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ABSTRACT

Modeling De Novo Granulation of Anaerobic Sludge

by

Honey Varghese, Master of Science

Utah State University, 2017

Major Professor: Nicholas S. Flann, Ph.D.
Department: Computer Science

The enigma of anaerobic sludge granulation is still exciting the minds of both ex-

perimental scientists and modeling experts. A unique combination of mechanical, physio-

chemical and biological forces influence granulation during processes of anaerobic digestion.

However, knowledge of potential driving forces of granulation has not been transformed

into a comprehensive model of anaerobic granulation. In this computational experiment,

we address the role physiochemical and biological processes play in granulation and provide

a literature-validated working model of anaerobic granule de novo formation. The model

developed in a cDynoMiCs simulation environment successfully demonstrated a de novo

granulation in a glucose fed system. The simulated granules exhibit experimental observa-

tions of radial stratification: a central dead core surrounded by methanogens then encased

in acidogens. Practical application of the granulation model was assessed on the anaerobic

digestion of low-strength wastewater by measuring the changes in methane yield as model

parameters were systematically swept. This model will be expanded in the future to inves-

tigate the influence of mechanical forces on the de novo granulation and the application of

a model to anaerobic digestion of a complex protein-carbohydrate rich feedstock.

(52 pages)
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PUBLIC ABSTRACT

Modeling De Novo Granulation of Anaerobic Sludge

Honey Varghese

The global market for biological waste water treatment is large and growing. Bio-

engineered reactor setups employ microorganisms to degrade waste and produce useful/less

harmful components. Scientists are interested in studies that reveal the biological mech-

anisms involved in the process of these microbial actions in order to improve the reactor

performance. The process of granulation in aerobic sludge is one such interesting process

which is less explained.

The primary goal of the thesis is to design a computational model that simulates the

process of granulation in anaerobic sludge and that addresses the role physiochemical and

biological processes play in granule formation. The working model that we have developed

has been validated using the existing literature. The model successfully demonstrates gran-

ulation in a glucose fed system with formation of 0.5 mm mature granule in 33 days with

the production of methane. The simulated granules have the same structure as that of the

real world granule images: a central dead core surrounded by living cells (acidogens and

methanogens).

The model can also be used by scientists as a tool to find the parameter values that

can help in tuning the reactor to maximize productivity. As an application of the tool,

we have built a search engine that systematically sweeps the model parameters to find the

amount of food supply (glucose) and the ratio of different microbe species in initial feed to

the reactor. The model can also be expanded in the future to investigate more complex

processes.
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CHAPTER 1

INTRODUCTION

An efficient anaerobic digestion (AD) of organic matter is a result of a complex micro-

bial interaction inside a bioreactor. For the high-rate anaerobic digestion of a feedstock,

an up-flow anaerobic sludge blanket reactor (UASB) is a common choice. The superior

performance of this reactor is due to the particular organization of microorganisms into

spherical granular structures. The process of granulation was first noticed and documented

in the early 1980s [1, 2] and since then a number of anaerobic granulation theories have

been presented. The main reasoning for the granulation per se is the up-flow velocity inside

sludge bed of a UASB reactor. Microbial cells moving up with the flow of the feed tend to

stick to the other microbial cells. Such sticking behavior prevents a washout of the microbial

inoculum from a reactor since the outlet for the digested feed is located in the top of the re-

actor [3,4]. The most widely accepted theory states that granulation starts with a formation

of a future granules core, comprised of filamentous methanogenic bacteria Methanothrix, to-

gether with Methanosarcina, which secrete extracellular polymers (ECP) [5–7]. The surface

of this changes and become attractive for the oppositely charged anaerobic bacteria that

are present in the dispersed inoculum of a UASB rector [8–10]. Chemo-attractance of other

bacteria towards ECPs and substrate around the granule core may also play a major role

in the further aggregation and formation of mature granules [11,12]. Despite these possible

explanations of the granulation process, there is still no agreement on which of the possible

theories correctly explain this most important and crucial role of granulation. The key

factors of granulation are still to be determined, whether they are physical, biochemical or

a combination of physicochemical properties of the cells and the way the organic matter

transforms over space and time.

An effective means to get a better understanding the granulation process is through the

construction of a computational granulation model. This model must incorporate testing

of different key granulation factors. There are already some granulation models available in

the literature, but they do not describe a process of de novo granulation and only describe
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the kinetics of anaerobic digestion with an already mature granular consortia. For example,

one of the earliest models by Tartakovsky and Guiot [13] assumes a layered granule struc-

ture with a homogeneous distribution of microbial groups from the very beginning of the

simulation. Authors describe the kinetics of substrate transformation in a mature granule

that reached a steady state. Using the same assumption, Arcand et al. [14] successfully

predicted the substrate distribution inside a granule, based on diffusivity gradient inside a

biomass. Shayegan et al. [15] took the substrate kinetics in the granule one step further,

incorporating behavior of granular agglomerates into the operation predictions of the whole

UASB reactor. The mass of granules in a reactor, rates of granule decline and general

bacterial growth kinetics were used as a basis for the model. Skiadas and Ahring [16] have

applied a cellular automata theory, developed by Wimpenny et al. [17], to model granulation

during anaerobic digestion. However, authors assumed a homogeneous layered structure of

a granule and obtained calculated values of substrate utilization rates that do not agree

with the experimental data they used as a reference.

A commonly applied assumption of a homogenous-layered structure of anaerobic gran-

ule does not conform with experimental data. In particular, data suggests a spatially

organized granule containing a mixed composition of bacterial groups inside the granule. In

models lacking this property, there is no strict compartmentalization of trophic groups, like

methanogens and acidogens, in the core and outer layer, respectively. Strict anaerobes, like

methanogens, can also be found in the outer layer of the granule, as visualized with fluores-

cent probing experiments and scanning electron microscopy [18–21]. A non-homogeneous

bacterial distribution is investigated in a model described by Picioreanu et al. [22]. However,

the study does not address the process of granulation itself, and an entirely formed granule

is employed as an initial condition and seed of a model. The model, therefore, predicts a

mature granule’s further development, growth, and formation of an inside inert core.

An enormous amount of knowledge has been developed concerning predicting the rates

of anaerobic digestion in UASB reactors with mature granules. However, these models are

not complete and do not represent the actual input for large scale applications, specifically
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those of the widely accepted biochemical model of the anaerobic digestion process (ADM1)

[23]. The most recent review of the current status of ADM1 clearly states the need to

thoroughly address the application of ADM1 to various types of anaerobic reactors, UASB

in particular. Thus, a complete and trustful model of anaerobic digestion in UASB must take

into account both granulation in general and initial de novo granulation [24]. Knowledge

of the critical parameters facilitating de novo granule formation will aid in robust UASB

reactor operation and production of increased methane yields with high organic matter

transformation rates.

A model of de novo granulation proposed in this paper addresses some of the key

aspects that influence aggregation of microbial biomass into defined granular structures.

