisfying. A trade-off between classification accuracy 

and feedback frequency must be found. In order to determine the optimal window length, 

we experiment with the lengths of 2, 4, 6, and 8 seconds. Based on the experimental 

result, a window length is determined for the subsequent steps.  

 

3.2.3 Feature extraction 

Various features are used in existing works. They typically are extracted from 

either the frequency domain or the time domain or both. Most of the features used in this 

study are extracted from the time domain to reduce the computational cost and make the 

activity recognition system real time.  

A variety of features, newly developed or previously published, are extracted. 

Table 3-2 lists the 37 features used in this study together with their feature IDs. Each 

feature is extracted for x-, y-, and z-axes, except for the simplified RMS feature, which is  
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Table 3-2 Features extracted from tri-axial accelerometer data 

Feature  Axis Feature 
(Variable) ID Description References 

Average 
Increment X, Y, Z V1, V2, V3 

The average absolute increment 
(increase or decrease) of acceleration 
values from one data point to the next 
within the window 

 

Standard 
Deviation X, Y, Z V4, V5, V6 

The standard deviation in the 
accelerations of each axis within the 
window 

[7]–[9], [15] 

Mean X, Y, Z V7, V8, V9 The mean acceleration within the 
window [7]–[9], [15] 

Simplified 
RMS (Root 
Mean Square) 

X, Y, Z, M  V10, V11, 
V12, V13 

RMS are replaced with the absolute 
values 

The M-axis is a virtual combination of 
the three axes 

 

Binned 
distribution  X, Y, Z 

V14-V18, 
V19-V23, 
V24-V28 

The number of acceleration values 
falling into each one of the five bins of 
each axis  

[7] 

Mean-Cross  X, Y, Z V29, V30, V31 The number of mean-crossings [3], a 
variant of zero-crossing  

Pairwise 
Correlation 

X-Y, Y-Z, 
X-Z V32, V33, V34 The pairwise correlations between the 

three axes  [8], [9], [15] 

Simplified 
energy X, Y, Z V35, V36, V37 The sum of the squared acceleration 

values  
[15] 

 

also extracted for a virtual axis m, a combination of the three axes. The features without 

any references are the features developed by ourselves.  

Assuming that each window contains n data points, and each data point is a tuple 

(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) (1 ≤ i ≤ n), we can calculate the features as follows (The calculations for the x- 

axis are presented as examples).  

a. The average increment (AveInc) feature describes the absolute difference between 

each two data points, and it is designed to capture the intensity of each axis’  

b. The standard deviation (SD) feature is one of the most commonly used features in 
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machine learning. It quantifies the variation of the data. It is calculated by 

Equation (2).  

𝑆𝑆𝑥 =  �1
𝑛
∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1       (2) 

c. The mean is also one of the most commonly used features in machine learning to 

describe the expected value of the data. It is calculated by Equation (3).  

𝑀𝑀𝑀𝑀𝑥 =  ∑ 𝑥𝑖𝑛
𝑖=1
𝑛

       (3) 

d. Typically, root mean square (RMS) is defined as the square root of the arithmetic 

mean of the squares of a set of numbers (Equation (4)). Here, we use a simplified 

version of root mean square to reduce the amount of computation. The arithmetic 

mean of the absolute values of the series of data is used, as Equation (5) shows (it 

is still denoted as RMS). The RMS for the virtual m-axis is calculated by 

Equation (6).  

     𝑅𝑅𝑅𝑥 =  �1
𝑛
∑ 𝑥𝑖2𝑛
𝑖=1      (4) 

             𝑅𝑅𝑅𝑥 =  ∑ |𝑥𝑖|𝑛
𝑖=1
𝑛

     (5) 

𝑅𝑅𝑅𝑚 =  
∑ 1

3(|𝑥𝑖|+|𝑦𝑖|+|𝑧𝑖|)𝑛
𝑖=1

𝑛
    (6) 

e. The binned distribution is used to describe the value of distribution of each axis. 

The value range of acceleration [-2, 2] is divided into five ranges, [-2, -1.2), [-1.2, 

-0.4), [-0.4, 0.4), [0.4, 1.2), and [1.2, 2.0]. For each axis, the number of values that 

fall in each range is counted.  

f. Zero-crossing is often used in image processing for edge detection or gradient 
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filtering. For a mathematical function, when its graph crosses the axis (zero value), 

it is called a zero-crossing point. In this study, we use a variant of zero-crossing 

during feature extraction. For each axis, the mean in a window is first calculated. 

Then, the number that the values cross the mean is counted. This feature is called 

mean cross (MC). Since the mean is also used as a feature, counting the mean-

crossings adds little computational complexity to the algorithm. 

g. The pairwise correlation (Corr) is used to capture the correlation between the data 

points of each pair of axes. Specifically, it computes the correlation between data 

points along x- and y-axes, along x- and z-axes, and along y- and z-axes. It is 

calculated by Equation (7), where Corrxy is the correlation between x- and y-axes. 

The correlation between x- and z-axes and between y- and z-axes can be computed 

similarly by replacing the data points at the corresponding axis.  

