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ABSTRACT 
 
 

Algae-Based Biofilm Productivity and Treatment of Dairy Wastewater: Effects of 
 

Temperature and Organic Carbon Concentration 
 
 

by 
 
 

Zachary T. Fica, Master of Science 
 

Utah State University, 2017 
 
 

Major Professor: Dr. Ronald C. Sims 
Department: Biological Engineering 
 
 

Biofilm-based microalgal growth was determined as functions of organic 

chemical loading and water temperature utilizing dairy wastewater from a full-scale dairy 

farm.  The dairy industry is a significant source of wastewater worldwide that could 

provide an inexpensive and nutrient rich feedstock for the cultivation of algae biomass 

for use in downstream processing of animal feed and aquaculture. 

Algal biomass was cultivated using a Rotating Algal Biofilm Reactor (RABR) 

system.  The RABR is a biofilm-based technology that has been designed and used to 

remediate municipal wastewater. The RABR was applied to treat dairy wastewater, 

through nutrient uptake, and simultaneously provide biomass for the production of 

renewable bioproducts.  

Algal biomass was grown at temperatures ranging from 7-27 °C, and organic 

carbon concentrations ranging from 300-1200 mg/L of Total Organic Carbon (TOC). 

Analysis of Variance (ANOVA) calculations indicated that both the temperature of the 
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wastewater and the level of organic carbon contributed significantly to the rate of 

biomass growth in the system.  However, the interaction of temperature and organic 

carbon content was not significantly related to the biofilm-based growth rate.  Equations 

were developed that can be used to evaluate algal biomass productivity and nutrient 

removal rates in future work. 

(60 pages) 
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PUBLIC ABSTRACT 
 
 

Algae-Based Biofilm Productivity and Treatment of Dairy Wastewater: Effects of 
 

Temperature and Organic Carbon Concentration 
 

Zachary T. Fica 
 

Production of dairy and associated products is a source of millions of gallons of 

wastewater every year.  Water used in cleaning feeding stalls as well as the liquid 

component of the animal waste are two of the major volumetric components of this 

wastewater.  This water is nutrient rich, often limiting the viability as a land applied 

fertilizer.  However, these same nutrients could be used as an inexpensive feedstock for 

the cultivation of algae, which can then be used to produce downstream products 

including animal feed and aquaculture. 

As part of this study, algal biomass was cultivated on dairy wastewater from the 

Utah State University Caine Dairy.  A Rotating Algal Biofilm Reactor (RABR) system 

was used to grow the biomass.  The RABR is a biofilm technology designed and 

developed at Utah State University and has been applied to the treatment of municipal 

wastewater.  In this study, the RABR was adapted for use in a dairy wastewater stream. 

The RABR was operated at temperatures ranging from 7-27 °C, and organic 

carbon levels in the wastewater ranged from 300-1200 mg/L of Total Organic Carbon 

(TOC). Areal algal biofilm growth rates were calculated, and statistical analysis showed 

that both increasing temperature and levels of organic carbon contributed to an increase 

in biomass growth and an increase in nutrient removal. 
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Equations were then developed using a linearization method and corresponding 

constants and equations were generated that can be used to evaluate algal biomass 

productivity and nutrient removal rates in future experiments and designs for dairy 

wastewater. 
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CHAPTER 1 
 

INTRODUCTION – LITERATURE REVIEW AND EXPERIMENTAL DESIGN 

 

Dairy Production and Waste Management – USU Caine Dairy 

Dairy production is a significant source of wastewater worldwide.  A lactating 

dairy cow can produce over 50 L of wastewater per day [1].  At a dairy farm the size and 

scale of the Caine Dairy at Utah State University, where this research was conducted, 

over 10 m3 of wastewater can be produced daily. 

The Utah State University Caine Dairy Teaching and Research Center is among 

the nation's leading dairy production research centers (https://uaes.usu.edu/farms/caine-

dairy). Research at the Caine Dairy focuses on animal nutrition and reproduction, waste-

handling, animal health, and irrigated pasture for intensive rotational grazing. The center 

also houses three-hundred head of cattle used for dairy production.  The Caine Dairy 

employs a traditional flush system to clean the feed stations for the cattle, which is a 

common practice in agriculture [1].  Cattle are fed while standing on large concrete slabs 

set at a very slight incline.  Two thousand gallons (7.57 m3) of water are used to flush the 

stalls twice daily.  The flushed waste is directed through a coarse filter grate, and the 

large solids are removed, dried, and hauled away.  Then, the liquid phase is pumped into 

a one acre settling lagoon, which empties into a one acre evaporation pond, where the 

wastewater is held until it is pumped back to the feed stations and recycled to flush the 

feeding stalls (Figure 1).  Recycling used wastewater for this kind of flush system 

conserves water resources and reduces costs for dairy operators; however, recycling 

water creates a closed system for the liquid waste, where solid waste is the only stream 
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leaving the system. The result is a buildup of water soluble nutrients, such as phosphorus 

and nitrogen, and turbid wastewater. 

One strategy that can be employed with agricultural wastes is land application.  

Incorporation of dairy waste into soils used for crop production has been shown to not 

only have a positive effect on crop growth, but also reduce the amount of leached 

phosphorus waste when compared to using traditional fertilizers [2].  Land application 

provides the advantage of offsetting costs of fertilizers, as well as being a non-specific 

treatment method for dairy wastes that often vary in composition [3]. 

Fig. 1 Caine Dairy areal photo.  Waste management system is highlighted within the 
figure. 
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However, the levels of nitrogen, phosphorus, and other compounds in many dairy 

wastewaters, such as the wastewater at the Caine Dairy, require more land for land 

application than is available to the dairy. The assimilation capacity of the soil for land 

application is such that only a certain amount of nitrogen and phosphorus, on a mass 

basis, can be applied per year.  The total amount of waste that can be land applied is 

calculated using the land limiting constituent (LLC) approach [4].  This approach 

provides a land requirement for a waste to be land applied, given the waste properties and 

soil assimilative capacity, which includes nutrients that are already in the soils [5,6].  If 

the land requirement exceeds the land available, the waste must undergo pretreatment 

solutions if they are to be land applied, which can be costly.  This research explores algal 

biofilm treatment as a possible low cost pretreatment solution to lower the land 

requirement for land application.  The Caine Dairy wastewater contains nutrient levels 

that cause the land requirement for application to exceed the land available to the dairy 

for land application.  The composition of the Caine Dairy wastewater can be found in the 

methods section. 