Those key elements include: initial concentrations of the substrate used as a feedstock for

anaerobic digestion; ratio of methanogenic and acidogenic cells at the start of the reactor;

the role of chemotactic attractions and cell-to-cell adhesion properties. This study addresses

all these factors. Additionally, an extensive computational search of the initial parameter

values is made to determine an optimal initial combination that yields the highest start-up

methane production rates.
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CHAPTER 2

MODEL EXPERIMENT AND MODEL

The process of granulation is modeled at two spatial scales in the simulation. At the

macro scale, the reactor process is simulated where the cells are introduced into an agitated

system (due to the upflow velocity in UASB reactor), cells interact and form multiple

agglomerates (centers of granulation). At the mesoscale, simulations are performed that

focus on the growth and development of one such agglomerate into a mature granule.

In the macro scale, randomly distributed acidogenic (further referred to as “acidogens”)

and methanogenic cells (further referred to as “methanogens”) are introduced into random

positions within the reactor. The particles experience mechanical forces due to agitation in

the system as well as biomechanical forces due to homogeneous and heterogeneous adhesion

and formation of EPS-driven interactions. As a cumulative effect of these forces, cells come

close to each other and form several agglomerates.

To closely monitor the growth patterns in the formation of a granule, the mesoscale

simulation is designed to focus on the development of a single granule (from the initial

agglomerate of acidogens and methanogens formed during the macro studies). In UASB

bioreactors, granules move freely in an agitated system, where the supplied solutes are

relatively mixed. To simulate such a mixed environment for the granule growth, we provide

a continuous supply of one solute (glucose) from all the sides of the simulation domain with

diffusivity as defined in Table 4.1 . The model executes growth reactions that represent

the consumption of the supplied glucose by the acidogens, the secretion of the acetate as a

metabolite of acidogens and the consumption of acetate by methanogens, which is converted

into the methane gas.
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CHAPTER 3

RESULTS

Simulation experiments were conducted on the computational granulation model to

give insights into different stages in the development of granules in aerobic sludge reactors.

Where available, literature supported model parameters [listed in Table 4.1] were employed.

Other parameters, such as those that influence particle aggregation and mechanical sorting,

were fine-tuned based on correspondence between observations made from simulations and

comparisons with reported granule images. The resulting granule spatial organization and

product production of model simulations were analyzed and compared with values from real

biological systems. Another objective of the study was to employ a search engine to find

the amount of initial glucose concentration and populations of methanogens and acidogens

that lead to optimal methane production.

3.0.1 Study I: Reactor scale model

In the Phase I of modeling, randomly distributed acidogens and methanogens (illus-

trated in Figure 3.1a) interact with each other in a simulated UASB reactor environment,

where upflow velocity and agitation play key roles to promote granulation of sludge. In

the simulated environment microbial cells move around the system due to agitation and

cells are bound together due to biomechanical adhesive forces, allowing formation of cell

agglomerates (illustrated in Figure 3.1b).
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Initial random distribution of two
types of cells in a UASB-like envi-
ronment.

Cells self-organize into a cluster due
to the mechanical forces caused by
agitation in the system and mutual
adhesion between two cell types.

Fig. 3.1: Reactor scale model.
a) initial random distribution of two types of cells in a UASB-like environment; b) formation
of cell aggregates due to the mechanical forces, mutual adhesion and random agitation in
the UASB-like environment.

3.0.2 Study IIa: Stages of granule formation

To investigate the development of a mature granule and dynamic changes in the cell

growth, consumption of glucose, a series of simulator output snapshots were performed

(Figure 3.2). At the initial stage (t=0 hours), single cell aggregate appear as a small cluster

of acidogens and methanogens (zoomed from Phase I Reactor scale model, Figure 3.1).

As time proceeds (t=300, t=480 and t=700 hours) cells grow and corresponding solute

gradients demonstrate accumulation of acetate and methane in the system. Methane, being

a volatile compound, is slowly diffused out of the system and depicted values on the scale of

gradient images are not the cumulative values, as in the case of the glucose and acetate. At

480 hours of granule development, a black “dead” core of cells start to emerge in the middle

of the granule sphere. Appearance of a “dead” core is due to the diffusion boundaries
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of glucose or acetate inside granular cluster. Thus, cells of both types (acidogens and

methanogens) are not getting enough energy supply and are forced to transition into the

inert biomass. This transition is set to be irreversible in the model, thus leading to a

formation of a “dead core”. A similar core can be seen on the Figure 4a of the laboratory-

observed granule, which is used as evaluation criterion in current study and is described later

in detail. The final stage of granule development simulation (t=650 hours) demonstrates a

mature granule with 0.5 mm in diameter.
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Stage I(hr 0) Stage II(hr 300) StageIII(hr 480) Stage IV(hr 650)
(a)Granule (b)Granule (c)Granule (d)Granule

(a)Glucose (b)Glucose (c)Glucose (d)Glucose

(a)Acetate (b)Acetate (c)Acetate (d)Acetate

(a)Methane (b)Methane (c)Methane (d)Methane

Fig. 3.2: Stages of simulated de novo granulation and associated dynamic changes in the
solutes concentrations
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3.0.3 Study IIb: Analysis of granule growth dynamics

In addition to visual (qualitative) investigation of de novo granulation, a close up

quantitative study was performed on dynamic changes in solute amounts and cell biomass

accumulation (both in values of cell numbers and cell biomass numbers). Graphs for dy-

namic changes are provided in Figure 3.3. Figure 3.3a demonstrates changes in the total

number of two types of cells (acidogens and methanogens) with regard to the simulation

time. Simulation was initiated with 100 cells of each type. Due to the fast growth of

the acidogens (see the Table1 with growth kinetics parameters), we can see an exponential

growth of acidogens from t=80h to t=360. A similar dynamic is depicted in Figure 3.3

b. Due to the product inhibition by the produced acetate and lack of diffused glucose,

acidogens decrease their relative growth rate and reach the stationary phase of growth at

around t=600h.