𝐶𝐶𝐶𝐶𝑥𝑥 =  𝐶𝐶𝐶𝑥𝑥
𝑆𝑆𝑥∗𝑆𝑆𝑦

      (7) 

𝐶𝐶𝐶𝑥𝑥 =  1
𝑛

 ∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦�)𝑛
𝑖=1    (8) 

h. Simplified energy is a simplified version of energy to measure the total of the 

magnitude of the power spectrum of the data. Originally, energy is the sum of the 

squared discrete FFT component magnitudes of the signal [15]. However, 

performing FFT transformation of the accelerometer data means massive 

computation, which is not desired in this study. Therefore we use a simplified 

version of this feature without performing FFT transformation.  

𝐸𝐸𝐸𝐸𝐸𝐸𝑥 =  ∑ 𝑥𝑖2𝑛
𝑖=1      (9) 

From the acceleration data points (e.g., 60 data points when using 2-second 
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windows) in each window, one record is obtained, consisting of 37 values of the 

extracted features and a class label that marks the activity state that this record reflects. 

After the feature extraction, feature selection is performed to reduce the number of 

features in order to further reduce the complexity of the classifier. We use the feature 

selection approach presented in Section 3.3 to keep the most effective features in 

distinguishing the three activity states, i.e. stationary, walking, and running.  

 

3.2.3 Feature discretization 

Since both the extracted feature data and the selected feature data after applying 

feature selection are continuous data with hundreds of distinct values for each feature, 

discretization methods may need to be applied to convert the continuous data to 

discretized (i.e. categorical) data depending on the chosen classification method. Some 

classification algorithms, such as C4.5 decision tree, are able to work on continuous data 

by discretizing them during the algorithm learning process. However, many algorithms, 

especially the ID3 decision tree algorithm we adopt in this study, work better on 

discretized training data. Studies [16], [17] have shown that classifiers construct faster 

and with proper optimal interval values, perform better when continuous data are 

discretized prior to training. Therefore, we apply a simple equal width binning technique 

to transform the selected continuous feature data into discrete values. For each feature, its 

value range is divided into k equally sized intervals and the values falling into each 

interval is replaced by a distinct value. Since we have dozens of features, the value of k is 

the same for all extracted features to reduce the computation for decision tree training as 
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well as the classification.  

To set a base value of k, we use ki = max{1, 2×log(li)} [17], where l is the number 

of unique observed values for the i-th feature. For our features extracted with different 

window sizes (each set considered separately), the maximum value of k ranges from 6 to 

10. We extend this range and use the values of 5 to 11 for k. An experiment (Experiment 

3) is designed to determine the optimal number of features in this range. The result of this 

experiment is illustrated in Section 4. 

 

3.3 Feature Selection 

For the training of a predictive model, feature selection is a crucial step. Although 

37 features are extracted from the raw data, it is not ideal to use all of them for the 

classification for two reasons. First, some features may be irrelevant to the categorization. 

Second, two features may play the same role for identifying a record’s class, making one 

of them redundant. With those irrelevant or redundant features included in the training of 

the classifier, the generated decision tree may have a lot of redundant branches and be 

over-fitted. Feature selection is adopted to solve these problems.  

Generally, three types of feature selection algorithms are available [18]. They 

include filter methods such as Chi squared test and correlation coefficient scores, wrapper 

methods such as recursive feature elimination algorithm, and embedded methods such as 

Ridge Regression. Filter methods rank the features with importance scores and are often 

used as a pre-selection method. Wrapper methods attempt to find a subset of the features 

that yields the highest classification performance. Embedded methods include the feature 
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selection process in the classifier training and are specific to classifiers.  

In this study, we adopt a two-step feature selection. In the first step, a filter-based 

feature selection approach is employed. We use the Boruta package [19], [20] in R on the 

labeled feature data to eliminate a portion of the unimportant features. Boruta algorithm 

is built around the random forest classification algorithm. The algorithm first adds 

shuffled copies of all features and then trains a random forest classifier on the extended 

feature data. Based on the maximum Z score of the shadow features (MZSF), it confirms 

the original features that have Z scores significantly higher than the MZSF and rejects 

those with significantly lower Z scores than the MZSF. The shadow features are then 

removed and new shadow features added to repeat this process. The algorithm stops 

when all features gets either confirmed or rejected or it reaches a specified limit of 

random forest runs.  

In the second step of the feature selection, we remove the features that are marked 

unimportant or tentative from the labeled feature data and adopt a wrapper-based method 

on the new feature data. Heuristically, a wrapper approach means to examine every 

possible subset of the features and find the one that produces the highest classifier 

performance using the target classification algorithm. However, it means 2n tests are 

required if n features are selected in the first step. Unless n is a really small number, this 

amount of tests is not ideal. To avoid this massive amount of tests, we adopt the 

sequential feature selection (SFS) algorithm [18] instead. The algorithm tests each of the 

rest features’ performance using the target classification algorithm (i.e. decision tree) 

together with the features in a current subset. When an additional feature is added to the 
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current subset, a decision tree classifier is trained on the subset, the classification 

performance is recorded, and the feature is then removed from the current subset. This 

process is repeated until all the features that are not in the current subset are tested. The 

feature that gives the highest classification accuracy is permanently added to the subset 

and the algorithm moves on to the next step until the required number of features is 

included. In this study, the algorithm starts with an empty subset and ends until all 

features are added to the subset, and we analyze the accuracy change to decide the 

optimal subset. 

In Experiment 3, the performance of the feature selection approach is tested and 

the result is presented in Section 4. Feature selection is performed directly on the 

continuous feature data extracted from the accelerometer data.  