If, instead of land application, the wastewater was treated and then discharged, the 

wastewater would be required to meet the State of Utah standards for waste treatment.  

According to the State of Utah administrative code R317-3-11, there are various 

requirements in order to consider a wastewater as having been treated [7].  Some of these 

requirements include: less than 25 mg/L biological oxygen demand (BOD), less than 35 

mg/L total suspended solids (TSS), and turbidity lower than 5 Nephelometric Turbidity 

Units (NTU).  As part of this stud, the wastewater at the Caine Dairy was found to exceed 

all three of these standards. 
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Considering the information presented, the management of this particular 

wastewater would require either the removal of nitrogen and phosphorus in order to 

qualify for land application, or the removal of organics and suspended solids in order to 

be discharged. 

 

Algae-Based Wastewater Treatment 

Benefits of Algal Systems 

Previous studies have been conducted using dairy wastewater as a nutrient source 

in algae systems [8], and it has been suggested that an algae-based alternative could 

provide a more cost effective treatment process for dairy and other livestock wastewater 

sources than traditional lagoons [9].  Algae-based treatment strategies have been 

successful in removing nutrients, specifically nitrogen, from waste streams [10].  One 

advantage that algae provide is that algal cultures can grow at different rates based on 

waste loading rates, and then algal biomass can be removed from the waste system 

thereby removing nitrogen and other nutrients in the form of biomass [11].  Algae 

cultivation therefore could provide a possible solution for the Caine Dairy wastewater 

management problem by reducing the amount of nitrogen and phosphorus in the 

wastewater in order to qualify the water for land application. 

A second advantage of using algae based systems for wastewater treatment is that 

algae biomass that is removed from the system can be used as a feedstock for 

downstream bioproducts. Various downstream processing procedures have been 

developed to produce bioproducts including bioplastics, biofuel feedstock, high value 
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pharmaceutical compounds, acetone, and nutrient rich animal feed [12-16].  These 

bioproducts can help offset costs associated with wastewater treatment. The overall costs 

and energy requirements associated with these downstream products have been 

extensively studied and modeled [17].  The use of downstream protein products as an 

animal feed is of special interest in this research, as the algal biomass produced in this 

project was grown on animal waste. 

 

Limitations of Algal Systems 

Algal systems also have certain limitations, including the presence of organic 

carbon, reduced efficiency at low temperatures, and inadequate light. In some algal 

growth systems, organic carbon has been shown to be antagonistic to phototrophic 

growth often due to nutrient competition with heterotrophic bacteria [18,19].  This is not 

true of all algal systems with high organic carbon; some systems with algal cultures 

grown in the presence of heterotrophic bacterial cultures have exhibited a symbiotic 

effect [20].  It is hypothesized that this symbiotic effect is due to heterotrophic bacteria 

supplying carbon dioxide to phototrophic algae species, which in turn provide oxygen for 

heterotrophic respiration.  In summary, high levels of organic carbon have an impact on 

algal growth that is unclear based on the refereed literature.  The effect of organic carbon 

on algal growth appears to vary from system to system. 

Another limitation of algal wastewater management systems is temperature range.   

The effect of temperature on growth rates and nutrient uptake rates of many different 

algal species is well documented in primary literature [21,22].  The consensus and 
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common trend across all algal species is that growth rates are limited at low temperatures 

and increase with increasing temperature.  The Caine Dairy is in a region that undergoes 

seasonal temperature changes ranging from below freezing in winter to an average above 

30℃ in the summer [23].  If an algal system is to be used at the Caine Dairy, the nutrient 

removal rate would not be constant because of the seasonal variation in temperature. 

The third limitation of algae-based wastewater treatment is light penetration in 

turbid water.  Many waste streams, such as the wastewater at the Caine Dairy (Figure 2) 

are turbid.  This turbidity can be due to suspended solids or other soluble colored 

compounds in the water, but turbidity level has been shown to directly correlate to light 

penetrance in water with no dependence on the cause of turbidity [24].  This limited light 

penetrance due to turbidity has been shown to limit algal growth [25]. 

 

 

 

Fig. 2 Caine Dairy wastewater influent stream sample (40 mL). Showing turbidity of 890 
NTU. 
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These three limitations (organic loading, temperature, and light penetration) were 

the limitations that were considered in this project.   

 

Biofilm-based Algal Solutions 

 In order to overcome light limitation of algal growth due to turbidity in 

Caine Dairy wastewater, a biofilm based system could be considered. The system 

selected for testing with this particular wastewater was the Rotating Algal Biofilm 

Reactor (RABR) system designed at Utah State University.  The RABR is a biofilm-

based reactor system using a partially submerged rotating cylinder with growth 

substratum attached to the outside of the cylinder and with a novel harvesting mechanism 

[26].    Biofilm growth is possible even in turbid wastewater systems, because the RABR 

rotates the biofilm in and out of the water, thereby exposing it to both light and a nutrient 

source. 

The RABR provides the possibility for wastewater nutrient sources to be utilized 

for algae-based systems that could not support suspended algal growth due to turbidity, 

color, or water depth limitations.  Applications of biofilm engineering compared with 

suspended growth systems offer additional benefits by eliminating the need for polymers, 

sedimentation, and centrifugation when harvesting [27], and therefore reduce costs 

associated with harvesting when compared to traditional suspended growth systems [28].  

Other biofilm systems, such as the Algal Turf Scrubber and the Rotating Algal 

Bioreactor, have been investigated as possible algal production strategies; however, these 

biofilm systems are often limited by turbidity [29].   
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Arrhenius Linearization in Biological Systems 

The Arrhenius equation is a model often used to describe the temperature 

dependence of a rate constant of a chemical reaction. Its variables, usually named pre-

exponential factor and activation energy, can be estimated using several methods [30]. 