Dynamics of methanogens growth is slightly different, mainly due to the lack of available

acetate from the start-up of the system and a lower growth rate, contrary to acidogens

(Table 1 with model parameters). Methanogen growth goes through a long lag phase

(t=0h until t=220h), where biomass is accumulated at a very slow rate (Figure 3.3 c). At

this lag phase methanogen cells are waiting for the supply of acetate from acidogens. As

soon as enough acetate is accumulated in the system (around t=220h), methanogens start

exponential growth and decrease their relative growth rate at about t=520h. This decrease

is in direct correspondence with the amount of available acetate in the system at the same

time period (t=480-500h), when acidogens are inhibited by the produced acetate and are not

provided with a high flow of glucose (due to the slow diffusion into the center of the granular

biomass). Kinetics of acetate accumulation/conversion and methane production are in a

good correlation with experimental data reported by Kalyzhnyy et al. and others [25–28]
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Fig. 3.3: A close-up of the dynamic changes
a) Total cell number over simulation time, b) Total cell biomass over simulation time and c)
Total solute concentration over simulation time. All the changes are graphed for each type
of the cell (acidogens, methanogens, inert dead type) and each type of the solute (glucose,
acetate, methane). 10 simulations with different random seeds were graphed to demonstrate
standard deviation in the monitored values.
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3.0.4 Study III: Formation of a mature granule

Figure 4 shows images of a 1mm in diameter granule, obtained from both a laboratory

experiment reported by Sekiguchi et al. [19] (Figure 3.4a) and an image from our simulated

model (Figure 3.4b). Simulation of 1mm in diameter granule formation took 800 hours

(around 33 days), which corresponds to the published studies observing granulation in

UASB reactors [20,29]. Images 4c, 4d and 4e depict distribution of solutes (glucose, acetate,

and methane) at the final stage of simulated granule growth (t=800 hours). One can note

a sharp decrease in the glucose diffusion inside the granule, with regard to the biofilm

diffusivity capacity. Since acetate is consumed by methanogens during their growth and

converted to methane, there is a low concentration gradient of both chemicals on the final

images (Figure 3.4c,d,e).

Overall, solute distributions for 1mm granule follow a similar pattern as for the 0.5mm

granule, described earlier. Key point in conducting simulation of a 1mm granule develop-

ment is to demonstrate radial growth, without substantial changes in the overall morphology.

Thus, initial stages of granule formation (Phase I) are the key factors for granulation per

se.
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(a)Laboratory image
(b)Simulator
output

(c) Glucose (d)Acetate (e) Methane

Fig. 3.4: Validation of the de novo granulation model via qualitative analysis.
a) Laboratory image courtesy of [19]. b) An image of granule simulated with current model.
c) Distribution of the three solutes defining simulation of granulation (glucose, acetate,
methane) at the final time point (t=800 hours) of the simulation.

3.0.5 Validation of the model

Validation of the model performance was conducted both qualitatively and quantita-

tively (Figure 3.5). Visual comparison of a published fluorescent-labeled image of granule

with simulated granule image demonstrates a striking similarity in spatial distribution of

main trophic groups of microorganisms - acidogens, methanogens and “dead” biomass.

Irregularities and hollow parts (black color) in the published granule image (Fig-

ure 3.4a) are possibly caused by the upflow velocity of the liquid and particulate matter in a

UASB reactor, where the granule was developed [19], which might have damaged spherical

shape of the immature granule, causing mature granule to change its shape and grow further

with hollow compartments. Another possible explanation might be granule division. It is



13

well documented [8–10] that due to the shear stress in a UASB reactor, granules cannot grow

uncontrollably and will eventually split into “daughter granules. Those “daughter granules

are susceptible to attachments of additional microbial cells, floating in UASB sludge bed.

Those newly attached cells might cause irregularities in future mature granules in forms

of randomly distributed cell clusters in a presumably inert (“dead) core (red-labeled cell

clusters on Figure 3.5a).

To validate our simulated model quantitatively, we conducted image processing of the

published data and used an algorithm to count the number of distinctly colored pixels/cells

at the different distances from the center of the granule image (Figure 3.5). We used 4

quarters of a spherical granule in the analysis to provide standard deviations of spatial

distribution of three distinct cell groups acidogens, methanogens and inert (dead) biomass.

Results of quantitative distribution of three main cell types in both simulated and real

images are in a good correlation, accept for the radial section 3. Such slight discrepancy is

due to the possible “division to daughter granules history of the laboratory granule.
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(a) Laboratory

(c) Simulated

Fig. 3.5: Validation of the de novo granulation model via quantitative analysis.
Validation was done via analysis of the three cell type radial distribution in the both labora-
tory and simulated granule. Both granules were divided into four quarters and each quarter
was analyzed for cell distribution. Differences in the cell numbers at the same radial dis-
tance in four quarters are depicted in a form of standard deviation. Red, green and black
colors of the bars on bar chart represent acidogen, methanogen and dead cells respectively.

3.0.6 Parameter scan for optimized methane production

Main objective of the parameter scan is to estimate a combination of cell ratio (aci-

dogens:methanogens) and glucose supply needed to start anaerobic system to achieve a

desired (maximum) methane yield. The corresponding protocol parameter for glucose value

is “SBulk” in world section. The “init area number” for acidogens and methanogens in the

species section is used to determine the initial cell ratio for the simulations. The minimum

and maximum value of the interval in which the search should be performed is given as an

input to the search engine. The methane productivity (calculated from the solute concen-
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(a)

(b)

Fig. 3.6: Parameter scan for the methane production in simulated granule
a) Varying initial number of methanogen cells (constant initial acidogen cell count) and
b) Varying initial number of acidogen cells (constant initial methanogen cell count). Red
color of the heatmap section has the highest value of methane produced (in milliliters of
methane per gram of biomass), while blue heatmap section has the lowest value of produced
methane. Parameter scan was conducted for 0.5mm granule size and for the period of 650
simulation hours.

tration file output from simulator) is given as fitness function for the engine. The search

engine simulated granule formation for several combinations of parameter values within the

input interval and calculated total methane produced. The result is produced as a heatmap

in Figure 3.6.

Figure 6 depicts amount of methane produced (in milliliters) per gram of biomass with

varying amount of glucose supplied initially into the system (0.1 to 0.4 g/l). Figure 3.6a has

a constant initial acidogen count of 100 cells, and heatmap demonstrates varying amounts

of methane produced with different glucose concentrations and different numbers of initial
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methanogen cells (from 1 to 900 cells). Same scheme is followed on Figure 3.6b, but with

varying initial numbers of acidogens (from 1 to 400) and constant initial methanogen count

of 100 cells.

One can note from both Figure 3.6a and Figure 3.6b that increased amount of glucose

correlates with increased amount of methane produced in the system. Also, in general in-

creased number of starting cells of acidogens ( Figure 3.6b) let to the higher amounts of

methane produced. This correlates with the earlier explored kinetics of methanogen/acido-

gen growth, when methanogens are waiting for acetate supply until they start to grow and

produce methane.

Parameter scan also helped to identify an important observation that a ratio of methanogen

cells to acidogens should not be in a high favor of methanogens (100 acidogens and 900

methanogens on Figure 3.6a), since this leads to a decreased amount of methane produc-

tion. The reason for such correlation is lack of acetate in the system to support growth of

such a big number of methanogenic cells, which are forced to starve and die off.
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CHAPTER 4

METHODS

An agent-based simulator framework, cDynoMiCs [30] is used in this experiment. cDy-

noMiCs is an extension of iDynoMiCs framework developed by the Kreft group at Univer-

sity of Birmingham [31] specifically for modeling biofilms. cDynoMiCs includes eucaryotic

cell modeling processes with the addition of extracellular matrix and cellular mechanisms

such as tight junctions and chemotaxis. Each cell is represented as a spherical particle,

which has a particular biomass, and implements type and species-specific mechanisms to

reproduce cellular physiology. Biochemically, particles can secrete or uptake chemicals that

are diffused through the domain by executing reactions. Biomechanically, particles exhibit

homogeneous and heterogeneous adhesion, and the formation of tight junctions. Particles

model growth by increasing their biomass according to metabolic reactions and split into two

particles once a maximum radius threshold is reached. They can also switch from one type

of particle to another based on specific microenvironmental conditions and internal states.