 

3.4 Classifier Learning 

Decision tree has been a popular algorithm in machine learning. In 1979, Quinlan 

proposed the ID3 algorithm [21] based on Shannon’s information theory (1949). The ID3 

algorithm is mainly for training the decision tree from discrete attributes by using 

information gain to select the splitting criterion. We adopt a TDIDT strategy to learn the 

classifier in this study. This process is a mature methodology with efficient learning and 

classification on categorical attributes. 

 

3.4.1 Tree training 

The TDIDT strategy we adopt is a greedy algorithm and is by far the most 
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common strategy for learning decision trees from data. The source data set is split into 

subsets based on an attribute that is determined by using a certain purity measure. This 

process is repeated on each derived subset in a recursive manner. The recursion is 

completed when all the data in the subset at a node are in the same class or all the 

attributes have been used as splitting criteria, i.e. the branch cannot be split again, in 

which case we assign the majority class of the subset to a leaf node.  

In this study, information gain is used as the purity measure to select the splitting 

criterion at a splitting node. If the sample is completely homogeneous, the entropy is zero; 

if the sample is equally divided, it has entropy of one. The attribute that carries the most 

information gain draws more clear boundaries among the classes and is thus used as the 

splitting criterion. No stop-splitting rule is set for the recursive partitioning. 

To avoid bias during tree learning, the same number of samples of the three 

activity states is used to train the classifier. It should be noted that the input to the training 

is the discretized features extracted from the overlapping sliding windows. 

 

3.4.2 Tree pruning  

Tree pruning is the method to cope with one of the most common and important 

problems in TDIDT, namely overfitting. There are commonly two ways to prune decision 

trees, one is pre-pruning and the other is post-pruning. Pre-pruning methods set stopping 

rules to prevent redundant branches from growing, whereas post-pruning methods let the 

decision tree fully grow and then retrospectively remove redundant branches. In this 

study, we adopt a post-pruning approach. The sections of the tree that provide little or 
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adverse power to classifying instances are removed. By doing this, the final classifier is 

less complex, and also has higher predictive accuracy. Since we look for a classifier that 

is small sized, pruning is a crucial process in this study.  

Post-pruning can be performed in either a top-down or a bottom-up fashion, and 

the latter is adopted in this study. Typically, a bottom up pruning starts at the leaf nodes. 

Since we use the leaf nodes to store the final class, the pruning starts at the lowest 

rightmost parent nodes. We adopt the reduced error pruning (REP) strategy [22] in our 

study. Specifically, a pruning set of data is used to test the performance of the decision 

tree as branches are being pruned. Starting at the last parent node, each parent one (i.e. a 

branch) is replaced with its most popular class that is denoted by the leaf node with the 

largest number of samples. Intuitively, if the tree’s prediction performance is downgraded 

by the deletion of a parent node, the deletion is reversed; if not, the change is kept. This 

process is iterated until the left-most child of the root is processed.  

 

3.4.3 Classifier simplification 

To implement the classifier into a real-time activity monitor, the trained classifier 

needs to be compactly saved in the memory of the wearable device and be quickly 

accessed to make a decision for newly extracted features. In order to do so, a novel 

approach is designed to store the decision tree in files of small sizes. We include three 

pieces of information for the trained decision tree as arrays. As detailed below, the three 

arrays store the feature discretization information, each node’s splitting criterion or class, 

and each internal node’s location in the decision tree, respectively. An example of the 
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three arrays is shown in Fig. 3-2.  

• The first array is a two-dimensional array; the first column of the array stores the 

smallest value of each feature and the second column stores the interval size. For 

example, if the i-th row of the array is {min, interval}, then for the i-th feature, the 

values falling in the range of [min, min+k*interval) will be replaced by a value of 

k-1 during the feature discretization process.  

• The second array is a one-dimensional array storing the splitting criteria of tree 

nodes, which are recorded in a breadth first manner. For the i-th node, if the array 

stores a digit k, it means the node is an internal node and its branches are splitted 

by the value  of the k-th feature. If the array stores a capital letter 'A' for a node, it 

means the node is a leaf and the activity state it represents is "stationary". 

Similarly, the letter 'B' and 'C' represents the states of "walking" and "running", 

respectively. 

 

Fig. 3-2: An example of the three arrays storing the trained decision tree classifier 
 

Array 1 (Feature discretization information):   
{{0.001887, 0.287572},{0.002376, 0.332635},{0.003153, 0.229805},{0.001814, 
0.534820},{0.002286, 0.577197},{0.003045, 0.436870},{0.002124, 0.607137},{0.003410, 
0.607108},{0.003790, 0.417544}} ; 
 
Array 2 (Decision tree reconstruction information):  
{'4','6','7','C','C','C','C','C','C','A','8','B','B','A','A','A','A','8','C','C','C','C','C','C','C','3','7','B','B','B','B','B','B',
'B','C','B','B','B','B','B','B','7','B','B','B','B','B','B','B','5','A','A','A','A','A','A','A','5','5','B','B','B','B','B','B','3',
'A','A','A','A','A','A','A','2','B','B','B','B','B','B','B','2','B','B','B','B','B','B','B','2','A','A','A','A','A','A','A','1','
B','B','B','B','B','B','B','1','B','B','B','B','B','B','B','1','A','A','A','A','A','A','A','0','B','B','B','B','B','B','B','0','B',
'B','B','B','B','B','B','0','A','A','A','A','A','A','A','B','B','B','B','B','B','B','B','B','B','B','B','B','B','B','B','A','A','
A','A','A','A','A','A'};  
Array 3 (Decision tree reconstruction information):  
{0, 1, 2, 10, 17, 25, 26, 41, 49, 57, 58, 65, 73, 81, 89, 97, 105, 113, 121, 129, 137}; 
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• The third array is a one-dimensional array that stores each internal node’ location 

in the decision tree. During activity classification, the classifier can locate a 

node’s children quickly in the second array based on its location information.  