The form of the equation used in this study was  

    𝐾𝐾 = 𝐴𝐴 ∗ 𝑒𝑒
−𝐸𝐸𝑎𝑎
𝑅𝑅𝑅𝑅      (A) 

where K is the biomass productivity (g m-2 day-1), Ea is the activation energy of the 

reaction (J mol-1), A is the pre-exponential factor (g m-2 day-1), and R is the universal gas 

constant (8.314 J K-1 mol-1).  The application of this equation can be found in chapter 3. 

 In biological systems, it has been shown that there is a similar relationship 

between temperature and the rate constant of a biological reaction within certain 

temperature ranges [31].  This relationship can be modeled, and rate constants and other 

important variables can be estimated using analytical methods.  The adapted equation has 

been termed the Van’t Hoff-Arrhenius equation [32] and the form used in this study was 

     𝐾𝐾2
𝐾𝐾1

= 𝜃𝜃𝑇𝑇2−𝑇𝑇1       (B)  

where theta (Θ) represents the temperature correction coefficient.  The application of this 

equation is presented in chapter 3. 
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CHAPTER 2 
 

RABR TREATMENT OF CAINE DAIRY WASTEWATER 

 

Introduction 

 

Wastewater from the Caine Dairy was collected from the evaporation pond at the 

same location used for flushing stalls and was analyzed.  The composition of the 

wastewater is shown in Table 1.  Biomass produced from the study was also analyzed for 

elemental composition and the results can also be found in Table 1.  Turbidity of the 

water was also measured at 890 NTU using a Hach 2100Q turbidimeter. 

An algal based wastewater remediation system could provide the means for 

removing nitrogen and phosphorus from the wastewater, while providing biomass for 

downstream product production.  There are possible limitations of an algae based system 

including light, organic levels, and temperature and three limitations were considered in 

this study.  Application of the RABR system has been proposed as a solution to overcome 

turbidity of the wastewater and has been studied and demonstrated by Christiansen and 

Sims [26]. 
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Table 1 Composition of influent Caine Dairy wastewater and cultivated biomass from the 

RABR system.  (Analysis by Chemtech-Ford Laboratories – Sandy, UT).  

Chemical 
Composition 

Water1 (mg L-

1) 
Biomass2 (mg kg-1 dry 

wt.) 
Total Organic Carbon 1200 648500 
Total Nitrogen 1553 140400 
Total Phosphorus 12 19100 
Aluminum 7.67 776 
Boron 1.73 132 
Barium 0.63 75.7 
Cobalt 0.03 1.96 
Chromium 0.42 45.3 
Copper 3.05 85.2 
Iron 6.80 624 
Manganese 0.67 107 
Molybdenum 0.09 27 
Sodium 460 23455 
Nickel 0.25 24.1 
Lead 0.05 6.41 
Silica 106 5572 
Strontium 1.18 125 
Zinc 1.15 116 

1Dairy wastewater influent stream 
  2Produced algae-based biofilm 
  3Total Kjeldahl Nitrogen (Organic nitrogen, ammonia, and ammonium) 
 

 

 

Because nitrogen and phosphorus ratios are important to understand and monitor 

in an algal system, a comparison of molar ratios for carbon, nitrogen, and phosphorus in 

algal biomass, heterotrophic biomass, and Caine Dairy wastewater was performed and is 

presented in Table 2.  Algal biomass nutrient content was taken from the analysis 

performed in Table 1, and heterotrophic biomass was assumed to be homogeneous 

(C5H7O2NP0.1) where half of the carbon required for growth is expelled from the system 
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as CO2.  As can be seen from the table, the C:N:P ratios of both algal and heterotrophic 

biomass are similar.  This could be cause for concern, as bacterial species in the 

wastewater could outcompete the algae for nutrients, especially considering the high 

levels of organic carbon available for heterotrophic metabolism and the high growth rates 

for bacteria compared with algae.  In addition, the elemental molar ratios of the 

wastewater indicated that nitrogen would be the limiting nutrient for both algal and 

bacterial growth in the system. This nitrogen limitation was estimated by comparison of 

the nitrogen:phosphorus ratio of the Caine Dairy wastewater compared to the Redfield 

ratio of 16:1 (N:P) [33]. 

 

Table 2 Calculation of molar ratios for algal biomass, heterotrophic biomass, and Caine 

Dairy wastewater.  C:N:P mass ratios were taken from analysis in Table 1. Molecular 

mass: C = 12g/mol, N = 14 g/mol, P = 31 g/mol. 

Material Mass Ratio as C:N:P Molar Ratio as 
C:N:P 

Algal Biomass 34:7:11 88:16:1 
Heterotrophic 

 
19:5:12 100:10:1 

Caine Dairy 
 

100:13:1 258:28:1 
1 – Analyzed and measured from RABR biomass.  
2 – Chemical composition assumed to be C5H7O2NP0.1.  Taken from Bioprocess Engineering: Basic Concepts Kargi (1992). 
 

 

 

In order to test the effect of organic carbon on algal cultivation on the wastewater, 

total organic carbon (TOC) was calculated and considered a variable for growth.  Water 

temperature was also investigated as a variable for algal growth.  The hypothesis tested 

through this research is that abundant organic carbon in the system used by 
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heterotrophic bacteria allows the bacterial cultures to outcompete the algal species for 

nitrogen and phosphorus. 

 

Materials and Methods 

Algal Culture Selection and Analysis 

Algae biomass inoculum for the laboratory RABRs was collected from the pilot 

scale RABR systems operated at the Logan City municipal wastewater treatment facility, 

a 460 acre (1.86 km2) open lagoons system [34]. Visual microscopy of the pilot scale 

RABR based biofilm was keyed using the “PhycoKey” tool at the University of New 

Hampshire (http://cfb.unh.edu/phycokey/phycokey.htm).  Microscopy indicated that the 

collected algae biomass was a poly-culture that contained a variety of algae species, with 

Pseudanabaena, Oscillatoria, and Chroococcus as the predominant species.  