The simulation process interleaves biomechanical stress relaxation where the particles are

moved in response to individual forces, along with the resolution of biochemical processes

such as secretion, uptake, and diffusion by a differential equation solver. We assume that

the solute fields are in a pseudo steady-state with respect to biomass growth [31].

Particle growth and division can cause particles to overlap, creating biomechanical

stress. To resolve this problem a process called shoving is implemented. When the distance

between two particles is less than a fixed threshold set by the particle size, a repulsive

force is generated to push them apart, proportional to the overlap distance between the

two particles. Then the relaxation process commences that iteratively moves each particle

in response to its net force, then recalculates the forces due to the movement. The process

terminates when only negligible forces remain, and the system has reached a pseudo steady

state.

cDynoMiCs adds new functionality to the Java code of iDynoMiCS and extends the

XML protocol, used to specify many different types of simulations. iDynoMiCS writes
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plain-text XML files as output, and these may be processed using any number of software

tools, such as Matlab and R. In addition to XML files, iDynoMiCS also writes files for POV-

Ray that is used to render 3-D ray-traced images of the simulation. For the experiment to

form the 1mm granule in Section 3.0.4, a 1.16 mm × 1.16 mm domain size was used. For

all other experiments, a 508 µm × 508 µm domain size (2D) is used. A summary of the

protocol parameter values can be found in Table 4.1.

Three solutes, glucose (Sg), acetate (Sa) and methane (Sm), exist within the reactor

model. The distribution of these solutes is controlled by Equations 4.1, 4.2, and 4.3 re-

spectively. The diffusion coefficients and reaction rates take different forms for each region

depending upon the spatial distribution of acidogen biomass (Ba), methanogen biomass

(Bm) and dead biomass (Bd) described in Equation 4.4. The effective diffusion coefficient

is decreased within the granule compared with the liquid value in order to account for the

increased mass transfer resistance. The diffusivity values used for the model (specified in

Table 4.1) are taken from literature related to biofilm diffusivity studies [34,35]. The growth

rate of acidogens is µa(Sg, Sa), defined in Equation 4.8, and the growth rate of methanogens

is µm(Sa) defined in Equation 4.9.

∂Sg
∂t

= B(x, y).Dg.
52Sg
∂x∂y

− µa(Sg, Sa).
Ba

αbg
(4.1)

∂Sa
∂t

= B(x, y).Da.
52Sa
∂x∂y

+ µa(Sg, Sa).
αag.Ba

αbg
(4.2)

∂Sm
∂t

= B(x, y).Dm.
52Sm
∂x∂y

+ µm(Sa).
Bm

αba
(4.3)

where,

B(x, y) =

 1.0 if location x, y contains no biomass

γ if location x, y contains biomass
(4.4)
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Table 4.1: Parameters used in model and their literature values

Parameter Summary

Model parameter Symbol Value Unit References

Solutes

Diffusion of Glucose
in liquid

Dg 5.8x10−6 m2 /day [32]

Diffusion of Acetate
in liquid

Da 1.05x10−4 m2 /day [32]

Diffusion of methane
in liquid

Dm 1.29x10−4 m2 /day [33]

Biofilm Diffusivity γ 30 % [34,35]

Acidogens

Cell mass Ba 300 fg [36]

Division radius 3 µm [37]

Maximum growth
rate

µ̂a 0.208 h−1 [36], [38,
39]

Substrate saturation
constant

Ks 0.26 g/L [27,39]

Product inhibition
constant

Ki 0.1 g/L [38,39]

Biomass conversion
rate

αbg 0.3 gbiomass/gglucose [39, 40]

Substrate conversion
rate

αag 0.82 gacetate/gglucose [38–40]

Death delay 48 h estimated

Death threshold 0.02 g/L estimated

Methanogens

Cell mass Bm 1500 fg [37]

Mass of EPS capsule 10 fg [25,41]

Division radius 3 µm [37]

Maximum growth
rate

µ̂m 0.1 h−1 [25, 41]

Substrate saturation
constant

Ks 0.005 g/L [25,41]

Biomass conversion
rate

αba 0.15 gbiomass/gacetate [25,27,42]

Substrate conversion
rate

αma 0.26 gmethane/gacetate [25, 27]

Death delay 48 h estimated

Death threshold 0.00001 g/L estimated
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∂Ba

∂t
= µa(Sg, Sa)Ba − die(Ba) (4.5)

∂Bm

∂t
= µa.Sa.Bm − die(Bm) (4.6)

∂Bd

∂t
= die(Ba) + die(Bm) (4.7)

Equations 4.5 and 4.6 describe acidogen and methanogen biomass changes as a function

of local acetate and glucose concentration. Cell death due to lack of food is modeled using

a discrete switching mechanism defined as the function die(Bi) in the equations. Acidogen

cells are converted to dead cells when the amount of glucose is below a threshold value

(death threshold in Table 4.1) for a period of 48 hours. Similarly, the methanogen cells

are converted to dead cells when the amount of glucose is below a threshold value (death

threshold in Table 4.1) for a period of 48 hours. The rate of increase in dead cell mass is

define in Equation 4.7. The parameter values for controlling cell death are estimated due to

the lack of studies quantifying the response of acidogen and methanogen cells to nutritional

stress.

µa(Sg, Sa) = µ̂a.
Sg

(Ksg + Sg)
.

Ki

(Ki + Sa)
(4.8)

µm(Sa) = µ̂m
Sa

Ksa + Sa
(4.9)

Acidogens grow by consuming glucose and producing acetate described by the monod-

kinetic Equation 4.8, where µ̂a is the maximum growth rate for acidogens. Similarly,

methanogen growth by consuming acetate and producing methane described by monod-

kinetic Equation 4.9, where µ̂m is the maximum growth rate for mathanogens. Values for

growth constants, such as biomass yield and substrate conversion rate, for both acidogens

and methanogens were taken from literature and averaged. Thus, maximum growth rate
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for acidogens was twice as high as that that of methanogens, see [3, 27, 39–44]. Biomass

decay rate is not taken into account for both cell types, since decay for anaerobic type of

growth is usually less or equal to 1% of specific growth rate and thus can be ignored [44].

Non-competitive product inhibition is considered for growth of acidogens [44], but not for

the methanogens, assuming low inhibition of methanogenic growth by excess amount of

acetate.
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CHAPTER 5

DISCUSSION AND CONCLUSIONS

A model of anaerobic granulation from digestion of glucose to methane has been suc-

cessfully implemented in an agent-based simulator framework, cDynoMiCs. Simulation

studies incorporated modeling of both reactor and single agglomerate scale granule devel-

opment. Utilized growth mechanisms for generalized glucose-consuming/acetate-producing

bacteria and acetate-consuming/methane-producing bacteria resulted in a well-correlated

kinetic patterns of substrate conversions and biomass growth (Figure 3.3). We were able to

successfully qualitatively and quantitatively validate the architecture of the developed sim-

ulated anaerobic granule with the granule images and cell distribution from experimental

literature studies (Figure 3.4)(Figure 3.5).