Each internal node of the trained tree has a specific number of children, i.e. the 

number of intervals used during feature discretization. During classification, the 

classifier first reads a window length of accelerometer data, extracts features, and 

discretizes the feature data based on the information in the first array. Assuming 

NumberOfIntervals intervals are used during discretization and the discretized 

feature data is stored in a testData array, the classification process is as shown in 

Fig. 3-3.  

Through this conversion of decision tree into three arrays, the classification can 

be performed without reconstructing a decision tree. This way, the classifier is 

significantly reduced and can be easily implemented to a device with fairly small 

memory size. 

 

3.4.4 Classification 

A decision tree can easily be transformed to a set of rules by mapping from the 

root node to the leaf nodes one by one. A specific set of values of the features leads to a 

specific class. Assuming that each feature is discretized into three intervals, Fig. 3-4 

illustrates the transformation of a decision tree to a set of rules. In this decision tree, with 

the value of Mean being 0 and the value of AveInc being 0, no matter what values the 

other features (if any) have, the activity state will be classified as Stationary.  
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Fig. 3-3: Activity classification from decision tree information stored in three arrays. 

 

During the real-time monitoring/classification process, accelerometer data flows 

into the classifier as they are collected. As shown in Fig. 3-5, after data of the pre-defined 

window length arrives, features are extracted and discretized. Based on the discretized 

values, the activity is determined through a simple process detailed in Section 3.4.4.  

 

3.4.5 Misclassification correction 

Many scenarios of daily activities may cause misclassification. For example, 

when a user is running, he or she might lift his or her arm to wipe off sweat from his or  

 

  

Fig. 3-4: Conversion of a decision tree (left) to a set of decision rules (right). 

if Mean = 0 
        if AveInc = 0 State = Stationary; 
        if AveInc = 1 State = Walking; 
        if AveInc = 2 State = Walking; 
if Mean = 1 
        State = Walking; 
if Mean = 2 
        State = Running; 

childIndex = 0; 
while (Array2[childIndex] != 'A', 'B', or 'C') { 
 splittingCriterion = Array2[childIndex]; 
 attributeValue = testData[splittingCriterion]; 
 for (i = 0; i < SizeOfArray3; i++) { 
  if (Array3[i] = ChildIndex) 
   temp = i; 
   break; 

} 
childIndex = temp*NumberOfIntervals + 1 + attributeValue; 

} 
return Array2[childIndex] as activity state feedback; 
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her forehead. At this time, the data collected by the wristband might be very different 

from the data collected one second before and one second after. Such interruptions of 

continuous motion will certainly lead to misclassification. In order to reduce this kind of 

misclassification, a correction mechanism is designed in this study. When a state 

transition occurs during monitoring, we assume that the user is still performing the 

previous activity, until two classifications of the same result have been made. For 

example, the classifier has made two classifications of the running activity, and a new 

classification result of a walking activity is given. In such case, the result will be 

corrected to be the running state. However, the result of walking is still stored and used 

for the next classification. In other words, for each classification, three windows are 

considered and the majority activity is given as the classification result.  

As seen in Fig. 3-6, we aim to eliminate the misclassification cases shown in the 

upper scenario. With the two previous classifications of Running state, the classification 

result of Stationary is corrected to Running. In the lower scenario, a second Stationary 

state is detected after the misclassification correction. In this case, the classifier will  

 

 

Fig. 3-5: Real-time activity monitoring process. 
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reckon that the user has stopped running and gives the classification result of Stationary. 

Apparently, this strategy would also cause misclassifications as we see in the lower 

scenario of Fig. 3-6. However, it is corrected after half a window length and we can 

consider it negligible. 

 

 
 
Fig. 3-6 Misclassification correction scenarios (with window lengths of 2 seconds).
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CHAPTER 4 

EXPERIMENTS AND RESULTS 

 

In order to validate the proposed activity recognition approach, we design a set of 

experiments. These experiments test the effects of window length, the number of 

intervals in feature discretization, feature selection, tree pruning, and misclassification 

correction on the activity recognition accuracy. Through these experiments, the optimal 

configuration for the classifier training is determined.  

 

4.1 Design of Experiments  

The following experiments are designed to validate the proposed approach. The 

parameter setting of each experiment is dependent on the result of the previous one.  

• The First Experiment: The window lengths of 4 seconds, 6 seconds, and 8 

seconds are tested to decide the optimal window length. 37 features and 

various numbers of intervals are used in this experiment. The classifiers are 

trained without feature selection and tree pruning.  