The biomass was then cultivated on cotton rope in shaker flasks on a shaker plate 

rotating at 120 rpm using dairy wastewater as the nutrient source.  The algal biomass was 

allowed to grow in the shaker flasks for seven days before application to the RABR 

system to allow the culture to adapt to the nutrient source.  The 

carbon:nitrogen:phosphorus molar ratio of the adapted biofilm calculated in Table 2 was 

88:16:1, which is comparable to other algae-based systems [33].   

Reactor Design and Waste Preparation 

http://cfb.unh.edu/phycokey/phycokey.htm
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Rotating Algal Biofilm Reactors of 1-Liter volume were constructed and operated 

according to Christenson and Sims [26], and the biofilm reactors were wrapped with 

premeasured lengths of 3/16 in. dia. (0.476 cm dia.) solid braid cotton rope.  In order to 

test the effect of organic carbon concentration on biomass productivity, the reactors were 

filled with different dilutions of wastewater and balanced to match the total nitrogen and 

phosphorus concentrations in the undiluted dairy wastewater influent stream using 

sodium nitrate (Thermo Fisher, Pittsburgh, PA) and potassium phosphate (Thermo 

Fisher, Pittsburgh, PA).  The final organic carbon content of the wastewater dilutions was 

set to 1200, 600, and 300 mg L-1 of total organic carbon.  The N:P ratio was measured 

(Hach Method 10127 and 10072) and balanced weekly to the same 155mg:12mg ratio of 

the Caine Dairy wastewater, and water loss due to evaporation was replaced with double 

distilled water.  This experiment was conducted utilizing a semi-batch system, with a 

hydraulic retention time (HRT) of seven days.  The RABR setup with algal growth is 

presented in Figure 3. 

A water bath (VWR) with ¼ in. dia. (0.635 cm dia.) stainless steel tubing was 

used to maintain the water temperature of each reactor at 7° C, 17° C, or 27° C (±0.5° C).  

This range of temperatures was chosen as a representative range of seasonal water 

temperatures in Northern Utah [23].  Constant light was provided from eight 40W 

fluorescent lamps (GE) that provided a total of 200 µEinstein photons m-2 s-1 of 

continuous photosynthetically active radiation to the upper surface of the RABR systems.  

Two grams of centrifuged wet weight of adapted inoculum were added to the cotton rope 

growth substratum upon initiating rotation of the reactors. 
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Biomass Harvesting and Analysis 

Biomass was harvested from the rope substrata weekly by mechanical scraping 

and lyophilized for biomass determination, ash free dry weight (AFDW) measurements, 

and chemical composition. AFDW calculation was determined using lyophilized biomass 

at 550° C.  Biomass productivity was calculated using the AFDW of the biofilm divided 

by the areal footprint of the reactor (0.0338 m2).  The substrate surface area on which the 

biomass grew was calculated as 0.043 m2, a factor of 1.27 larger than the areal surface 

area. Therefore, using substrate surface area to calculate biomass productivity would 

yield productivity values 1.27 times higher. Productivity was defined as the overall rate 

of biomass growth at steady state. Growth rates were calculated, and an Arrhenius plot of 

the data was used to obtain the temperature correction coefficient. ANOVA calculations 

were based on using biomass productivity as the dependent variable.  Total theoretical 

Fig. 3 RABR experimental setup.  RABRs with This photograph depicts the algal biofilm 
on the RABRs 9 days after initial inoculation.  Areal footprint of each individual reactor 
was measured to be 0.0338 m2 and total rope surface area was calculated to be 0.0305 m2.   
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productivity for the reactor was also calculated using measured growth rates. The 

Arrhenius equation was used to model the effect of temperature on the biofilm growth 

rate. 

Number of Reactors and Statistical Analysis 

Triplicate RABR trials for each combination of organic carbon concentration and 

temperature were conducted for statistical analysis. Each temperature was evaluated by 

testing three levels of organic carbon in triplicate for a total of nine reactors at each 

temperature and each organic carbon level.  The total number of RABRs was 27, three 

for each combination of organic loading and temperature.  In this study, biofilm 

productivity was the quantitative outcome, and temperature and organic loading were the 

explanatory variables.  Analysis of Variance (ANOVA) was used to analyze the data 

because ANOVA not only provides a means to see how both of the independent 

variables, temperature and concentration of organic carbon, impact the dependent 

variable, biomass productivity, but also how the interaction of the two independent 

variables impacts the dependent variable [35]. 

 

Results and Discussion 

 After harvesting the produced biofilm, the productivity of the system was 

calculated.  Temperature was made to be a limiting factor for the growth of algae by 

providing nutrients at a constant initial concentration for all RABRs under constant light 
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[36,37].  Controlling temperature as the limiting factor allows for the evaluation of the 

effect of temperature on biofilm productivity, as shown in Figure 4. 

 

 

Results of ANOVA are shown in Table 3.  With p-values of less than 0.005, both 

increasing temperature and increasing organic carbon concentration were correlated with 

an increase in biofilm productivity.  However the interaction of temperature and organic 

loading did not contribute to a statistically significant increase in productivity (p-value 

0.8871).  This indicates that both increasing temperature and organic carbon increased 

biomass growth through different mechanisms.  Error bars show 95% confidence 

Fig. 4 Areal biofilm productivity (AFDW) as a function of temperature at three levels of 
organic loading. Error bars represent ± 95% confidence interval. n=3 for each data point. 
n=27 for entire system. 
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intervals from the mean in all figures.  ANOVA was performed using triplicate data 

points in each trial. 

 

Table 3 Summary of the Analysis of Variance (ANOVA) results for the effect of 
temperature and organic carbon concentration on productivity of RABR based algae 
biofilm. 