The described granulation model has direct applications for designs of experiments, to

predict yields of methane gas from substrates of interest. One application of the model was

successfully demonstrated in this paper via parameter scan algorithm, searching through

different acidogens:methanogens cell ratios and glucose feed that is needed to start anaerobic

system to achieve a desired (maximum) methane yield. By changing the parameters of

microbial growth to fit bacteria of a specific interest (the bacteria one is targeting to explore

in an AD experiment), researchers can apply this model to predict efficiencies of anaerobic

digestion in a system. The tested parameter scan is directly applicable to the studies with

low-strength feed streams to UASB reactors, such as AD of brewery wastewater (COD=100-

800 mg/L) [45], some municipal and industrial wastewaters (COD=100-400 mg/L) [46, 47]

and effluents from petroleum refineries (COD from 68 mg/L) [48]. Further development of

the model will include a parameter search to investigate methane production from medium

and high strength wastewaters.

The current model of anaerobic granulation and methane production from simple feed

sources (glucose) can be expanded to accommodate microbial conversion of more substrates,

such as a mixture and proteins and carbohydrates. This expansion will make it possible

to study granulation and methane potential from a more realistic scenario of wastewater
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feed, such as dairy and municipal wastewaters. A granulation model from a complex feed

should result in a less stratified granule, due to the differential diffusions of the main feed

components and a more complex patterns of microbial growth kinetics [18]. In addition, a

model framework (cDynoMiCs) can be further modified to simulate detachment of excessive

biomass from granular surface (simulating sheer stress described in the UASB reactor envi-

ronment [4, 34, 49, 50]) and breakage of a granule into daughter clusters, that subsequently

give rise to mature granules with a more complex morphology [18,21,51]). Another possible

realm to expand development and application of current granulation model is to explore the

mechanisms of enhancing anaerobic granulation, such as addition of positively charged ions

and particles of polymers into the UASB system [52,53]. The current model of the de novo

anaerobic granulation and its immediate applications will aid future discoveries in the field

of anaerobic digestion, which is regaining its value and popularity in sustainable energy.
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Appendix A

Protocol file for the model

A.1 Description

This xml document function as the definition of the model and as the input to the

simulation framework.

A.2 Protocol file

1

2 <?xml version=” 1 .0 ” encoding=”UTF−8” standalone=”no”?>< !−−

3

4 #########################################################################

5 iDynoMiCS: i nd iv idua l−based Dynamics o f Microb ia l Communities Simulator

6 #########################################################################

7

8 −−><idynomics>

9 < !−−

#####################################################################

10 SIMULATOR SECTION

11 ######################################################################

−−>

12 <s imu la tor>

13 <param name=” restartPrev iousRun ”> f a l s e</param>

14 <param name=”randomSeed”>12</param>

15 <param name=”outputPeriod ” un i t=”hour”>325</param>

16 <t imeStep>

17 <param name=” adapt ive ”> f a l s e</param>

18 <param name=” t imeStepIn i ” un i t=”hour”>1</param>

19 <param name=”timeStepMin” un i t=”hour”>1</param>

20 <param name=”timeStepMax” uni t=”hour”>1</param>

21 <param name=”endOfSimulation ” un i t=”hour”>650</param>
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22 </ timeStep>

23 < !−− The AGENTTIMESTEP which should always be EQUAL or LOWER than

the g l oba l time step −−>

24 <param name=”agentTimeStep” un i t=”hour”>1</param>

25 </ s imu la tor>

26 < !−−

#####################################################################

27 INPUT SECTION

28 ######################################################################

−−>

29 <input>

30 <param name=”useAgentFi le ”> f a l s e</param>

31 <param name=” inputAgentFileURL”>agent Sta te ( l a s t ) . xml</param>

32 <param name=” useBulkFi l e ”> f a l s e</param>

33 <param name=” inputBulkFileURL”>env Sum( l a s t ) . xml</param>

34 </ input>

35 < !−−

#####################################################################

36 SOLUTES AND BIOMASS TYPES SECTION

37 ######################################################################

−−>

38 <s o l u t e domain=”Granule” name=”Attract ”>

39 <param name=” d i f f u s i v i t y ” un i t=”m2. day−1”>1e−1</param>

40 <param name=” a i r D i f f u s i v i t y ” un i t=”m2. day−1”>1e−1</param>

41 <param name=” concent ra t i on ” un i t=”g .L−1”>0</param>

42 <param name=”writeOutput ”>t rue</param>

43 </ s o l u t e>

44 <s o l u t e domain=”Granule” name=” pre s su r e ”>

45 <param name=” d i f f u s i v i t y ” un i t=”m2. day−1”>1</param>

46 < !−−<param name=” concent ra t i on ” un i t=”g .L−1”>0</param>−−>

47 </ s o l u t e>

48 <s o l u t e domain=”Granule” name=”Glucose ”>

49 <param name=” d i f f u s i v i t y ” un i t=”m2. day−1”>5 .8 e−6</param>
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50 < !−−h igher in biomass than in l i q u i d−−>

51 <param name=” a i r D i f f u s i v i t y ” un i t=”m2. day−1”>5 .8 e−6</param>

52 <param name=”writeOutput ”>t rue</param>

53 < !−−<param name=” concent ra t i on ” un i t=”g .L−1”>0</param>−−>

54 </ s o l u t e>

55 <s o l u t e domain=”Granule” name=”Acetate ”>

56 <param name=” d i f f u s i v i t y ” un i t=”m2. day−1”>1 .05 e−4</param>

57 < !−−h igher in biomass than in l i q u i d−−>

58

59 <param name=”writeOutput ”>t rue</param>

60 < !−− <param name=” concent ra t i on ” un i t=”g .L−1”>0</param>−−>

61 </ s o l u t e>

62 <s o l u t e domain=”Granule” name=”Methane”>

63 <param name=” d i f f u s i v i t y ” un i t=”m2. day−1”>1 .29 e−4</param>

64 <param name=” a i r D i f f u s i v i t y ” un i t=”m2. day−1”>1 .29 e−4</param>