• The Second Experiment: Five to eleven intervals are tested to determine the 

optimal number of intervals. Various window lengths and 37 features are used 

in this experiment. The classifiers are trained without feature selection and 

tree pruning. Experiments 1 and 2 are combined as they are performed. 

• The Third Experiment: The performances of two classifiers, one trained with 

37 features and one trained with the feature subset selected by the adopted 
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feature selection approach, are compared. The window length determined in 

the first experiment and the number of intervals determined in the second 

experiment are used in this experiment. The classifiers are trained without tree 

pruning.  

• The Fourth Experiment: The performance of the pruned decision tree is 

compared to the original decision tree learned from the features determined in 

the third experiment. The window length determined in the first experiment 

and the number of intervals determined in the second experiment are used in 

this experiment.   

• The Fifth Experiment: With a decision tree trained with the parameters 

determined in the first four experiments, the classification performance with 

misclassification correction incorporated is compared with the classification 

performance without incorporating misclassification correction.  

A 5-fold cross-validation is employed to verify the accuracy of the classifier. 

Since we collected data from five subjects, we intuitively divide the data into five sets, 

with the data collected from each subject being one dataset. In each round of the 5-fold 

cross-validation, one dataset is used as the testing set and the other four used as the 

training set (as seen in Fig. 4-1). This process is repeated five times, with each of the five 

subsets used once as the testing set. This way, all the collected data are used for both 

training and testing, whereas in each round, the test data is unseen (new) to the classifier. 

The classification results obtained from the five tests are put together to obtain the overall 

classification accuracy. Meanwhile, we process the training set and the testing set  
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Fig. 4-1: Data set division for the experiments. 

 

differently.  

• As can be seen in Table 3-1, we collected data for a longer duration in 

stationary state than in walking or running states. As a result, more feature 

records can be extracted for stationary state than for the other two states. Fig. 

4-2 shows the distributions of the feature records. For the training set, we 

randomly discard a portion of the feature records of each state so that the 

number of feature records of the three states is the same. For example, when a 

4-second window length is used for feature extraction, we obtain 1400 records 

of each state in the training set, and when a 2-second window length is used 

we obtain 2876 records of each state in the training set. This is to avoid bias in 

t h e  c l a s s i f i e r  l e a r n i n g  p r o c e s s .  

• The above balancing strategy is not applied to the testing set. In other words, 

the testing set contains more data of stationary state than that of walking state, 

and more data of walking state than that of running state, as shown in Fig. 4-2. 

Since in daily life, people generally stay inactive a longer time than active 

(walking or running), such a testing set better simulates the situation in which 

the classifier will be used.  
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Fig. 4-2 Feature records distributions (left: training set, right: test set). 

   

• The training set consists of labeled feature data whereas the testing set 

consists of raw accelerometer data files. Throughout the experiments, decision 

trees are learned from labeled feature data. During the classification process, 

the raw accelerometer data files are input to the algorithm with a label of the 

annotated activity state and the trained decision tree performs classification on 

the features that are extracted from the raw data. The classification result is 

then compared to the activity state label to determine the classification 

accuracy.  

For the fourth experiment that tests the effect of tree pruning, the training set is 

further divided into a growing set and a pruning set, as shown in Fig. 3-5. The growing 

set is a random 75% of the training set and the pruning set is the other 25%.  

 

4.2 Result Analysis and Discussion 

This section describes and analyzes the results of the designed experiments.  
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4.2.1 Experiments 1 & 2 

Considering that the feature selection window size and the number of 

discretization intervals may have influences on each other, Experiments 1 and 2 are 

performed together to determine the optimal values for both parameters. Fig. 4-3 shows 

the results of the two sets of experiments. As discussed in Sections 3.2.1 and 3.2.3, four 

window lengths (2, 4, 6, and 8 seconds) and 7 interval numbers (5 to 11) are tested. 

Therefore, we obtain 4*7 values of classification accuracy as shown in Fig. 4-3.  

As seen in Fig. 3-6, there are several combinations of window length and interval 

number that yield relatively high accuracies. It is apparent that the combination of 2-s 

windows and 8 intervals produces the highest accuracy. However, it would be imprudent 

to use this configuration directly. In Fig.s 4-4 and 4-5, we plot the experimental result in 

bar charts to have a clearer idea of the effect of each parameter alone.  

In Fig. 4-4, the classification accuracies are grouped by window length to show  

 

 
Fig. 4-3: Decision tree classification accuracies with different feature extraction 
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window the effect of window length regardless of interval number. As can be seen, for 

the window lengths of 4, 6, and 8 seconds, the classification accuracy varies greatly as 

the interval number changes. Meanwhile, no matter what number of intervals is used, the 

sizes and various numbers of discretization intervals window length of 2 seconds always 

results in relatively high performance. In other words, the performance of 2-s windows is 

more stable than those of other window lengths.  

In Fig. 4-5, the classification accuracies are grouped by the number of intervals to 

show the effect of interval number regardless of window length. Similarly, we look for 

the interval number that performs stably. As can be seen, no matter what window length 

is used, the interval number of 9 always results in relatively high performance.  

Based on Fig. 4-4 and 4-5, we know that the window length of 2 seconds and the 

interval number of 9 are optimal choices for the two parameters. However, as can be seen 

in Fig. 4-3, the combination of these two settings yields an accuracy that is lower than  

 

 
Fig. 4-4: Decision tree classification accuracies plotted by window length. 
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Fig. 4-5: Decision tree classification accuracies plotted by number of intervals. 