Source Sum of Squared 
Deviations 

Degrees of 
Freedom 

Mean 
Square 

F-
Statistic 

P-
Value 

Temperature 14.12 2 7.06 8.87 0.0021 
TOC 

 
30.2 2 15.1 18.98 <0.0001 

Interaction 0.88 4 0.22 0.28 0.8871 
Error 14.32 18 0.8   
Total 59.52 26    

 

 

In addition to correlating biomass productivity with temperature, ANOVA results 

also indicated that increasing the concentration of organic carbon had a positive 

correlation with biofilm productivity.  This effect of organic carbon concentration of 

biofilm productivity is presented in Figure 5, by plotting the same biomass growth rates 

vs. organic carbon concentration instead of vs. temperature as in Figure 4.  Application of 

an algae-based biofilm system for nutrient uptake in dairy wastewater requires that the 

biofilm be capable of growth in the presence of high levels of organic carbon.  The 

positive correlation between productivity and organic carbon concentration indicates that 

a biofilm system could be used to remove nutrients from a waste stream with elevated 

levels of organic carbon.  This positive correlation could be due to a symbiotic effect of 

natural bacteria providing carbon dioxide for phototrophic growth.  In a dairy waste 
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stream of similar elemental composition to that of the Caine Dairy, which produces 4000 

gal day-1, the theoretical yield for AFDW biomass is 9.5 kg day-1 of algae-based biofilm. 

 

 

Conclusions 

Areal algal biofilm growth rates in dairy wastewater ranging from 7-27°C with 

organic levels ranging from 300-1200 mg L-1 were calculated and statistically analyzed 

using ANOVA.  Results indicated that both an increase in water temperature and an 

increase in organic carbon level contributed significantly to the rate of biomass growth in 

the system.  However, ANOVA results indicated that the interaction of organic carbon 

and temperature was not statistically related to the biomass productivity.  Productivity 

was plotted against both temperature and organic carbon.  The data generated in this 

Fig. 5 Areal biofilm productivity (AFDW) as a function of organic loading at three 
different temperatures. Error bars represent ± 95% confidence interval. n=3 for each data 
point. n=27 for entire system. 
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research was used to generate equations related to assessing and predicting biomass 

productivity on dairy wastewater. The hypothesis that abundant organic carbon in the 

system used by heterotrophic bacteria allows the bacterial cultures to outcompete the 

algal species for nitrogen and phosphorus was demonstrated to be not be true. 

  



20 
 

CHAPTER 3 

GENERATION OF EQUATIONS 

 

Arrhenius Linearization 

Because ANOVA results indicate that temperature was a contributing factor to 

biomass productivity, the productivity rates at the three specified temperatures can be 

applied to Equation A (the Arrhenius equation) which is shown again here for 

convenience. 

     𝐾𝐾 = 𝐴𝐴 ∗ 𝑒𝑒
−𝐸𝐸𝑎𝑎
𝑅𝑅𝑅𝑅      (A) 

Using the variables and constants described in chapter 1, this equation can be linearized 

by taking the natural log of both sides to yield:  

    𝑙𝑙𝑙𝑙𝐾𝐾 = −𝐸𝐸𝑎𝑎
𝑅𝑅𝑇𝑇

+ 𝑙𝑙𝑙𝑙 𝐴𝐴    (C) 

Temperature was converted from Celsius to Kelvin, and the slope of the line formed after 

plotting 𝑙𝑙𝑙𝑙𝐾𝐾 vs. - 1
𝑇𝑇
  provides the value for activation energy of biofilm productivity at a 

specified organic carbon concentration (𝐸𝐸𝑎𝑎).  These linearizations can be seen in Figure 

6.  This activation energy represents the energy input necessary for formation of algal 

biomass.  As will be shown in this chapter, the activation energy values generated using 

this method can be applied to equation B (the Van’t Hoff equation) to generate useful, 

predictive constants for biomass productivity. 
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Temperature Correction Coefficient and Other Constants 

Knowing the activation energy of biomass growth at a specific organic carbon 

loading level allows for the calculation of biomass productivity given the temperature of 

the waste water.  Biomass productivity (K) values were calculated at the given organic 

carbon and temperature levels and can be found in Table 4.  Applying the activation 

energy and biomass productivity to equation B (the Van’t Hoff equation), shown again 

here for convenience, allows for calculation of the temperature correction coefficient; 

theta (Θ) [38].   

Fig. 6 Arrhenius plot of RABR productivity (g · m-2 day-1) as a function of temperature 
(K). The slope of the best fit line for each concentration represents −𝐸𝐸𝑎𝑎

𝑅𝑅
 where 𝑅𝑅 =

8.314 𝐽𝐽 𝐾𝐾−1𝑚𝑚𝑚𝑚𝑙𝑙−1 and Ea was calculated (Table 4). 
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     𝐾𝐾2

𝐾𝐾1
= 𝜃𝜃𝑇𝑇2−𝑇𝑇1       (B)  

This is done by rearranging equation B to:  

    ln 𝜃𝜃 =  
ln𝐾𝐾1𝐾𝐾2
𝑇𝑇2−𝑇𝑇1

     (D) 

This temperature correction coefficient is calculated using reference productivity (K) and 

temperature (T) values.  The derived temperature correction coefficient values are 

reported in Table 4, and were found to be consistent with values for other biological 

systems [39-41]. 

 

Table 4 Temperature correction coefficients, activation energies, and constants of biofilm 
productivity and nutrient uptake at three levels of organic loading (TOC). 

Level of TOC (mg/L) 
Symbo

l 1200 600 300 
Biomass Productivity (g m-2 day-1) K 8.69 6.44 5.152 
Activation Energy (J K-1 mol-1) Ea  6473 9739 5440 
Temperature Correction Coefficient 
(unitless) Θ 1.0096 1.0145 1.0081 
Nitrogen Uptake Rate (g m-2 day-1) KN 1.22 0.91 0.723 
Nitrogen Correction Coefficient (unitless) ΘN 1.0098 1.0151 1.0078 
Phosphorus Uptake Rate (g m-2 day-1) KP 0.17 0.12 0.098 
Phosphorus Correction Coefficient 
(unitless) ΘP 1.0101 1.0149 1.0116 

 

 

Uptake and Growth Equations 

At a known concentration of organic carbon, the temperature correction 

coefficient (Θ), derived from equation D, can be used to predict biofilm productivity at 
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any temperature within the range evaluated as part of this study (7° C-27° C).  Replacing 

the variables in equation B (Van’t Hoff) with the calculated constants yields:  

  𝑲𝑲𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 =  𝟓𝟓.𝟏𝟏𝟓𝟓𝟏𝟏 ∗ 𝜽𝜽𝑻𝑻𝒘𝒘𝒘𝒘𝒑𝒑𝒑𝒑𝒑𝒑−𝟏𝟏𝟐𝟐𝟐𝟐    (E) 

which predicts algal biofilm productivity (K) when Twater is water temperature and 𝜽𝜽 is 

the temperature correction coefficient calculated in the previous section. 