65 < !−−h igher in biomass than in l i q u i d−−>

66

67 <param name=”writeOutput ”>t rue</param>

68 < !−−<param name=” concent ra t i on ” un i t=”g .L−1”>0</param>−−>

69 </ s o l u t e>

70 <p a r t i c l e name=”biomass ”>

71 <param name=” dens i ty ” un i t=”g .L−1”>150</param>

72 < !−−<param name=” concent ra t i on ” un i t=”g .L−1”>0</param>−−>

73 </ p a r t i c l e>

74 <p a r t i c l e name=” i n e r t ”>

75 <param name=” dens i ty ” un i t=”g .L−1”>150</param>

76 < !−−<param name=” concent ra t i on ” un i t=”g .L−1”>0</param>−−>

77 </ p a r t i c l e>

78 <p a r t i c l e name=” capsu l e ”>

79 <param name=” dens i ty ” un i t=”g .L−1”>78</param>

80 < !−−<param name=” concent ra t i on ” un i t=”g .L−1”>0</param>−−>

81 </ p a r t i c l e>

82 < !−−

#####################################################################



33

83 WORLD SECTION

84 ######################################################################

−−>

85 <world>

86 <bulk name=”MyTank”>

87 <param name=” isConstant ”> f a l s e</param>

88 < !−−<param name= ”D” uni t= ”h−1”>0 .05</param>−−>

89 <s o l u t e name=”Glucose ”>

90 <param name=” isConstant ”> f a l s e</param>

91 <param name=”Sbulk” un i t=”g .L−1”>0 .4</param>

92 < !−− <param name=”Sin ” un i t=”g .L−1”>0</param>

93 <param name=”Spulse ” un i t=”g .L−1”>0 .4</param>

94 <param name=”pulseRate ” un i t=”h−1”>0 .005</param −−>

95 </ s o l u t e>

96 <s o l u t e name=”Attract ”>

97 <param name=” isConstant ”>t rue</param>

98 <param name=”Sbulk” un i t=”g .L−1”>0</param>

99 <param name=”Sin ” un i t=”g .L−1”>0</param>

100 <param name=”Spulse ” un i t=”g .L−1”>0</param>

101 <param name=”pulseRate ” un i t=”h−1”>0</param>

102 </ s o l u t e>

103 <s o l u t e name=”Methane”>

104 <param name=” isConstant ”>t rue</param>

105 <param name=”Sbulk” un i t=”g .L−1”>0</param>

106 <param name=”Sin ” un i t=”g .L−1”>0</param>

107 <param name=”Spulse ” un i t=”g .L−1”>0</param>

108 <param name=”pulseRate ” un i t=”h−1”>0</param>

109 </ s o l u t e>

110 <s o l u t e name=”Acetate ”>

111 <param name=” isConstant ”>t rue</param>

112 <param name=”Sbulk” un i t=”g .L−1”>0</param>

113 <param name=”Sin ” un i t=”g .L−1”>0</param>

114 <param name=”Spulse ” un i t=”g .L−1”>0</param>

115 <param name=”pulseRate ” un i t=”h−1”>0</param>

116 </ s o l u t e>
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117 </bulk>

118 <computationDomain name=”Granule”>

119 <g r id nDim=”2” nI=”127” nJ=”127” nK=”1”/>

120 <param name=” r e s o l u t i o n ” un i t=”um”>4</param>

121 <param name=”boundaryLayer” un i t=”um”>0</param>

122 <param name=” b i o f i lmD i f f u s i v i t y ”>0 .3</param>

123 <param name=” sp e c i f i cA r e a ” un i t=”m2.m−3”>80</param>

124 <boundaryCondition c l a s s=”BoundaryBulk” name=”y0z”>

125 <param name=” ac t i v eForSo lu t e ”>yes</param>

126 <param d e t a i l=”Glucose ” name=” isPermeableTo”>t rue</param>

127 < !−− <param d e t a i l=”Methane” name=” isPermeableTo”>t rue</param>

−−>

128 <param name=”bulk ”>MyTank</param>

129 <shape c l a s s=”Planar ”>

130 <param name=” po int In ” x=”−1” y=”0” z=”0”/>

131 <param name=”vectorOut ” x=”−1” y=”0” z=”0”/>

132 </ shape>

133 </boundaryCondition>

134 <boundaryCondition c l a s s=”BoundaryBulk” name=”yNz”>

135 <param name=” ac t i v eForSo lu t e ”>yes</param>

136 <param d e t a i l=”Glucose ” name=” isPermeableTo”>t rue</param>

137 < !−− <param d e t a i l=”Methane” name=” isPermeableTo”>t rue</param>

−−>

138 <param name=”bulk ”>MyTank</param>

139 <shape c l a s s=”Planar ”>

140 <param name=” po int In ” x=”127” y=”0” z=”0”/>

141 <param name=”vectorOut ” x=”1” y=”0” z=”0”/>

142 </ shape>

143 </boundaryCondition>

144 <boundaryCondition c l a s s=”BoundaryBulk” name=”x0z”>

145 <param name=” ac t i v eForSo lu t e ”>yes</param>

146 <param d e t a i l=”Glucose ” name=” isPermeableTo”>t rue</param>

147 < !−− <param d e t a i l=”Methane” name=” isPermeableTo”>t rue</param>

−−>

148 <param name=”bulk ”>MyTank</param>
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149 <shape c l a s s=”Planar ”>

150 <param name=” po int In ” x=”0” y=”−1” z=”0”/>

151 <param name=”vectorOut ” x=”0” y=”−1” z=”0”/>

152 </ shape>

153 </boundaryCondition>

154 <boundaryCondition c l a s s=”BoundaryBulk” name=”xNz”>

155 <param name=” ac t i v eForSo lu t e ”>yes</param>

156 <param d e t a i l=”Glucose ” name=” isPermeableTo”>t rue</param>

157 < !−− <param d e t a i l=”Methane” name=” isPermeableTo”>t rue</param>

−−>

158 <param name=”bulk ”>MyTank</param>

159 <shape c l a s s=”Planar ”>

160 <param name=” po int In ” x=”0” y=”127” z=”0”/>

161 <param name=”vectorOut ” x=”0” y=”1” z=”0”/>

162 </ shape>

163 </boundaryCondition>

164 <boundaryCondition c l a s s=”BoundaryZeroFlux” name=”x0y”>

165 <shape c l a s s=”Planar ”>

166 <param name=” po int In ” x=”0” y=”0” z=”−1”/>

167 <param name=”vectorOut ” x=”0” y=”0” z=”−1”/>

168 </ shape>

169 </boundaryCondition>

170 <boundaryCondition c l a s s=”BoundaryZeroFlux” name=”x0y”>

171

172 <shape c l a s s=”Planar ”>

173 <param name=” po int In ” x=”0” y=”0” z=”1”/>

174 <param name=”vectorOut ” x=”0” y=”0” z=”1”/>

175 </ shape>

176 </boundaryCondition>

177 </computationDomain>

178 </world>

179 < !−−

#####################################################################

180 REACTION SECTION



36

181 ######################################################################

−−>

182 <r e a c t i on catalyzedBy=”biomass ” c l a s s=”React ionFactor ” name=”

GlucoseDegradation ”>

183 <param name=”muMax” un i t=”h−1”>0 .208</param>

184 <k in e t i cFac t o r c l a s s=”MonodKinetic” s o l u t e=”Glucose ”>

185 <param name=”Ks” un i t=”g .L−1”>0 .26</param>

186 </ k i n e t i cFac t o r>

187 <k in e t i cFac t o r c l a s s=” S imp l e Inh ib i t i on ” s o l u t e=”Acetate ”>