 

those of many other combinations. Therefore, we decide to further experiment with the 

optimal combinations with either of these two settings. Since 8 intervals achieve the best 

performance when using 2-second windows and 4-second windows achieve the best 

performance when using 9 intervals, these two combinations are tested in subsequent 

experiments. In Experiments 3 and 4, we experiment with these two sets of 

configurations and determine the optimal choice between them based on the results.  

 

4.2.2 Experiment 3 

To reduce the number of features, simplify the trained classifier, and improve the 

classifier performance, we adopt a two-step feature selection approach. First we use the 

Boruta package in R to perform an initial selection. On this basis, the SFS algorithm is 

applied to find the optimal feature subset. Since we determined two optimal combinations 

of window length and interval number in the last experiment, two sets of tests are 

performed in this experiment.  
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Fig. 4-6 plots the importance score of each feature after applying the Boruta 

package on the 37 features extracted from collected accelerometer data with the window 

length of 4 seconds. Each feature is given an importance score as indicated in the black 

bar in the middle of each box together with its smallest and largest possible importance 

scores as indicated in the left and the right of each box, respectively. Each feature is 

marked as confirmed (shown in green), tentative (shown in yellow), or rejected (shown in 

red). It should be noted that shadow features shown in blue are not considered since they 

are shuffled copies of the original features. For the 4-s-window data, 10 features are 

marked tentative or rejected and are excluded in the second step of feature selection.  

Fig. 4-7 plots the importance score of each feature for the features extracted with 

the window length of 2 seconds. For the 2-s-window data, 7 features are marked tentative 

or rejected. These 7 features, including the 1st and 5th binned distribution for all three axes 

and the 4th binned distribution for y-axis, are marked as tentative or rejected for the 4-s-

window data as well. Apparently, regardless of the window length, the importance of 

features does not change significantly.  

In the second step of feature selection, the SFS algorithm is performed on the 

features that are marked as important (confirmed) by the Boruta package. Assuming there 

are n candidate features, at the i-th step of the SFS algorithm, the current subset contains i-

1 features. Each of the rest n-i+1 features is temporarily added to the current subset and a 

five-fold cross validation is performed with the i features in the subset. The feature that 

yields the highest accuracy is permanently included in the current subset for the (i+1)-th 

step of the SFS algorithm. The algorithm starts with an empty current subset and ends 
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Fig. 4-6: Importance scores for features extracted with 4-s window length. 
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Fig. 4-7: Importance scores for features extracted with 2-s window length. 
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with all n features in the subset. 

Since the Boruta package generated slightly different results for the two window 

lengths of 4 seconds and 2 seconds, two sets of tests are performed in this step as well. At 

each step of the SFS algorithm, in addition to adding the feature that produces the highest 

accuracy to the current subset, the highest accuracy obtained is recorded as well. Fig. 4-8 

and 4-9 illustrate the change of the classifier’s best performance as features are added to 

the current subset. Tables 4-1 and 4-2 tabulate the experimental result to show more 

details of the performance change.  

From the performance change during the sequential feature selection, we can 

observe the following: 

a) For both sets of configurations, the classification accuracy first increases rapidly 

and then stabilizes. As the number of features in the subset increases to a larger 

value, the classification accuracy decreases.  

 

 
Fig. 4-8: Accuracy change with the number of features for 4-s-window and 9-interval 
data. 
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Fig. 4-9: Accuracy change with the number of features for 2-s-window and 8-interval 
data. 

 

b) For both sets of configurations, the performance with the entire feature set can be  

achieved with as few as 5 to 6 features. This indicates that the feature selection 

algorithm is effective and able to eliminate redundant features. As can be seen in 

Table 4-1, when using 4-second windows and 9 intervals, the classifier learned 

from all 27 features achieves a classification accuracy of 94.07%, whereas the 

highest accuracy of classifiers learned from subsets containing 5 features reaches 

94.31%. As seen in Table 4-2, for the configuration of 2-s windows and 8 

intervals, the classifier learned from all 30 features achieves a classification 

accuracy of 95.03%, whereas the highest accuracy of classifiers learned from 

subsets containing 6 features reaches 96.28%. 

As the number of features in the subset increases, the complexity of classifier 

increases as well. In order to determine the optimal subset and find a balance between 

classification accuracy and classifier complexity, we introduce a complexity penalty 
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Table 4-1: Accuracy change with the number of features for 4-s-window and 9-interval 
data 

Number of 
Features 

Highest 
Accuracy 

Number of 
Features 

Highest 
Accuracy 

Number of 
Features 

Highest 
Accuracy 

1 0.7352 10 0.9465 19 0.9513 

2 0.8198 11 0.9461 20 0.9482 

3 0.879 12 0.9461 21 0.9422 

4 0.933 13 0.9447 22 0.9481 

5 0.9431 14 0.9447 23 0.9481 

6 0.9452 15 0.9447 24 0.9481 

7 0.9458 16 0.9447 25 0.9457 

8 0.9465 17 0.9438 26 0.9438 

9 0.9465 18 0.9481 27 0.9407 
 

Table 4-2: Accuracy change with the number of features for 2-s-window and 8-interval 
data 