Using the molar ratios of the biomass (Table 2) it was also possible to derive a 

temperature correction coefficient from the biofilm productivity values in order to predict 

nitrogen and phosphorus uptake by the biofilm.  These values were calculated by taking 

the total biomass productivity (K), and converting the total mass to mass of nitrogen and 

phosphorus using molar ratios.  The calculated rates of nitrogen and phosphorus removal 

are reported in Table 4 as KN and KP respectively.  The temperature correction 

coefficients that were calculated for nitrogen and phosphorus, ΘN and ΘP respectively, 

are also shown in Table 4.  Therefore, at a known water temperature and concentration of 

organic carbon, the ΘN values found in Table 4 can be applied to: 

𝑲𝑲𝑵𝑵,𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 =  𝟐𝟐.𝟕𝟕𝟏𝟏𝟕𝟕 ∗ 𝜽𝜽𝑵𝑵𝑻𝑻𝒘𝒘𝒘𝒘𝒑𝒑𝒑𝒑𝒑𝒑−𝟏𝟏𝟐𝟐𝟐𝟐   (F) 

in order to predict the rate of nitrogen uptake (g m-2 day-1) from the wastewater.  The ΘP 

values from Table 4 can be applied to:  

   𝑲𝑲𝑷𝑷,𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 =  𝟐𝟐.𝟐𝟐𝟎𝟎𝟐𝟐 ∗ 𝜽𝜽𝑷𝑷𝑻𝑻𝒘𝒘𝒘𝒘𝒑𝒑𝒑𝒑𝒑𝒑−𝟏𝟏𝟐𝟐𝟐𝟐   (G) 

in order to predict the rate of phosphorus uptake (g m-2 day-1) from the wastewater. 
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 These equations allow biomass generation, nitrogen uptake, and phosphorus 

uptake to be predicted in Caine Dairy wastewater or wastewater with similar qualities.  

For example, in a similar wastewater with 600 mg L-1 of TOC at 283 K the predicted 

biomass productivity would be: 

𝑲𝑲𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 =  𝟓𝟓.𝟏𝟏𝟓𝟓𝟏𝟏 ∗ 𝟏𝟏.𝟐𝟐𝟏𝟏𝟎𝟎𝟓𝟓𝟏𝟏𝟐𝟐𝟕𝟕−𝟏𝟏𝟐𝟐𝟐𝟐 

K = 5.38 m\g m-2 day-1 

And the associated removal rates of nitrogen and phosphorus would be: 

𝑲𝑲𝑵𝑵,𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 =  𝟐𝟐.𝟕𝟕𝟏𝟏𝟕𝟕 ∗ 𝟏𝟏.𝟐𝟐𝟏𝟏𝟓𝟓𝟏𝟏𝟏𝟏𝟐𝟐𝟕𝟕−𝟏𝟏𝟐𝟐𝟐𝟐 

𝑲𝑲𝑷𝑷,𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 =  𝟐𝟐.𝟐𝟐𝟎𝟎𝟐𝟐 ∗ 𝟏𝟏.𝟐𝟐𝟏𝟏𝟎𝟎𝟎𝟎𝟏𝟏𝟐𝟐𝟕𝟕−𝟏𝟏𝟐𝟐𝟐𝟐 

KN = 0.756 g m-2 day-1 

KP = 0.102 g m-2 day-1 

 These predicted rates of nutrient removal and biomass growth can then be used 

for application of this system to accomplish various engineering objectives.  The biomass 

productivity rates are given with units of mg m-2 day-1, which allows for utilization of the 

productivity values to predict biomass growth, areal footprint requirements, and time 

requirements.  The equations can also be used to estimate upscale costs and resources, 

including heating requirements of a remediation system or nutrient requirements for 

biomass growth. 
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CHAPTER 4 
 

ENGINEERING SIGNIFICANCE 

 

Engineering Application of Equations 

The equations developed and described in Chapter 3 can be used to design algal 

systems at the Caine Dairy, or other dairies with similar wastewater characteristics.  For 

the purposes of understanding how the equations generated as part of this study can be 

applied to upscale engineering, some examples of applying these equations are given 

here. 

The first example is a dairy that produces a total of 10g of nitrogen waste per day.   

This dairy would like to remove all 10g of nitrogen waste in the form of algal biomass.  

The water temperature has been measured at 17℃ (290K) and the organic carbon level 

has been measured to be 1200 mg L-1.  In this example, the nitrogen removal equation 

will be used: 

𝑲𝑲𝑵𝑵,𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 =  𝟐𝟐.𝟕𝟕𝟏𝟏𝟕𝟕 ∗ 𝜽𝜽𝑵𝑵𝑻𝑻𝒘𝒘𝒘𝒘𝒑𝒑𝒑𝒑𝒑𝒑−𝟏𝟏𝟐𝟐𝟐𝟐   (F) 

From Table 4, at 1200 mg L-1 the temperature correction coefficient for nitrogen 

removal is ΘN = 1.0098.  Inserting these known variables into the equation yields: 

𝑲𝑲𝑵𝑵, 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 =  𝟐𝟐.𝟕𝟕𝟏𝟏𝟕𝟕 ∗ 𝟏𝟏.𝟐𝟐𝟐𝟐𝟎𝟎𝟐𝟐𝟏𝟏𝟎𝟎𝟐𝟐−𝟏𝟏𝟐𝟐𝟐𝟐 

 Solving for KN provides a nitrogen removal rate of 0.797 g m-2 day-1.  Therefore, 

the areal footprint requirement for removal of 10g of nitrogen per day is:  

10g day-1 / 0.797 g m-2 day-1 = 12.6 m2 areal footprint requirement. 
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 A second example is a dairy that is not concerned about nitrogen removal, but 

wants to produce as much algal biomass as possible for downstream bioproducts.  This 

dairy has 10 m2 of land on which to grow biomass.  The water temperature at this dairy 

has been measured at 17℃ (290K) and the organic carbon level has been measured at 