188 <param name=”Ki” un i t=”g .L−1”>0 .1</param>

189 </ k i n e t i cFac t o r>

190 <y i e l d>

191 <param name=”Glucose ” un i t=”g . g−1”>−1</param>

192 <param name=”biomass ” un i t=”g . g−1”>0 .3</param>

193 <param name=”Acetate ” un i t=”g . g−1”>0 .82</param>

194 </ y i e l d>

195 </ r e a c t i on>

196 <r e a c t i on catalyzedBy=”biomass ” c l a s s=”React ionFactor ” name=”

AcetateDegradat ion ”>

197 <param name=”muMax” un i t=”h−1”>0 .1</param>

198 <k in e t i cFac t o r c l a s s=”MonodKinetic” s o l u t e=”Acetate ”>

199 < !−−w i l l be i nh i b i t e d l a t e r by NH3!−−>

200 <param name=”Ks” un i t=”g .L−1”>0 .005</param>

201 </ k i n e t i cFac t o r>

202 <y i e l d>

203 <param name=”Acetate ” un i t=”g . g−1”>−1</param>

204 <param name=”biomass ” un i t=”g . g−1”>0 .15</param>

205 <param name=”Methane” un i t=”g . g−1”>0 .26</param>

206 <param name=” capsu l e ” un i t=”g . g−1”>0 .08</param>

207 </ y i e l d>

208 </ r e a c t i on>

209 <r e a c t i on catalyzedBy=”biomass ” c l a s s=”React ionFactor ” name=”

Att ra c tSe c r e t i on ”>

210 <param name=”muMax” un i t=”hour−1”>0 .03</param>

211 <k in e t i cFac t o r c l a s s=” F i r s tOrde rKine t i c ”/>
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212 <y i e l d>

213 <param name=”Attract ” un i t=”g . g−1”>0 .05</param>

214 </ y i e l d>

215 </ r e a c t i on>

216 <r e a c t i on catalyzedBy=”biomass ” c l a s s=”React ionFactor ” name=”Death”>

217 <param name=”muMax” un i t=”hour−1”>10</param>

218 <k in e t i cFac t o r c l a s s=” F i r s tOrde rKine t i c ”/>

219 <y i e l d>

220 <param name=”biomass ” un i t=”g . g−1”>−10</param>

221 </ y i e l d>

222 </ r e a c t i on>

223 < !−−

#####################################################################

224 SOLVER SECTION

225 ######################################################################

−−>

226 <s o l v e r c l a s s=” SolverS imple ” domain=”Granule” name=” s o l u t e s ”>

227 <param name=” ac t i v e ”>t rue</param>

228 <param name=”preStep ”>40</param>

229 <param name=”postStep ”>40</param>

230 <param name=” coarseStep ”>1500</param>

231 <param name=”nCycles ”>5</param>

232 <r e a c t i on name=”GlucoseDegradation ”/>

233 <r e a c t i on name=”AcetateDegradation ”/>

234 <r e a c t i on name=”At t ra c tSe c r e t i on ”/>

235 <r e a c t i on name=”Death”/>

236 </ s o l v e r>

237 < !−− <s o l v e r c l a s s=” So l v e r p r e s s u r e ” name=” pre s su r e ” domain=”Granule”><

param name=” ac t i v e ”>t rue</param></ s o l v e r> −−>

238 < !−−

#####################################################################

239 AGENT GRID SECTION
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240 ######################################################################

−−>

241 <agentGrid>

242 <param name=”computationDomain”>Granule</param>

243 <param name=” r e s o l u t i o n ” un i t=”um”>4</param>

244 < !−− <detachment c l a s s=”DS Biomass”><param name=”kDet” un i t=” fg .um

−4.hour−1.”>2e−4</param><param name=”maxTh” uni t=”um”>300</param

></detachment><param name=”sloughDetachedBiomass ”>t rue</param>

−−>

245 <param name=”shovingMaxNodes”>2e6</param>

246 <param name=” shov ingFract ion ”>1</param>

247 <param name=” shovingMaxIter ”>50</param>

248 <param name=”shovingMutual ”>t rue</param>

249 </agentGrid>

250 < !−−

#####################################################################

251 SPECIES SECTION

252 ######################################################################

−−>

253

254 < !−−

#####################################################################

255 GDyingA SECTION

256 ######################################################################

−−>

257 <s p e c i e s c l a s s=”Yeast” name=”GDyingA”>

258 <p a r t i c l e name=”biomass ”>

259 <param name=”mass” un i t=” fg ”>300</param>

260 </ p a r t i c l e>

261 <p a r t i c l e name=” i n e r t ”>

262 <param name=”mass” un i t=” fg ”>0</param>

263 </ p a r t i c l e>

264 <param name=” co l o r ”>black</param>
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265 <param name=”computationDomain”>Granule</param>

266 <param name=”divRadius ” un i t=”um”>10000</param>

267 <param name=”deathRadius ” un i t=”um”>0</param>

268 <param name=” shoveFactor ” un i t=”um”>1</param>

269 <param name=” shoveLimit ” un i t=”um”>0</param>

270 <param name=”agitationCV”>0 .2</param>

271 < !−−<r e a c t i on name=”Death” s t a tu s=” ac t i v e ” />−−>

272 <entryCondi t ions>

273 <entryCondit ion name=”Glucose ” type=” s o l u t e ”>

274 <param name=” fromSpec ie s ”>Acidogen</param>

275 <param name=” switch ”>lessThan</param>

276 <param name=” concent ra t i on ” un i t=”g .L−1”>0 .02</param>

277 </ entryCondit ion>

278 </ entryCondi t ions>

279 <adhes ions>

280 <adhes ion s t r ength=”1” wi thSpec i e s=”GDyingA”/>

281 <adhes ion s t r ength=”1” wi thSpec i e s=”Acidogen”/>

282 <adhes ion s t r ength=”1” wi thSpec i e s=”Methanogen”/>

283 </ adhes ions>

284 <t i gh tJunc t i on s>

285 <t i gh tJunc t i on s t i f f n e s s=”0” wi thSpec i e s=”GDyingA”/>

286 <t i gh tJunc t i on s t i f f n e s s=”0” wi thSpec i e s=”Acidogen”/>

287 <t i gh tJunc t i on s t i f f n e s s=”0” wi thSpec i e s=”Methanogen”/>

288 </ t i gh tJunc t i on s>

289 </ s p e c i e s>

290 < !−−

#####################################################################

291 Acidogen

292 ######################################################################

−−>

293 <s p e c i e s c l a s s=”Yeast” name=”Acidogen”>

294 <p a r t i c l e name=”biomass ”>

295 <param name=”mass” un i t=” fg ”>300</param>

296 </ p a r t i c l e>
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297 <p a r t i c l e name=” i n e r t ”>