Number Of 
Features 

Highest 
Accuracy 

Number Of 
Features 

Highest 
Accuracy 

Number Of 
Features 

Highest 
Accuracy 

1 0.7452 11 0.9672 21 0.9672 

2 0.8578 12 0.9672 22 0.9672 

3 0.8994 13 0.9672 23 0.9672 

4 0.9395 14 0.9672 24 0.9667 

5 0.9485 15 0.9672 25 0.9652 

6 0.9628 16 0.9672 26 0.9638 

7 0.9670 17 0.9672 27 0.9617 

8 0.9672 18 0.9672 28 0.9601 

9 0.9672 19 0.9672 29 0.9575 

10 0.9672 20 0.9672 30 0.9503 
 

when selecting the optimal subset [23]. When comparing the performances of two subsets, 

a penalty of 0.1% is applied for each one more feature. The final subsets chosen for the 

two configurations are shown in Table 4-3. The features in the optimal subsets are listed 

in the orders that they are selected by the SFS algorithm. 

Obviously, the features in the final subsets are not the ones that are given higher  
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Table 4-3: Final subsets chosen after two-step feature selection.  
 Window 

length 
Number of 
intervals 

Number of features 
in optimal subset 

Features in optimal subset 

Configuration 1 4 seconds 9 6 mean cross of y-axis 
mean cross of x-axis 
RMS of x-axis 
standard deviation of x-axis  
correlation between x- and z-axes 
standard deviation of z-axis  

Configuration 2 2 seconds 8 7 mean cross of x-axis 
mean of y-axis 
RMS of x-axis 
standard deviation of y-axis 
correlation between x- and y-axes 
mean of x-axis 
4th binned distribution of z-axis 

 

importance scores in the first step. For Configuration 1, the final features rank 5th, 1st, 9th, 

21st, 2nd and 24th places in the result of Boruta. For Configuration 2, the final features 

rank 11th, 13th, 6th, 7th, 26th, 19th, and 28th places in the result of Boruta. This may be 

attributable to the following reasons.  

a) The Boruta package is a filter-based feature selection method that considers each 

feature individually. It scores a feature’s importance based on its relevance to the 

class label. Therefore, if the values of a feature discriminate the class more clearly, 

the feature is given a higher rank. For both configurations, the performance of 

using all the confirmed (green) features is the same as the performance of using 

all 37 features, which means the tentative or rejected features do not contribute to 

the classification accuracy, or in other words are irrelevant. 

b) The sequential feature selection algorithm tries to find an optimal feature subset 

that best discriminate the class. In other words, it considers the relevance of each 

subset as a whole with the class. In some cases the combination of two features 
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with lower importance scores may be more relevant to the class labels than 

another feature with much higher importance score, and in many cases including 

one more feature in the subset decreases the performance instead of increases it. 

 

4.2.3 Experiment 4 

In order to solve the overfitting problem that is common to TDIDT algorithms, we 

adopt a reduced error post-pruning strategy.  Similar to the 5-fold cross validations 

performed in previous experiments, in each test, the accelerometer data collected from 4 

of the subjects are used to train a decision tree and the data of the other subject (testing 

set) is used to evaluate the classification performance. The overall performance is then 

calculated from the result of the 5 tests.  

For reduced error pruning (REP), a separate set of data is needed to test the 

classification performance as branches of the decision tree are being pruned. Therefore, 

each of the training sets used in the previous experiments is divided into two sets, the 

growing set and the pruning set [24]. First, a decision tree is learned from the growing set, 

and we call it the grown tree. Then, in each step of REP, a parent node is replaced with its 

most popular class and the new tree’s performance is tested on the pruning set. If the 

performance is reduced, the deletion of the node is reversed, and otherwise it is kept. 

After the pruning is completed, the pruned decision tree’s performance is evaluated on 

the testing set. In this study, we use a random 75% of the training set as the growing set 

and the other 25% as the pruning set.  

We evaluate two effects of pruning: the performance change and the tree size 
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change. As each decision tree is pruned, we record its performance change and the 

number of parent nodes left in the tree. Similar to previous experiments, a five-fold cross 

validation is performed in each pruning step. The experimental results are shown in Table 

4-4.  

As can be seen in Table 4-4, the classification accuracies of the pruned trees 

decrease by 0.76% and 1.88%, respectively. Meanwhile, 80% of internal nodes are 

pruned, which means the pruning significantly reduced the decision trees’ complexity. 

The performance reduction may be attributable to that the pruning process makes the 

decision tree more specific to the pruning set, i.e. perform better on the pruning set, and 

compromises its performance on the test data. Although the tree pruning decreases the 

classification accuracies, the tree size reduction compensates the performance drop since 

one goal of this study is to design a real-time classifier that has little computational cost 

and consumes little memory space.  

 

4.2.4 Experiment 5 

As described in Section 3.4.6, we adopt a misclassification correction mechanism  

 

Table 4-4: Experimental results of tree pruning 

 Classification accuracy Average number of internal nodes 
Before pruning After pruning Before pruning After pruning 

Configuration 1 (4-
s windows and 9 
intervals) 

94.52% 93.76% 75.2 14.4 

Configuration 2 (2-
s windows and 8 
intervals) 

96.70% 94.82% 101.6 20.6 
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to reduce the misclassification in the case where interruptive activities occur. In previous 

experiments, this mechanism is adopted for all tests. In this experiment, we test the 

performance without using this misclassification correction mechanism and compare it 

with that when the mechanism is applied.  