600 mg L-1.  In this example, the biomass growth equation will be used: 

𝑲𝑲𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 =  𝟓𝟓.𝟏𝟏𝟓𝟓𝟏𝟏 ∗ 𝜽𝜽𝑻𝑻𝒘𝒘𝒘𝒘𝒑𝒑𝒑𝒑𝒑𝒑−𝟏𝟏𝟐𝟐𝟐𝟐    (E) 

From Table 4, at 600 mg L-1 the temperature correction coefficient for biomass 

growth is Θ = 1.0145.  Inserting these known variables into the equation yields: 

𝑲𝑲𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 =  𝟓𝟓.𝟏𝟏𝟓𝟓𝟏𝟏 ∗ 𝟏𝟏.𝟐𝟐𝟏𝟏𝟎𝟎𝟓𝟓𝟏𝟏𝟎𝟎𝟐𝟐−𝟏𝟏𝟐𝟐𝟐𝟐 

 Solving for K provides a biomass growth rate of 5.95 g m-2.  Therefore, the biomass 

that can be produced per day is: 

5.95 g m-2 * 10 m2 = 59.5 g biomass day-1. 

 A final example is a dairy that needs to remove 3g of phosphorus waste per day.  

This dairy is in a cold climate, but they are willing to heat wastewater in order to keep the 

temperature high enough for the RABR to remove the 3g of phosphorus per day as long as 

it is cost effective.  The organic carbon concentration in the water has been measured to be 

300 mg L-1 and the dairy has 25 m2 of areal space on which to grow biomass.  In this 

example, the phosphorus removal equation will be used: 

𝑲𝑲𝑷𝑷,𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 =  𝟐𝟐.𝟐𝟐𝟎𝟎𝟐𝟐 ∗ 𝜽𝜽𝑷𝑷𝑻𝑻𝒘𝒘𝒘𝒘𝒑𝒑𝒑𝒑𝒑𝒑−𝟏𝟏𝟐𝟐𝟐𝟐   (G) 

From Table 4, at 300 mg L-1 the temperature correction coefficient for phosphorus 

removal is ΘP = 1.0116.  In this case, the rate of phosphorus removal per m2 is known 

(3g/25m2) so inserting known variables into the equation yields: 
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𝟐𝟐.𝟏𝟏𝟏𝟏 𝐠𝐠/𝐦𝐦^𝟏𝟏 =  𝟐𝟐.𝟐𝟐𝟎𝟎𝟐𝟐 ∗ 𝟏𝟏.𝟐𝟐𝟏𝟏𝟏𝟏𝟎𝟎𝑻𝑻𝒘𝒘𝒘𝒘𝒑𝒑𝒑𝒑𝒑𝒑−𝟏𝟏𝟐𝟐𝟐𝟐 

Solving for Twater provides a water temperature of 294.6 K or 24.6 ℃.  This is 

relatively warm water, and the dairy will most likely have to expend a significant amount 

of energy to heat the water to this temperature. 

Design of a RABR for the Caine Dairy 

Using the rate of waste production at a dairy farm the size of the Caine Dairy as 

well as the ratio of nitrogen and phosphorus separated along with solid waste [1], in 

combination with the amount of water use and wastewater characteristics at the Caine 

Dairy, the areal requirement for a RABR system can be calculated.  Some assumptions 

need to be made, including: wastewater remains at a constant 1200 mg L-1 of organic 

carbon, water temperature is a constant 27°C, light is not a limiting factor for algal 

growth, and the input of phosphorus waste into the wastewater is constant. 

The Caine Dairy has a rate of soluble phosphorus waste production of 

approximately 39 g day-1 [1].  The organic carbon concentration in the water has been 

measured to be 1200 mg L-1, and the water temperature is assumed to be 27°C.  We are 

interested in phosphorus removal, so the equation we will use is: 

𝑲𝑲𝑷𝑷,𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑( 𝒈𝒈
𝒑𝒑𝒘𝒘𝒅𝒅∗𝒎𝒎𝟏𝟏) =  𝟐𝟐.𝟐𝟐𝟎𝟎𝟐𝟐 ∗ 𝜽𝜽𝑷𝑷𝑻𝑻𝒘𝒘𝒘𝒘𝒑𝒑𝒑𝒑𝒑𝒑−𝟏𝟏𝟐𝟐𝟐𝟐  (G) 

 From Table 4 the temperature correction coefficient for phosphorus removal in 

this case is ΘP = 1.0101.  Inserting all of our known variables into the equation yields: 

𝟕𝟕𝟎𝟎 𝐠𝐠
𝐝𝐝𝐝𝐝𝐝𝐝

𝐀𝐀𝐀𝐀𝐀𝐀𝐝𝐝𝐀𝐀 𝐋𝐋𝐝𝐝𝐋𝐋𝐝𝐝(𝒎𝒎𝟏𝟏)
=  𝟐𝟐.𝟐𝟐𝟎𝟎𝟐𝟐 ∗ 𝟏𝟏.𝟐𝟐𝟏𝟏𝟐𝟐𝟏𝟏𝟕𝟕𝟐𝟐𝟐𝟐−𝟏𝟏𝟐𝟐𝟐𝟐 
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 Solving for areal land provides a land requirement of 325.5 m2 or 0.081 acres.  This 

amount of areal land would also produce 2.03 kg of AFDW biomass per day, and represents 

0.868 m2 per animal unit (AU – 1,000 lb. dairy cow). 

 The RABR can also be utilized as a pre-treatment or post-treatment step in a process 

that can be used to recover excess nutrients from a wastewater source.  The RABR could 

be used in combination with other waste management strategies, such as land application.  

The pre-treatment of the wastewater by the RABR can remove nitrogen and phosphorus, 

thereby reducing the amount of land necessary for land application. 
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CHAPTER 5 
 

UPSCALE APPLICATION 

 

Caine Dairy Upscale 

The Caine Dairy at Utah State University has already been used as a site for 

potential upscale of wastewater treatment using the RABR.  Because of the wastewater 

management challenges described in Chapter 1, a pilot scale RABR system was 

constructed and operated using the effluent wastewater from the evaporation pond, as can 

be seen in Figure 7. 