298 <param name=”mass” un i t=” fg ”>0</param>

299 </ p a r t i c l e>

300 <param name=” co l o r ”>green</param>

301 <param name=”computationDomain”>Granule</param>

302 <param name=”divRadius ” un i t=”um”>2</param>

303 <param name=”deathRadius ” un i t=”um”>0</param>

304 <param name=” shoveFactor ” un i t=”um”>1</param>

305 <param name=” shoveLimit ” un i t=”um”>0 .0</param>

306

307 < !−− <param name=”divRadiusCV”>1</param><param name=”deathRadiusCV”>

1</param><param name=”babyMassFracCV”>1</param> −−>

308 <r e a c t i on name=”GlucoseDegradation ” s t a tu s=” ac t i v e ”/>

309 <chemotaxis>

310 <chemotact ic s t r ength=”5” withSo lute=”Attract ”/>

311 </ chemotaxis>

312 <entryCondi t ions>

313 < !−− <entryCondit ion name=”Glucose ” type=” s o l u t e ”><param name=”

fromSpec ies ”>GDyingA</param><param name=” switch ”>greaterThan<

/param><param name=” concent ra t i on ” un i t=”g .L−1”>0 .1</param></

entryCondit ion> −−>

314 </ entryCondi t ions>

315 <t i gh tJunc t i on s>

316 <t i gh tJunc t i on s t i f f n e s s=”0” wi thSpec i e s=”Acidogen”/>

317 <t i gh tJunc t i on s t i f f n e s s=”0” wi thSpec i e s=”Methanogen”/>

318 <t i gh tJunc t i on s t i f f n e s s=”0” wi thSpec i e s=”GdyingA”/>

319 </ t i gh tJunc t i on s>

320 <switch ingLags>

321 <switchingLag toSpec i e s=”GDyingA” uni t=”hour” value=”48”/>

322 </ switch ingLags>

323 <adhes ions>

324 <adhes ion s t r ength=”2” wi thSpec i e s=”Methanogen”/>

325 <adhes ion s t r ength=”1” wi thSpec i e s=”Acidogen”/>

326 <adhes ion s t r ength=”0” wi thSpec i e s=”GdyingA”/>

327 </ adhes ions>
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328 <i n i tArea number=”100”>

329 <param name=”birthday ” un i t=”hour”>0</param>

330 <coo rd ina t e s x=”245” y=”245” z=”0”/>

331 <coo rd ina t e s x=”250” y=”250” z=”0”/>

332 </ in i tArea>

333 </ s p e c i e s>

334 < !−−

#####################################################################

335 Methanogen

336 ######################################################################

−−>

337 <s p e c i e s c l a s s=”Yeast” name=”Methanogen”>

338 <p a r t i c l e name=”biomass ”>

339 <param name=”mass” un i t=” fg ”>1500</param>

340 </ p a r t i c l e>

341 <p a r t i c l e name=” i n e r t ”>

342 <param name=”mass” un i t=” fg ”>10</param>

343 </ p a r t i c l e>

344 <param name=” co l o r ”>red</param>

345 <param name=”computationDomain”>Granule</param>

346 <param name=”divRadius ” un i t=”um”>3</param>

347 <param name=”deathRadius ” un i t=”um”>0 .001</param>

348 <param name=” shoveFactor ” un i t=”um”>0 .65</param>

349 <param name=” shoveLimit ” un i t=”um”>0</param>

350

351 < !−−<param name=”divRadiusCV”>1</param><param name=”deathRadiusCV”>1

</param><param name=”babyMassFracCV”>1</param> −−>

352 <param name=”epsMax”>0 .1</param>

353 <param name=”kHyd” uni t=”hr−1”>0 .07</param>

354 <r e a c t i on name=”AcetateDegradation ” s t a tu s=” a c t i v e ”/>

355 <r e a c t i on name=”At t ra c tSe c r e t i on ” s t a tu s=” a c t i v e ”/>

356 <entryCondi t ions>

357 < !−− <entryCondit ion name=”Acetate ” type=” s o l u t e ”><param name=”

fromSpec ies ”>GDyingM</param><param name=” switch ”>greaterThan<
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/param><param name=” concent ra t i on ” un i t=”g .L−1”>0 .01</param><

/ entryCondit ion> −−>

358 </ entryCondi t ions>

359 <t i gh tJunc t i on s>

360 <t i gh tJunc t i on s t i f f n e s s=”0” wi thSpec i e s=”Methanogen”/>

361 <t i gh tJunc t i on s t i f f n e s s=”0” wi thSpec i e s=”Acidogen”/>

362 </ t i gh tJunc t i on s>

363 <switch ingLags>

364 <switchingLag toSpec i e s=”GDyingM” uni t=”hour” value=”48”/>

365 </ switch ingLags>

366 <adhes ions>

367 <adhes ion s t r ength=”0” wi thSpec i e s=”Methanogen”/>

368 <adhes ion s t r ength=”2” wi thSpec i e s=”Acidogen”/>

369 <adhes ion s t r ength=”0” wi thSpec i e s=”GdyingA”/>

370 </ adhes ions>

371 <i n i tArea number=”110”>

372 <param name=”birthday ” un i t=”hour”>0</param>

373 <coo rd ina t e s x=”245” y=”245” z=”0”/>

374 <coo rd ina t e s x=”250” y=”250” z=”0”/>

375 </ in i tArea>

376 </ s p e c i e s>

377

378 < !−−

#####################################################################

379 GDyingM

380 ######################################################################

−−>

381 <s p e c i e s c l a s s=”Yeast” name=”GDyingM”>

382 <p a r t i c l e name=”biomass ”>

383 <param name=”mass” un i t=” fg ”>1500</param>

384 </ p a r t i c l e>

385 <p a r t i c l e name=” i n e r t ”>

386 <param name=”mass” un i t=” fg ”>0</param>

387 </ p a r t i c l e>
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388 <param name=” co l o r ”>black</param>

389 <param name=”computationDomain”>Granule</param>

390 <param name=”divRadius ” un i t=”um”>10000</param>

391 <param name=”deathRadius ” un i t=”um”>0</param>

392 <param name=” shoveFactor ” un i t=”um”>1</param>

393 <param name=” shoveLimit ” un i t=”um”>0</param>

394 < !−− <param name=”divRadiusCV”>1</param><param name=”deathRadiusCV”>

1</param><param name=”babyMassFracCV”>1</param> −−>

395 < !−−<r e a c t i on name=”Death” s t a tu s=” ac t i v e ” />−−>

396 <entryCondi t ions>

397 <entryCondit ion name=”Acetate ” type=” s o l u t e ”>

398 <param name=” fromSpec ie s ”>Methanogen</param>

399 <param name=” switch ”>lessThan</param>

400 <param name=” concent ra t i on ” un i t=”g .L−1”>0.00001</param>

401 </ entryCondit ion>

402 </ entryCondi t ions>

403 </ s p e c i e s>

404 </ idynomics>
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