Table 4-5 presents the classification confusion matrices of the decision trees 

trained with the two configurations and with or without the misclassification correction 

mechanism applied. In the table, the letters 'S', 'W', and 'R' are short for stationary, 

walking, and running states, respectively. Each number indicates the number of records 

that are actually the state on its left and are correctly or incorrectly classified as the state 

above it. For example, the highlighted number 349 means 349 stationary records are 

misclassified as walking. Each confusion matrix in the table is a sum of the classification 

results of the five tests performed in cross validation.  

 

Table 4-5: Experimental results of misclassification correction 
Configuration 1 without 
misclassification correction 

Configuration 2 without 
misclassification correction 

 S W R  S W R 
S 4626 349 14 S 9294 805 1 
W 249 2322 19 W 270 4968 9 
R 42 9 1708 R 7 3 3603 

Accuracy = 92.70% Accuracy = 94.22% 
Configuration 1 with 
misclassification correction 

Configuration 2 with 
misclassification correction 

 S W R  S W R 
S 4687 300 2 S 9359 741 0 
W 234 2351 5 W 235 5010 2 
R 37 5 1717 R 4 0 3609 

Accuracy = 93.76% Accuracy = 94.82% 
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As can be seen, applying the misclassification correction algorithm reduces the 

number of misclassifications of all types, such as stationary records misclassified as 

walking or running, running records misclassified as stationary or walking, etc. The 

accuracy changes (92.70% to 93.76% for configuration 1 and 94.22% to 94.82% for 

configuration 2) clearly show that the mechanism is effective. However, since the 

mechanism only corrects single misclassifications, the performance improvement is not 

significant.  

 

4.2.5 Final configuration 

Based on the results of Experiments 1 and 2, two sets of window length and 

interval number were used in the subsequent experiments. For the final classifier, we 

need to determine one set of configuration. Table 4-6 summarizes the experimental 

results of the third and fourth experiments for comparison. Based on the results, we 

decide to use configuration 2 (2-second windows and 8 intervals) for the following 

reasons.  

 

Table 4-6: Summary of experimental results of experiments 3 and 4  
 Feature selection effects 

(Experiment 3) 
Tree pruning effects (Experiment 4) 

Number 
of 
features 

Classifier 
performance 

Number 
of 

features 

Accuracy Average number 
of internal nodes 

Before After Before  After  Before  After  

Configuration 1 (4-
s windows and 9 
intervals) 

37 to 6 94.07% 94.52% 6 94.52% 93.76% 75.2 14.4 

Configuration 2 (2-
second windows 
and 8 intervals) 

37 to 7 95.03% 96.07% 7 96.70% 94.82% 101.6 20.6 
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• For both configurations, the classification accuracies of the pruned trees are only 

slightly lower than those before feature selection, with performance drops of 0.31% 

and 0.21%, respectively. Although not significant, the performance drop of 

configuration 2 is smaller.  

• The performance of configuration 2 is higher than that of configuration 1 before 

feature selection, after feature selection, and after tree pruning.  

• Using configuration 2 means that during real-time monitoring, feedbacks are 

provided more frequently (every second).  
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CHAPTER 5 

CONCLUSIONS 

 

In this study, we propose an accelerometer-based real-time human activity 

recognition approach using the decision tree as the classifier. The major contributions are 

as follows:  

• Requiring only one accelerometer instead of multiple sensors worn on the 

subject’s wrist (left or right) to increase portability, reduce cost, and broaden the 

applications. The system can be easily implemented to a wristband or smart watch 

that has an embedded accelerometer for users.  

• Recognizing activities in real-time without requiring user-specific classifier 

training. The classifier is learned from accelerometer data collected by 

participants of the study instead of the new user. In other words, a new user can 

directly pass accelerometer data to the classifier and get activity feedback.   

• Adopting the decision tree as the classification algorithm and designing a simple 

structure and using a decision tree simplification technique to store the trained 

decision tree in fairly small memory. The complexity of the decision tree is 

reduced by applying feature selection and tree pruning, allowing the system to 

have low computational cost and consume small memory space.  

The proposed approach follows a process of feature extraction, feature selection, 

decision tree training, and decision tree pruning. Through experiments, the effects of 

feature extraction window length, feature discretization intervals, feature selection, and 
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decision tree pruning are tested. On top of this process, we also implement 

misclassification correction and decision tree simplification to improve classification 

performance and reduce classifier implementation size. The experimental results show 

the following: 

• With the combination of 2-second window length and 8 intervals, the extracted 

feature data produces the best decision tree performance.  

• Through feature extraction, the number of features is reduced from 37 to 7. On a 

subset of 7 features, the trained decision tree performs better than the one trained 

with 37 features, with a classification accuracy increase of 1.04%.  

• Decision tree pruning slightly decreases the classification performance, while it 

significantly reduces the tree size. The number of internal decision tree nodes is 

decreased from 101.6 to 20.6, which equals a remarkable reduction in tree size.  

• The proposed misclassification mechanism effectively eliminates single 

misclassifications caused by interruptive activities.  

• With the proposed decision tree simplification approach, the trained decision tree 

can be saved to three arrays. The implemented decision tree can be simply 

initiated by reading configurations from the three arrays.  
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