 

  

Fig. 7 Caine Dairy overhead photo.  Waste management system is highlighted within the 
figure, including RABR setup at pumphouse. 
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The RABR is operated in the wastewater at the pump house that is used for filling 

the flush tanks.  Future work at the Caine Dairy should include the adaptation of the 

equations generated in this study to a continuous flow, large scale system.  It should also 

include optimization of environmental variables at the Caine Dairy, including 

temperature, light, flow rates, and biomass harvesting rates. 

The setup and design at the Caine Dairy should accommodate further evaluation 

and testing of the RABR system in dairy wastewater.  The layout of the RABR station at 

the Caine Dairy is shown in Figure 8. 

 

 

As can be seen, the research station at the Caine Dairy includes a structure 

approximately 15-feet x 40-feet, with a domed roof covering.  Currently there is an 

operating RABR with 6-feet diameter, and a disc-style reactor operating in a 250-gallon 

tank.  The RABR is currently operated in batch mode, and the disc reactor is fed by a 

Fig. 8 Layout of RABR station at Caine Dairy. Left – Disc style RABR (200 gal, 
continuous flow) with 8 polystyrene discs of 2-foot diameter Back – Pilot Scale 6-foot 
diameter RABR (batch mode) Right – Reservoir for continuous flow disc reactor. 
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second storage tank and is operated in continuous flow setup with a variable rate of water 

flow through the system. 

Future work at the Caine Dairy research station could include comparing disc 

RABR productivity and removal rates to those of the cylindrical RABR, as well as 

adapting the systems to be continuous flow.  Power requirements, heating requirements, 

and capability of operation during winter months could also be investigated as the system 

is further optimized.  The equations generated in this experiment could also be validated 

against a large scale system using the Caine Dairy RABR. 

 

Bioproduct Production 

Another future recommendation is to generate further predictive equations and 

models to correlate biofilm productivity with the generation of bioproduct generation.  As 

described in Chapter 3, the equations generated as part of this study are useful for the 

prediction of biomass generation and nutrient removal from dairy wastewater.  The 

addition of further equations and models could allow for the prediction of bioproduct 

production and downstream value from wastewater composition.  This would prove 

useful as part of a Techno-Economic Assessment, where wastewater quality could be 

directly linked to a downstream product, through the RABR.  Some specific examples of 

downstream bioproduct opportunities and options include biofuels, protein feeds, 

nutraceuticals, and bioplastics. 
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Upscale Challenges 

Some steps have already been taken to upscale production of algae from dairy 

wastewater and to generate bioproducts.  The Caine Dairy Algae Treatment Facility has 

already been developed as part of a goal to upscale algae production and wastewater 

treatment.  There are some challenges to consider when further upscaling the RABR and 

the production of bioproducts. 

One challenge to consider is the proximity of the RABR to the facility where the 

algae will be processed.  Too often at the Caine Dairy the harvested biomass must be 

transported and stored for an extended period, which may affect the quality of 

bioproducts downstream. 

Another challenge in the processing of algal biomass is the water content of the 

sample.  Some bioproduct generation procedures have been shown to be effective with 

wet algae [42].  However, many procedures require dry algae samples, and the cost 

associated with drying biomass samples must be considered in the future. 

There will be other issues to consider, however most of the problems with upscale 

will be specific to the downstream product that is being produced.  The author 

recommends that any future work be carefully considered and planned in order to 

consider any and all possible barriers that may be create problems, especially when 

moving onto upscale plans. 
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CHAPTER 6 
 

CONCLUSIONS 

 

The background and problems described in Chapter 1 were addressed, and a 

possible solution and design was explored as part of this study.  Because of the high 

nutrient levels of the wastewater at the Caine Dairy that restricted the land application 

alternative, an algae-based treatment solution was explored.  A laboratory scale 

experimental design was described in Chapter 2 and included the methods used to 

quantify nutrient removal from the wastewater as well as methods used in analysis of 

algal biomass harvested.  The biomass productivity rates were used to generate useful 

constants and equations in Chapter 3. 

These equations are a meaningful contribution of this study to the general 

scientific community. The predictive rates of nutrient removal and biomass growth can 

be applied to future experimental designs and plans.  From the perspective of wastewater 

treatment, the equations can be used to predict nutrient removal from a dairy waste 

stream.  From a downstream perspective, the equations can be used to predict the amount 

of algal biomass and other nutrients needed to generate downstream products. 

In Chapter 4, future upscale applications of the RABR system at the Caine Dairy 

were discussed, as well as the upscale possibilities of using algal biomass as a 

downstream feedstock.  The results of this study were summarized and published as a 

peer reviewed article in the Journal of Biological Engineering referenced as: Fica, 

Zachary T., and Ronald C. Sims. "Algae-based biofilm productivity utilizing dairy 
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wastewater: effects of temperature and organic carbon concentration." Journal of 

Biological Engineering 10.1 (2016): 18.  The published article has been appended to this 

Thesis in Appendix A. 

For future research and upscale, the following projects and ideas are suggested.  

First, the equations generated in this study could be further developed and adapted to 

include a larger variety of dairy wastewater, in addition to the Caine Dairy wastewater.  

Including inputs other than temperature and organic carbon levels in the equations would 

also be useful for future applications.  The equations could be further adapted to include 

the effects of the following variables: light levels, RABR rotation speed, nitrogen levels, 

phosphorus levels, toxin levels, and growth substratum. 

Another future recommendation is the optimization of the upscale process to 

minimize energy input and cost associated with treatment.  Algal biofilm systems show 

promise in the treatment of dairy wastewater streams, especially in streams that have high 

concentrations of nitrogen and phosphorus.  The limitations of algal biofilms will be in 

the cost associated with construction and management of algal reactors and offsetting 

costs of downstream algal bioproducts.  Optimizing the operation of an algae based 

reactor on a pilot or industrial scale would help to make wastewater treatment through 

algal biofilms a realistic technology.  Algal technologies have a future in wastewater 

treatment and the production of renewable bioproducts. 
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